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It is shown that, in dilute-gas Bose-Einstein condensates, there exist both dynamically stable and un-
stable configurations which, in the hydrodynamic limit, exhibit a behavior resembling that of gravitational
black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative
energy states, as in the well-known suggested mechanism for black-hole evaporation. We propose a
scheme to generate a stable sonic black hole in a ring trap.
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Many investigations of dilute gas Bose-Einstein conden-
sates are directed towards experimentally creating nontriv-
ial configurations of the semiclassical mean field, or to
predicting the properties of such configurations in the pres-
ence of quantum fluctuations. Such problems are hardly
peculiar to condensates, but ultracold dilute gases are so
easy to manipulate and control, both experimentally [1]
and theoretically [2], that they may allow us to analyze
less amenable systems by analogy. As an essay in such
an application of condensates, in this paper we discuss the
theoretical framework and propose an experiment to create
the analog of a black hole in the laboratory and simulate
its radiative instabilities.

The hydrodynamic analog of an event horizon [3] was
suggested originally by Unruh [4] as a more accessible
phenomenon which might shed some light on the Hawking
effect [5] (thermal radiation from black holes, stationary
insofar as back reaction is negligible) and, in particular, on
the role of ultrahigh frequencies [6—8]. An event horizon
for sound waves appears in principle wherever there is a
closed surface through which a fluid flows inwards at the
speed of sound, the flow being subsonic on one side of
the surface and supersonic on the other. There is a close
analogy between sound propagation on a background
hydrodynamic flow, and field propagation in a curved
spacetime; and although hydrodynamics is only a long-
wavelength effective theory for physical (super)fluids, so
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also field theory in curved spacetime is to be considered a
long-wavelength approximation to quantum gravity [7,9].
Determining whether and how sonic black holes radiate
sound, in a full calculation beyond the hydrodynamic
approximation or in an actual experiment, can thus
offer some suggestions about black-hole radiance and its
sensitivity to high frequency physics.

The basic challenge of our proposal is to keep the
trapped Bose-Einstein gas sufficiently cold and well iso-
lated to maintain a locally supersonic flow long enough to
observe its intrinsic dynamics. Detecting thermal phonons
radiating from the horizons would obviously be a diffi-
cult additional problem, since such radiation would be in-
distinguishable from many other possible heating effects.
This further difficulty does not arise in our proposal, how-
ever, because the black-hole radiation we predict is, unlike
Hawking radiation, not quasistationary, but grows expo-
nentially under appropriate conditions. It should therefore
be observable in the next generation of atom traps.

A Bose-Einstein condensate is the ground state of a sec-
ond quantized many body Hamiltonian for N interacting
bosons trapped by an external potential Veyx(x) [2]. At
zero temperature, when the number of atoms is large and
the atomic interactions are sufficiently small, almost all
the atoms are in the same single-particle quantum state
W(x, 1), even if the system is slightly perturbed. The evolu-
tion of W is then given by the well-known Gross-Pitaevskii
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where m is the mass of the atoms, a is the scattering
length, and we normalize to the total number of atoms
[dx |¥(x,1)|> = N.

Our purposes do not require solving the Gross-Pitaevskii
equation with some given external potential Vey(x); our
concern is the propagation of small collective perturbations
of the condensate, around a background stationary state
W(x,1) = Jp(x) e ?®e~irt/h where u is the chemical
potential. Thus it is only necessary that it be possible,
in any external potential that can be generated, to create
a condensate in this state. Many realistic techniques for
“quantum state engineering,” to create designer potentials
and bring condensates into specific states, have been pro-
posed, and even implemented successfully [10]; our simu-
lations indicate that currently known techniques should
suffice to generate the condensate states that we propose.

Perturbations about the stationary state W, (x, ) obey
the Bogoliubov system of two coupled second order dif-
ferential equations. Within the regime of validity of the
hydrodynamic (Thomas-Fermi) approximation [2], these
two equations for the density perturbation ¢ and the phase
perturbation ¢ in terms of the local speed of sound ¢(x) =
%\/47751 p(x), and the background stationary velocity v =

%Vf}, read
o = —v(

¢ = —-vV¢p —

Furthermore, low frequency perturbations are essentially
just waves of (zero) sound. Indeed, the Bogoliubov equa-
tions may be reduced to a single second order equation
for the condensate phase perturbation ¢. This differen-
tial equation has the form of a relativistic wave equation
9,(/—88""d,¢) = 0, with g = detg,,, in an effective
curved spacetime with the metric g, being entirely deter-
mined by the local speed of sound ¢ and the background
stationary velocity v. Up to a conformal factor, this effec-
tive metric has the form
_( c? — V2) —vT
(g ,tw) = ( —v 1 )

This class of metrics can possess event horizons. For
instance, if an effective sink for atoms is generated at the
center of a spherical trap (such as by an atom laser out-
coupling technique [11]), and if the radial potential pro-
file is suitably arranged, we can produce densities p(r)
and flow velocities v(x) = —v(r)r/r such that the quan-
tity ¢> — v? vanishes at a radius » = ry,, being negative in-
side and positive outside. The sphere at radius ry, is a sonic
event horizon completely analogous to those appearing in
gravitational black holes, in the sense that sonic pertur-
bations cannot propagate through this surface in the out-
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ward direction [4,7,9]. The physical mechanism of the
sonic black hole is quite simple: inside the horizon, the
background flow speed v is larger than the local speed of
sound c, and so sound waves are dragged inwards.

In fact, there are two conditions which must hold for this
dragged sound picture to be accurate. Wavelengths larger
than the black hole itself will, of course, not be dragged in,
but merely diffracted around it. And perturbations must
have wavelengths A > 27 &, 2w & /\/|1 — v/c|, where
&(x) = h/[mc(x)] is the local healing length. Otherwise
they do not behave as sound waves since they lie outside
the regime of validity of the hydrodynamic approximation.
These short-wavelength modes must be described by the
full Bogoliubov equations, which allow signals to propa-
gate faster than the local sound speed, and thus permit
escape from sonic black holes. Even if such an intermedi-
ate range of wavelengths does exist, the modes outside it
may still affect the stability of the black hole as discussed
below.

As it stands, this description is incomplete. The con-
densate flows continually inwards, and therefore at r = 0
there must be a sink that takes atoms out of the con-
densate. Otherwise, the continuity equation V(pv) = 0,
which must hold for stationary configurations, will be vio-
lated. We have analyzed several specific systems which
may be suitable theoretical models for future experiments,
and have found that the qualitative behavior is analogous in
all of them. Black holes which require atom sinks are both
theoretically and experimentally more involved, however;
moreover, maintaining a steady transonic flow into a sink
may require either a very large condensate or some means
of replenishment. We will therefore discuss here an al-
ternative configuration which may be experimentally more
accessible and whose description is particularly simple: a
condensate in a very thin ring that effectively behaves as
a periodic one-dimensional system. Under conditions that
we will discuss, the supersonic region in a ring may be
bounded by two horizons: a black-hole horizon through
which phonons cannot exit, and a “white hole” horizon
through which they cannot enter.

In a sufficiently tight ring-shaped external potential of
radius R, motion in radial (r) and axial (z) cylindrical
coordinates is effectively frozen. We can then write
the wave function as V(z,r,0,7) = f(z,r)®(0,7) and
n(z)gmalize ® to the number of atoms in the condensate

o7 dO|®()> = N, where with the azimuthal coor-
dinate 50 we have introduced the dimensionless time
7 = wt. The Gross-Pitaevskii equation thus becomes
effectively one-dimensional:

1
i9,® = <—3 0 + Ve + % |<I>|2><I>, (1)

where U = 47aNR? [dz drr| f(z,r)|* and Ve (0) is
the dimensionless effective potential (in which we have
already included the chemical potential) that results from
the dimensional reduction. The stationary solution can
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then be written as ®;(0,7) = \/p(6) e' Jasv®) and the
local dimensionless angular speed of sound as c(f) =
JUp(B)/N. Periodic boundary conditions around the
ring require the “winding number” w = % Sﬁ dov(6)
to be an integer.

The qualitative behavior of horizons in a ring is well
represented by the two-parameter family of condensate
densities

N
p(@) = — (1 + bcosh),
27

where b € [0,1]. Continuity, dg(pv) = 0, then deter-
mines the dimensionless flow-velocity field

Uw1 — b2

2mwe()?
which depends on w as a third discrete independent pa-
rameter. Requiring that ® (6, 7) be a stationary solution
to the Gross-Pitaevskii equation then determines how the
trapping potential must be modulated as a function of 6.
All the properties of the condensate, including whether and
where it has sonic horizons, and whether or not they are
stable, are thus functions of ‘U, b, and w. For instance, if
we require that the horizons be located at 6, = *7 /2,
which imposes the relation U = 27w?(1 — b?), then
we must have ¢ — v? positive for § € (—m /2, 7/2),
zero at 0, = * 17 /2, and negative otherwise, provided that
U < 27w?. The further requirement that perturbations
on wavelengths shorter than the inner and the outer regions
are indeed phononic implies U > 27, which in turn
requires w > 1 and 1 > b > 1/w?. In fact, detailed
analysis shows that w = 5 is sufficient.

A black-hole solution should also be stable over suffi-
ciently long time scales in order to be physically realiz-
able. Since stability must be checked for perturbations on
all wavelengths, the full Bogoliubov [2] spectrum must be
determined. For large black holes within infinite conden-
sates, this Bogoliubov problem may be solved using WKB
methods that closely resemble those used for solving rela-
tivistic field theories in true black-hole spacetimes [8]. The
results are also qualitatively similar to those we have found
for black holes in finite traps, where we have resorted to
numerical methods because, in these cases, WKB tech-
niques may fail for just those modes which threaten to be
unstable.

Our numerical approach for our three-parameter fam-
ily of black/white holes in the ring-shaped condensate
has been to write the Bogoliubov equations in discrete
Fourier space, and then truncate the resulting infinite-
dimensional eigenvalue problem.  Writing the wave

v(0) =

function as & = &, + <peif d@v(()), decomposing the
perturbation ¢ in discrete modes

e,7) = D e ™A, u, ,(0)
w,n

+ e T AR yE  (9),

w.n”w,n

and substituting into the Gross-Pitaevskii equation, we ob-
tain the following equation for the modes u,, , and v, ,:

u ht f u
w,n — np iip w,p
o(v) -2 )

In this equation,

u b b
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Eliminating Fourier components above a sufficiently
high cutoff QO has negligible effect on possible insta-
bilities, which can be shown to occur at relatively long
wavelengths. The numerical solution to this eigenvalue
equation, together with the normalization condition
[d6 (e ptte = Vi nVart) = 8w ww» provides the
allowed frequencies. Real negative eigenfrequencies for
modes of positive norm are always present, which means
that black-hole configurations are energetically unstable,
as expected. This feature is inherent in supersonic flow,
since the speed of sound is also the Landau critical
velocity. In a sufficiently cold and dilute condensate,
however, the time scale for dissipation may in principle be
made very long, and so these energetic instabilities need
not be problematic [12].

More serious are dynamical instabilities, which occur
for modes with complex eigenfrequencies and are genu-
ine physical phenomena. For sufficiently high values of
the cutoff (e.g., Q = 25 in our calculations), the complex
eigenfrequencies obtained from the truncated eigenvalue
problem become independent of the cutoff within the nu-
merical error. The existence and rapidity of dynamical in-
stabilities depend sensitively on (U, b, w). For instance,
see Fig. 1 for a contour plot of the maximum of the abso-
lute values of the imaginary parts of all eigenfrequencies
for w = 7, showing that the regions of instability are long,
thin fingers in the (U, b) plane. Not shown in the figure
is the important fact that the size of the imaginary parts,
which gives the rate of the instabilities, increases starting
from zero, quite rapidly with b, although they remain small
as compared with the real parts.

The stability diagram of Fig. 1 suggests a strategy for
creating a sonic black hole from an initial stable state.
Within the upper subsonic region, the vertical axis b = 0
corresponds to a homogeneous persistent current in a ring,
which can in principle be created using different tech-
niques [13]. Gradually changing ‘U and b, it is possible to
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FIG. 1. Stability diagram for winding number w = 7. Solid

dark-grey areas represent the regions of stability. Smaller plots at
higher resolution confirm that the unstable “fingers” are actually
smooth and unbroken. Points on the dashed curve are states
with horizons at *+77/2, so that the black/white hole fills half
the ring.

move from such an initial state to a black/white hole state,
along a path lying almost entirely within the stable region,
and passing only briefly through instabilities where they
are sufficiently small to cause no difficulty.

Indeed, we have simulated this process of adiabatic
creation of a sonic black/white hole by solving numeri-
cally (using the split operator method) the time-dependent
Gross-Pitaevskii equation (1) that provides the evolution
of the condensate when the parameters of the trapping po-
tential change so as to move the condensate state along
various paths in parameter space. One of these paths is
shown in Fig. 1 (light-grey solid line): we start with a cur-
rent at w = 7, b = 0, and sufficiently high ‘U; we then
increase b adiabatically keeping ‘U fixed until an appro-
priate value is reached; finally, keeping b constant, we
decrease ‘U adiabatically (which can be physically imple-
mented by decreasing the radius of the ring trap), until we
meet the dashed contour for black holes of comfortable
size. Our simulations confirm that the small instabilities
which briefly appear in the process of creation do not dis-
rupt the adiabatic evolution. The final quantum state of the
condensate, obtained by this procedure, indeed represents
a stable black/white hole. We have further checked the sta-
bility of this final configuration by numerically solving the
Gross-Pitaevskii equation (1) for very long periods of time
(as compared with any characteristic time scale of the con-
densate) and for fixed values of the trap parameters. This
evolution reflects the fact that no complex frequencies are
present, as predicted from the mode analysis, and that the
final state is stationary.

Once the black/white hole has been created, one could
further change the parameters (U, ») so as to move be-
tween the unstable “fingers” into a stable region of higher
b (a deeper hole) or one could deliberately enter an un-
stable region. In the latter case, the black hole should dis-
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appear in an explosion of phonons, which may be easy
to detect experimentally. Such an event might be related
to the evaporation process suggested for real black holes
in the sense that pairs of quasiparticles are created near
the horizon in both positive and negative energy modes.
The hermiticity of the Bogoliubov Hamiltonian implies
that eigenmodes with complex frequencies appear always
in dual pairs, whose frequencies are complex conjugate. In
the language of second quantization, the linearized Ham-
iltonian for each such pair has the form

H = Z((UAI)*,nAw,n + w*AI,,nAw*,n)y
n

and the only nonvanishing commutators among these op-
erators are [Aw,,,,AI)*,n/] = 8,. It is then clear that none
of these operators is actually a harmonic oscillator creation
or annihilation operator in the usual sense. However, the

linear combinations (note that AI,,, # A:[,’n)

- %(Aw,n FAoa) by = (Al AL
and their Hermitian conjugates are true annihilation and
creation operators, with the standard commutation rela-
tions, and in terms of these the Bogoliubov Hamiltonian
becomes

an

H = [Re(w) (afa, — blb,)
— Im(a))(a,;rb:,r + a,by)],

which obviously leads to self-amplifying creation of posi-
tive and negative frequency pairs. Evaporation through an
exponentially self-amplifying instability is not equivalent,
however, to the usual kind of Hawking radiation [8]; this
issue will be discussed in detail elsewhere.

Trapped bosons at ultralow temperature can provide an
analog to a black-hole spacetime. Similar analogs have
been proposed in other contexts, such as superfluid helium
[14], solid state physics [15], and optics [16]; but the out-
standing recent experimental progress in cooling, manipu-
lating, and controlling atoms [10] makes Bose-Einstein
condensates an especially powerful tool for this kind of
investigation. We have analyzed in detail the case of a
condensate in a ring trap, and proposed a realistic scheme
for adiabatically creating stable sonic black/white holes.

We thank the Austrian Science Foundation and the Eu-
ropean Union TMR networks ERBFMRX-CT96-0002 and
ERB-FMRX-CT96-0087.

Note added.—Further details as well as the study of
cigar shaped condensates with atom sinks at the center will
appear in Ref. [17].
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