Plant $\boldsymbol{\beta}$-diversity in human-altered forest ecosystems: The importance of the structural, spatial, and topographical characteristics of stands in patterning plant species assemblages

Yacine Kouba • Felipe Martínez-García • Ángel de Frutos • Concepción L. Alados
Y. Kouba (Corresponding author) •C. L. Alados

Pyrenean Institute of Ecology (CSIC). Avda. Montañana 1005, PO Box 13034, ES-
50192, Zaragoza, Spain
e-mail: Yacine. kouba_yacine@yahoo.fr
F. Martínez-García

Dpto. de Silvopascicultura, Escuela de Ingeniería Forestal y del Medio Natural, Universidad Politécnica de Madrid. Paseo de Las Moreras s/n, ES-28040, Madrid, Spain

Á. de Frutos
Pyrenean Institute of Ecology (CSIC), Avda Nuestra Señora de la Victoria s/n, ES-
22700, Jaca (Huesca), Spain

Abstract

An understanding of spatial patterns of plant species diversity and the factors that drive those patterns is critical for the development of appropriate biodiversity management in forest ecosystems. We studied the spatial organization of plants species in human-modified and managed oak forests (primarily, Quercus faginea) in the Central Pre-Pyrenees, Spain. To test whether plant community assemblages varied non-randomly across the spatial scales, we used multiplicative diversity partitioning based on a nested hierarchical design of three increasingly coarser spatial scales (transect, stand, region). To quantify the importance of the structural, spatial, and topographical characteristics of stands in patterning plant species assemblages and identify the determinants of plant diversity patterns, we used canonical ordination. We observed a high contribution of β-diversity to total γ diversity and found β-diversity to be higher and α-diversity to be lower than expected by random distributions of individuals at different spatial scales. Results, however, partly depended on the weighting of rare and abundant species. Variables expressing the historical management intensities of the stand such as mean stand age, the abundance of the dominant tree species (Q. faginea) , age structure of the stand, and stand size were the main factors that explained the compositional variation in plant communities. The results indicate that (1) the structural, spatial, and topographical characteristics of the forest stands have the greatest effect on diversity patterns, (2) forests in landscapes that have different land use histories are environmentally heterogeneous and, therefore, can experience high levels of compositional differentiation, even at local scales (e.g., within the same stand).

1 Maintaining habitat heterogeneity at multiple spatial scales should be considered in 2 the development of management plans for enhancing plant diversity and related

4 Key words: secondary forests; community assembly; forest structure; 5 compositional dissimilarity; beta diversity; species turnover.

Introduction

Most studies of forest ecosystems focused on α-diversity, i.e., the diversity within a specific site; however, recent studies that have partitioned diversity into hierarchical components have shown that much of the plant diversity is due to differentiation in species composition among sites (β-diversity; Arroyo-Rodríguez et al., 2013; Chandy, Gibson, \& Robertson, 2006; Gossner et al., 2013). Particularly in human-altered forests, the assessment of plant diversity patterns across multiple spatial scales and the identification of the factors that drive those patterns is required to accurately evaluate the impact of historical man-induced disturbances on the spatial dissimilarities in species composition (β-diversity) and to gain a better understanding of the mechanisms that contribute to the maintenance of species diversity in this type of forests (Arroyo-Rodríguez et al., 2013).

In human-altered forests, the structural, spatial, and topographical characteristics of the stand, which are strongly influenced by historical land usetype and intensity, might have a significant role in shaping plant diversity patterns (Flinn and Vellend 2005; Hermy and Verheyen 2007; Berhane et al. 2013). Recent studies have found that forest stands in landscapes that have different land use histories manifest a high environmental heterogeneity, which can lead to high levels of compositional differentiation (i.e., β-diversity) even at fine scales (e.g. ArroyoRodríguez et al. 2013). The floristic differentiation can drive successional trajectories and potentially affect the maintenance of biodiversity in such altered forests (Chazdon 2008; Chazdon et al. 2009; Melo et al. 2013; Arroyo-Rodríguez et
al. 2013).

For centuries, the oak forests (mainly, Quercus faginea) in the western Mediterranean region have been harvested intensively for timber and firewood, and clearcut for agriculture (Sancho et al. 1998), which has reduced them to coppice stands that have different management histories; i.e., different coppicing intensities and time since coppicing ceased (Sancho et al. 1998). In the late 19th and 20th centuries, however, changes in socioeconomic structures and production systems resulted in the abandonment of the poorest arable lands and their subsequent afforestation (Sciama et al. 2009). In particular, in the Central Pyrenees, Spain, the encroachment of some abandoned farmlands by Q. faginea has led to new, secondary growth Q. faginea-dominated stands (Kouba et al. 2012). Although most of these forests (i.e., either the formerly managed or the new secondary growth forests) are deprived of any conservation status, they provide habitats for a wide diversity of plant and animal communities (Kouba and Alados 2011), which enables them to recover many components of the original biodiversity, and provide important ecosystem services such as control of climate and erosion. The management of these forests for biodiversity conservation and ecologically sustainable services is, therefore, of great interest (Kouba and Alados 2011).

In this study, we used multiplicative diversity partitioning to understand how plant species diversity changes across three spatial scales (transect, stand, and region) as well as to identify the spatial scales at which nonrandom processes have had the greatest effect. In addition, we used constrained ordination analysis to
identify the forest structural and environmental factors that might have patterned plant species diversity in human-modified and managed oak forests. We hypothesized that (H1) plant community assemblages vary non-randomly across the spatial scales, (H2) β-diversity components contribute more to γ-diversity than do α-diversity components because of high habitat heterogeneity, and (H3) the structural properties, spatial attributes, and topographical conditions of the forest stands are the main factors that structure the compositional variation in plant communities in these human-modified and managed forests.

Methods

Study area

The study was conducted within a $1363-\mathrm{km}^{2}$ area in the Central Pre-Pyrenees, Spain (between 42.32 N to 42.11 N , and 0.31 W to 0.04 W) (Fig. 1). The lithology is mostly conglomerate, limestone, marl, and sandstone developed on Eocene flysch sedimentary formations (Kouba and Alados 2011). The climate is transitional subMediterranean; i.e., influenced by continental effects from the Pyrenees to the north and by milder Mediterranean conditions that prevail from the south (i.e., the Ebro Basin). In the study area, mean annual precipitation is $1317 \pm 302 \mathrm{~mm}(1915-2005)$ (Kouba et al. 2012) and mean annual air temperature is $11.5 \pm 2.8^{\circ} \mathrm{C}(1910-2005)$ (Kouba et al. 2012).

The area has a variety of land use types including natural forests of Pinus sylvestris, P. nigra, Fagus sylvatica, Q. ilex, and Q. faginea, shrublands of Q. coccifera and Buxus sempervirens, artificial plantations of P. sylvestris and P. nigra, arable farmland, pastures (xeric pastures and subalpine pastures), urban areas, and abandoned farmland. In the second half of the twentieth century, major changes in land use occurred in the area (Lasanta et al. 2005) because of agricultural mechanization and intensification, the introduction of pine plantations, and the abandonment of croplands and pastures, which has led to forest regrowth (Lasanta et al. 2005; Vicente-Serrano et al. 2010). In the area, Q. faginea is one of the most abundant naturally occurring species and the communities in which it occurs constitute a transition zone between Mediterranean forests in which Q. ilex ssp. ballota or P. halepensis are predominant, and mountain continental or mesic forests of P. sylvestris, P. nigra ssp. salzmannii, and F. sylvatica (Loidi and Herrera 1998; Sancho et al. 1998). The overstorey canopy of those semi-deciduous oak stands is dominated by Q. faginea interspersed with some scattered pines (Pinus sylvestris and P. nigra) and evergreen oak (Q. ilex subsp. ballota). The understory is composed of shrubs (Q. coccifera, B. sempervirens, Genista scorpius, Juniperus communis), forbs (Aphyllanthes monspeliensis, Arenaria montana, Achillea millefolium), and graminoids (Brachypodium pinnatum, Carex halleriana, Festuca rubra, Carex flacca, Bromus erectus).

Stand selection and data collection

Based on the distribution maps of Q. faginea in the study area in 1957 and 2006 (Kouba and Alados 2011) and dendrochronological data that reflect the historical dynamics of Q. faginea stands in the study area (Kouba et al. 2012), ten Q. fagineadominated stands that differed in their structural, spatial, and topographical characteristics were selected within the study area (see Table 1, Fig. 1). Primarily, the stands were surrounded by farmland, pine plantations, abandoned land, and grassland (see Fig. 1).

In 2009 and 2010, during the period of peak growth (May and June), the vascular plant species were surveyed in the ten stands. Within each stand, three $500-\mathrm{m}$ linear transects (30 transects in total) were established (hereafter, floristic transects). To estimate plant abundance and richness within each transect, we used the PointIntercept Method (Goodall 1952), which involves recording, at $40-\mathrm{cm}$ intervals, the identity of all individuals that are in contact with a vertical nail (Alados et al. 2009). We recorded all of the vascular plants that touched the nail and any overstorey species (including Q. faginea) that were above the nail. The abundance of each species in each transect was estimated as the number of its individuals recorded along the transect. Plant species that could not be identified with certainty in the field were collected, pressed, and brought to the laboratory for identification by botanical experts. Species that have traits that make them difficult to distinguish were only identified to the genera level. Plant nomenclature followed "Flora Ibérica" (Castroviejo et al. 1986-2012).

Plant growth forms represent broad patterns of variation among correlated plant traits that are more related to ecosystem functions, e.g. nutrient use efficiency,
protection against abiotic and biotic hazards, and competitive strength (Lavorel et al. 1997; Dorrepaal 2007), and, therefore, are expected to differ in their responses to forest structural and environmental factors. Accordingly, plant species were grouped based on growth forms: woody (tree and shrubs), graminoids, or forbs.

In this study, the relative abundance of Q. faginea (QFAB) in each floristic transect was included in the analyses as surrogate for the amount of canopy cover (\%). To quantify the structural properties of each stand (Table 1) a $500-\mathrm{m}$ linear transect (hereafter, forest structure transect) was established within each stand (n $=10$) and the forest was sampled using the Point-quarter Method (Cottam and Curtis 1956). Each forest structure transect was placed close to the central floristic transect within each stand. Sampling points $(\mathrm{n}=20)$ were at $25-\mathrm{m}$ intervals along each of the transects. At each sampling point, we identified the closest adult Q. faginea tree in each of the four cardinal directions within a maximum distance of 5 m from the sampling point (Kouba et al. 2012). Adult trees were defined as those >2 m high or that had a stem diameter at breast height (DBH) $\geq 4 \mathrm{~cm}$. The following measurements were recorded: diameter at breast height (DBH) (cm), tree height (m), and age (for details about age estimation, see Kouba et al. 2012). Those data were used to estimate the following variables for each stand: density (DENSITY), mean diameter at breast height (DBH), mean tree height (TREHEIGHT), mean age (AGE), and coefficient of variation of tree age (CVAGE). Furthermore, forest type (FORTYPE; secondary growth stands vs. abandoned coppice stands) was recorded for each stand based on visual observation on the field (see Table 1).

To quantify the spatial attributes of each stand (Table 1), we measured stand size
(STSIZE) and shape complexity (SHPCOMP) using a digitized Q. faginea distribution map, the 'Patch Analyst' extension in ArcGIS 10.1 (ESRI 2013), the Third National Forest Inventory map (IFN3; MAGMARA, 2013), and orthorectified aerial photographs taken in 2006 (CINTA 2013). In addition, the mean elevation (ELEVAT), mean slope (SLOP), and orientation (ORIENT) of each stand were derived from a Digital Elevation Model (CINTA 2013).

Partitioning of biodiversity

To assess plant diversity patterns across multiple spatial scales, we used multiplicative partitioning because of the advantages of the Hill Number ($q D$) and q metric (see below): ${ }^{q} D_{\gamma}={ }^{q} D_{\beta} \times{ }^{q} D_{\alpha}$ (Whittaker 1972; Jost 2006, 2007, 2010). Diversity is quantified using the Hill Number (${ }^{q} D$), which has the property to be invariant to changes in absolute numbers; if all species double in abundance, $q D$ remains unchanged. It measures variation in relative, rather than absolute abundance, and it follows the replication principle: Combining two sets of nonoverlapping species that have the same abundance distributions doubles the value of $q D$ (Jost 2006; Scheiner 2012). To quantify diversity patterns based on various weightings for rare and abundant species, we used the q-metric, which reflects the sensitivity of the diversity index to the relative frequencies of species. The analyses included two q-values: (1) $q=0$ reflects species richness, which is not sensitive to species abundance and, therefore, assigns disproportionate weight to rare species (Jost 2006), and (2) $q=0.999$ (and not $q=1$, which would require division by zero)
is equivalent to the exponential of Shannon entropy; here, species are weighted in proportion to their frequency in the sampled community and, therefore, it can be interpreted as the number of 'typical species' in the community (Chao et al. 2012).

We used a nested hierarchical design of three increasingly coarser spatial scales: individual assemblages at the transect level, pooled assemblages within a stand, and a single, pooled assemblage across the entire region (Fig. 2). The design allowed ${ }^{q} D_{\gamma}$ diversity to be decomposed into within transect (${ }^{q} D_{\alpha_{-} \text {transects }}$), among transects (${ }^{q} D_{\beta _ \text {transects }}$), within stand (${ }^{q} D_{\alpha_{-} \text {stands }}$), and among stands (${ }^{q} D_{\beta_{_} \text {stands }}$) components (Fig. 2). To test for significant differences in the spatial partitioning of diversity, the expected values of the measures of diversity were calculated using individual-based randomizations (10^{4} permutations; Crist et al. 2003), which evaluated whether the α and β components of diversity differed significantly from a random distribution of individuals among samples (Crist et al. 2003). Those analyses were performed using the 'vegan' package (Oksanen et al. 2013) implemented in the R software (R Development Core Team 2013).

To test whether differences in species richness might have biased the observed spatial diversity pattern, we additively partitioned β-diversity into the two components of spatial turnover and nestedness using the method suggested by Baselga (2010). We performed this analysis using the 'betapart' package (function 'beta.sample') (Baselga and Orme 2012) within the R software (R Development Core Team 2013).

Partitioning the variation in plant communities in response to forest structural and
environmental factors

To identify the variables that explained a significant amount of the variation in species composition, we used Canonical Redundancy Analyses (RDA). The matrices of species abundance were Hellinger transformed prior to analysis (Legendre and Gallagher 2001). After this transformation, RDA is based on the Hellinger distance, which is appropriate for community composition data, instead of being based on the inappropriate Euclidean distance (Legendre and Gallagher 2001). The explanatory variables included in the finale RDA models were selected based on forward stepwise procedure, which provided an estimate of the best set of non-redundant variables for predicting species composition and a ranking of the relative importance of the individual explanatory variables.

The spatial autocorrelation of the residuals of the RDA models was tested using a multi-scale ordination (MSO; Borcard et al. 2011; Legendre and Legendre 2012). Initial analyses indicated significant spatial autocorrelation in the residuals of the RDA models and a scale-dependent relationship between the species data and the explanatory variables. To address those problems, the following three steps were followed: (i) the Hellinger-transformed species data matrices and the explanatory variables were detrended along the Y Cartesian geographic coordinates (i.e., the coordinates of transect-central points), which supported the assumption of stationarity in the computation of confidence intervals in the MSO variograms (Legendre and Legendre 2012). (ii) The sampling design was spatially nested; therefore, the function 'create.MEM.model' (Borcard et al. 2011; Declerck et al. 2011)
was used to construct a staggered spatial matrix of Moran's eigenvector maps (MEM), and (iii) partial canonical redundancy analyses (partial RDAs) were performed using the detrended data and included the computed MEMs as covariables, which controlled for the effects of spatial structure (i.e., excluded the compositional variation caused by spatial structure; Borcard et al. 2011; Legendre and Legendre 2012).

Results

In the survey of the 10 oak stands in the Central Pre-Pyrenees, Spain, we identified 238 vascular plant species. On average, the floristic transects contained 64 species (range $=43-98$). Twenty-one (9\%) of the species contributed 80% of the total plant coverage by abundance, and B. sempervirens was the most abundant species in all of the stands (Fig. 3). Most of the species were forbs (159 species), followed by woody plants (54 species) and graminoids (25 species). Among rare species (i.e., species that had a relative abundance $<0.01 \%$ and occurred in $<5 \%$ of the transects; see Appendix 1), 75 \% were forbs, 7 \% were graminoids, and 18 \% were woody species.

Patterns of diversity across spatial scales

In general, β-diversity components (${ }^{q} D_{\beta_{-} \text {transects }}$ and $\left.{ }^{q} D_{\beta_{-} \text {stands }}\right)$ made up a large proportion of overall diversity (Fig. 4). At all spatial scales, and independently of the value of q, β-diversity was significantly higher, and alpha diversity was significantly
lower than expected based on a random distribution of individuals (Table 2). β diversity and the deviations from random distributions were higher among stands than among transects for the two values of q (0 and 1). The two components of β diversity ($q D_{\beta_{-} \text {transects }}$ and $q D_{\beta_{-} \text {stands }}$) declined with increasing values of q (Table 2), which reflected the lower emphasis given to rare species as q increases.

The partitioning of β-diversity into two components, spatial turnover and nestedness, revealed that overall spatial turnover accounted for $>96 \%$ of total β diversity, which suggests that bias caused by differences in species richness among transects was negligible.

Partitioning the variation in plant communities in response to forest structural and environmental factors

The explanatory variables selected by the RDA explained a significant amount of the variation in the composition of forbs and woody species (Table 3), but not the composition of graminoids. Collectively, AGE (10.6\%), QFAB (8.9), CVAGE (13.3), and SLOP (11.4) explained 44.2% of the variation in the composition of forbs species (Table 3). Most of the forbs were common in young and uneven-aged stands, although there were some exceptions, such as Aphyllanthes monspeliensis (APHMON) and Bupleurum rigidum (BUGRA), which were related to lower Q. faginea abundance and higher stand age, respectively, and the perennial species Hepatica nobilis (HEPAT) and Q. faginea abundance were correlated (Fig. 5).

For woody species, STSIZE (11.7\%), QFAB (11.4), AGE (11.5), and CVAGE (9.2)
explained 43.8% of the variation in species composition (Table 3). The long-lived shrub B. sempervirens (BUXSEM) was positively correlated with Q. faginea abundance, Genista scorpius (GENSCO), Thymus vulgaris (THYVUL), and Echinospartum horridum (ECHIOR) were prevalent in uneven-aged stands, and others, i.e., Juniperus oxycedrus (JUNOXY) and P. sylvestris (PINSIL), were related to lower Q. faginea abundance. Cytisophyllum sessilifolium (CYTSES), Amelanchier ovalis (AMEOVA), and Arctostaphylos uva-ursi (ARCUVA) predominated in old stands (Fig. 5).

Discussion

Our study is one of the first to assess plant spatial diversity patterns and identify the factors that drive the structuring of plant species composition in human-modified and managed forests. The high contribution of β-diversity to total γ-diversity with β diversity being significantly higher than expected by chance at all spatial scales, independent of the value of q, suggests that changes in species composition, rather than variation in species abundances, are primarily responsible for the spatial diversity patterns, which has been observed elsewhere (Devictor et al. 2010; Gossner et al. 2013). In addition, the fact that β-diversity was largely due to spatial turnover rather than nestedness, indicates that assemblages in species-poor transects are not a subset of assemblages of species-rich transects.

In our study, among stands β-diversity was highest when all species were weighted equally ($q=0$), which corresponds to a stronger influence of rare species
(i.e., species with small populations). Thus, rare species appeared to have a heterogeneous distribution in the human-modified and managed oak forests; probably, because their habitats had a clumped distribution (Chávez and Macdonald 2012; Gossner et al. 2013, Arroyo-Rodríguez et al. 2013). It should be noted that although the rare species were not really rare (with a conservation status); some of them were forest specialists (with great conservation value).

High structural and environmental heterogeneities caused by differences in stand history and successional stage might have led to the high level of compositional differentiation among stands observed in our study. Indeed, the constrained ordination showed that the structural, spatial, and topographical characteristics of the forest stands explained a high proportion of the compositional variation. Stand age, the age structure distribution, Q. faginea abundance, stand size, and site conditions (i.e., slope) explained most of the spatial variation in composition, particularly, of forbs and woody species. Other studies have shown that forest structure (e.g., stand age, canopy cover), forest spatial attributes (e.g., patch size), and topographical conditions can have important roles in structuring the composition of plant communities in many types of forests worldwide (e.g., Aavik et al. 2009; Vockenhuber et al. 2011; Lomba et al. 2011), mainly, by controlling the availability of resources, particularly light and soil nutrients, and habitat conditions, particularly substrate, temperature, and pH (Härdtle et al. 2003; Aubert et al. 2004; Hart and Chen 2006).

At the finest spatial scale, among transects, the compositional differentiation was higher than expected, based on either rare or typical species, which reflects a degree
of microhabitat heterogeneity within the same stand (Chávez and Macdonald 2012). The within-stand dissimilarity in canopy cover (i.e. differences in Q. faginea abundance among the transects) might be responsible for the microhabitat heterogeneity; i.e., heterogeneity can result from the creation of gaps in the canopy, which might increase the resources available at forest floor and, therefore, provide conditions for the development of species with different niches (Hart and Chen 2006; Fahey and Puettmann 2007; Chávez and Macdonald 2012), which can lead to relatively high rates of species turnover within the same stand (Sabatini et al. 2014).

Implications for management and conservation

Our results clearly demonstrate the importance of β-diversity components; i.e., among-transects and among-stands β-diversity, for overall diversity, which underscores the need to consider β-diversity at all spatial levels including smaller spatial scales when making management plans designed to enhance plant diversity and related functions in human-altered forests. In addition, the high spatial turnover in relation to nestedness suggests that conservation efforts should be concentrated on a large number of not necessarily the richest sites and this is also supported by other studies (e.g. Gossner et al. 2013).

Furthermore, this study has highlighted the importance of stand characteristics in structuring β-diversity. Keeping a mixture of stands of different structural properties, spatial attributes, and topographical conditions could, therefore, help to enhance plant diversity in these oak forests, and in turn supporting conservation of
associated faunal communities. Finally, our study points to the importance of maintaining micro-environmental heterogeneity within oak stands (e.g. by creating canopy gaps), to conserve and restore understory plant species richness and diversity.

Acknowledgments We thank Arben Q. Alla, Gabriel Sangüesa-Barreda, Guillermo C. Bueno, Benjamin Komac, Maite Gartzia, Hugo Saiz, and Paloma Nuche for assistance in the field. Y.K. was funded by a MAEC-AECID grant from the Spanish Agency for International Cooperation and Development, and A.F. was supported by a JAE-doc postdoctoral contract from the framework "Junta para la Ampliación de Estudios" (Spanish Ministry of Economy and Competitiveness), co-financed by the European Social Fund. This study was part of the research project CGL2011-27259 (Spanish Ministry of Economy and Competitiveness and Innovation) co-financed by the FEDER.

References

Aavik T, Püssa K, Roosaluste E, Moora M (2009) Vegetation change in boreonemoral forest during succession - trends in species composition, richness and differentiation diversity. Ann Bot Fennici 46: 326-335.

Alados CL, Navarro T, Komac B, et al. (2009) Do vegetation patch spatial patterns disrupt the spatial organization of plant species? Ecol Complex 6:197-207. doi: 10.1016/j.ecocom.2008.10.015

Arroyo-Rodríguez V, Rös M, Escobar F, et al. (2013) Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. J Ecol 101:1449-1458. doi: 10.1111/1365-2745.12153

Aubert M, Bureau F, Alard D, Bardat J (2004) Effect of tree mixture on the humic epipedon and vegetation diversity in managed beech forests (Normandy, France). Can J For Res 248:233248. doi: 10.1139/X03-205

Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134-143. doi: 10.1111/j.1466-8238.2009.00490.x

Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol no-no. doi: 10.1111/j.2041-210X.2012.00224.x

Berhane A, Totland \emptyset, Moe SR (2013) Woody plant assemblages in isolated forest patches in a semiarid agricultural matrix. Biodivers Conserv 22:2519-2535. doi: 10.1007/s10531-013-0534-0

Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Spriger, New York
Castroviejo S et al. 1986-2012. Flora Ibérica. vols 1-8, 10-15, 17-18, 21. Real Jardin Botanico, Madrid, Spain

Chandy S, Gibson DJ, Robertson P a. (2006) Additive partitioning of diversity across hierarchical spatial scales in a forested landscape. J Appl Ecol 43:792-801. doi: 10.1111/j.13652664.2006.01178.x

Chao A, Chiu C-H, Hsieh TC (2012) Proposing a resolution to debates on diversity partitioning. Ecology 93:2037-51.

Chávez V, Macdonald SE (2012) Partitioning vascular understory diversity in mixedwood boreal forests: The importance of mixed canopies for diversity conservation. For Ecol Manage 271:19-26. doi: 10.1016/j.foreco.2011.12.038

Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science (80-) 320:1458-60. doi: 10.1126/science. 1155365

Chazdon RL, Peres C a, Dent D, et al. (2009) The potential for species conservation in tropical secondary forests. Conserv Biol 23:1406-17. doi: 10.1111/j.1523-1739.2009.01338.x

CINTA (2013) Centro de Información Territorial de Aragón. http://sitar.aragon.es.
Condit R, Pitman N, Leigh EG, et al. (2002) Beta-diversity in tropical forest trees. Science 295:666-9. doi: 10.1126/science. 1066854

Cottam C, Curtis JT (1956) "The use of distance measures in phytosociological sampling."Ecology 37:451-460.

Crist T, Veech J, Gering J, Summerville K (2003) Partitioning species diversity across landscapes and
regions: A hierarchical analysis of α, β, and γ diversity. Am Nat 162:734-743. doi: 10.1086/378901

Declerck SAJ, Coronel JS, Legendre P, Brendonck L (2011) Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography (Cop) 34:296-305. doi: 10.1111/j.1600-0587.2010.06462.x

Devictor V, Mouillot D, Meynard C, et al. (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030-40. doi: 10.1111/j.1461-0248.2010.01493.x

Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167-1180. doi: 10.1111/j.1365-2745.2007.01294.x

ESRI (2013) ArcMap 10.1 Environmental Systems Research Institute Inc.
Fahey RT, Puettmann KJ (2007) Ground-layer disturbance and initial conditions influence gap partitioning of understorey vegetation. J Ecol 95:1098-1109. doi: 10.1111/j.13652745.2007.01283.x

Flinn KM, Vellend M (2005) Recovery of forest plant communities in post-agricultural landscapes. Front Ecol Environ 3:243-250.

Goodall DW (1952) Some considerations in the use of point quadrats for the analysis of vegetation. Aust J Biol Sci 5:1-41. doi:10.1071/BI9520001

Gossner MM, Getzin S, Lange M, et al. (2013) The importance of heterogeneity revisited from a multiscale and multitaxa approach. Biol Conserv 166:212-220. doi: 10.1016/j.biocon.2013.06.033

Härdtle W, von Oheimb G, Westphal C (2003) The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (SchleswigHolstein). For Ecol Manage 182:327-338. doi: 10.1016/S0378-1127(03)00091-4

Hart SA, Chen HYH (2006) Understory Vegetation Dynamics of North American Boreal Forests. CRC Crit Rev Plant Sci 25:381-397. doi: 10.1080/07352680600819286

Hermy M, Verheyen K (2007) Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res 22:361-371. doi: $10.1007 / s 11284-007-0354-3$

Jost L (2006) Entropy and diversity. Oikos 113:363-375. doi: 10.1111/j.2006.0030-1299.14714.x
Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:24272439. doi: 10.1890/06-1736.1

Jost L (2010) Independence of alpha and beta diversities. 91:1969-1974.
Kouba Y, Alados CL (2011) Spatio-temporal dynamics of Quercus faginea forests in the Spanish Central Pre-Pyrenees. Eur J For Res 131:369-379. doi: 10.1007/s10342-011-0509-1

Kouba Y, Camarero JJ, Alados CL (2012) Roles of land-use and climate change on the establishment and regeneration dynamics of Mediterranean semi-deciduous oak forests. For Ecol Manage 274:143-150. doi: 10.1016/j.foreco.2012.02.033

Lasanta T, Vicente-serrano S, Cuadratprats J (2005) Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Appl Geogr 25:47-65. doi: 10.1016/j.apgeog.2004.11.001

Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474-478. doi: 10.1016/S0169-5347(97)01219-6

Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. 2001:271-280. doi: 10.1007/s004420100716

Legendre P, Legendre L (2012) Numerical ecology, 3rd ed. Elsevier, New York
Loidi J, Herrera M (1990) The Quercus pubescens and Quercus faginea forests in the Basque Country (Spain): distribution and typology in relation to climatic factors. Vegetacion 90: 81-92.

Lomba A, Vicente J, Moreira F, Honrado J (2011) Effects of multiple factors on plant diversity of forest fragments in intensive farmland of Northern Portugal. For Ecol Manage 262:2219-2228. doi: 10.1016/j.foreco.2011.08.014

MAGMARA (2013) Tercer Inventario Forestal Nacional (IFN3) 1:50 000. Madrid, Spain
Melo FPL, Arroyo-Rodríguez V, Fahrig L, et al. (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462-8. doi: 10.1016/j.tree.2013.01.001

Oksanen J, F. Guillaume Blanchet RK, Legendre P, et al. (2013) vegan: Community Ecology Package. R package version 2.0-7.

R Development Core Team (2013) R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN3-900051-07-0, Available at URL: http://www.R-project.org.

Sabatini FM, Burrascano S, Tuomisto H, Blasi C (2014) Ground layer plant species turnover and Beta diversity in southern-European old-growth forests. PLoS One 9:e95244. doi: 10.1371/journal.pone. 0095244

Sancho M, Fernández P, Albertos S, LG S (1998) Regiones de procedencia de Quercus pyrenaica Willd. Quercus faginea Lam. Quercus canariensis Willd. OAPN, Madrid

Scheiner SM (2012) A metric of biodiversity that integrates abundance, phylogeny, and function. Oikos 121:1191-1202. doi: 10.1111/j.1600-0706.2012.20607.x

Sciama D, Augusto L, Dupouey J-L, et al. (2009) Floristic and ecological differences between recent and ancient forests growing on non-acidic soils. For Ecol Manage 258:600-608. doi: 10.1016/j.foreco.2009.04.027

Vicente-serrano SM, Lasanta T, Gracia C (2010) Agricultural and Forest Meteorology Aridification determines changes in forest growth in Pinus halepensis forests under semiarid Mediterranean climate conditions. Agric For Meteorol 150:614-628. doi: 10.1016/j.agrformet.2010.02.002

Vockenhuber E a., Scherber C, Langenbruch C, et al. (2011) Tree diversity and environmental context predict herb species richness and cover in Germany's largest connected deciduous forest. Perspect Plant Ecol Evol Syst 13:111-119. doi: 10.1016/j.ppees.2011.02.004

Whittaker RH (1972) Evolution and Measurement of Species Diversity. Taxon 21:213-251.

Table 1 Characteristics of ten oak stands within a $1363-\mathrm{km}^{2}$ area in the Central Pre-Pyrenees, Spain. Values are mean elevation, ORIENT = orientation ($\mathrm{S}=$ South, $\mathrm{SE}=$ South East, $\mathrm{SW}=$ South West, E = East), SLOP = slope, STSIZE = st complexity, DENSITY = density, QFAB = Q. faginea abundance, $\mathrm{DBH}=$ diameter at breast height, TREHEIGHT = tree height CVAGE $=$ Coefficient of Variation of age of stand, FORTYPE $=$ Forest type (SF = secondary forest, CS = abandoned coppice st

Stand characteristics/stand locations	Rasal (RA)	Belsué (BE)	Abena (AB)	Ara (AR)	Lucera (LU)	Ibort (IB)	Ipies (IP)
Topography							
ELEVAT (m a.s.l.)	868.3 ± 4.8	1158.5 ± 1.20	970.3 ± 1.50	971.1 ± 2.00	1198.0 ± 7.70	950.8 ± 2.60	852.5 ± 2.30
ORIENT	S	S	S	SE	SE	S	E
SLOP (${ }^{\circ}$)	9.3 ± 0.50	30.5 ± 0.40	11.7 ± 0.50	19.6 ± 0.50	16.8 ± 1.20	14.8 ± 1.10	7.8 ± 0.60
Spatial attributes							
STSIZE (ha) ${ }^{\text {a }}$	114	94	73	244	1115	40	146
SHPCOMP (perimeter/area) ${ }^{\text {a }}$	126.41	119.60	77.49	164.23	244.28	103.17	268.11
Forest structure							
DENSITY (stems ha-1)	607 ± 0.20	1100 ± 0.10	999 ± 0.10	503 ± 0.30	867 ± 0.10	1088 ± 0.10	812 ± 0.10
QFAB (Tree/Transect)	239 ± 43	362 ± 15	339 ± 18	133 ± 32	173 ± 14	426 ± 7	193 ± 8
DBH (cm)	14.00 ± 1.40	9.0 ± 0.70	13.3 ± 1.30	7.2 ± 0.50	12.0 ± 0.80	13.3 ± 0.80	11.4 ± 0.70
TREHEIGHT (m)	5.10 ± 0.40	4.8 ± 0.30	5.1 ± 0.30	3.4 ± 0.20	5.5 ± 0.30	6.1 ± 0.20	4.3 ± 0.30
AGE (years)	31 ± 3	40 ± 4	50 ± 2	35 ± 1	39 ± 1	63 ± 2	64 ± 2
CVAGE (\%)d	31	43	19	17	12	17	15
FORTYPE	SF	CS	SF	CS	CS	CS	CS

${ }^{\text {a }}$ Calculated based on the distribution map of Q. faginea forests in the study area (for more details, see Kouba et al. 2011)

Table 2 Hierarchical multiplicative partitioning of the alpha (${ }^{q} D_{\alpha}$) and beta (${ }^{q} D_{\beta}$) components of overall diversity ($q D_{\gamma}$) in ten Q. faginea forest stands in the Central Pre-Pyrenees, Spain. Diversity was quantified using the Hill Index (${ }^{q} D$), with $q=0$ (all species are given equal weight) or $q=1$ (greater weight is given to common species). Deviations from null distributions (numbers within brackets) are expressed by dividing the observed values by the expected values. The p-values were obtained by comparing the observed values with the values generated by 10^{4} randomizations

	$q=0$			$q=1$		
	Observed	Expected	p-value	Observed	Expected	p-value
${ }^{q} D_{\alpha _ \text {_transects }}$	62.88 (0.52)	120.09	<0.01	17.31 (0.57)	30.27	<0.01
${ }^{q} D_{\text {__stands }}$	93.70 (0.58)	159.73	<0.01	20.58 (0.65)	31.49	<0.01
${ }^{q} D_{\beta_{\text {_transects }}}$	1.49 (1.12)	1.33	<0.01	1.18 (1.13)	1.04	<0.01
${ }^{q} D_{\beta \text { _stands }}$	2.54 (1.82)	1.39	<0.01	1.56 (1.52)	1.02	<0.01
${ }^{q} D_{\gamma-\text { study area }}$	238	238	-	32.12	32.12	-

Table 3 Redundancy analysis of the forest structural and environmental factors that explained a significant amount of the variation in species composition of forbs and woody species (significant relationships are shown). " $\mathrm{R}^{2}{ }_{\mathrm{adj}} \mathrm{Cum}$ " is the cumulative adjusted R^{2} of the model; the values within brackets indicate the variance (\%) explained by each explanatory variable, " R^{2} adj" is the total explained variance (\%) in each model. AGE = Mean stand age, CVAGE = Coefficient of variation of tree age, STSIZE $=$ Stand size, SLOP $=$ slope,$~ Q F A B=Q$. faginea abundance

Species group	Variables	$\mathrm{R}^{2}{ }_{\mathrm{adj}} \mathrm{Cum}$	F	p -value
Forbs $\left(\mathrm{R}^{2}{ }_{\text {adj }}=44.2\right)$	AGE	$0.10(10.6)$	2.65	0.01
	QFAB	$0.19(08.9)$	2.41	0.02
	CVAGE	$0.33(13.3)$	3.28	0.00
Woody $\left(\mathrm{R}^{2}{ }_{\mathrm{adj}}=43.8\right)$	SLOP	$0.44(11.4)$	3.11	0.01
	STSIZE	$0.12(11.7)$	2.65	0.01
	QFAB	$0.23(11.4)$	2.67	0.01
	AGE	$0.34(11.5)$	2.77	0.01
	CVAGE	$0.44(9.2)$	2.46	0.02

Figure legends

Fig. 1 Location of the study area within Europe (upper right panel), and the locations of the ten Q. faginea forest stands sampled in the Central Pre-Pyrenees, Spain (left panel). The location of the three floristic transects (FT) and the forest structural transect (ST) within each stand (lower right panel). $\mathrm{AB}=$ Abena, $\mathrm{AG}=$ Arguis, $\mathrm{AR}=\mathrm{Ara}, \mathrm{BE}=$ Belsué, $\mathrm{IB}=\mathrm{Ibort}, \mathrm{IP}=$ Ipies, $\mathrm{LU}=$ Lucera, $\mathrm{NO}=$ Nocito, RA = Rasal, RP = Rapun

Fig. 2 Hierarchical levels in the multiplicative partitioning of plant species diversity in ten oak forest stands in the Central Pre-Pyrenees, Spain

Fig. 3 The abundances of common species (expressed as median values) in ten Q. faginea forest stands ($n=30$ transects) in the Central Pre-Pyrenees, Spain. Boxes indicate the 25 th and 75 th percentiles, and whiskers indicate the 5 th and 95 th percentiles

Fig. 4 The contributions of the alpha and beta components of diversity to total gamma diversity for two values of $q(0$ and 1$)$ assessed using multiplicative diversity partitioning of plant species within ten oak forest stands in the Central Pre-Pyrenees, Spain. Apha-transect $=$ within-transect diversity (${ }^{q} D_{\alpha _ \text {transects }}$), Beta-transect $=$ among-transects β-diversity (${ }^{q} D_{\beta _ \text {transects }}$), and Beta-stand $=$ amongstands β-diversity (${ }^{q} D_{\beta \text { _stands }}$)

Fig. 5 Ordination plots of the significant forest structural and environmental factors and the composition of forbs and woody species within ten oak forest stands in the Central Pre-Pyrenees, Spain. Arrows indicate the direction of increasing values of significant forest structural and environmental variables. AGE $=$ mean stand tree age, CVAGE $=$ coefficient of variation of stand age, STSIZE $=$ stand size, $\mathrm{SLOP}=$ slope, $\mathrm{QFAB}=Q$. faginea abundance. The letter codes indicate the locations of plant species that had a correlation of ≥ 0.25 to the ordination axes. Species presented are: Forbs (APHMON: Aphyllanthes monspeliensis, GLOBNU: Globularia nudicaulis, THALIC:

Thalictrum alpinum, LINOSUB: Linum suffruticosum, TEUPY: Teucrium pyrenaicum, BUGRA: Bupleurum rigidum, CORIS: Coris monspeliensis, POTE: Polygala monspeliaca, GLOBVU: Globularia vulgaris, EPIPAC: Epipactis sp., MEDICA: Medicago minima, HIERACI: Hieracium pilosella, TRIPRA: Trifolium pretense, HEPAT: Hepatica nobilis, THALTUB: Thalictrum tuberosum, SANCHA: Santolina chamaecyparissus, HEDERA: Hedera helix, AQUIMIL: Achillea millefolium, SEDUAL: Sedum album, COREME: Coronilla emerus, TEUCHA: Teucrium chamaedrys, MEDILUP: Medicago lupulina, LATHCIC: Lathyrus cicero, GALUCI: Galium lucidum, VICSAT: Vicia sativa, ERYNCAM: Eryngium campestre, THAPSIA: Thapsia villosa); Woody (THYVUL: Thymus vulgaris, GENSCO: Genista scorpius, JUNOXY: Juniperus oxycedrus, PINSIL: Pinus sylvestris, HELIMA: Helianthemum marifolium, ARGYZA: Argyrolobium zanonii, FUMAPRO: Fumana procumbens, ECHIOR: Echinospartum horridum, FUMERI: Fumana ericifolia, STADUB: Staehelina dubia, QUEILE: Quercus ilex, ONOFRU: Ononis fruticosa, GENHIS. Genista hispanica, DORPEN: Dorycnium pentaphyllum, THYMELEA: Thymelaea pubescens, VIBLAN: Viburnum lantana, ACEMON: Acer monpessulanum, JUNCOM: Juniperus communis, LONXYL: Lonicera xylosteum, ARCUVA: Arctostaphylos uva-ursi, LONETRU: Lonicera etrusca, AMEOVA: Amelanchier ovalis, CYTSES: Cytisophyllum sessilifolium, BUXSEM. Buxus sempervirens).

Fig. 1

Fig. 2

Landscape level:
Total area $=1363 \mathbf{k m}^{2}$

Stand level:
10 stands (40-294 ha)
Distances between stands ranged from 3 to 25 km

Transect level:

$30500-\mathrm{m}$ transects ($\mathrm{n}=3$ per stand) Distances between transects ranged from 0.05 to 25 km
${ }^{\boldsymbol{q}} \boldsymbol{D}_{\gamma, \text { stady area }}$ Within-study area diversity
Average within-study area
diversity

Fig. 3

Fig. 4

Fig. 5

Appendix 1: The codes, scientific names, growth forms, abundance, and frequency (i.e., number of
transects in which the species occurred) of the documented plant species in ten Q. faginea forest stands in the Central Pre-Pyrenees, Spain. Species are listed based on their abundance (lowest to highest)

Code	Species scientific name	Growth form	Abundance (\%)	Frequency (${ }^{\circ}$ of transects)
ANVUL	Anthyllis vulneraria	Forb	0.001	1
ARATUR	Arabis turrita	Forb	0.001	1
ASPERULA	Asperula aristata	Forb	0.001	1
BROTEC	Bromus tectorum	Graminoid	0.001	1
CEPHARUB	Cephalanthera rubra	Forb	0.001	1
CLEVIT	Clematis vitalba	Woody	0.001	1
CROCNEV	Crocus nevadensis	Forb	0.001	1
DIANTPUN	Dianthus pungens	Forb	0.001	1
ECHIUM	Echium vulgare	Forb	0.001	1
ERYSIRUS	Erysimum ruscinonense	Forb	0.001	1
HELHAPE	Helianthemum apenninum	Forb	0.001	1
HIPCOM	Hippocrepis comosa	Woody	0.001	1
HYACINHIS	Hyacinthoides hispanica	Forb	0.001	1
LATHSPHA	Lathyrus sphaericus	Forb	0.001	1
LATHYSAX	Lathyrus saxatilis	Forb	0.001	1
NARCISS	Narcissus sp.	Forb	0.001	1
OPHRYS	Ophrys sp.	Forb	0.001	1
ORCHUS	Orchis ustulata	Forb	0.001	1
PLAMED	Plantago media	Forb	0.001	1
PRUNVU	Prunella vulgaris	Forb	0.001	1
RESEDA	Reseda lutea	Forb	0.001	1
SALVER	Salvia verbenaca	Forb	0.001	1
TAMUCOM	Tamus communis	Forb	0.001	1
VALERI	Valerianella sp.	Forb	0.001	1
VULUNI	Vulpia unilateralis	Graminoid	0.001	1
ALLIUM1	Allium sp.	Forb	0.003	1
AVENBRO	Avenula bromoides	Graminoid	0.003	1
CENTNIG	Centaurea nigra	Forb	0.003	1
LINUCAM	Linum campanulatum	Forb	0.003	1
PRUMA	Prunus mahaleb	Woody	0.003	1
SORARI	Sorbus aria	Woody	0.003	1
ARENAR	Arenaria leptoclados	Forb	0.003	2
CAMPANULA	Campanula sp.	Forb	0.003	2
CONOPOD	Conopodium sp.	Forb	0.003	2
HELLFOE	Helleborus foetidus	Forb	0.003	2
LONPERI	Lonicera periclymenum	Woody	0.003	2
PLATBIF	Platanthera bifolia	Forb	0.003	2
GENIS	Genista cinerea	Woody	0.004	1
GEUSYLV	Geum sylvaticum	Forb	0.004	1
LATHAPH	Lathyrus aphaca	Forb	0.004	1
MEREMON	Merendera montana	Forb	0.004	1
VERBA	Verbascum lychnitis	Forb	0.004	1
BISCUTE	Biscutella valentina	Forb	0.004	2
LINVIS	Linum viscosum	Forb	0.004	2
VERORSI	Veronica orsiniana	Forb	0.004	2
THYMPUB	Thymelaea pubescens	Woody	0.004	3
CEPHALEU	Cephalaria leucantha	Forb	0.006	1
CRUCAN	Crucianella angustifolia	Forb	0.006	1
PRUNHYS	Prunella hyssopifolia	Forb	0.006	1
ALYSALY	Alyssum alyssoides	Forb	0.006	2
BRASYL	Brachypodium sylvaticum	Graminoid	0.006	2
GERAROB	Geranium robertianum	Forb	0.006	2
ORCHY	Orchis sp.	Forb	0.006	3
TARAXA	Taraxacum sp.	Forb	0.006	3
BERVU	Berberis vulgaris	Woody	0.007	2
SORBUS	Sorbus sp.	Woody	0.007	2
ORIVUL	Origanum vulgare	Forb	0.007	3
ARRHENATALB	Arrhenatherum album	Graminoid	0.009	2
DIGIPUR	Digitalis purpurea	Forb	0.009	2
PRUNELLA	Prunella sp.	Forb	0.009	2
SIBERHIR	Sideritis hirsuta	Woody	0.009	2
TRIPRA	Trifolium pratense	Forb	0.009	2

MELICI	Melica ciliata	Graminoid	0.009	3
CENTALB	Centaurea alba	Forb	0.010	2
HELVIO	Helianthemum violaceum	Forb	0.010	2
CIRSITUB	Cirsium tuberosum	Forb	0.010	3
BLAKPER	Blakstonia perfoliata	Forb	0.010	6
DIANT	Dianthus benearnensis	Forb	0.010	6
POLYMONS	Polygala monspeliaca	Forb	0.012	2
ARENASER	Arenaria serpyllifolia	Forb	0.012	4
LEUCA	Leucanthemum pallens	Forb	0.012	4
LEUCANTEMUN	Leucanthemun sp.	Forb	0.012	4
EUCHA	Euphorbia characias	Forb	0.012	5
CREPVIS	Crepis vesicaria	Forb	0.013	2
PINNIG	Pinus nigra	Woody	0.013	2
SORAUC	Sorbus aucuparia	Woody	0.013	3
SILEVU	Silene vulgaris	Forb	0.013	4
ARABIS	Arabis sp.	Forb	0.013	5
RANUREP	Ranunculus repens	Forb	0.015	2
CHEIRINT	Cheirolophus intybaceus	Woody	0.015	4
PAROKAP	Paronychia kapela	Forb	0.015	4
HELISTO	Helichrysum stoechas	Woody	0.015	5
PRUNLAC	Prunella laciniata	Forb	0.015	5
FI	Festuca indigesta	Graminoid	0.016	2
INUMON	Inula montana	Forb	0.016	3
EPIPAC	Epipactis sp.	Forb	0.016	7
GERADIS	Geranium dissectum	Forb	0.018	3
ONOSP	Ononis spinosa	Forb	0.018	3
SCABAT	Scabiosa atropurpurea	Forb	0.018	4
CLINOVU	Clinopodium vulgare	Forb	0.018	5
BRIZA	Briza media	Graminoid	0.018	6
HIEMURO	Hieracium murorum	Forb	0.018	6
PHLEPRA	Phleum pratense	Forb	0.019	2
THYFONT	Thymus fontqueri	Forb	0.019	2
CEPHALARIS	Cephalaria sp.	Forb	0.019	4
TRAPOG	Tragopogon sp.	Forb	0.019	4
VICSEPI	Vicia sepium	Forb	0.019	7
BRADIS	Brachypodium distachyon	Graminoid	0.021	3
CORSCO	Coronilla scorpioides	Forb	0.021	3
TRINIGLA	Trinia glauca	Forb	0.021	6
ACEMON	Acer monpessulanum	Woody	0.022	3
HYPEPER	Hypericum perforatum	Forb	0.022	4
TRIFOL	Trifolium sp.	Forb	0.022	5
ONONIS	Ononis sp.	Forb	0.024	5
HELINUM	Helianthemum nummularium	Woody	0.024	7
SCABIOSA	Scabiosa columbaria	Forb	0.024	7
TEUCAP	Teucrium capitatum	Forb	0.024	11
AGROCA	Agrostis capillaris	Graminoid	0.025	1
LATHYLIN	Lathyrus linifolius	Forb	0.025	2
LONETRU	Lonicera etrusca	Woody	0.025	2
VICILATH	Vicia lathyroides	Forb	0.025	2
VICCRA	Vicia cracca	Forb	0.027	3
MEDI	Medicago sativa	Forb	0.027	4
STIPERIO	Stipa eriocaulis	Graminoid	0.027	4
AREMON	Arenaria montana	Forb	0.027	6
QUECO	Quercus coccifera	Woody	0.028	4
CEPHALB	Cephalanthera alba	Forb	0.028	5
ERYGIU	Eryngium bourgatii	Forb	0.028	6
PRIMULA	Primula sp.	Forb	0.028	6
ASTRAMON	Astragalus monspessulanus	Forb	0.028	7
ACHMIL	Achillea millefolium	Forb	0.030	1
PLANTAG	Plantago sp.	Forb	0.030	2
XERINA	Xeranthemum inapertum	Forb	0.030	3
CORSAN	Cornus sanguinea	Woody	0.031	4
STACHREC	Stachys recta	Forb	0.031	4
RANUNC	Ranunculus sp.	Forb	0.031	5
SANCHA	Santolina chamaecyparissus	Forb	0.031	7
ASPCY	Asperula cynanchica	Forb	0.031	8
ASTRA	Astragalus sp.	Forb	0.033	5
PLANLAN	Plantago lanceolata	Forb	0.034	3
GALVER	Galium verum	Forb	0.036	4
HELHIR	Helianthemum hirtum	Woody	0.036	5
LOTUSCOR	Lotus corniculatus	Forb	0.036	6
CONVCANT	Convolvulus cantabrica	Forb	0.039	6
ARISTOPIS	Aristolochia pistolochia	Forb	0.039	13
COLUTARB	Colutea arborescens	Woody	0.040	3

LINUNAR	Linum narbonense	Forb	0.043	10
POLYCAL	Polygala calcarea	Forb	0.045	6
VIBLAN	Viburnum lantana	Woody	0.046	6
CRUCIATA	Cruciata glabra	Forb	0.048	4
LONXYL	Lonicera xylosteum	Woody	0.048	8
MEDILUP	Medicago lupulina	Forb	0.049	3
LATHYFIL	Lathyrus filiformis	Forb	0.051	7
CATACA	Catananche caerulea	Forb	0.052	7
THYMPRA	Thymus praecox	Forb	0.054	7
LEUZEA	Leuzea conifera	Forb	0.054	12
RHAALA	Rhamnus alaternus	Woody	0.057	3
LAVANG	Lavandula angustifolia	Woody	0.057	6
SCA	Scabiosa sp.	Forb	0.057	11
VICSAT	Vicia sativa	Forb	0.061	3
LAVAND	Lavandula latifolia	Woody	0.064	11
TANACOR	Tanacetum corymbosum	Forb	0.067	18
SEDUAL	Sedum album	Forb	0.070	5
SAPOCY	Saponaria ocymoides	Forb	0.075	11
SCORZO	Scorzonera aristata	Forb	0.078	10
LITFRU	Lithodora fruticosa	Woody	0.084	8
ANTHELI	Anthericum liliago	Forb	0.087	6
KNAUTIA	Knautia arvensis	Forb	0.091	9
RHASAX	Rhamnus saxatilis	Woody	0.093	10
SANGUIMI	Sanguisorba minor	Forb	0.094	16
JUNPHO	Juniperus phoenicea	Woody	0.105	5
POTENEU	Potentilla neumanniana	Forb	0.108	7
SEDUSE	Sedum sediforme	Forb	0.108	18
THESDIV	Thesium divaricatum	Forb	0.111	17
CORIS	Coris monspeliensis	Forb	0.115	16
POA	Poa angustifolia	Graminoid	0.118	12
VIO	Viola sp.	Forb	0.120	7
HEDERA	Hedera helix	Forb	0.124	3
ERYNCAM	Eryngium campestre	Forb	0.127	7
STADUB	Staehelina dubia	Woody	0.127	18
POLYGAL	Polygala alpestris	Forb	0.132	15
ARRHENAT	Arrhenatherum elatius	Graminoid	0.139	11
GLOBVU	Globularia vulgaris	Forb	0.141	10
LATHCIC	Lathyrus cicera	Forb	0.145	7
MEDICA	Medicago minima	Forb	0.145	10
THAPSIA	Thapsia villosa	Forb	0.156	8
GALIUM	Galium sp.	Forb	0.162	12
CERASPUM	Cerastium pumilum	Forb	0.165	2
VICINCA	Vicia incana	Forb	0.166	8
ONONAT	Ononis natrix	Forb	0.178	11
LINOSUB	Linum suffruticosum	Forb	0.184	21
CYTSES	Cytisophyllum sessilifolium	Woody	0.185	10
HEPAT	Hepatica nobilis	Forb	0.191	11
EUPHSE	Euphorbia serrata	Forb	0.200	18
COREME	Coronilla emerus	Forb	0.206	10
BUPLE	Bupleurum ranunculoides	Forb	0.217	5
FUMAPRO	Fumana procumbens	Woody	0.230	9
VIOLA	Viola alba	Forb	0.232	26
LIGVUL	Ligustrum vulgare	Woody	0.236	13
FGL	Festuca glauca	Graminoid	0.262	3
DACT	Dactylis glomerata	Graminoid	0.271	13
HIERACI	Hieracium pilosella	Forb	0.271	25
ONOBRY	Onobrychis viciifolia	Forb	0.278	17
POTE	Potentilla sp.	Forb	0.281	23
THALTUB	Thalictrum tuberosum	Forb	0.283	10
RUBUS	Rubus sp.	Woody	0.284	18
HIPPO	Hippocrepis ciliata	Forb	0.287	27
AVENULA	Avenula pratensis	Graminoid	0.319	14
PRUSPI	Prunus spinosa	Woody	0.347	15
QUEILE	Quercus ilex	Woody	0.350	13
ROSA	Rosa sp.	Woody	0.365	24
TEUPY	Teucrium pyrenaicum	Forb	0.375	16
GALUCI	Galium lucidum	Forb	0.407	15
ARGYZA	Argyrolobium zanonii	Woody	0.407	24
HELIMA	Helianthemum marifolium	Woody	0.414	23
GALEST	Galium estebanii	Forb	0.437	21
FUMERI	Fumana ericifolia	Woody	0.459	13
BRAPH	Brachypodium phoenicoides	Graminoid	0.468	4
PSBI	Psoralea bituminosa	Forb	0.470	22
CRAMON	Crataegus monogyna	Woody	0.471	27

CORMIN	Coronilla minima	Woody	0.495	18
KOELERVAL	Koeleria vallesiana	Graminoid	0.510	26
ONOFRU	Ononis fruticosa	Woody	0.536	10
THALIC	Thalictrum alpinum	Forb	0.540	20
CARDUS	Carduus sp.	Forb	0.554	2
GLOBNU	Globularia nudicaulis	Forb	0.576	14
JUNCOM	Juniperus communis	Woody	0.706	26
BUGRA	Bupleurum rigidum	Forb	0.742	17
PINSIL	Pinus sylvestris	Woody	1.016	18
BRARE	Brachypodium retusum	Graminoid	1.035	13
TEUCHA	Teucrium chamaedrys	Forb	1.162	30
ARCUVA	Arctostaphylos uva-ursi	Woody	1.200	16
JUNOXY	Juniperus oxycedrus	Woody	1.248	25
CAREX	Carex sp.	Graminoid	1.536	10
GENHIS	Genista hispanica	Woody	1.750	17
THYVUL	Thymus vulgaris	Woody	1.984	28
ECHIOR	Echinospartum horridum	Woody	2.017	13
AMEOVA	Amelanchier ovalis	Woody	2.338	29
DORPEN	Dorycnium pentaphyllum	Woody	2.536	29
BROMERE	Bromus erectus	Graminoid	2.557	17
RUBPER	Rubia peregrina	Forb	3.424	30
CAREXFLA	Carex flacca	Graminoid	3.539	19
FR	Festuca rubra	Graminoid	3.673	30
GENSCO	Genista scorpius	Woody	4.132	30
CAREXHAL	Carex halleriana	Graminoid	5.215	19
APHMON	Aphyllanthes monspeliensis	Forb	7.839	30
BRAPIN	Brachypodium pinnatum	Graminoid	11.700	30
BUXSEM	Buxus sempervirens	Woody	19.664	30

Appendix 2: species richness (Hill Index with exponent $q=0$) (A) and exponential of Shannon entropy (Hill index with exponent $q=1$) (B) for plant ecological groups found in the Q. faginea forest stands in the Central Pre-Pyrenees, Spain. Boxes depict the 25 th and 75 th percentiles, and whiskers represent the 5th and 95th percentiles

