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Aquesta tesi ha estat realitzada a:

Institut de Robòtica i Informàtica Industrial, CSIC-UPC
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Abstract

The Stewart-Gough platform was first introduced by E. Gough in 1954 and, since then,

it has been used for many applications thanks to its great stiffness, accuracy and robust-

ness in comparison with serial manipulators. It has triggered the research on parallel

manipulators and continues to be the center of many researches because, despite its

simple geometry, its analysis translates into challenging mathematical problems. One

of the most challenging ones is the geometric interpretation of its singularities, that is,

those positions where the platform loses stiffness. A complete geometric characteriza-

tion of these unstable poses is still an open problem.

The present thesis provides new insight into this problem from a completely new

approach: finding singularity-invariant leg rearrangements.

Finding all the transformations that leave the solution of a problem invariant does

not solve it, but it provides a lot of information that contribute to its resolution. In the

Stewart-Gough platform context, this indirect approach consists in the characterization

of all the leg rearrangements that leave the platform singularity locus invariant. Such

singularity-invariant leg rearrangements are shown to be a powerful tool to obtain

kinematically equivalent manipulators, to help to visualize at a glance the complex-

ity of its kinematics and to provide a common and original framework for the study

of both pose-dependent singularities and architectural singularities of Stewart-Gough

platforms.

The thesis analyzes all the rigid components that a Stewart-Gough platform can

contain on a case-by-case basis. Then, it is shown how some of the most simple com-

ponents admit any leg rearrangement that preserves the lines and planes that their

attachments define. On the contrary, other more complex components only admit rear-

rangements that preserve some extra geometric constrains. This apparently restrictive

fact will provide interesting geometric information about the kinematics and the topol-

ogy of the singularity locus of the analyzed platforms.



In sum, this dissertation presents a new way to arrive at the geometric interpre-

tations of Stewart-Gough platform singularities, a classification of these platforms de-

pending on their singularities, and an inherent classification of all the architectural

singularities, as well as some practical applications of these theoretical results.

iv



Resum

La plataforma de Stewart-Gough va aparèixer per primer cop el 1954 de la mà de E.

Gough, i des de llavors s’ha usat en moltes aplicacions gràcies a la seva rigidesa, la gran

precisió en els seus moviments i la seva robustesa comparada amb els manipuladors

sèrie. Ha liderat la recerca sobre robots paral·lels perquè, tot i el seu disseny geomètric

senzill, el seu anàlisi dóna lloc a problemes matemàtics molt complexos. Un dels més

estimulants és la descripció geomètrica de les seves singularitats, és a dir, aquelles

posicions on el mecanisme perd la rigidesa. La completa caracterització geomètrica

d’aquestes posicions inestables és encara un problema obert.

Aquesta tesi aporta més llum sobre aquest problema des d’una òptica completament

nova: trobar els rearranjaments de potes que mantenen les singularitats invariants (en

anglès, singularity-invariant leg rearrangements).

Trobar aquelles transformacions que mantenen invariants les solucions d’un prob-

lema matemàtic no ens en dóna la solució, però śı que ens proporciona molta infor-

mació que ajuda en la resolució del problema. En el context dels robots paral·lels,
aquest plantejament indirecte consisteix en trobar els canvis en les posicions de les

potes que no modifiquen la localització de les singularitats. Els anomenats singularity-

invariant leg rearrangements demostren ser una eina potent per a obtenir manipuladors

cinemàticament equivalents, ajuden a visualitzar la complexitat de l’anàlisi d’un ma-

nipulador en un cop d’ull, i proporcionen un marc comú per a l’estudi de les singular-

itats dependents de la posició i les dependents de l’arquitectura de les plataformes de

Stewart-Gough.

El treball analitza totes les components ŕıgides que una plataforma de Stewart-

Gough pot contenir. Es mostra com les components més senzilles admeten qualsevol

rearranjament que mantingui les rectes i plans definits pels punts d’ancoratge de les

potes. D’altra banda, les components més complexes només admeten rearranjaments



que satisfan restriccions addicionals. Aquest fet pot semblar més restrictiu, però pro-

porciona informació geomètrica rellevant sobre la cinemàtica i la topologia de la hiper-

superf́ıcie de singularitats de la plataforma.

En resum, aquesta tesi presenta una nova manera d’obtenir interpretacions geomètriques

de les singularitats, de classificar les plataformes paral·leles depenent de les seves sin-

gularitats i proporciona una classificació inherent de les singularitats arquitectòniques,

aix́ı com algunes aplicacions pràctiques d’aquests resultats.
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Chapter 1

Introduction

1.1 Motivation

Even when there is no known solution to a given mathematical problem, it is always pos-

sible to try to find the set of transformations that leave its solution invariant. Although

this does not solve the problem itself, it provides insight into its nature. This way of

thinking is at the root of the development of Group Theory and it is the one applied

herein for the characterization of the singularity loci of Stewart-Gough platforms.

The Stewart-Gough platform is a parallel robot defined as a 6-DoF parallel mech-

anism with six identical extensible legs connected to a base and a moving platform

through ball-and-socket joints [40, 94]. It triggered the research on parallel manipula-

tors, and it has remained one of the most widely studied because, despite its geometric

simplicity, its analysis translates into challenging mathematical problems [26].

The first implementation of this platform was done by E. Gough in 1954 [40]. He

developed the Universal Tire-Testing Machine, a moving platform to which a tire was

attached. It was linked to the ground by 6 links with varying lengths. Each link

had a ball-and-socket joint at the base and a universal joint at the platform, so that

changing the link lengths, the position and the orientation of the moving platform (and

of the attached wheel) was modified. The wheel was driven by a conveyor belt and

the mechanism allowed the operator to measure the tire wear and tear under combined

loads. Gough died in 1972 but his testing machine continued to be used up until the

late 1980 (Fig. 1.1).

1



1.1 Motivation

Figure 1.1: First implementation of the Gough platform to test tyres, and an actual
implementation of the same machine, used in the Dunlop Tyres company.

In 1965, D. Stewart suggested a 6-DoF mechanism capable of reproduce general

motion in space [94], in other words, a flight simulator. Stewart’s mechanism consisted

of a triangular platform supported by ball joints over three legs of adjustable lengths

and angular altitudes connected to the ground through two-axis joints. Stewart’s paper

received many reviews, one of them by E. Gough, who suggested the use of six linear

actuators all in parallel, similarly to his tire testing machine. This suggestion made the

platform manipulator a fully parallel actuated mechanism that, nowadays, is known as

the Stewart-Gough platform.

Since the 1980’s, the research on parallel manipulators has attracted the interest

of many researchers and is still the focus of several important research projects. In

particular, applications of the Stewart-Gough platforms appear in machine tool tech-

nology, coordinate measuring machines, crane technology, force sensors, telescopes and

medical robots. For example, in Fig. 1.2-(a) appears a micro-positioning device devel-

oped by the PI company (Piezo Nano Positioning) that provides significantly higher

accuracy and resolution than hydraulically driven systems. Parallel kinematics preci-

sion positioning systems have many advantages over serial kinematics stages, such as

lower inertia, improved dynamics, smaller package size and higher stiffness (see [81]

for more positioning devices based on the Stewart-Gough platform). In the leisure in-
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(a) (b) (c)

(d) (e)

Figure 1.2: Applications of the Stewart-Gough platform in positioning devices, flight
simulators, telescopes and orthopedic surgery.

dustry, numerous parallel structures are used for flight simulators [Fig. 1.2-(b)]. Many

companies offer movement simulators in various dimensions, and this domain is one of

the most successful for parallel structures. Fig. 1.2-(c) shows an hexapod telescope in

OCA (Observatorio Cerro Armazones), mounted on a Stewart-Gough platform struc-

ture, allowing it to move in all six spatial degrees of freedom and also providing strong

structural integrity. As a result, the ratio of bearing pressure and its own weight is very

high. Furthermore, the six-leg structure allows very precise positioning and repeatabil-

ity [88]. Satellite communications require very accurate pointing systems, Fig. 1.2-(d)

shows a pointing system for double reflector antenna developed by Alcatel Alenia Space

company and the Catania University that uses a Stewart-Gough platform. Finally, as

an example of medical robot, the Stewart-Gough platform has been used to develop

the Taylor Spatial Frame [96], an external fixator used in orthopedic surgery for the
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correction of bone deformities and treatment of complex fractures [Fig. 1.2-(e)].

One important part of the analysis that have to be done to obtain a well-conditioned

Stewart-Gough platform corresponds to the characterization of its singularities [28].

When a parallel platform is on a singularity, it gains degrees of freedom even though

their actuators are locked. Therefore, the characterization of these unstable poses is

essential for several aspects. To improve the robot design, one needs manipulators

with as few singularities as possible, or located outside of the reachable workspace.

For dynamics and control, it is also necessary to improve the robot behavior near

a singularity, and for workspace computation and path planning, it is essential to

detect efficiently how near the robot is to a singular pose. In addition, a different

type of singularities, called architectural, have also deserved a special attention in the

lately literature [64]. Architecturally singular Stewart-Gough platforms are always in

a singularity independently of their leg lengths. In general, they are of no practical

interest because they cannot be controlled. Thus, their characterization is important

to avoid them in the early design process.

The geometric and topological characterization of the singularity locus of a given

Stewart-Gough platform in its six-dimensional configuration space is, in general, a huge

task which has only been completely solved for some specializations —i.e., designs in

which some spherical joints in the platform, the base, or both, coalesce to form mul-

tiple spherical joints [2, 5, 30, 79]. The geometrical interpretation of the singularity

conditions allow to better understand and more efficiently detect the closeness to a sin-

gular pose. Similarly, architectural singularities are usually characterized by algebraic

conditions [53, 54, 108], and only few of them have been geometrically interpreted.

In this context, it seems reasonable to find leg rearrangements in a given Stewart-

Gough platform that leave its singularity locus invariant for several reasons:

• If the singularity locus of the platform at hand has already been characterized,

it could be interesting to modify the location of its legs to optimize some other

platform characteristics without altering such locus (such as stiffness, avoidance

of leg collisions or elimination of multiple spherical joints). For example, they

can be used to improve the robot behavior near a singularity.
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• If the singularity locus of the analyzed platform has not been characterized yet, it

could be of interest to simplify the platform’s geometry by changing the location

of its legs, thus easing the task of obtaining this characterization.

• Analyzing all possible leg rearrangements, one could identify all equivalent plat-

forms, to avoid repeating analyses that actually correspond to the same manipu-

lator (as occurs in the literature).

• The characterization of singularity-invariant leg rearrangement provide informa-

tion about the kinematics of the platform, that can be used to obtain new geo-

metric characterizations of its singularities.

• Because of their geometric nature, singularity-invariant leg rearrangements pro-

vide indirectly geometric interpretations of architectural singularities.

In conclusion, singularity-invariant leg rearrangements are shown to be a general

useful tool for the design and kinematic analysis of all Stewart-Gough platforms.

1.2 Objectives

The main goal of this thesis is the characterization of the geometric transformations

on the locations of the leg attachments of a Stewart-Gough platform that leave its

singularities invariant. In general, substituting one leg of a Stewart-Gough platform

by another arbitrary leg modifies the platform singularity locus in a rather unexpected

way. Nevertheless, in those cases in which the considered platform contains rigid sub-

assemblies, or components [57], legs can be rearranged so that the singularity locus

remains unaltered provided that the kinematics of the components are not modified.

The legs involved in a rigid component fix the relative position between two geomet-

ric entities (points, lines, planes or bodies). A singularity-invariant leg rearrangement

defined for a rigid component can be applied to any Stewart-Gough platform that

contains it.

This thesis is structured following the component classification (Fig. 1.3) as follows:

(a) The Point-Line component. It is the most simple one. It can appear up to 6 times

in one Stweart-Gough platform.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1.3: All rigid components that a Stewart-Gough platform can contain.

(b) The Point-Plane component. Formed by 3 legs, it can only appear twice in a

Stewart-Gough platform.

(c) The Line-Line component. It involves 4 legs and it is the first that presents complex

singularities.

(d) The Line-Plane component. Involves 5 legs and can be considered for itself as a

manipulator, called pentapod, with practical interest when working with axisym-

metric tools.

(e) The Line-Body component. It is the generalization of the Line-Plane component

6
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and thus, it is equivalent to general pentapods.

(f) The Plane-Plane component. Involving 6 legs, it is the first component that repre-

sents a full Stewart-Gough platform.

(g) The Plane-Body and the Body-Body components. They correspond to the most

general Stewart-Gough platforms, it will be shown how they do not admit any

singularity-invariant leg rearrangement for a generic configuration of their leg at-

tachments.

The possible leg rearrangements for each of the above components are studied from

Chapter 4 to Chapter 8, respectively. It will be shown how the complete characteri-

zation of all the singularity-invariant leg rearrangements, and the identification of the

geometric rules to perform them, will permit to:

1. Generate families of Stewart-Gough platforms with equivalent singularity locus

without the limitations of previous classification which do not consider the pos-

sibility of collinear or coplanar attachments.

2. Classify and characterize all architectural singularities arising in Steward-Gough

platforms. All possible singularity-invariant leg rearrangements that can be ob-

tained by continuous transformations in the location of the attachments of a

Stewart-Gough platform can lead to architectural singularities by properly ad-

justing the involved geometric parameters and, conversely, all architecturally sin-

gular platforms can be obtained by applying a degenerate singularity-invariant

leg rearrangement to a non-singular platform.

3. Decouple the problem of locating the singularities of a Stewart-Gough platform to

that of improving, for example, its dexterity in a given region of its configuration

space. This would be possible because singularity-invariant leg rearrangements

permit modifying the value of the platform Jacobian determinant by a constant

factor.

4. Optimize the design of a given parallel platform to improve its manoeuvrability

or to avoid possible collisions between its legs, in a given region of its configura-

tion space, without altering its singularity locus. This includes the possibility of

eliminating multiple spherical joints which are always difficult to implement.
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5. Design reconfigurable platforms whose attachments can be modified statically or

dynamically to adapt them to different tasks. Since the legs lengths, before and

after such kind of transformations, would be in one-to-one correspondence, the

control of such reconfigurable platforms would not be increased notably by the

possibility of reconfiguring them.

At the beginning of this thesis a conjecture was formulated:

All singularity-invariant leg rearrangements, under degenerate circumstances, can

lead to architectural singularities and, conversely, all architecturally singular plat-

forms can be obtained by applying a degenerate singularity-invariant leg rear-

rangement to a non architecturally-singular platform.

At the end of the completion of this thesis, it was possible to assert that, indeed, all

architectural singularities have been detected as a degenerate singularity-invariant leg

rearrangement, and the other way round, any singularity-invariant leg rearrangement

can lead to an architectural singularity. In addition, singularity-invariant leg rearrange-

ments provide the tools to detect any other architectural singularity for any non-generic

case.

The thesis is organized as follows. Chapter 2 presents the state of the art in the

kinematic analysis on Stewart-Gough platforms and in parallel robots in general. Chap-

ter 3 provides the two methodologies that will be applied in the successive chapters.

As stated before, Chapters from 4 to 8 present the singulariy-invariant leg rearrange-

ments for each component, some of them presenting practical applications of singularity-

invariant leg rearrangements, such as design optimizations for very well-known manip-

ulators, reconfigurable robot designs and two prototypes that have been constructed at

Institut de Robòtica i Informàtica Industrial using the theory presented here. The con-

clusions summarize the main contributions and propose prospects for further research.
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Chapter 2

Preliminary concepts

2.1 Kinematics and singularities of Stewart-Gough plat-

forms

There is a large number of publications regarding the kinematics of Stewart-Gough

platforms, both for particular configurations of the attachments [30, 90, 98, 111], and

for the general case [34, 47].

Contrary to what happens to serial manipulators, the forward kinematics of Stewart-

Gough platforms is a very challenging problem, while their inverse kinematics is trivial.

The resolution of the forward kinematics problem is essential for control, on-line

simulation and for performance analysis. For a Stewart-Gough platform, it consist in

finding the position and orientation (i.e., the pose) of the platform, given its leg lengths.

Let Ai and Bi, for i = 1, . . . , 6, denote the center points of the leg attachments

and let ai and b̃i be their position vectors, in the base and platform reference frames

respectively (refer to Fig. 2.1). Given the position p = (px, py, pz)
T and the orientation

R = R(αx, αy, αz), the location of the platform attachments in the base reference frame

can be expressed as bi = p + Rb̃i, for i = 1, . . . , 6. For the sake of simplicity, in this

thesis the center points of the leg attachments will be denoted by their position vectors.

Geometrically, the forward kinematic problem is equivalent to the problem of plac-

ing a rigid body such that six given points of the body lie on six given spheres. Alge-

braically, this can be expressed as:

‖ai − bi‖2 = l2i , i = 1, . . . , 6, (2.1)
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Bi

Ai

bi

b̃i

ai

ei

p

R

O

O′

Figure 2.1: A general Stewart-Gough platform with base attachments Ai and platform
attachments at Bi, i = 1, ..., 6.

where li is the length of the ith leg.

In general, the above system of six equations can have several solutions. In other

words, there are several poses for which the corresponding leg lengths are the same.

Each valid pose is called an assembly mode. The number of assembly modes depends on

how the attachments are arranged. The topology of a given arrangement of attachments

is called an architecture and each architecture have an associated maximum number of

assembly modes. This number ranges from 8 to 40.

For some particular architectures, a closed-form solution for their forward kine-

matics is known [79, 98, 111]. Closed-form solutions simplify the corresponding error

analysis, and provide accurate and fast computations. For these particular architec-

tures, either several attachments merge into multiple spherical joints or some alignment

or coplanarity constraints must be satisfied between attachments.

For the general case, it was proved that the maximum number of assembly modes

was 40 [61, 82, 86] . In fact, a 40th degree polynomial allowing to calculate (numerically)

all possible assembly modes was found by Husty in 1994 [47]. Later, Dietmaier, in 1998,

found a Stewart-Gough platform with 40 real assembly modes for a particular set of

leg lengths using continuation techniques [27].

More recently, Distance Geometry has appeared as a new approach to deal with

kinematic problems. Indeed, it has immediate relevance where distances between points
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are determined or considered. It started to receive a lot of attention twenty years ago

with the advent of molecular magnetic resonance experiments to obtain distances be-

tween atoms in rigid molecules [24], and more recently in Robotics to obtain intrinsic

formulations of different kinematics problems, thus avoiding the introduction of arbi-

trary reference frames [77, 98], or the problems derived from the tangent half-angle

substitution [59, 85]. Interval analysis and linear relaxation techniques have also been

used for general position analysis solvers, giving box approximation solutions for general

serial and parallel manipulators [69, 71, 80, 97].

If the system of equations in (2.1) is rewritten as an implicit relation between the

leg lengths, Θ = (l1, ..., l6), and the pose of the platform, X, which depends on the

position vector (px, py, pz) and the chosen orientation parameters [72], it reads as

F (X,Θ) = 0.

When differentiating this expression with respect to time, it yields

PẊ + SΘ̇ = 0 (2.2)

where P = ∂F
∂X

and S = ∂F
∂Θ

. The most accepted classification of Stewart-Gough

platform singularities was introduced in 1990 by Gosselin and Angeles [38] using this

formulation and consists in three categories:

• Type I (called serial singularities in [68]): They arise when | ∂F
∂Θ

| = 0. They

occur when the manipulator reaches the boundary of the workspace or internal

boundaries limiting different subregions of the workspace. In such singularities,

there exist nonzero Θ̇ for which Ẋ = 0. In other words, there are velocities that

cannot be reproduced at the output. One can say that, at type I singularities,

the manipulator loses degrees of freedom.

• Type II (called parallel singularities in [68]): They arise when | ∂F
∂X

| = 0. They

occur when the platform is locally movable even when the actuated joints are

locked and happens within the workspace. That is, if Θ̇ = 0, Ẋ is not necessarily

zero. One can say that, at type II singularities, the manipulator gains degrees of

freedom.
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• Type III: When both | ∂F
∂Θ

| = and | ∂F
∂X

| = 0. They occur when the end-effector

may be moved while the actuators are locked, and vice versa.

Ma and Angeles made a further distinction for type II singularities in [64] by in-

troducing the concept of architectural singularities. These are manipulators whose

geometric parameters make det(P) = 0 for any position of the workspace. In this

situation, the manipulator exhibits a self-motion for any set of leg lengths.

It was shown in [38] that the Stewart-Gough platforms have very simple type I

singularities, as matrix S is singular only when any of the leg lengths is zero. This, in

practice, can never happen due to joint limits. In fact, type I singularities only happen

at the limits of the prismatic joints, just because at the limit of the workspace some

velocities cannot be reproduced by the platform, but without losing the capability of

controlling it.

On the other hand, in [91] it was proved that the type II singularities are much

more complicated and much research efforts have been put on the characterization of

this type of singularities.

Equation (2.2) can be reformulated using the Jacobian matrix, that is, the matrix

that relates the velocities of the actuated joints with the linear and angular velocities of

the platform. The linear and angular velocities of a rigid body are normally described

with a twist, T = (v,Ω)T , where v stands for the linear velocity and Ω for the angular

velocity. The orientation parameters should be chosen so that the derivative of the pose

vector is directly the platform twist. If not, it will be related to it through a matrix,

T = HẊ [68].

Equation (2.2) can be written as

Θ̇ = J−1Ẋ. (2.3)

If J−1 is singular, there exists Ẋ 6= 0 so that Θ̇ = 0. Matrix J−1 can be written in

terms of matrices P and S as J−1 = −S−1P, but, as for Stewart-Gough platforms

S = Diag(l1, ..., l6) [38], the study of singularities normally reduces to the study of

matrix P, and in an abuse of language, it is normally called J.

Due to the reciprocity relation between linear velocities (angular velocities) and

forces (torques) , matrix J in (2.3) can also be obtained through the statics study

12



2.1 Kinematics and singularities of Stewart-Gough platforms

bi

b̃i

ai

ei = ai−bi
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p

R
W
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Figure 2.2: The force applied to the platform must be equal to the resultant force
exerted by the legs.

of Stewart-Gough platforms (Fig. 2.2). If a wrench W = (F,T)T is applied to the

moving platform, where F stands for the force and T the torque, the system will be in

equilibrium if the resultant force exerted by the legs compensate W. Indeed, following

[68], the equations of equilibrium of the moving platform in its global reference frame

can be expressed as:

F =
6∑

i=1

τi
ai − bi

li

T =
6∑

i=1

τi
(ai − bi) × (bi − p)

li
=

6∑

i=1

τi
(ai − bi) × Rb̃i

li

where τi is the force exerted by the actuated joint i for i = 1, . . . , 6. In matrix form,

these two equations can be rewritten as

W = K




τ1
...
τ6


 (2.4)

where

K =




1
l1

. . . 0
...

. . .
...

0 . . . 1
l6




(
a1 − b1 . . . a6 − b6

(a1 − b1) × Rb̃1 . . . (a6 − b6) × Rb̃6

)
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2.1 Kinematics and singularities of Stewart-Gough platforms

Then, due to the reciprocity relation between forces and velocities, K = J−T and, thus,

equation (2.4) can be rewritten as

W = J−T τ.

By solving this linear system for τ1, . . . , τ6, it is clear that the forces exerted by the

legs are values divided by the Jacobian matrix determinant. As a consequence, in a

singular position, forces on the actuated joints may go to infinite, and near a singular

configuration, they may become very large.

An important property of Stewart-Gough platforms was shown by Merlet in [66]:

the rows of J−1 are the Plücker coordinates of the leg lines. Indeed, the Plücker

coordinates of a line through a point P with position vector p and director vector d

are defined as

(d,d × p).

Note that an equivalent expression of the line coordinates can be obtained by changing

the chosen point P . Thus, the ith row of the Jacobian matrix

(ai − bi, (ai − bi) × Rb̃i) (2.5)

can be interpreted as the Plücker coordinates of the line through Ai and Bi. As a

consequence, the study of singular poses can be reduced to the study of the linear

dependence between the Plücker coordinates of 6 lines. A further simplification of

the Jacobian matrix can be obtained with an equivalent expression of the same line

coordinates, obtained changing the chosen point:

((bi − ai), ((bi − ai) × ai). (2.6)

Thus, if the rows of J−1 are substituted by these Plücker coordinates, a simpler matrix

is obtained, whose determinant has the same roots as the determinant of J−1.

Several works deal with singularities of Stewart-Gough platforms by studying the

line complexes formed by their legs [65, Ch. 12],[25, 109] and the study of screw systems

[36, 37].

An analytic characterization of singularities was provided in [41, 63, 91] using

Laplace expansions of the Jacobian matrix determinant. Although an analytic ex-

pression is obtained, it does not say much about the nature and the topology of the
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singularity loci in the configuration space of the platform with respect to the base.

The only Stewart-Gough platforms for which a cell decomposition of their singularity

loci is available are the flagged and partially-flagged parallel manipulators (a particu-

lar architecture detailed in [2, 99]). In most cases the objective is to find geometric

interpretations of the singular configurations for particular architectures and efficient

graphical representations of the singularity-locus.

Closely related to the works based on Laplace expansions are those dealing with

syzygies, relations between 4 × 4 determinants involving the homogeneous coordinates

of sets of four attachments called brackets. White used them in [105] to obtain an

expression of the Jacobian matrix determinant taking into account the representation

of Plücker coordinates as determinants of 2×2 matrices whose elements are coordinates

of the attachments. The obtained expression is a linear combination of products of 3

brackets, with the advantage that each bracket can be directly interpreted as the volume

of the tetrahedron formed by 4 attachments. This formula, known as superbracket, or

the pure condition, is the base of those works based on Grassman-Cayley algebra that

succeeded to obtain geometric interpretations of singular poses for several architectures

[3, 4, 5, 12].

2.2 Classifications of Stewart-Gough platforms

One of the existing classifications of Stewart-Gough platforms is based on treating them

as bipartite graphs (see Fig. 2.3 for several examples using such representation). For

example, an architecture with m and n different attachments either on the base or the

platform is referred to as an m−n Stewart-Gough platform. Using this nomenclature,

the simplest architecture is of type 3-3 and the most general one of type 6-6. Using this

approach, an incomplete classification appeared in [51]. Later on, Faugère and Lazart

made a detailed classification of all m − n classes of Stewart-Gough platforms with all

possible combinations of connections between attachments [33]. They enumerated 35

different classes representing all possible Stewart-Gough platforms, giving the maximum

number of assembly modes for each of them. Nowadays, this classification is widely used

when describing Stewart-Gough architectures [68, Table 4.6]. Unfortunately, it does not

take into account non-generic cases, that is, architectures with alignment or coplanarity

restrictions in their attachments which are very common in many implementations.
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2.2 Classifications of Stewart-Gough platforms

Figure 2.3: The three possible 3-3 Stewart-Gough platforms (top) and their symbolic
representation as bipartite graphs (bottom).

Kong and Gosselin presented a different classification [57]. They define rigid sub-

structures with less than 6 legs (called components) and then they form manipulators

by joining different components. These components are:

PP : Point-Point (a single leg);

PL: Point-Line (two legs sharing a spherical joint);

PB: Point-Body (three legs sharing a spherical joint);

LL: Line-Line (four legs, their endpoints lying on two lines); and

LB: Line-Body (five legs, an endpoint from each lying on a line).

The idea of Kong and Gosselin was to solve the forward kinematics of each com-

ponent and then, given a platform, solve its forward kinematics from the solution of

each of its components. The existence of a rigid component in a platform greatly sim-

plifies its analysis, but it is not clear how to put together the solution to the forward

kinematics of each of its components to form the solution for the entire manipulator.

A large number of publications deal with particular architectures, many of them

being kinematically and singularity equivalent. The lack of a singularity-preserving

classification in the literature increases the volume of works that could be applied

simultaneously to many equivalent manipulators. This thesis presents a tool that allows

to compare and detect kinematically equivalent Stewart-Gough platforms.
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2.3 Architectural singularities of Stewart-Gough platforms

Special attention has been paid to the characterization of architectural singularities.

Such singularities must be avoided in the design process, as architecturally singular

manipulators cannot be controlled in any position of its workspace. Any architecturally

singular manipulator gains one (or more) degrees of freedom and thus it is capable to

perform a movement, called self-motion, while their actuated joints remain locked.

As it was stated by Merlet in [66], singularities of Stewart-Gough manipulators hap-

pen when their leg lines form a linear complex (i.e. a system of linear dependent lines

[25]). Then, architecturally singular platforms are manipulators whose legs are always

forming a linear complex. X. Kong in [56] distinguishes between two kinds of architec-

turally singular components. On the one hand, those components that, by construction,

have legs forming a linear complex are called over-actuated components and must be

avoided in the design process for obvious reasons (Fig. 2.4) and on the other hand, those

components that are only architecturally singular when their attachments hold some

kind of condition, the architecturally-singular condition. These kind of components can

be used to form Stewart platforms because the attachments, in general position, form

a non-singular structure. The whole literature about architectural singularities focuses

on describing such condition. Lately, architecturally singular manipulators have gained

interest in the context of compliant manipulators and construction of complex joints

[83].

A further division is possible. Manipulators have been divided into two big cate-

gories depending on whether their bases and moving platforms are planar, usually re-

ferred to as planar and non-planar platforms. Non-planar platforms have been studied

in [49], [49] and [54]. M. Husty and A. Karger present a list of non-planar architec-

turally singular Stewart-Gough platforms. All of them have some kind of alignment

on the base and/or on the platform, and they state that any architecturally singu-

lar non-planar Stewart-Gough platform has this kind of alignment restriction on the

attachments. In particular, they give algebraic characterizations of the architectural

singularities for the Line-Line and the Line-Plane components, with a vague geometri-

cal interpretation. The works of A. Karger and M. Husty are closely connected to the

work done by the French mathematicians R. Bricard and E. Borel at the beginning of
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(a) Planar Pencil (b) Degenerated regulus (c) Regulus

(d) Linear Congruence (e) Linear Complex (f) Linear Complex

Figure 2.4: Over-actuated components are architecturally singular manipulators be-
cause, independently on how one distributes their leg attachments, they are always
forming legs whose supporting lines define a linear complex.

the XXth century [7, 21], which studied all the movements that a rigid body can per-

form when some of its points are supported by rigid bars, and thus, perform spherical

trajectories. Such spherical trajectories correspond to the so-called self-motions of the

architecturally singular manipulators.

The major part of publications on architectural singularities deal with the second

category: planar-platforms. They include those working with planar polygonal plat-

forms [64], using the theory of linear manifolds of correlations [87], imposing zeros on

the Jacobian matrix determinant [107, 108], or imposing some kind of algebraic relation

between the platform attachments and the base attachments [58]. All these works can

be unified with an important theorem that has been used to characterize architectural

singularities on planar-platform manipulators [52, 55, 106]. The theorem published in

1851 by M. Chasles [22], states that

“Given any two conic sections in space between which a projective corre-

spondence p exists, straight lines connecting p-corresponding points on the

conics belong to a linear complex.”
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Later, in 1896, R. Bricard reformulated it in the context of kinematics, relating the

stability of the position of a rigid body supported by 6 rigid bars.

All the works dealing with planar platforms listed above are particular cases in

which a projective correspondence between platform and base attachments exists, and

hence, the Chasles theorem can be applied: The manipulator is architecturally singular

if, and only if, the platform and base attachments lie on a conic. A. Karger studied in

[53] the characterization of architectural singularities when such projectivity does not

exist.

Although a lot of work dealing with architectural singularities has been done, it

is based in algebraic methods that study the analytical coefficients of the Jacobian

matrix determinant on a case by case basis. Thus, the existing characterizations are

based on very complicated and nonintuitive demonstrations, and, as a consequence, the

geometrical interpretation of such singularities is still an open problem.

Finally, an alternative approach to analyze the singularities of a given architecture

and, in particular, its possible architectural singularities, is due to P. Ben-Horin and

M. Shoham based on Grassman-Cayley algebra [4]. This algebra was first used in

Robotics to solve kinetostatic problems [92]. It has also been successfully used at

characterizing the singularities of the octahedral manipulator (a 3-3 architecture) [30],

and at simplifying the analysis of platforms with aligned attachments [4].

2.4 Manipulability, dexterity and other performance in-

dexes

One of the major difficulties in the workspace and dexterity analysis of the Stewart-

Gough platforms is the strong coupling between position and orientation. Furthermore,

such an analysis should preferably be done in association with the singularity analy-

sis because a workspace segmented by singularity barriers will not be fully usable in

practice. In addition, it must be taken into account the crucial role of leg collision in

limiting the platform workspace [67].

To define a well-conditioned workspace it is necessary to define indexes representing

the “distance” to singularities. As no mathematical distance can be defined because
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2.4 Manipulability, dexterity and other performance indexes

of the simultaneous use of variables representing translations and orientations, several

indexes have been proposed instead [70].

Assuming that the errors on the actuated joints are limited, ‖∆Θ‖ ≤ 1, and using

the Jacobian matrix definition, the manipulability ellipsoid is defined as

∆XTJ−TJ−1∆X ≤ 1. (2.7)

When this ellipsoid is a sphere, the platform is said to be isotropic. An isotropic manip-

ulator is optimally well-conditioned, but no Stewart-Gough platform can be constructed

to be isotropic all over its workspace.

Using equation (2.7), in [110] the manipulability index is defined as

m(J) =

√
|JJT |.

On the other hand, the isotropy condition can be written as
√

λmax

λmin
= 1,

where λmin and λmax are the minimum and maximum eigenvalues of matrix JJT . This

value is also known as the inverse of the condition number

κ(J) = κ(J−1) = |J−1| · |J|,

which is another index commonly used to indicate the factor of error amplification,

define the accuracy/dexterity of the robot, and also the closeness of a pose to a singu-

larity. Moreover, it has been used as a performance index for optimal design, and also

an index to determine the useful workspace [70].

However, due to the complexity of the obtained expressions for these indexes, they

have only been computed analytically for a limited number of platforms. Furthermore,

all of them are sensitive to the chosen units and norm. As a consequence, none of them

can be used to properly represent positioning accuracy [70].

In short, determining the geometry of a platform to ensure that a given region of

its workspace is free from singularities is a difficult problem that has only been solved

for some simple architectures.

A critical issue for parallel robots is the dimensional synthesis in the design pro-

cess. This dimensioning can be formulated as an multiobjective optimization problem
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in which it is necessary to take into account aspects such as positioning accuracy,

repeatability, stiffness, vibration, workspace volume and singularities. Most of the in-

dexes that have been proposed to quantify them rely on the Jacobian matrix or its

inverse. Therefore, the characterization of singular-invariant transformation, that is,

transformations that are able to alter the value of the determinant of the Jacobian

except when its value is zero, is of clear interest to decouple the problem of locating

the singularities to that of improving, for example, the accuracy in a given region of

the configuration space.

2.5 Summary of open problems and related work

In conclusion, a great deal of research has been carried out on the kinematics of Stewart-

Gough platforms. So far, as the issues of singularity and workspace analysis are con-

cerned, partial answers to many questions are available, but a complete analysis is yet

to be performed.

It is usually assumed that most kinematics problems have already been solved so

that only more clear and intuitive solutions to old problems can be provided. Never-

theless, three areas related to the kinematics of Stewart-Gough platforms can benefit

from the exhaustive analysis of all possible singularity-invariant leg rearrangements.

Namely,

• Existing classifications provide only partial information, as each manipulator must

be studied separately and independently of the class to which it belongs. This is

because two platforms in the same class do not necessarily have the same forward

kinematics nor the same singularity structure. The present thesis, on the contrary,

comes up with transformations that preserve the platform’s singularities, thus

opening up the possibility of classifying platforms in families sharing the same

singularity structure.

• Despite the amount of work published on the characterization of architectural

singularities, their geometrical interpretation is still not clear. Contributions on

this topic are presented in this thesis.
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2.5 Summary of open problems and related work

• The characterization of the singularity-free regions of the workspace is an impor-

tant problem for the design of useful Stewart-Gough platforms. Contributions on

this topic are obtained in this thesis by using singularity-invariant leg rearrange-

ments. There are very few works on the systematic design of Stewart-Gough

platforms. As a consequence, a step in this direction is important for the en-

hancement and realization of its potential.

Until the moment, no other similar concept to singularity-invariant leg rearrange-

ments has been found in the literature, except for [48, 74], where the authors solve the

problem of obtaining redundant legs to a manipulator without modifying its kinematics.

Obviously, their obtained results regarding the locus of possible locations for that re-

dundant legs are similar to those obtained for singularity-invariant leg rearrangements,

but the authors do not explore all the consequences.
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Chapter 3

Singularity-invariant leg

rearrangements

3.1 Notation

A general Stewart-Gough platform is a 6-SPS platform. In other words, it has six

actuated prismatic legs li with lengths li, i = 1, . . . , 6, connecting two spherical passive

joints centered at ai = (xi, yi, zi)
T and b̃i = (ri, si, ti)

T , given in base and platform

reference frames, respectively (see Fig. 2.2). The pose of the platform is defined by a

position vector p = (px, py, pz)
T and a rotation matrix R

R(αx, αy, αz) = (i, j,k) =




ix jx kx

iy jy ky

iz jz kz


 ,

so that the platform attachments can be written in the base reference frame as bi =

p + Rb̃i, for i = 1, . . . , 6 (Fig. 3.1). To simplify the notation, the same name will be

used to denote a point and its position vector.

There are three types of parameters that fully define a Stewart-Gough platform as

Pose parameters X = (px, py, pz, ix, iy, iz, jx, jy, jz, kx, ky, kz)

Geometric parameters G = (x1, y1, z1, r1, s1, t1, . . . , x6, y6, z6, r6, s6, t6)

Joint parameters Θ = (l1, . . . , l6)

Finally, it will be useful to introduce a 6-dimensional space defined by the coor-

dinates (x, y, z, r, s, t), called the space of leg attachments. Each point of this space
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3.2 Singularity-invariant leg rearrangement: Definition

defines a leg that goes from base attachment a = (x, y, z)T to platform attachment

b̃ = (r, s, t)T .

From now on, the above notation will be used to describe all Stewart-Gough plat-

forms, with some variations on the names of the local coordinates.

ai

bi

a

b

p

R

lid

O

O′

Figure 3.1: A general Stewart-Gough platform with base attachments ai and platform
attachments at bi, i = 1, ..., 6. A single leg rearrangement consist in the substitution
of one of the legs by a new one, in gray in the drawing.

3.2 Singularity-invariant leg rearrangement: Definition

A leg rearrangement consists in a relocation of the attachments of the manipulator,

without modifying the pose of the platform, and thus, leading to new leg lengths

d1, d2, . . . , d6. In general, such rearrangement completely modifies the kinematics of

the manipulator and also the location of its singularities.

For a general Stewart-Gough platform, the forward kinematics problem consists in

finding the pose of the moving platform given the leg lengths. This entails solving the

quadratic system

(ai − bi)
2 = l2i , i = 1, . . . , 6. (3.1)

Furthermore, the linear actuator velocities, l̇1, l̇2, . . . , l̇6, can be expressed in terms
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3.2 Singularity-invariant leg rearrangement: Definition

of the platform velocity vector (v, Ω) as follows:

S




l̇1
l̇2
...

l̇6


 = J

(
v

Ω

)
(3.2)

where

S =




l1 . . . 0
...

. . .
...

0 . . . l6




and J is the matrix of non-normalized Plücker coordinates of the six leg lines [68]. The

serial and parallel singularities, as explained in the previous chapter, are given by those

configurations in which det(S) = 0 and det(J) = 0, respectively [38].

After an arbitrary leg rearrangement, the forward kinematics of the rearranged

platform should be solved again, which would lead to a different number of assem-

bly modes and to a different set of singularities. Next, two methodologies to obtain

singularity-invariant leg rearrangements are described.

3.2.1 Methodology I: Finding an affine relation between leg lengths

Now suppose that exist a relocation of the base and platform attachments so that the

squared leg lengths before and after such rearrangement are related through the affine

relation 


d2
1

d2
2
...

d2
6


 = A




l21
l22
...
l26


 + b, (3.3)

where A and b are a constant matrix and a constant vector, respectively. In such

case, the forward kinematics can be solved by just computing the corresponding values

l1, . . . , l6 through the affine relation (3.3) and then solving system (3.1). In other

words, there is a one-to-one correspondence between the sets of leg lengths, and thus,

the solution of the forward kinematics is essentially the same.

Furthermore, the singularities also remain unchanged. Indeed, differentiating with
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3.2 Singularity-invariant leg rearrangement: Definition

respect to time the affine relation in (3.3) gives




d1 . . . 0
...

. . .
...

0 . . . d6







ḋ1

ḋ2
...

ḋ6




= A




l1 . . . 0
...

. . .
...

0 . . . l6







l̇1
l̇2
...

l̇6




(3.4)

and substituting equation (3.2), the linear actuators’s velocities of the rearranged plat-

form are related to the platform velocity through




d1 . . . 0
...

. . .
...

0 . . . d6







ḋ1

ḋ2
...

ḋ6




= AJ

(
v

Ω

)
. (3.5)

Thus, the parallel singularities of the platform after the rearrangement correspond to

those configurations in which det(AJ) = det(A)det(J) = 0. As det(A) is a constant

not-null factor, the singularity locus of the platform before and after such rearrangement

remains unchanged. Such constant factor that multiplies the singularity polynomial

after a rearrangement will be called singularity factor.

The other way round, if the parallel singularities between two manipulators are

equivalent, i.e., the singularity polynomial only changes in a constant factor, one can

relate the velocities l̇1, l̇2, . . . , l̇6 with ḋ1, ḋ2, . . . , ḋ6 as in (3.4), which can be integrated

to obtain an affine relation between the leg lengths of the two platforms.

In conclusion, a leg rearrangement is singularity-invariant if, and only if, it satisfies

an affine relation of the form given in (3.3). This affine relation not only guaranties

that the singularities will remain unchanged, but also the forward kinematics solution,

the number of assembly modes and in summary, all the platform kinematic properties.

When det(A) = 0, the affine relation is no longer one-to-one, so both the forward

kinematics and the singularities change, but such rearrangement has interest because

it introduces an architectural singularity, i.e., the resulting platform is always in a

singularity independently of its leg lengths [64].

3.2.1.1 Single leg rearrangement

Given a rigid component between two geometric entities (for example, two planes for

the Plane-Plane component), suppose that the length of any additional leg from one
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3.2 Singularity-invariant leg rearrangement: Definition

entity to the other, say d, can be computed independently of the pose of the platform

entity, as follows

d2 = a1l
2
1 + a2l

2
2 + a3l

2
3 + a4l

2
4 + a5l

2
5 + a6l

2
6 + b, (3.6)

where ai are constant coefficients for i = 1, . . . , 6. Then, the affine relation in equation

(3.3) has the form




d2

d2
2
...

d2
6


 =




a1 a2 . . . a6

0 1 . . . 0
. . .

...
0 0 . . . 1







l21
l22
...
l26


 +




b
0
...
0




This corresponds to the rearrangement of only one leg: the substitution of leg li by the

new leg d (Fig. 3.1), which leads to a singularity invariant leg rearrangement as long

as the determinant of the above matrix is different from zero.

In most of the cases, this thesis deals with the rearrangement of a single leg, as in

practice, it simplifies the computations and it gives equivalent solutions. Only for the

Point-Line component it will be shown how some rearrangements can only be performed

as the simultaneous application of single leg rearrangements. This will be studied in

detail in Chapter 4.

3.2.1.2 Conditional vs. unconditional rearrangements

In the next chapters it will be shown how the analysis of the Point-Line, the Point-

Plane and the Line-Line components lead directly to an affine relation of the form (3.6),

from which it will be concluded that the rearranged leg attachments can be placed

anywhere in the involved geometric entities (point, line or plane). Therefore, they

are called unconditional rearrangements. On the contrary, in the computation of leg

rearrangements for the rest of the components, the new leg length is only affinely related

to the original leg lengths when the rearranged leg attachments are placed at specific

locations. These are called conditional rearrangements. For these components, the

condition that has to be fulfilled to guarantee the singularity-invariance gives relevant

geometric information about the component that plays a relevant role in the geometric

interpretation of singularities.
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3.2 Singularity-invariant leg rearrangement: Definition

3.2.2 Methodology II: Rewriting the singularity polynomial

For those components with conditional rearrangements, there is an alternative method-

ology to obtain the singularity-invariant leg rearrangements which consists in rewriting

the determinant of the Jacobian matrix in a convenient form.

Suppose that the singularity polynomial resulting from expanding the determinant

of the Jacobian matrix has been rewritten as the determinant of a new matrix of the

form

det(J) = det(T) =

∣∣∣∣
rP (X)
rG(G)

∣∣∣∣ = 0 (3.7)

where rP (X) are a set of row vectors depending only on the pose parameters and rG(G)

are a set of row vectors depending only on geometric parameters so that, if each row

depends only on the local coordinates of the attachments of a single leg, then, we define

T̂ = (rG(G)) =




rG(x1, y1, z1, r1, s1, t1)
...

rG(x6, y6, z6, r6, s6, t6)


 .

This fact would give a clear cut distinction between the parallel singularities, defined

by the root locus of det(T), and architectural singularities, which will happen whenever

T̂ loses rank. Note that the rows (rP (X)) must be full rank independently of the pose.

Rewriting the singularity polynomial in such a way has been achieved for 2 of

the 3 components for which it is believed to be possible. It will be shown how, for

a manipulator containing a Line-Plane or a Line-Body component (both components

involve 5 legs), the singularity polynomial factorizes into

det(J) = F1(c1, ...c5)F2(c6)

where factor F2 is

(px − x6)kx + (py − y6)ky + (pz − z6)kz

that depends on k = i× j (R = (i, j,k) being the rotation of the platform). Hence, this

factor only depends on the sixth leg, and F1(c1, ...c5) accounts for the singularities of

the component embedded in the considered platform. The present thesis presents the

reformulation of this factor as

F1(c1, ...c5) = det(T),
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3.2 Singularity-invariant leg rearrangement: Definition

where T has the same form given in equation (3.7). Work towards a similar formulation

for the singularity polynomial of the Plane-Plane component has been done without

conclusive results.

Rewriting the singularity polynomial in the presented way is one of the contributions

of the present thesis. Indeed, it proves to be useful not only to define singularity-

invariant leg rearrangements as explained below, but also to characterize architectural

singularities.

Once matrix T is obtained, it is clear that all the coefficients of the singularity

polynomial are minors of matrix T̂ 1.

Assuming that only one leg is rearranged, one of the legs will be substituted by

a new leg, whose base and platform attachments have local coordinates a = (x, y, z)

and b̃ = (r, s, t). Then, a singularity invariant leg rearrangement is defined by those

{x, y, z, r, s, t} for which the matrix




rG(x1, y1, z1, r1, s1, t1)
...

rG(x6, y6, z6, r6, s6, t6)
rG(x, y, z, r, s, t)


 (3.8)

loses rank, where rG(x, y, z, r, s, t) has the same shape as the rest of the rows, after

substituting (xi, yi, zi, ri, si, ti) by (x, y, z, r, s, t). When this happens, any row in T̂

can be substituted by the new row rG(x, y, z, r, s, t). The resulting matrix will have

the same minors, up to a constant multiple. As a consequence, the coefficients of the

singularity polynomial of equation (3.7) will be also the same, up to a constant multiple,

and thus, its roots will not change.

The rank condition on matrix (3.8) translates into a system of equations that define

an hypersurface in the space of leg attachments in implicit form. Thus, only the leg

attachments defined by points of this hypersurface will maintain singularities invariant.

Finally, it will be shown that matrix T̂ coincides with the matrix of the linear

system associated with the forward kinematic problem. Given the system (3.1), one

can always subtract one of the equations from all the others, thus simplifying quadratic

terms. Adding some additional unknowns the bilinear terms can also be simplified,

1A minor of a matrix is the determinant of some smaller square submatrix, obtained from removing
one or more of its rows or columns.
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3.2 Singularity-invariant leg rearrangement: Definition

thus obtaining a linear system of equations that involves only part of the unknowns.

This will be called the linear system associated with the quadratic system (3.1). The

matrix of this system is equivalent to matrix T̂, in the sense that one can be obtained

from the other using only linear row operations.

This methodology will be explained in detail in Chapters 5 and 6.
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Chapter 4

The Point-Line, Point-Plane and

Line-Line components

4.1 Finding the affine relation between leg lengths

Consider a Gough-Stewart platform containing a Point-Line component defined by two

legs with lenghts l1 and l2 [Fig. 4.1-(left)]. Now, introduce a third leg with length d1, as

shown in the same figure. Lengths l1, l2, and d1 are not independent and the relation

between them can be straightforwardly obtained by realizing that the volume of the

tetrahedron defined by a1, a2, a3, and b1 is null, i.e., all four points are coplanar.

Then, using Euler’s formula for the volume of a tetrahedron in terms of the square of

its edge lengths [29, Problem 68], gives:

f(l1, l2, d1) =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 (m + n)2 l21 m2

1 (m + n)2 0 l22 n2

1 l21 l22 0 d2
1

1 m2 n2 d2
1 0

∣∣∣∣∣∣∣∣∣∣

= 0. (4.1)

The above determinant can be recognized as the Cayley-Menger determinant of four

points (see Appendix A for details). The Cayley-Menger determinant of m points is

proportional to the squared volume of the simplex that these points define in R
m−1.

Expanding the determinant (4.1) and factorizing the result, the affine relation be-

tween l1, l2 and d is obtained:

f(l1, l2, d1) = nl21 + ml22 − (m + n)d2
1 − mn(m + n) = 0.
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l1 l2l2

m nn r

d1d1 d2

a1 a2a2

b1b1

a3a3 a4

Figure 4.1: A point-line component formed by legs l1 and l2. Two Point-Line rear-
rangements can be applied to move the two attachments, a1 and a2, along the line.

Note that the same equation for 4 general coplanar points does not factor, it is necessary

the collinearity of a1, a2 and a3.

Thus, when rearranging a single leg, the affine relation in (3.3) has the form




d2
1

l22
...

d2
6


 = A




l21
l22
...
l26


 + b

where

A =




n
m+n

m
m+n

. . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




whose determinant is

det(A) =
n

m + n
.

As a consequence, the singularity polynomial of the platform after this leg rear-

rangement, say det(J1), can be expressed in terms of the singularity polynomial of the

original platform, say det(J0), as:

det(J1) =
n

m + n
· det(J0). (4.2)

Thus, the singularity polynomial, after the rearrangement, is equal to the original

one multiplied by the distance between the two attachments, divided by the same
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4.1 Finding the affine relation between leg lengths

distance before the rearrangement, and affected by a sign change if the order of the

attachments is permuted.

The above Point-Line rearrangement was defined as a ∆-transform in [11]. In what

follows, a Point-Line rearrangement will be denoted by ∆li,lj ,lk indicating that a point-

line component formed by li and lj is substituted by the one formed by li and lk.

By applying a Point-Line rearrangement, one of its two attachments has been moved

on the line. The other can be moved by applying one more Point-Line rearrangement.

For example, on the result of the above Point-Line rearrangement, substitute l2 by d2,

as shown in Fig. 4.1-(right). Then, following the same reasoning as for the first rear-

rangement, the singularity polynomial of the resulting platform, say det(J2), can be

expressed as:

det(J2) =
n + r

n
· det(J1) =

n + r

m + n
· det(J0). (4.3)

Observe that the above two rearrangements can be applied simultaneously to move

both attachments on the line at the same time. In this case, the relationship between

the leg lengths can be expressed as:

f1(l1, l2, d1) = nl21 + ml22 − (m + n)d2
1 − mn(m + n) = 0

f2(l1, l2, d2) = rl21 + (m + n)d2
2 − (m + n + r)l22 − r(m + n)(m + n + r) = 0.

Thus, the affine relation is




d2
1

d2
2
...
l26


 = A




l21
l22
...
l26


 + b =




n
m+n

m
m+n

. . . 0

− r
m+n

m+n+r
m+n

. . . 0
...

...
. . .

...
0 0 . . . 1







l21
l22
...
l26


 + b (4.4)

whose determinant is

det(A) =
n(m + n + r) + mr

(m + n)2
=

nm + n2 + rn + rm

(m + n)2
=

(n + r)(m + n)

(m + n)2
=

n + r

m + n
.

In conclusion, the singularity polynomial of the platform after this double leg re-

arrangement can be expressed as in (4.3). Thus, the result is the same if the two

rearrangements are applied either sequentially or simultaneously. Nevertheless, there

are some circumstances in which a set of rearrangements can only be applied simulta-

neously. This will become evident in the next examples.
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1

2

l1

l2

l3

d1 d2

m n

r

s

a1

a2

a3

b1

a

Figure 4.2: A base attachment in a Point-Plane component can be placed anywhere
in the plane after tow Point-Line rearrangements.

In what follows, a set of Point-Line rearrangements will be denoted

{∆l1,l2,l3∆l4,l5,l6 . . . },

when applied sequentially, and 



∆l1,l2,l3

∆l4,l5,l6

...





,

when applied simultaneously.

4.2 The affine relation for the Point-Plane component

The Point-Plane component consists in three legs meeting at a point, so it is also known

as a tripod. In the Point-Plane component, any base attachment can be moved to any

other point of the base plane by performing sequentially two Point-Line rearrangements.

For instance, if the base attachment a3 has to be moved to a, the set of Point-Line

rearrangements that can be applied is

{∆l3l1d1 , ∆l2d1d2},

with corresponding relations for the involved leg lengths:

f1 = sl21 + rl23 − (s + r)d2
1 − sr(s + r) = 0 (4.5)
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4.3 The affine relation for the Line-Line component

and

f2 = nl22 + md2
2 − (m + n)d2

1 − mn(m + n) = 0, (4.6)

respectively (see Fig. 4.2). Writing them in the form of equation (3.3), taking into

account that the substituted leg is l3, one obtains




l21
l22
d2

1
...
l26




= A1




l21
l22
l23
...
l26




+ b =




1 0 0 . . . 0
0 1 0 . . . 0
s

s+r
0 r

s+r
. . . 0

...
...

...
. . . 0

0 0 0 . . . 1







l21
l22
l23
...
l26




+ b

and 


l21
l22
d2

2
...
l26




= A2




l21
l22
d2

1
...
l26




+ b =




1 0 0 . . . 0
0 1 0 . . . 0
0 −n

m
m+n

m
. . . 0

...
...

...
. . . 0

0 0 0 . . . 1







l21
l22
d2

1
...
l26




+ b

respectively. After applying both rearrangements

det(J2) = det(A1)det(A2)det(J0) =
(m + n)r

(s + r)m
det(J0). (4.7)

Note that in this example the sequence of two Point-Line rearrangements has to be

applied sequentially, as the second one needs the result of the first one. In Section 4.6

it will be shown that such rearrangements can be done in a single step by computing

directly the affine relation between the involved leg lengths.

4.3 The affine relation for the Line-Line component

The Line-Line component consist of 4 legs with collinear attachments both in the

base and the platform. A Line-Line component involving four attachments appears

in Fig. 4.3-(left). If Point-Line rearrangements are applied sequentially to it, the last

rearrangement would always yield a double spherical joint that cannot be split. But if

the following simultaneous rearrangements





∆l3,l1,d1

∆l1,l2,d3

∆l4,l3,d3

∆l3,l4,d4





(4.8)
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a1a1 a1a1a1a1a2 a2a2 a3 a4

b1b1 b1b1b1b1b2 b2b2
b3

b4

l1 l1

l2

l2

l3

l3

l4 l4
d1d1 d2d2 d3d3 d4d4

m1 n1 r1

m2 n2 r2

Figure 4.3: Singularity-invariant leg rearrangements on the Line-Line component using
Point-Line rearrangements.

are applied, all double attachments can be split into single spherical joints [Fig. 4.3-

(right)]. This has practical consequences when trying to eliminate multiple spherical

joints.

The corresponding affine relations for the above rearrangements appear in Ta-

ble. 4.1. Then, the corresponding affine relation entailing all of them at the same

time is:



d2
1

d2
2

d2
2

d2
3
...
l26




= A




l21
l22
l22
l23
...
l26




+ b

=




m1+n1
n1

0 −m1
n1

0 . . . 0
n2+r2

m2+n2+r2

m2
m2+n2+r2

0 0 . . . 0

0 0 r2
m2+n2+r2

m2+n2
m2+n2+r2

. . . 0

0 − r1
n1

0 n1+r1
n1

. . . 0
...

...
...

...
. . .

...
0 0 0 0 1







l21
l22
l22
l23
...
l26




+




m1(n1 + m1)
−m2(n2 + r2)
−r2(m2 + n2)
r1(r1 + n1)

0
0




(4.9)

and thus, the resulting singularity polynomial is

det(J1) = det(A)det(J) =
(m1 + n1)(n1 + r1)m2r2 − (m2 + n2)(n2 + r2)m1r1

n2
1(m2 + n2 + r2)2

det(J).

(4.10)

Note that the attachments can be placed anywhere on the lines by applying the

above four rearrangements simultaneously, but with this methodology, no transforma-

tions could be applied to the general 4-4 Line-Line component, that is, the one contain-

ing no multiple spherical joints [Fig. 4.3-(right)]. In Section 4.7 it will be shown how a
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4.4 Architectural singularities in Line-Line components

Table 4.1: ∆-transforms in the Line-Line component of Fig. 4.3
rearrangement Affine relation

l1 l3d1

m1 n1

n1d
2
1 + m1l

2
3 − (m1 + n1)l

2
1 − m1n1(n1 + m1) = 0

l1

l2

d2

m2 n2 r2+

(n2 + r2)l
2
1 + m2l

2
2 − (m2 + n2 + r2)d

2
2 − m2(n2 + r2)(m2 + n2 + r2) = 0

l3 l4d3

m2 n2 r2+

(m2 + n2)l
2
4 + r2l

2
3 − (m2 + n2 + r2)d

2
3 − r2(m2 + n2)(m2 + n2 + r2) = 0

l2 l4
d4

n1 r1

r1l
2
2 + n1d

2
4 − (n1 + r1)l

2
4 − r1n1(r1 + n1) = 0

Line-Line singularity invariant leg rearrangement can be performed without relying on

Point-Line rearrangements.

4.4 Architectural singularities in Line-Line components

It is important to realize that factor (4.10) vanishes if, and only if,

|a3 − a1||a2 − a4|
|a1 − a2||a3 − a4|

=
|b3 − b1||b2 − b4|
|b1 − b2||b3 − b4|

, (4.11)

that is, if the cross-ratio [75] of a1, a4, a3, and a2 equals that of b1, b4, b3, and b2

(see Appendix B). When this happens, the singularity factor is identically zero. In this

case, the platform is said to be architecturally singular. In other words, it is always

in a singularity independently of its leg lengths. Alternatively, it is also said that the

platform exhibits a self-motion, i.e., it is movable while keeping its leg lengths constant.

This architectural singularity was already studied in [56], and it also appears as the

fifth type of singularity in Theorem 1 of [49] or equivalently type 8 in Theorem 3 of
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[54]. The cross-ratio singularity condition was also found in [4] and [10] using much

more involved derivations than the one above.

4.5 Examples

4.5.1 The Zhang-Song platform

4.5.1.1 Leg rearrangements

Zhang and Song identified in [111] a whole family of special Gough-Stewart platforms

with closed-form formulation for their forward kinematics. One member of this family

appears in Fig. 4.4-(d) which is of interest because it has five aligned attachments both

in the base and the platform. Next, the singularity polynomial of this platform will

be proved to be equal to that of the platform in Fig. 4.4-(a) (known as 3-2-1 platform

[35] or flagged platform [2]) multiplied by a constant factor. Both the Zhang and Song

platform and the 3-2-1 manipulator are composed by a Line-Line component and two

additional legs.

Let first apply the sequence of rearrangements to the 3-2-1 platform in Fig. 4.4-(a)

{∆p1,p3,q3∆p2,p4,q4}

which leads to the platform in Fig. 4.4-(b). Now, apply the sequence

{∆q1,q2,l2∆q3,q4,l4}

which leads to the platform in Fig. 4.4-(c).

Therefore, using (4.2) four times, the singularity polynomial of the platform in

Fig. 4.4-(c) is that of the 3-2-1 platform in Fig. 4.4-(a) multiplied by:

n2
1

n2
11

(m2 + n2 + r2)
2

(m2 + n21)2
. (4.12)

Now, the same four rearrangements given by (4.8) can be applied to the Line-Line

component, thus obtaining the singularity factor appearing in equation (4.10). As a

consequence, the singularity factor of the platform in Fig. 4.4-(d) is:

n2
1

n2
11

(m2 + n2 + r2)
2

(m2 + n21)2
(m1 + n1)(n1 + r1)m2r2 − (m2 + n2)(n2 + r2)m1r1

n2
1(m2 + n2 + r2)2

.
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a1 a2 a3 a4

a5

a6

b1 b2 b3 b4b5

b6

p1 p2
p3

p4
p5

p6

m1 n11 n12 r1

m2 n21 n22 r2

n1 = n11 + n12

n2 = n21 + n22

a1 a2 a3 a4

a5

a6

b1 b2 b3 b4b5

b6
q1 = p1

q2 = p2

q3
q4

q5

q6

(a) (b)

a1 a2 a3 a4

a5

a6

b1 b2 b3 b4b5

b6
l1 = q1

l2

l3 = q3
l4

a1 a2 a3 a4

a5

a6

b1 b2 b3 b4b5

b6

d1 d2
d3

d4

(c) (d)

Figure 4.4: The basic flagged platform in (a) can be transformed trough a set of Point-
Line rearrangements into the Zhang-Song platform in (d).

4.5.1.2 Architecturally singular Zhang-Song platform

A Stewart-Gough platform is architecturally-singular when one of its components is

architecturally singular. As before, the Line-Line component becomes architecturally

singular when the cross-ratio of the aligned platform attachment locations is equal to

the cross-ratio of the aligned base attachment locations.

A parameterization of the self-motions resulting from architectural singularities in-

troduced by a sequence of Point-Line rearrangements can always be found by proceed-

ing backwards. That is, by undoing the rearrangements and introducing parameters

when needed. For example, for the Zhang-Song platform (Fig. 4.5) with the leg attach-

ment coordinates appearing in Table I, the cross-ratio condition in (4.11) is satisfied.

Hence, the platform is architecturally singular and, as a consequence, it will exhibit
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x

y

z

x′

y′

z′

i ai bi d2
i

1 (0, 0, 0) (0, 0, 0) 22

2 (2, 0, 0) (1, 0, 0) 15 −
√

2

3 (8, 0, 0) (4, 0, 0) 54 − 28
√

2

4 (10, 0, 0) (5, 0, 0) 87 − 45
√

2

5 (6,−1, 0) (3, 0, 0) 28 − 12
√

2

6 (4, 0, 0) (2, 2, 0) 16 − (6 +
√

3)
√

2

Figure 4.5: An architecturally singular Zhang-Song platform and the corresponding
table of attachment coordinates

a self-motion. To obtain a parameterization of this self-motion, observe that, for the

Zhang-Song architecturally singular platform, using (4.9), it can be concluded:




−4 0 1 0
8 2 0 0
0 0 2 8
0 1 0 −4







l21
l22
l23
l24


 =




12 − 3d2
1

160 + 10d2
2

160 + 10d2
3

12 − 3d2
4


 .

Given fixed values for d2
1, . . . , d

2
4, the above linear system is underconstrained, as ex-

pected. In other words, there is an infinite set of values for l21, . . . , l
2
4 compatible with

a set of values for d2
1, . . . , d

2
4. This set can be parameterized, for the values of d2

i in

Fig. 4.5, by taking one of the leg lengths as parameter (l24 has been chosen here) yielding

l21 = −l24 + 101 − 35
√

2

l22 = 4l24 − 249 + 135
√

2

l23 = −4l24 + 350 − 140
√

2

The above leg lengths correspond to the self-motion of the manipulator in Fig. 4.4-

(c). It is necessary to proceed undoing the four other rearrangements to obtain the leg

lengths for the corresponding 3-2-1 parallel platform in Fig. 4.4-(a). The result is:

p2
1 = 101 − 35

√
2 − l24

p2
2 = −63 + 33

√
2 + l24

p2
3 = −3l24 + 265 − 105

√
2

p2
4 = −l24 + 101 − 45

√
2

p2
5 = 28 − 12

√
2

p2
6 = 16 − (6 +

√
3)
√

2
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Figure 4.6: Curve traced by the barycenter of the triangular platform in Fig. 4.5 when
it is moved along its self-motion, and the normal direction to the platform plane. Each
color corresponds to one branch of the forward kinematics generated as the parameter
is swept.

The 3-2-1 parallel platform can have up to eight assembly modes which can be

expressed in closed-form in terms of its leg lengths [2]. Thus, by sweeping l24 in the range

(0,∞), eight curves in the configuration space of the platform are traced. This provides

a complete characterization of the sought self-motion. Fig. 4.6 depicts the location of

the barycenter of the triangular moving platform for the obtained self-motion.

Each value of the parameter l24 defines a unique point in joint space (a set of leg

lengths), which leads to eight solutions of the forward kinematics (one for each assem-

bly mode) in configuration space. Note that these solutions may be real only for some
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22 23 24 25 26 27 28 29 30 31 32
10

−1

10
0

10
1

10
2

10
3

10
4

Figure 4.7: All eigenvalues for all assembly modes, excluding the one that is always
zero, of JTJ, where J is the Jacobian matrix of the analyzed architecturally-singular
Zhang-Song platform, as a function of l24.

ranges of the parameter. In the example, the parameter in the interval (22.35, 31.34)

yields the real solutions plotted in Fig. 4.6. The extremes of this interval correspond to

transition points between different assembly modes (marked with a change of color in

the figure). Nevertheless, such transition points do not correspond to higher-order sin-

gularities of the architecturally-singular Zhang-Song platform. Indeed, if the eigenval-

ues of JJT , where J is the Jacobian matrix of the architecturally-singular Zhang-Song

platform, are computed along its self-motion, five of them are always different from

zero. Fig. 4.7 plots in logarithmic scale all eigenvalues, excluding the one that is always

zero, for all assembly modes as a function of l24. Note that none of them vanishes.
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4.5.2 The Griffis-Duffy Platform

4.5.2.1 Leg rearrangements

Consider the octahedral parallel platform in Fig. 4.8-(top), also known as 2-2-2 platform

[46]. Now, apply the following set of rearrangements to it




∆l2,l1,d1

∆l3,l2,d2

∆l4,l3,d3

∆l5,l4,d4

∆l6,l5,d5

∆l1,l6,d6





(4.13)

The resulting platform is the Griffis-Duffy platform [42] appearing in Fig. 4.8-(bottom).

The affine relations resulting from the rearrangements in (4.13) are:

f1 = m1l
2
2 + m2l

2
1 − (m1 + m2)d

2
1 − m1m2(m1 + m2)

f2 = n2l
2
2 + n1l

2
3 − (n1 + n2)d

2
2 − n1n2(n1 + n2)

f3 = m3l
2
4 + m4l

2
3 − (m3 + m4)d

2
3 − m3m4(m3 + m4)

f4 = n4l
2
4 + n3l

2
5 − (n3 + n4)d

2
4 − n3n4(n3 + n4)

f5 = m5l
2
6 + m6l

2
5 − (m5 + m6)d

2
5 − m5m6(m5 + m6)

f6 = n6l
2
6 + n5l

2
1 − (n6 + n5)d

2
6 − n6n5(n5 + n6).

(4.14)

Then, the affine relation including all legs can be expressed as



d2
1

d2
2

d2
3

d2
4

d2
5

d2
6




=




m2
m1+m2

m1
m1+m2

0 0 0 0

0 n2
n1+n2

n1
n1+n2

0 0 0

0 0 m4
m3+m4

m3
m3+m4

0 0

0 0 0 n4
n3+n4

n3
n3+n4

0

0 0 0 0 m6
m5+m6

m6
m5+m6

n5
n5+n6

0 0 0 0 n6
n5+n6







l21

l22

l23

l24

l25

l26




−




m1m2

n1n2

m3m4

n3n4

m5m6

n6n5




.

(4.15)

The resulting singularity factor is:

det(A) =
m2m4m6n2n4n6 − m1m3m5n1n3n5

(m1 + m2)(m3 + m4)(m5 + m6)(n1 + n2)(n3 + n4)(n5 + n6)
(4.16)

Therefore, the singularity-polynomial of the platform in Fig. 4.8-(right) is that of

Fig. 4.8-(left) multiplied by factor (4.16). Note that this factor is constant: it only
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a1

a2

a3

a4

a5

a6
b1

b2

b3

b4

b5

b6

l1

l1

l2

l2

l3

l3

l4

l4

l5

l5

l6

l6

d1

d2

d3

d4

d5

d6

m1

m1

m2

m2

m3

m3

m4

m4

m5

m5

m6

m6

n1

n1

n2

n2

n3

n3

n4

n4

n5

n5

n6

n6

Figure 4.8: The simultaneous application of 6 ∆-transforms transforms an octahedral
platform into a Griffis-Duffy platform.

depends on geometric parameters. It is easy to check that it vanishes if, and only if,

|a2,a6,a3|
|a2,a6,a4|

|a1,a5,a4|
|a1,a5,a3|

=
|b2,b6,b3|
|b2,b6,b4|

|b1,b5,b4|
|b1,b5,b3|

, (4.17)
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where |ai,aj ,ak| is the area of the triangle defined by points ai, aj and ak. It is worth

noting that these cross-ratios between areas are projective invariants whose role for

coplanar points is similar to that of the cross-ratios between distances for collinear

points [112].

Using rather more complicated arguments, the algebraic condition derived from

factor (4.16) to detect architectural singularities in Griffis-Duffy platforms was already

found in [50]. In this latter reference, the reader can also find an alternative geometric

interpretation which, from our point of view, is not as elegant as the one given above

in terms of cross-ratios between areas. Another interpretation of the same factor (4.16)

can be found in [108]. In [53] the same manipulator was used as a particular case

example of a general theorem on architectural singularities.

An important consequence of this result is that, if factor (4.16) is different from zero,

the singularity locus of a Griffis-Duffy platform is the same as that of an octahedral

platform. If it is zero, the platform is architecturally singular.

4.5.2.2 An architecturally singular Griffis-Duffy platform

x

y

z

x′

y′z′

i ai bi d2
i

1 (0, 0, 0) (0,
√

3, 0) 3 −

√

3

2 (2, 0, 0) (−1/2,
√

3/2, 0) 2

3 (1,
√

3, 0) (−1, 0, 0) 5 −

√

3

4 (0, 2
√

3, 0) (0, 0, 0) 15 − 4
√

3

5 (−1,
√

3, 0) (1, 0, 0) 11 − 5
√

3

6 (−2, 0, 0) (1/2,
√

3/2, 0) 11 − 3
√

3

Figure 4.9: An architecturally singular Griffis-Duffy platform and the corresponding
table of attachment coordinates.

As an example of architecturally singular Griffis-Duffy platform, consider the plat-

form with the leg attachment coordinates appearing in Fig. 4.9. In this case, the

singularity factor (4.16) is identically zero. Hence, the platform is architecturally sin-

gular and, as a consequence, it will exhibit a self-motion. To obtain a characterization
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of this self-motion, we will proceed as in the previous section. First, observe that, for

the Griffis-Duffy architecturally singular platform, using the system of equations in

(4.15), it can be concluded that:




2 2 0 0 0 0
0 1 1 0 0 0
0 0 2 2 0 0
0 0 0 1 1 0
0 0 0 0 2 2
1 0 0 0 0 1







l21
l22
l23
l24
l25
l26




=




16 + 4d2
1

2 + 2d2
2

16 + 4d2
3

2 + 2d2
4

16 + 4d2
5

2 + 2d2
6




.

Since the above matrix is rank defective, there is an infinite number of values for l21, . . . l
6
6

compatible with d2
1, . . . , d

2
6. Substituting the values of d2

1, . . . , d
2
6 in the table of Fig. 4.9

and solving the above system taking l26 as parameter, yields:

l21 = −l26 + 24 − 6
√

3

l22 = l26 − 10 + 4
√

3

l23 = −l26 + 16 − 4
√

3

l24 = l26 + 2 + 2
√

3

l25 = −l26 + 30 − 10
√

3

The octahedral platform can have up to 16 assembly modes which can be obtained

as the roots of an eight-degree polynomial in the square of the unknown [100, p. 161].

Thus, no algebraic formula exists for the forward kinematics of the octahedral plat-

form. Nevertheless, the self-motion can be characterized by sweeping l26 in the range

(0,∞) and obtaining the roots of the bioctic polynomial numerically. The 16 solutions

obtained for each value of l26 form eight pairs of manipulator postures, one being the

mirror image of another about the base plane.

Fig. 4.10 shows the location of the barycenter of the triangular moving platform for

the obtained self-motion. The color of the plotted points encodes the parameter sweep

from its lower value (pure red) to its upper value (pure blue). It is interesting to note

that four assembly modes are real for l26 ∈ (3.89, 6.025) and eight for l26 ∈ (6.025, 8.9).

The platform cannot be assembled for l26 outside the range (3.89, 8.9). As in the example

of the previous section, the configurations obtained for the value of the parameter that

lead to changes in the number of assembly modes do not correspond to higher-order

singularities of the architecturally-singular platform. Indeed, if the eigenvalues of JJT ,

where J is the Jacobian matrix of the architecturally-singular Griffis-Duffy platform, are
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4.5 Examples

Figure 4.10: Curve traced by the barycenter of the triangular platform in Fig. 4.9 when
it is moved along its self-motion. The color corresponds to the value of the parameter
swept from its lower value (pure red) to its upper value (pure blue). It consists of
two symmetric disjoint components with respect to the plane z = 0 (the base plane).
Note that for the same color different points are obtained, corresponding to different
assembly modes.

47



4.5 Examples

computed along the self-motion, five of them are always different from zero. Fig. 4.11

plots in logarithmic scale all eigenvalues, excluding the one that is always zero, for

all assembly modes as a function of the chosen parameter. Note that none of them

vanishes.

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
10

−1

10
0

10
1

10
2

Figure 4.11: All eigenvalues for all assembly modes, excluding the one that is always
zero, of JTJ, where J is the Jacobian matrix of the analyzed architecturally-singular
Griffis-Duffy platform, as a function of l26.

In order to validate the obtained self-motions, the results obtained have been com-

pared using the proposed parameterization technique and those obtained using the

CUIK software package. CUIK uses linear relaxation techniques to discretize the space

of all the configurations that a multiloop linkage can adopt [80]. The obtained results

for the attachment coordinates and the leg lengths of the Griffis-Duffy manipulator

in [80] (also available online at [97]) appear in Fig. 4.12. The solution obtained using

CUIK consists of a list of boxes approximating the self-motion with a resolution of 10−1.

It can be checked that the sampled points obtained using the proposed technique are

all included in these boxes.
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x

y

z

Figure 4.12: The self-motion discretization of an architecturally-singular Griffis-Duffy
platform obtained using CUIK is plotted in light transparent blue, and the samples
obtained with the presented parametrization in dark blue.

4.6 More on the Point-Plane component

There are several ways to compute the affine relation between the leg lengths of a

tripod in Fig. 4.2. In the past section, the two relations given by the Point-Line leg

rearrangement in equations (4.5) and (4.6) are combined to obtain an affine relation

between them [17]. Now, Cayley-Menger determinants will be used to obtain such rela-

tion (see Appendix A for details on Cayley-Menger determinants). This methodology

might be more involved than the previous one, but it is much easier to find a geometric

interpretation of the singularity factor. In [9], several components were analyzed using

this technique.

The Point-Plane component involves 3 legs and 4 attachments (Fig. 4.13). To find

the affine relation, the length d of an additional leg must be computed with respect to

the other leg lengths. To this end, consider the component with the additional leg. It

involves the 5 attachments a1, a2, a3, a and b1, and the corresponding Cayler-Menger
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4.6 More on the Point-Plane component

determinant gives the volume of the 4-dimensional simplex defined by the 5 points. As

they are are embedded in R
3, the simplex volume is null.

l1

l2 l3 d

a1

a2

a3

b1

a

Figure 4.13: Leg l1 can be substituted by d without modifying the singularity locus.

Using the notation introduced in Appendix A, the 5-point Cayley-Menger determi-

nant is D(a1,a2,a3,b1,a) = 0. Applying Jacobi’s theorem, using the same partition

as in equation (A.5), leads to

D(a1,a2,a3,b1,a) =

D(a1,a2,a3,b1)D(a1,a2,a3,a) − D(a1,a2,a3,b1;a1,a2,a3,a)2

D(a1,a2,a3)
= 0.

Since all Cayley-Menger determinants are proportional to squared volumes of simplexes,

D(a1,a2,a3) 6= 0 because the area of the base triangle must be different from zero for

any non-architecturally singular tripod. Furthermore, since D(a1,a2,a3,a) = 0 because

the four points are in the same plane, the above equation becomes linear in d2:

D(a1,a2,a3,b1;a1,a2,a3,a) = 0, (4.18)

that is, ∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d(a1,a2)

2 d(a1,a3)
2 d(a,a1)

2

1 d(a2,a1)
2 0 d(a2,a3)

2 d(a,a2)
2

1 d(a3,a1)
2 d(a3,a2)

2 0 d(a,a3)
2

1 l21 l22 l23 d2

∣∣∣∣∣∣∣∣∣∣

= 0.

where d(ai,aj)
2 stands for the square distance between the two attachments ai and

aj . Using the Laplace expansion of the elements of the last row, all coefficients can
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4.6 More on the Point-Plane component

be reinterpreted in terms of Cayley-Menger determinants, except for the independent

term, giving the following affine relation:

− D(a1,a2,a3;a2,a3,a)l21 + D(a1,a2,a3;a1,a3,a)l22

− D(a1,a2,a3;a1,a2,a)l23 + D(a1,a2,a3)d
2 + D = 0

where D is a constant that does not depend either on li, for i = 1, 2, 3, or d.

Thus, if leg l3 is substituted by the new leg with length d, the singularity factor is

D(a1,a2,a3;a1,a2,a)

D(a1,a2,a3)
. (4.19)

The advantage of this formulation, with respect to the one using two Point-Line re-

arrangements, is that all terms in the obtained singularity factor can be described in

terms of volumes of simplexes, using equation (A.3). Actually, this factor is the area of

the new base triangle divided by the area of the old base triangle. Next, it will be seen

how this is equivalent to the singularity factor obtained in the previous chapter after

sequentially applying two Point-Line rearrangements.

a1

a2

a3

a

m

n
r

sA1

A2

A3

α
π − α

Figure 4.14: Base triangles of a Point-Plane component before and after a leg rear-
rangement. The notation used is the same as in Fig. 4.2

Using the notation in Fig. 4.14, the quotient of the areas obtained in equation (4.19)

is
D(a1,a2,a3;a1,a2,a)

D(a1,a2,a3)
=

(A2 + A3)(A1 + A2)

(A1 + A2)2
=

A2 + A3

A1 + A2
. (4.20)

Computing such areas depending on α gives

A1 = ms sin(π − α) = ms sin(α),

A2 = mr sin(α),

A3 = rn sin(α).
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4.7 More on the Line-Line component

Substituting these values in (4.20) yields

sin(α)r(m + n)

sin(α)m(r + s)

which is the same result obtained in Section 4.2, in equation (4.7).

When the singularity factor is zero, an architectural singularity is introduced. In

this case, if the resulting area of the base triangle is zero, the point-plane become

architecturally singular, as their legs belong to a planar pencil of lines [Fig. 2.4-(a)].

4.7 More on the Line-Line component

In Section 4.3, it has been shown how the legs of a Line-Line component can be re-

arranged by computing several Point-Line rearrangements. Nevertheless, such rear-

rangements can only be performed when the Line-Line contains at least one Point-Line

component. In this section, the affine relation between the leg lengths for a generic

Line-Line component will be obtained.

According to Fig. 4.15 and following the notation introduced in Chapter 3, adapted

to the dimension of the problem, local coordinates of the base attachments in the base

reference frame are ai = (xi, 0, 0). The pose of the platform line with respect to the base

can be described by the position vector p = (px, py, pz)
T and the unit director vector

i = (ix, iy, iz)
T . Thus, the coordinates of the leg attachments in the platform line,

expressed in the base reference frame, can be written as bi = p + zii, for i = 1, . . . , 4.

i

p

a1

a2

a3

a4

b1
b2 b3

b4

d

Figure 4.15: A generic Line-Line component does not contain any Point-Line compo-
nent.
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4.7 More on the Line-Line component

Suppose now that the length of a new leg going from a = (x, 0, 0) to b = p + zi

has to be computed (in gray in 4.15). Taking the distance equations of the four legs

l2i = ‖bi − ai‖2, for i = 1, . . . , 4, together with that of the new leg d2 = ‖b− a‖2, leads

to a system of 5 quadratic equations. The subtraction of equation i2x + i2y + i2z = 1 from

the other five cancels all quadratic terms in ix, iy and iz, yielding

zi t − xipx − xiziix +
1

2
(p2

x + p2
y + p2

z + x2
i + z2

i − l2i ) = 0, for i = 1, . . . , 4

z t − x px − x ziix +
1

2
(p2

x + p2
y + p2

z + x2 + z2 − d2) = 0,

where t = p · i. In addition, subtracting the first equation from the others, quadratic

terms in px, py and pz cancel too, and the following linear system is obtained:




z1 − z2 x2 − x1 x2z2 − x1z1 0
z1 − z3 x3 − x1 x3z3 − x1z1 0
z1 − z4 x4 − x1 x4z4 − x1z1 0
z1 − z x − x1 xz − x1z1

1
2







t
px

ix
d2


 =

1

2




x2
2 + z2

2 − l22 − x2
1 − z2

1 + l21
x2

3 + z2
3 − l23 − x2

1 − z2
1 + l21

x2
4 + z2

4 − l24 − x2
1 − z2

1 + l21
x2 + z2 − x2

1 − z2
1 + l21


 .

(4.21)

Now, d2 can be obtained by solving the above system using Cramer’s rule:

d2 =

∣∣∣∣∣∣∣∣

z1 − z2 x2 − x1 x2z2 − x1z1 x2
2 + z2

2 − l22 − x2
1 − z2

1 + l21
z1 − z3 x3 − x1 x3z3 − x1z1 x2

3 + z2
3 − l23 − x2

1 − z2
1 + l21

z1 − z4 x4 − x1 x4z4 − x1z1 x2
4 + z2

4 − l24 − x2
1 − z2

1 + l21
z1 − z x − x1 xz − x1z1 x2 + z2 − x2

1 − z2
1 + l21

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣

z1 − z2 x2 − x1 x2z2 − x1z1

z1 − z3 x3 − x1 x3z3 − x1z1

z1 − z4 x4 − x1 x4z4 − x1z1

∣∣∣∣∣∣

. (4.22)

Expanding the determinants involved in the above equation leads to the affine relation

d2 = c1l
2
1 + c2l

2
2 + c3l

2
3 + c4l

2
4 + c0, (4.23)

where all the coefficients depend on known constant coordinates. Thus, any leg rear-

rangement within a Line-Line component leaves singularities invariant.

To compute the singularity factor resulting from the above rearrangement coefficient

c1 in (4.23) must be computed. To this aim, elementary row operations will be applied

53



4.7 More on the Line-Line component

to the determinants in (4.22), which permit to rewrite them as

d2 =

∣∣∣∣∣∣∣∣∣∣

−z1 x1 x1z1 x2
1 + z2

1 − l21 1
z1 − z2 x2 − x1 x2z2 − x1z1 x2

2 + z2
2 − l22 − x2

1 − z2
1 + l21 0

z1 − z3 x3 − x1 x3z3 − x1z1 x2
3 + z2

3 − l23 − x2
1 − z2

1 + l21 0
z1 − z4 x4 − x1 x4z4 − x1z1 x2

4 + z2
4 − l24 − x2

1 − z2
1 + l21 0

z1 − z x − x1 xz − x1z1 x2 + z2 − x2
1 − z2

1 + l21 0

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

−z1 x1 x1z1 1
z1 − z2 x2 − x1 x2z2 − x1z1 0
z1 − z3 x3 − x1 x3z3 − x1z1 0
z1 − z4 x4 − x1 x4z4 − x1z1 0

∣∣∣∣∣∣∣∣

Now, the first row can be added to all the others, without changing the values of the

determinants. This yields to the following equivalent expression of d2:

d2 =

∣∣∣∣∣∣∣∣∣∣

−z1 x1 x1z1 x2
1 + z2

1 − l21 1
−z2 x2 x2z2 x2

2 + z2
2 − l22 1

−z3 x3 x3z3 x2
3 + z2

3 − l23 1
−z4 x4 x4z4 x2

4 + z2
4 − l24 1

−z x xz x2 + z2 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

−z1 x1 x1z1 1
−z2 x2 x2z2 1
−z3 x3 x3z3 1
−z4 x4 x4z4 1

∣∣∣∣∣∣∣∣

(4.24)

This is a simple linear algebra technique that will be used several times to simplify

equations.

Studying the expansion of the determinant in the numerator of (4.24), it is easy

to see that the coefficient multiplying l21 in (4.23) is the cofactor corresponding to the

element (1, 4) of the matrix in the numerator, multiplied by −1, that is,

c1 = −(−1)1+3

∣∣∣∣∣∣∣∣

−z2 x2 x2z2 1
−z3 x3 x3z3 1
−z4 x4 x4z4 1
−z x xz 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

−z1 x1 x1z1 1
−z2 x2 x2z2 1
−z3 x3 x3z3 1
−z4 x4 x4z4 1

∣∣∣∣∣∣∣∣

= (−1)1+3

∣∣∣∣∣∣∣∣

−z x xz 1
−z2 x2 x2z2 1
−z3 x3 x3z3 1
−z4 x4 x4z4 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

−z1 x1 x1z1 1
−z2 x2 x2z2 1
−z3 x3 x3z3 1
−z4 x4 x4z4 1

∣∣∣∣∣∣∣∣

, (4.25)

where the rows of the determinant have been reordered using multi-linear properties of

determinants.

54



4.8 Application to the implementation of an octahedral manipulator

It is clear than the numerator and the denominator correspond to an equivalent

expression, before and after the substitution of leg l1 by d. This expression is the

architectural singularity condition. It is zero if, and only if, the cross-ratios of the four

base attachments is equal to the cross-ratio of the four platform attachments. This

is the same condition found in Section 4.4. Indeed, when one imposes the equality

between the cross-ratio {b1,b2;b3,b4} with {a1,a2;a3,a4} (using equation (B.1)), one

gets
(z3 − z1)(z4 − z2)

(z4 − z1)(z3 − z2)
=

(x3 − x1)(x4 − x2)

(x4 − x1)(x3 − x2)

or equivalently,

(z3 − z1)(z4 − z2)(x4 − x1)(x3 − x2) − (x3 − x1)(x4 − x2)(z4 − z1)(z3 − z2)

=

∣∣∣∣∣∣∣∣

−z1 x1 x1z1 1
−z2 x2 x2z2 1
−z3 x3 x3z3 1
−z4 x4 x4z4 1

∣∣∣∣∣∣∣∣
= 0

When the cross-ratio of the platform attachments is equal to the cross-ratio of the

base attachments, the singularity factor is zero and the manipulator is architecturally

singular. Having the same cross-ratio means that the leg lines follow a projective one-

to-one correspondence between the two lines that define the component (more details

in Appendix B). Then, the four leg lines belong to a regulus that can be defined by any

3 legs [Fig. 2.4-(c)]. A regulus is a linear complex of rank 3 [25, Figure 3A in Table 4].

4.8 Application to the implementation of an octahedral

manipulator

One of the most famous 3-3 Stewart-Gough platforms consists of six double-ball-ended

legs thereby forming a zigzag pattern. For symmetry reasons, this topology is either

taken as it stands or is approximated in most implementations of the Stewart-Gough

platform. Since the 12 lines that join the double-ball-joints can be interpreted as the

eight triangular faces of an octahedron, the term octahedral manipulator was coined in

[46] to name it.

Clearly, it is advantageous to have multiple spherical joints sharing the same center

of rotation in a parallel manipulator to simplify its kinematics. However, difficulties
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4.8 Application to the implementation of an octahedral manipulator

always arise in constructing such spherical joints. There have been several attempts to

construct them (see [19] and the references therein), but none of them use off-the-self

mechanical elements. Another disadvantage of this kind of joints is that the range of

action of the leg actuators is reduced because of the risk of mechanical interference.

In [62], kinematic substitutions are introduced to provide a way around this problem

where is it shown, for example, that the manipulator appearing in Fig. 4.16(a), that

avoids the double-ball-joints in the base, is kinematically equivalent to the octahedral

manipulator. This particular arrangement of joints is also known as the triple arm

mechanism [101].

(a) (b)

(c) (d)

Figure 4.16: The triple arm mechanism (a), the standard approximation to the octahe-
dral manipulator that avoids all double-ball-joints (b), the Stoughton-Arai approxima-
tion intended to also improve the dexterity of the manipulator (c), and the Griffis-Duffy
modification (d).

Most implementations avoid the difficulty of constructing multiple spherical joints

by approximating them with a collection of single spherical joints with small offsets

between the centers of rotation of the links, as shown in Fig. 4.16(b). Such offsets change

the kinematics of the mechanism, resulting in one of two possible problems, as pointed
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4.8 Application to the implementation of an octahedral manipulator

out in [19]. First, if the offsets are included in the kinematics of the mechanism, the

kinematic equations may become very complex and thus very difficult to solve. Second,

if the offsets are neglected, thus simplifying the kinematic equations, errors arise. These

errors may have a significant impact in precision applications, or in manipulators such

as the Tetrobot [43] that consists in stacking multiple octahedral manipulators resulting

in the accumulation of errors if such offsets are introduced and neglected.

The modification of the octahedral manipulator proposed by Stoughton and Arai

consist in separating the six double-ball joints alternatively inward and outward radially

[95], as shown in Fig. 4.16(c). Each double-ball-joint is separated by the same amount

into a pair of spherical joints whose centers are equidistant to the original center.

In Section 4.5.2 it has been shown that, if this six double-ball joints are alternatively

separated not radially but following the edges of the base and platform triangles, as

shown in Fig. 4.16(d), the resulting manipulator is kinematically equivalent to the

original octahedral one. This fact was already acknowledged by Griffis and Duffy in

[42] (without giving an explicit formulation) but it has been overlooked, even by the

same authors, in subsequent publications where alternatives to avoid these joints are

discussed [62].

According to Fig. 4.17 and the results in Section 4.5.2, the affine relation between

leg lengths of the resulting 6-6 platform and the original octahedral manipulator can

be expressed as: 


m2
1

m2
2

m2
3

m2
4

m2
5

m2
6




= A




l21
l22
l23
l24
l25
l26




− b (4.26)

where

A =




d12−δ1
d12

δ1
d12

0 0 0 0

0 d45−δ2
d45

δ2
d45

0 0 0

0 0 d23−δ3
d23

δ3
d23

0 0

0 0 0 d56−δ4
d56

δ4
d56

0

0 0 0 0 d13−δ5
d13

δ5
d13

δ6
d46

0 0 0 0 d46−δ6
d46




(4.27)
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m1
m2

m3

m4m5

m6

δ1

δ2

δ3

δ4

δ5

δ6

P1 P2

P3

P4

P5
P6

Figure 4.17: Contrary to what happens to the Stoughton-Arai approximation, the
proposed modification leads to a 6-6 platform kinematically equivalent to the octahedral
manipulator.

and

b =




δ1(d12 − δ1)
δ2(d45 − δ2)
δ3(d23 − δ3)
δ4(d56 − δ4)
δ5(d13 − δ5)
δ6(d46 − δ6)




If det(A) 6= 0, there is a one-to-one correspondence between (m2
1, . . . , m

2
6) and

(l21, . . . , l
2
6). Remind that A is constant as it only depends on architectural parameters.

For example, consider a parallel manipulator with the same topology as the one

depicted in Fig. 4.17 with the following geometric parameters: d12 = d23 = d13 = 12,

d46 = d45 = d56 = 6, ∆1 = δ1 = δ3 = δ5, and ∆2 = δ2 = δ4 = δ6. Substituting these

values in (4.27) and computing its determinant, one obtains

det(A) = − 1

20736
∆3

1∆
2
2 −

1

10368
∆2

1∆
3
2 +

1

3456
∆3

1∆2 +
1

576
∆2

1∆
2
2 +

1

864
∆1∆

3
2 −

1

1728
∆3

1

− 1

96
∆2

1∆2 −
1

48
∆1∆

2
2 −

1

216
∆3

2 +
1

48
∆2

1 +
1

8
∆1∆2 +

1

12
∆2

2 −
1

4
∆1 −

1

2
∆2 + 1.

Fig. 4.18 plots det(A) as a function of ∆1 and ∆2. When ∆1 + ∆2 = 12, the
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det(A)

∆1

∆2

Figure 4.18: By properly choosing the offsets ∆1 = δ1 = δ3 = δ5 and ∆2 = δ2 = δ4 = δ6

in Fig. 4.17, it is possible to reach architecturally singular platforms including the trivial
situations in which couples of legs coincide and the architecturally singular Griffis-Duffy
platform.
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Figure 4.19: Prototype of a 6-6 parallel manipulator.

introduced offsets lead to an architecturally singular platform as det(A) = 0.

This prototype has been implemented at IRI (Fig. 4.19) [84].
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Chapter 5

The Line-Plane component

5.1 Pentapods

The Line-Plane component is normally studied as a part of a Stewart-Gough platform,

but it has also interest as an independent manipulator. Indeed, a pentapod is usually

defined as a 5-degree-of-freedom fully-parallel manipulator with an axial spindle as

moving platform. This kind of manipulators have revealed as an interesting alternative

to serial robots handling axisymmetric tools. Their particular geometry permits that,

in one tool axis, inclination angles of up to 90 degrees are possible thus overcoming the

orientation limits of the classical Stewart-Gough platform.

Figure 5.1: A pentapod. While the axis defined by these universal joints is rigidly
linked to the base for fixed leg lengths, any tool attached to it can freely rotate.

A pentapod is well suited to handling an axisymmetric tool because the moving

platform can freely rotate around the axis defined by the five aligned revolute joints

(Fig 5.1). If this rotation axis is made coincident with the symmetry axis of the tool,
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the uncontrolled motion becomes irrelevant in most cases. Indeed, there are important

industrial tasks requiring a tool to be perpendicular to a 3D free-from surface along a

given trajectory without caring about its axial orientation. They include, for example,

5-axis milling, laser-engraving, spray-based painting, surface polishing and water-jet

cutting. Alternatively, this uncontrolled rotation motion can always be eliminated by

blocking one of the five aligned revolute joints. The study of the kinematics properties

of pentapods is thus highly relevant for many applications [20, 76, 102].

Figure 5.2: A 5-axis milling machine,
based on a pentapod, developed by Metrom
Mechatronische Maschinen GmbH (repro-
duced with permission).

There are some variations on the ba-

sic described pentapod that consists in

substituting the universal joints by two

consecutive revolute joints. The axes of

the last revolute joints remain collinear

with the axis of the tool while the axis

of the other revolute joint axis no longer

intersect with the tool axis. This is the

joint arrangement used by Metrom in

its Pentapod machine (Fig. 5.2). This

arrangement simplifies the construction

of the resulting pentapod but its kine-

matic analysis is far from trivial. Actu-

ally, the solutions to its direct kinemat-

ics are given by the roots of a system

of 5 polynomials of degree 4 together

with a quadratic normalizing condition.

Therefore, the number of solutions is

not greater than 2048 [20], [103]. When

this number is compared to the 16 pos-

sible direct kinematic solutions of the

basic pentapod, one also gets an idea of the relative complexity between the singularity

loci of the basic and the modified design.

The present chapter about the Line-Plane component deals with pentapods with

coplanar base attachments, while the following one, about the Line-Body component,
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a1
a2

a3

a4
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Figure 5.3: A generic Line-Plane component with an additional leg in gray.

studies the kinematics of a general pentapod. Both chapters complete the first studies

appeared in [8, 15] and in [18] about the Line-Plane and Line-Body components, respec-

tively. All are valid both considering the component as an independent manipulator or

as a rigid component of a Stewart-Gough platform.

5.2 Finding the affine relation between leg lengths

Consider the 5-legged parallel platform appearing in Fig. 5.3. Following the notation

introduced in Chapter 3 adapted to the dimension of the problem, the local coordinates

of the base attachments expressed in the base reference frame are ai = (xi, yi, 0). The

pose of the platform with respect to the base plane can be described by the position

vector p = (px, py, pz)
T and the unit vector i = (ix, iy, iz)

T . Thus, the coordinates of

the leg attachments in the platform line, expressed in the base reference frame, can be

written as bi = p + zii, for i = 1, . . . , 5.

Proceeding in a similar way as for the Line-Line component, the length of a new

leg introduced by the rearrangement depends on the lengths of the five legs. The

derived system has now 5 equations, l2i = |bi − ai|2, for i = 1, . . . , 5, plus the one

for the additionally introduced leg, d2 = |b − a|2. Then, subtracting the equation

‖i‖2 = i2x + i2y + i2z = 1 from the expression for l2i , i = 1, . . . , 5, quadratic terms in ix, iy

and iz cancel out yielding

zit − xipx − yipy − xiziix − yiziiy +
1

2
(p2

x + p2
y + p2

z + x2
i + y2

i + z2
i − l2i ) = 0, (5.1)

for i = 1, . . . , 5, where t = p·i. Subtracting the first equation from the others, quadratic

terms in px, py and pz cancel out as well. Then, the resulting system of equations can
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5.2 Finding the affine relation between leg lengths

be written in matrix form as




x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1 0
x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1 0
x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1 0
x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1 0
x − x1 y − y1 xz − x1z1 yz − y1z1

1
2







px

py

ix
iy
d2




=




(z2 − z1)t + N2

(z3 − z1)t + N3

(z4 − z1)t + N4

(z5 − z1)t + N5

(z − z1)t + N




,

(5.2)

where

Ni = 1/2(x2
i + y2

i + z2
i − l2i − x2

1 − y2
1 − z2

1 + l21), for i = 1, . . . , 5 and

N = 1/2(x2 + y2 + z2 − x2
1 − y2

1 − z2
1 + l21).

If the resulting system is degenerate (i.e it is rank-deficient), a different unknown

can be chosen as a parameter, either px, py, ix or iy. For any non-architecturally-

singular manipulator, there will be always an associated non-degenerate linear system

by properly choosing the right parameter (this will be seen in detail in the next sections).

In a similar way as in the previous chapter, (5.2) can be solved for d2 using Cramer’s

rule, yielding

d2 =
2(rt + s)

C
. (5.3)

where C is the determinant of the matrix in (5.2),

r =

∣∣∣∣∣∣∣∣∣∣

x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1 z2 − z1

x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1 z3 − z1

x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1 z4 − z1

x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1 z5 − z1

x − x1 y − y1 xz − x1z1 yz − y1z1 z − z1

∣∣∣∣∣∣∣∣∣∣

, (5.4)

and

s =

∣∣∣∣∣∣∣∣∣∣

x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1 N2

x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1 N3

x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1 N4

x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1 N5

x − x1 y − y1 xz − x1z1 yz − y1z1 N

∣∣∣∣∣∣∣∣∣∣

.

Note how the numerator in (5.3) has been expressed as the sum of two determinants

using the formula |c1 . . . (tci1 + ci2) · · · cn| = |c1 . . . ci1 . . . cn|t + |c1 . . . ci2 . . . cn|. Fur-

thermore, using simple matrix row operations, both matrices have been simplified in a

similar way as in the previous chapter.
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5.2 Finding the affine relation between leg lengths

Equation (5.3) is not an affine relation because it depends on t = p · i. However,

imposing r = 0, the squared length of the new leg given by (5.3) can be rewritten as

d2 =
1

C

∣∣∣∣∣∣∣∣∣∣∣∣

x y xz yz x2 + y2 + z2 1
x1 y1 x1z1 y1z1 x2

1 + y2
1 + z2

1 − l21 1
x2 y2 x2z2 y2z2 x2

2 + y2
2 + z2

2 − l22 1
x3 y3 x3z3 y3z3 x2

3 + y2
3 + z2

3 − l23 1
x4 y4 x4z4 y4z4 x2

4 + y2
4 + z2

4 − l24 1
x5 y5 x5z5 y5z5 x2

5 + y2
5 + z2

5 − l25 1

∣∣∣∣∣∣∣∣∣∣∣∣

. (5.5)

After Laplace expansion by the elements of the 5th column, the above expression leads

to the affine relation

d2 = c1l
2
1 + c2l

2
2 + c3l

2
3 + c4l

2
4 + c5l

2
5 + c0,

where again all the coefficients depend on known constant coordinates.

In conclusion, the Line-Plane component is the first one for which a general leg

rearrangement is not unconditionally singularity-invariant. To be so, the new leg at-

tachments a = (x, y, 0) and b = p + zi must satisfy the condition r = 0.

Now, is it possible to proceed as in the previous chapter to compute the singularity

factor resulting from substituting the leg with length l1 by the leg with length d, that

is, the coefficient of l21 in the affine relation (5.5), which corresponds to the cofactor of

the element (2, 5) of the matrix in (5.5):

c1 =

∣∣∣∣∣∣∣∣∣∣

x y xz yz 1
x2 y2 x2z2 y2z2 1
x3 y3 x3z3 y3z3 1
x4 y4 x4z4 y4z4 1
x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

x1 y1 x1z1 y1z1 1
x2 y2 x2z2 y2z2 1
x3 y3 x3z3 y3z3 1
x4 y4 x4z4 y4z4 1
x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣

Again, it is clear than the numerator and the denominator correspond to an equivalent

expression, before and after the performed rearrangement. In the previous chapters,

it was shown how when the singularity factor is identically zero, the platform, after

the rearrangement, become architecturally singular. Nevertheless, in this case, the

situation is a bit more complicated because it is a conditional leg rearrangement. That
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5.3 Finding the rearrangements by rewriting the Jacobian determinant

is, to have an architecturally singular Line-Plane component, not only this singularity

factor has to be zero, but the condition r = 0 has also to be fulfilled. Architectural

singularities of the Line-Plane component will be studied in detail in Section 5.7.

5.3 Finding the rearrangements by rewriting the Jacobian

determinant

Up to this point, all singularity-invariant leg rearrangements have been deduced by

finding an affine relation. Next, it will be shown how the alternative methodology

described in Chapter 3 can be applied to obtain the same rearrangement and to provide,

at the same time, convenient equations to deal with singularities and to relate the

forward kinematics problem with the singularity locus of the manipulator.

It is well known that the Jacobian matrix of a Stewart-Gough platform (i.e., the

matrix relating the leg velocities to those of the platform itself) is the matrix whose

columns are the Plücker coordinates of the leg lines. When a 6-legged Stewart-Gough

platform contains a Line-Plane component, the resulting Jacobian matrix determinant

factors into two components, one related only to the geometric and pose parameters

of the Line-Plane component, and the other only to the geometric parameters of the

6th leg, plus the pose parameters of the platform. Next, it is shown how the Jacobian

matrix of a Line-Plane component can be independently derived by performing its

statics analysis.

5.3.1 Static Analysis

Consider the pentapod appearing in Fig. 5.4, whose base and platform attachments

lay on plane Π and line Λ, respectively. Let Π coincide with the xy-plane of the base

reference frame. Using the same notation as before, attachment locations are given by

ai = (xi, yi, 0)T and bi = p+ zii, i = 1, . . . , 5 and the leg lengths l1, . . . , l5 respectively.

In static equilibrium, any external force F = (f1, f2, f3)
T applied at the platform

point q = p + zF i must be compensated by the forces applied along the legs. Let τi

denote the magnitude of these forces. Then, in static equilibrium situations,

F +

5∑

i=1

τiei = 0. (5.6)
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Figure 5.4: Schematic representation of a pentapod.

Likewise, the balance of torques with respect to the origin of the platform reference

frame should also be null, that is,

F × (q − p) +

5∑

i=1

τiei × (bi − p) = 0.

In other words,

zFF × i +
5∑

i=1

τiziei × i = 0. (5.7)

Since the platform can freely rotate around Λ, only the torques around two axes

perpendicular to i are important. They can be taken, without loss of generality, as

v1 = (0,
iz√

i2z + i2y

,− iy√
i2z + i2y

)T ,

v2 = i × v1.

Then, projecting (5.7) onto these two axes, one gets two scalar equations which, to-

gether with (5.6), leads to a system of five scalar equations equations in τ1, . . . , τ5. In

matrix form, it can be expressed as

J




τ1
...
τ5


 =




f1

f2

f3
zF ((i2z+i2y)f1−ix(izf3−iyf2))√

i2z+i2y
zF (izf2−iyf3)√

i2z+i2y




(5.8)
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where J is a 5 × 5 matrix with columns




px + ziix − xi

py + ziiy − yi

pz + ziiz

zi

iy

(ix−iz)(py+ziiy−yi)−(iy+(ix+iz)iz)(px+ziix−xi)+(iy−ix(ix+iz))(pz+ziiz)√
2+

(ix+iz)2

i2y

zi

iy

(i2x+i2y+i2z)((ix+iz)(yi−py)+iy(pz+px−xi))√
2+

(ix+iz)2

i2y




.

When an external force applied on the platform cannot be balanced by the forces

exerted by the legs, the pentapod is in a singularity. Mathematically, this corresponds

to those configurations in which det(J) = 0. It can be checked, using a symbolic

computational tool, that

det(J) =
(i2x + i2y + i2z)det(T)

l1l2l3l4l5
=

det(T)

l1l2l3l4l5
(5.9)

where

T =




izpz iz(pzix − pxiz) iz(pziy − pyiz) pz(pxiz − pzix) pz(pyiz − pziy) −i2z
z1 x1 y1 x1z1 y1z1 1
z2 x2 y2 x2z2 y2z2 1
z3 x3 y3 x3z3 y3z3 1
z4 x4 y4 x4z4 y4z4 1
z5 x5 y5 x5z5 y5z5 1




.

(5.10)

In what follows, let T̂ denote the 5×6 matrix resulting from removing the first row

of T. It is important to realize that this matrix depends only on the coordinates of the

leg attachments, whereas the first row of T depends on the pose of the manipulator.

This leads to a clear-cut distinction of two types of singularities, architectural and

parallel, the former depending exclusively on T̂, whereas the latter depending also on

the pose.

5.3.2 Singularity-invariant leg rearrangement condition

For non-architecturally-singular manipulators, i.e., those for which T̂ is not rank de-

fective, the condition det(T) = 0 characterizes the set of robot poses lacking stiffness.
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Expanding det(T) by its first row, the following polynomial equation is obtained:

C1izpz + C2iz(pzix − pxiz) + C3iz(pziy − pyiz)+

C4pz(pxiz − pzix) + C5pz(pyiz − pziy) − C6i
2
z = 0, (5.11)

where Ci for i = 1, . . . , 5 are the cofactors of the elements of the first row of T. This

defines the singularity hypersurface in the configuration space of the pentapod.

The attachments of the i-th leg can be characterized by a single point in R
3 with

coordinates (xi, yi, zi). This 3D space of leg attachments will play an important role in

the analysis of Line-Plane rearrangements.

Consider the following surface in this space of leg attachments:

{(x, y, z) ∈ R
3 |

∣∣∣∣∣∣∣∣∣∣∣∣

z x y xz yz 1
z1 x1 y1 x1z1 y1z1 1
z2 x2 y2 x2z2 y2z2 1
z3 x3 y3 x3z3 y3z3 1
z4 x4 y4 x4z4 y4z4 1
z5 x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0}. (5.12)

The last five rows of this determinant coincide with that of matrix T̂, thus the coef-

ficients of this polynomial coincide with those in (5.11). Furthermore, if any of the

legs is substituted by a new leg with attachments (x, y, z) satisfying (5.12), then the

coefficients of the polynomial in (5.11) will be the same up to a constant multiple. In

other words, its roots will not change.

In conclusion, equation (5.12) defines singularity-invariant leg rearrangements. Note

that this result coincides with the condition found in Section 5.2, with the condition

r = 0 where r is defined in (5.4).

5.4 Singularity-invariant leg rearrangement rules

Using two different methodologies, the same result has been obtained. In the Line-

Plane component, a leg rearrangement that substitutes one of the legs by a new one

going from a = (x, y, 0) to b = p + zi is singularity invariant, if, and only if, x , y, and
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5.4 Singularity-invariant leg rearrangement rules

z satisfy, ∣∣∣∣∣∣∣∣∣∣∣∣

z x y xz yz 1
z1 x1 y1 x1z1 y1z1 1
z2 x2 y2 x2z2 y2z2 1
z3 x3 y3 x3z3 y3z3 1
z4 x4 y4 x4z4 y4z4 1
z5 x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (5.13)

In this section, this condition is analyzed in order to understand, from a purely

geometric point of view, how the legs of a pentapod can be rearranged without modify-

ing its singularity locus. The above condition will reveal a hidden geometric structure

that will help us in the next section, to give a geometric interpretation of parallel sin-

gularities, architectural singularities, and even to classify Line-Plane pentapods into 3

families.
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a4

a5

b1
b2

b3
b4

b5

Bz2

Bz1

Bz3

Bz4

Bz5

B

Λ

Π

Figure 5.5: One-to-one correspondence between the attachments in the platform line
and the lines of the pencil centered at B. Each value of zi defines a point bi = p + zii

in the platform line, and a line, Bzi
, in the base plane.

Expanding the determinant in (5.13) by its first row yields:

C1z + C2x + C3y + C4xz + C5yz + C6 = 0, (5.14)

which can be seen as the implicit form equation of a surface in the space of leg at-

tachments (see an example of such surface in Fig. 5.6). Equation (5.14) in turn can be
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rewritten in vector form as:

[(C2 C3 C6) + z(C4 C5 C1)]




x
y
1


 = 0. (5.15)

Interpreting this surface in the 3D space of leg attachments —where (x, y) and z

are the coordinates of the attachments in the base plane Π and the platform line Λ,

respectively— equation (5.13) defines a one-to-one correspondence between points in

Λ and lines of a pencil embedded in Π (refer to Fig. 5.5). Indeed, a point in Λ with

coordinate z determines the line

(C2 + C4z)x + (C3 + C5z)y + C6 + C1z = 0

in Π and, by varying z, a pencil of lines with focus located at:

B =

(
C3C1 − C6C5

C2C5 − C4C3
,−C2C1 − C4C6

C2C5 − C4C3
, 0

)
(5.16)

is obtained. On the way round, each line of the pencil, i.e., a line through B and

(x, y, 0), determines a point in Λ with coordinate

z = −C2x + C3y + C6

C4x + C5y + C1
. (5.17)

It can be checked how the same z value is obtained for all the points (x, y, 0) on the

same line through B.

In what follows, a line of the pencil will be called B-line and denoted by Bz, where

z is the coordinate of its corresponding point on Λ. The one-to-one correspondence

between points in Λ and B-lines in Π, defined by equation (5.13), will be called B-

correspondence. Moreover, the surface defined by (5.14) will be called B-surface when

interpreted in the 3D space of leg attachments.

Of particular interest is the B-line B∞,

B∞ = {(x, y) | C4x + C5y + C1 = 0} . (5.18)

because in practice no attachment in Π can be located on it (with the exception of B),

as the corresponding attachment on Λ should have to be moved to infinity. With the

introduced notation, any line of the pencil can be seen as a linear combination of the

line corresponding to z = 0 and the line corresponding to z = ∞.
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x
y

z

Figure 5.6: Representation of surface (5.14) with the origin placed at point (5.16), and
the y-axis placed at line (5.18).

Fig. 5.6 shows that the B-surface defined by (5.14) has the shape of a spiral-like

ruled surface around a vertical axis passing through point B (5.16) in the xy-plane,

and approaching a line parallel to (5.18) as z tends to ∞. This can be recognized

as a hyperbolic paraboloid with two directing lines at infinity, which are obtained by

intersecting the planes z = 0 and C4x + C5y + C1 = 0 with the plane at infinity.

Finally, two simple rules to move the attachments without altering the singularity

locus naturally arise (Fig. 5.7):

• all attachments in the plane can be freely moved along their B-lines, and

• an attachment in the line can be freely moved if, and only if, the other attachment

of the corresponding leg is located at B.

Following these two rules, it is possible to move any base attachment, say ai, to any

arbitrary location on Π, say a′
i, in three steps:

• move ai along the corresponding B-line until it meets B,

• move bi till its coordinate in the line determines a B-line that contains a′
i, and

• move ai along the B-line that contains a′
i.

72



5.4 Singularity-invariant leg rearrangement rules

B B

Figure 5.7: Singularity-invariant leg rearrangement rules for the Line-Plane component.

In practice, any base attachment can be freely relocated on the plane, as long as its cor-

responding platform attachment is relocated in the corresponding platform coordinate.

Thus, it is possible to carry out many complex transformations, but special attention

must be paid to avoid that, at each step,

• no three attachments in the plane are located in the same B-line because three

leg lengths would become dependent [Fig. 2.4-(a)], and

• no four attachments in the plane are collinear as, in this case, the line-plane

subassembly would contain an architecturally singular Line-Line component. This

rather surprising result will become evident at the end of Section 5.8 where the

proposed transformations are interpreted in terms of cross-ratios.

• the manipulator does not fall into an architectural singularity, which will be

studied in detail in Section 5.7.

Finally, two more remarks may ease the practical application of the above leg rear-

rangement rules:

- There can be at most two coincident attachments on the base plane, which must

lie on point B. Otherwise, the manipulator either would contain a Line-Line rigid

component or it would be architecturally singular.
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components

- Along a design process, the location of point B may be conveniently specified

by placing two coincident attachments, which can be separated later by using

appropriate leg rearrangements.

5.5 Geometric interpretation of parallel singularities in

Line-Plane components

The singularity polynomial in equation (5.11) can be rewritten in vector form as:

[iz(C2 C3 C6) − pz(C4 C5 C1)]




pxiz − pzix
pyiz − pziy

iz


 = 0. (5.19)

The parallel singularities of the analyzed pentapod correspond to those configura-

tions, defined by p = (px, py, pz) and i = (ix, iy, iz), that satisfy the above equation.

Then, two situations arise:

• If iz 6= 0, (5.19) yields

[(C2 C3 C6) + µ(C4 C5 C1)]




px + µix
py + µiy

1


 = 0, (5.20)

where µ = −pz/iz. The first term of the equation defines a pencil of lines, the

same pencil obtained in the previous section. Now, observe that Λ intersects Π

at:

A = (px + µix, py + µiy, 0). (5.21)

Then, according to (5.20), the singularity occurs when point A lies on the line

defined by B0 +µB∞, that is, the line of the pencil corresponding to z = −pz/iz.

Note that, if A coincides with B, the focus of the pencil, the manipulator would

be singular for any value of pz and iz, because A would simultaneously lay on all

lines of the pencil.
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5.5 Geometric interpretation of parallel singularities in Line-Plane

components

A Bµ
A

Bµ

Figure 5.8: Left: For p = (5, 8, 13) and i = (1/3,−2/3,−2/3) the manipulator is not
in a singular pose. Right: A singular pose is reached when p = (7

√
6 − 7, 4, 14) and

i = (
√

6
6 , −

√
6

6 , −
√

6
3 ).

• If iz = 0, (5.19) yields

(C4 C5)

(
pzix
pziy

)
= 0. (5.22)

In this case, the manipulator is singular when Λ is parallel to B∞, that is, when

i = ± 1√
C2

4+C2
5

(C5,−C4, 0). If, in addition, pz = 0, Λ necessarily lies on Π, which

is a trivial singularity.

In sum, the Line-Plane pentapod is in a singular configuration iff the platform point

p + zi intersecting the base does so precisely at its corresponding B-line Bz (Fig. 5.8).

Note that this includes the cases in which iz = 0.

The above geometric interpretation has two very interesting implications. First, a

configuration is singular iff a leg can attain zero length through a singularity-invariant

leg rearrangement. After such rearrangement, the two attachments of the leg will both

coincide with the point where the platform intersects the base (and so, it will have zero

length). Second, this zero-length leg condition holding at singularities permits equating

the coordinates of attachments in the base a = (x, y, 0)T and platform b = p + zi at
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5.6 Classifying pentapods by their singularities

point A,
x = px − pz

iz
ix

y = py − pz

iz
iy

pz + ziz = 0,

leading to the following change of variables:

xiz = pxiz − pzix
yiz = pyiz − pziy
ziz = −pz

(5.23)

which, if applied to equation (5.11), yields:

(−i2z)(C1z + C2x + C3y + C4zx + C5zy + C6) = 0. (5.24)

When iz 6= 0, this reduces to equation (5.14). Therefore, except for configurations in

which the platform lies parallel to the base, the B-surface (5.14) in the 3D space of leg

attachments provides a characterization of singularities equivalent to the hypersurface

equation (5.11) in the 5D robot configuration space.

5.6 Classifying pentapods by their singularities

5.6.1 Pentapod families with identical singularities

The obtained Line-Plane rearrangements permit classifying pentapods into families

that share the same singularity locus. To achieve this, first it is necessary to identify

the geometric entities that fully describe the singularity locus.

First of all, note that it is possible to locate a copy of Λ onto Π, parallel to the line

B∞,

Λ+ =

{
(x, y)| C4x + C5y + C1 +

C2C5 − C3C4√
C2

4 + C2
5

= 0

}
, (5.25)

so that each attachment in Λ+ lies on its associated B-line in Π (Fig. 5.9). Then the

geometric analysis of the manipulator can be reduced to a planar problem. Indeed,

denote the coordinates of the intersections of Λ+ with Bzi
by b+

i . Notice that b+
i ,

i = 1, ..., 5, are spaced at the same distances in Λ+ as bi, i = 1, ..., 5, in Λ. Then, Λ+ is

a privileged line in Π that represents a possible location for Λ so that the attachments

in it coincide with their corresponding B-lines. Then, given a particular manipula-

tor, point B, line B∞ and line Λ+ can be computed using (5.16), (5.18) and (5.25),
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5.6 Classifying pentapods by their singularities

respectively. These determine the five B-lines passing through the base attachments,

and their intersections with Λ+, b+
i , i = 1, . . . , 5, determine also the location of the

attachments bi, i = 1, . . . , 5 in Λ (see Fig. 5.9).

0

B0

B1 B2

B3 B4 B5

b+

1 b+

2 b+

3
b+

4 b+

5

B∞

Λ+

B

L

Figure 5.9: Planar geometric construction that defines all the geometric parameters in
a pentapod.

As a consequence, point B, line B∞ and line Λ+ characterize a family of pentapods

having exactly the same singularity locus. Furthermore, assuming that point B is finite,

a planar affine transformation that moves B to the origin and line B∞ to the y-axis

can always be applied. Then, the B-surfaces associated with two non-architecturally

singular 5-SPU manipulators differ at most on a scaling factor, namely the distance of

B to Λ+ (named L in Fig. 5.9). This factor regulates the attachments spacing in the

platform line in relation to the attachments spacing in the base plane.

Therefore, all non-architecturally singular pentapods with finite B have associated

B-surfaces with the same topology. Moreover, through the change of variables in (5.23),

the singularity loci of all these manipulators have also the same topology.

5.6.2 Three possible topologies for the singularity locus

So far, point B was assumed to be finite. Now, suppose that it is taken to infinity.

According to equation (5.16), this implies that C2C5 − C4C3 = 0. By introducing this

constraint into equation (5.14), one obtains:

(C4z + C2)x + (C3/C2)(C4z + C2)y + C1z + C6 = 0. (5.26)
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5.6 Classifying pentapods by their singularities

B

xy

z

B∞
xy

z

(a) x

y

z

B∞ x

y

z

(b)
x

y

z

x

y
z

(c)

Figure 5.10: Quartically, cubically and quadratically-solvable pentapods (left), with
their corresponding B-surfaces (right).
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5.6 Classifying pentapods by their singularities

It turns out that all B-lines have now the same slope, C3/C2 = C5/C4, and, therefore,

they are all parallel to B∞. Fig. 5.10-(b) shows the corresponding B-surface with the y-

axis placed parallel to line B∞. Now, note that the B-surface approaches asymptotically

line B∞ as z tends to +/-∞. Moreover, the B-line associated with the value of z for

which C4z + C2 = 0 is the line at infinity. This appears as the surface asymptotically

approaching the horizontal plane C4z + C2 = 0 in the central 3D plot in Fig. 5.10.

It is worth remarking that, in the one-to-one correspondence between points in Λ

and lines in Π, a finite point in Λ has its associated B-line at infinity, while the point

at infinity in Λ is associated with the finite B∞ line.

In this context, it seems reasonable to make these two lines to be coincident, i.e.,

B∞ is taken to infinity. Then, since point B ∈ B∞, B also stays at infinity as before.

This further condition implies that C4 = C5 = 0, and equation (5.26) reduces to:

C2x + C3y + C1z + C6 = 0. (5.27)

Of course, all B-lines continue to be parallel, but observe that their spacing has now

become a linear function of z, namely, C1z + C6. Thus, the B-surface is a plane in this

case. Fig. 5.10-(c) shows this planar B-surface with B-lines parallel to the y-axis. Note

that the B-surface approaches line B∞ linearly as z tends to +/-∞.

In sum, there are only three possible topologies for the B-surfaces associated with

non-architecturally singular pentapods: one when point B is finite [Fig. 5.10-(a)], an-

other when B is taken to infinity but B∞ remains finite [Fig. 5.10-(b)], and the third

when both point B and line B∞ are taken to infinity [Fig. 5.10-(c)]. Again, through

the change of variables in (5.23), it can be concluded that the manipulators in each of

these three families have singularity loci with the same topology.

5.6.3 Forward kinematics: Quartically, cubically and quadratically-

solvable cases

Thanks to the obtained expression of the singularity polynomial as the determinant of

matrix T, is it possible to relate the forward kinematic solution with the singularity

polynomial, and thus, with the singularity classification done in the previous section,

obtaining interesting results for each of the three derived families.
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5.6 Classifying pentapods by their singularities

The forward kinematics of a pentapod can be solved by writing the leg lengths as

l2i = ‖bi−ai‖2, for i = 1, . . . , 5, as done to define the affine relation in Section 5.2. Then,

subtracting from the expression for l2i , i = 1, . . . , 5, the equation ‖i‖2 = i2x + i2y + i2z = 1,

quadratic terms in ix, iy and iz cancel out yielding

zit − xipx − yipy − xiziix − yiziiy +
1

2
(p2

x + p2
y + p2

z + x2
i + y2

i + z2
i − l2i ) = 0, (5.28)

for i = 1, . . . , 5, where t = p · i (note that this is the same equation as (5.1)).

Subtracting the first equation from the others, quadratic terms in px, py and pz

cancel out as well. Then, the resulting system of equations can be written in matrix

form as



x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1

x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1

x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1

x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1







px

py

ix
iy


 =




(z2 − z1)t + N2

(z3 − z1)t + N3

(z4 − z1)t + N4

(z5 − z1)t + N5


 , (5.29)

where

Ni =
1

2
(x2

i + y2
i + z2

i − l2i − x2
1 − y2

1 − z2
1 + l21).

Now, notice that the determinant associated with the linear system (5.29) can be

written as ∣∣∣∣∣∣∣∣∣∣

x1 y1 x1z1 y1z1 1
x2 y2 x2z2 y2z2 1
x3 y3 x3z3 y3z3 1
x4 y4 x4z4 y4z4 1
x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣

, (5.30)

which coincides with C1 in (5.11), that is, the first cofactor of matrix T. If (5.30)

vanishes, either px, py, ix, or iy, can be chosen as parameter, instead of t, to reformulate

the linear system (5.29). Since for a non-architecturally singular robot not all cofactors

are zero, it can be shown that a non-singular linear system of the form given in (5.29)

can always be found by choosing either t, px, py, ix, or iy as parameter.

Solving (5.29) by Cramer’s rule, and applying the multilinearity property of deter-

minants, yields

px = (−C2t + E2)/C1,

py = (−C3t + E3)/C1,

ix = (−C4t + E4)/C1,

iy = (−C5t + E5)/C1,

(5.31)
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5.6 Classifying pentapods by their singularities

where Ei results from substituting the (i− 1)th column vector of C1 by (N1, . . . , N5)
T .

This solution allows the expression of the forward kinematics in terms of the cofactors

of matrix T, which it turns out that defines both the forward kinematics and the

singularities of the manipulator.

From equation i2x + i2y + i2z = 1 and equation (5.28) for i = 1, it can be concluded

that:

p2
zi

2
z = (1−i2x−i2y)

[
2(−z1t + x1px + y1py + z1y1iy + z1x1ix) − p2

x − p2
y − x2

1 − y2
1 − z2

1

]
.

(5.32)

One the other hand, from t = p · i,

(pziz)
2 = (t − pxix − pyiy)

2. (5.33)

Equating the right hand sides of equations (5.32) and (5.33), the following polynomial

in t is finally obtained:

n4t
4 + n3t

3 + n2t
2 + n1t + n0 = 0, (5.34)

where

n4 = −(C4C3 − C2C5)
2

C4
1

,

n3 = − 2

C4
1

(C2
1 (C5C3 + C4C2)

+ C1(C
2
5 + C2

4 )(C2x1 + (C1 + C4x1 + C5y1)z1 + y1C3)

+ (C4C3 − C5C2)(E5C2 + E2C5 − E4C3 − E3C4)).

(5.35)

and n2, n1 and n0 depend also on constant parameters.

Each of the four roots of (5.34) determines a single value for px, py, ix, and iy

through (5.31) and two sets of values for pz and iz by simultaneously solving ‖i‖ = 1

and t = p · i. Thus, up to 8 assembly modes are obtained for a given set of leg lengths.

The polynomial in equation (5.34) is the maximum degree polynomial that has to

be solved to obtain the forward kinematics solutions of a pentapod with planar base

and a linear platform.
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5.6 Classifying pentapods by their singularities

5.6.3.1 Quartic, Cubic and Quadratic cases

It has been shown that solving the forward kinematics of a pentapod with planar base

and linear platform leads to a quartic polynomial.

Now note that, when point B lies at infinity, C2C5 − C4C3 = 0, then the leading

coefficient n4 in equation (5.34) vanishes, and the forward kinematic solution becomes

cubic. Then the platform line Λ has, at most, 6 assembly modes. Finally, if not only

B is at infinity, but also line B∞ (that is, C4 = C5 = 0), it is easy to see that also

the coefficient n3 in (5.34) becomes zero, leading to a quadratic polynomial. When this

happens, the maximum simplification of the kinematics is obtained: a platform with

only up to 4 assembly modes.

Thus, note that the three topologies of the singularity locus derived in the preceding

section correspond to the quartically, cubically and quadratically-solvable families of

pentapods, respectively (Fig. 5.10).

5.6.4 A quadratically-solvable pentapod

A 5-DoF manipulator whose forward kinematics has a quadratic solution is of interest

by itself and also as a component to be included in a general 6-DoF Stewart-Gough

platform, as first acknowledged in [14].

Consider a quadratically-solvable manipulator whose line B∞ coincides with the py-

axis, and thus its B-lines are parallel to this axis. This implies that its leg attachment

coordinates can be expressed as ai = (xi, yi, 0) and bi = p + zii, with p = (px, py, pz)

and i = (u, v, w) as before, subject to the constraint

zi = δxi, (5.36)

To ease readability of the equations, set x1 = y1 = 0 without losing generality. Then δ,

xi and yi, i = 2, 3, 4, 5, are left as parameters that characterize the family of pentapods

analyzed in this section.
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5.6 Classifying pentapods by their singularities

5.6.4.1 Forward Kinematics

Following the computations of Section 5.6.3, with the attachment coordinates given in

(5.36), the cofactors of the elements of the first row of T are:

C1 = δ2F,

C2 = −δ3F,

C3 = C4 = C5 = C6 = 0,

(5.37)

where F can be written as

F =

∣∣∣∣∣∣∣∣

x2
2 x2y2 x2 y2

x2
3 x3y3 x3 y3

x2
4 x4y4 x4 y4

x2
5 x5y5 x5 y5

∣∣∣∣∣∣∣∣
(5.38)

and the coefficients of polynomial (5.34) are:

n4 = n3 = 0

n2 =
(δ2 + 1)δ2F 2 − 2δFE4 − E2

5

δ2F 2

n1 = 2
E2δ

4F 2 − Fδ(E4E2 + E5E3) − E5(E2E5 − E3E4)

δ5F 3

n0 =
(E2

2 + E2
3 + l21(E

2
4 + E2

5))F 2δ4 − (E2E5 − E4E3)
2

δ8F 4
− l21

where Ei were defined in Section 5.6.3. Then, polynomial (5.34) becomes quadratic

and, as a consequence, its two roots can be simply expressed as:

t =
δ4F 2E2 − δF (E2E4 + E5E3) + E5(E3E4 − E2E5) ±

√
∆

δ3F (2δFE4 + E2
5 − (δ2 + 1)δ2F 2)

, (5.39)

where the discriminant is

∆ = δF (E2
5 + E2

4 − δ4F 2)

[2δ4F 2E4l
2
1 + δ3F (E2

5 l21 + E2
3) + δF (E2

2 + E2
3) − (δ2 + 1)δ5F 3l21 + 2E3(E2E5 − E4E3)].

(5.40)

Each of the two above roots, say t1 and t2, determines a single value for px, py, ix,

and iy through (5.31) and two sets of values for pz and iz by simultaneously solving

‖i‖ = 1 and t = p · i. The resulting four assembly modes are explicitly given by:

p =




δ3Fti+E2

δ2F

E3
δ2F

± (E4−δF )δ3Fti+E4E2+E5E3

δ2F
√

δ4F 2−E2
5−E2

4




and i =




E4
δ2F

E5
δ2F

±
√

δ4F 2−E2
5−E2

4

δ2F




. (5.41)
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5.6 Classifying pentapods by their singularities

5.6.4.2 Singularity Analysis

Substituting the values of the cofactors in (5.37) into (5.11), the singular configurations

of the studied pentapod are the solutions of the following equation

δ2izF [δpxiz − (ixδ − 1)pz] = 0. (5.42)

Observe that, except for δ, all other design parameters are embedded in F , whereas

the robot pose appears only in the remaining two factors. Thus, if F = 0, the ma-

nipulator is architecturally singular, i.e., it is always singular independently of its leg

lengths.

Now, consider the case F 6= 0. Then, given a singular configuration (p, i), with p =

(px, py, pz) and i = (ix, iy, iz), it must satisfy either iz = 0 or [δizpx − (δix − 1)pz] = 0.

Following the geometric interpretation given in Section 5.5, when iz = 0, the manip-

ulator is always in a singularity, because Λ is always parallel to B∞ (any line is parallel

to a line at infinity, and for the quadratic case, B∞ is at infinity). This condition holds

for configurations where the platform is parallel to the base plane.

On the other hand, when iz 6= 0 equation (5.20) reads as

[(C2 0 0) + µ(0 0 C1)]




px + µix
py + µiy

1


 = 0,

where µ = −pz

iz
. This condition holds when the intersection point of Λ with Π, defined

as A in equation (5.21), belongs to the line C2x+µC1 = 0. In other words, when point

A is at a distance
pz

iz

C1

C2
= − pz

izδ

from the y-axis, the pentapod is in a singularity.

Note that singularities can also be expressed in joint space R
5 by using the discrim-

inant (5.40), whose expression only depends on the leg lengths li, i=1,. . . , 5. When

∆ = 0 the two solutions given by (5.39) coincide, yielding a parallel singularity. Note

that ∆ also consists of two factors, the first one E2
5 + E2

4 − δ4F 2 = 0 corresponds to

the condition iz = 0 and the other is equivalent to (δizpx − (δix − 1)pz) = 0.
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5.7 Architecture singularities

An interesting practical consideration is that, if the orientation of the tool is fixed,

singularities define a plane in position space:

c1px + c2pz = 0,

with c1 = δi2z and c2 = iz(1 − ixδ). For example, if the tool is orthogonal to the

base plane, i.e. (ix, iy, iz) = (0, 0, 1), then the robot will reach a singularity when

p = (px, py, pz), satisfies:

δpx + pz = 0.

It follows from the above singularity analysis that, for a fixed value of δ, the whole

family of non-architecturally singular pentapods considered have exactly the same sin-

gularity locus. In other words, given a member of the family, one can freely move its

leg attachments without modifying the singularity locus, provided that two constraints

are maintained, namely: the proportionality between xi and zi, and F 6= 0 [see (5.38)],

thus, precluding architecturally singular designs.

5.7 Architecture singularities

5.7.1 Algebraic characterization

This Section, for the sake of simplicity, deals with generic cases, that is, the attach-

ments are in general position. As a consequence, none of the base attachments will be

coincident with B. As will be explained in Section 5.10, the present methodology is

also able to handle with non-generic cases, but they must be studied separately.

When T̂ is rank defective, det(T) is identically zero irrespective of the pose of Λ

with respect to Π and, hence, the pentapod is said to be architecturally singular.

If, to check rank defectiveness, Gaussian Elimination1 is applied on T̂, the last row

of the resulting matrix is

1

D5,6

(
0 0 0 0 −C6 C5

)
, (5.43)

1Gaussian Elimination uses elementary row operations to reduce a given matrix into a rank-
equivalent one, with an upper triangular shape. Then, rank deficiency occurs when all the elements of
the last row are zero.

85



5.7 Architecture singularities

where Ci are the cofactors of the first row of T as in equation (5.11), and Di,j is the

determinant of the matrix formed by the first four rows of T̂ with the ith and jth

columns removed.

By permuting the columns of T̂, it can be concluded that a necessary and sufficient

condition for a pentapod to be architecturally singular is that

∃i, j ∈ {1, . . . , 6}, i 6= j, such that Ci = Cj = 0 and Di,j 6= 0. (5.44)

The conditions C4 = C5 = 0 are in one-to-one correspondence with the two algebraic

conditions given by Husty and Karger [49, Theorem 1.6] (after setting x1 = y1 = z1 =

y2 = 0, which can always be done without loss of generality by properly placing the

reference frames). When the attachments are in general position, D4,5 6= 0, and thus

Husty and Karger’s conditions are equivalent to (5.44). However, for platforms whose

attachments are not in a generic position (such as, for instance, the quadratically

solvable manipulators defined in Section 5.6.4), it can occur that C4 = C5 = D4,5 = 0

and the manipulator is not architecturally singular (see Section 5.9.3 for an example).

5.7.2 Geometric interpretation

It is not only important to characterize architectural singularities to avoid them, but

also to determine how near the manipulator is to this kind of singularities to design

manipulators with improved global behavior. With this purpose, a geometric interpre-

tation of condition (5.44) is next derived.

Suppose that one of the legs, say l5, is reconfigured to have the new attachments

a = (x, y, 0) and b = p + zi. Assuming that D12 6= 0, the manipulator becomes

architecturally singular, according to (5.44), when C1 and C2 are zero. This defines the
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5.7 Architecture singularities

following system of equations in the space of leg attachments:

C̃1 =

∣∣∣∣∣∣∣∣∣∣

x y xz yz 1
x1 y1 x1z1 y1z1 1
x2 y2 x2z2 y2z2 1
x3 y3 x3z3 y3z3 1
x4 y4 x4z4 y4z4 1

∣∣∣∣∣∣∣∣∣∣

= 0

C̃2 =

∣∣∣∣∣∣∣∣∣∣

z y xz yz 1
z1 y1 x1z1 y1z1 1
z2 y2 x2z2 y2z2 1
z3 y3 x3z3 y3z3 1
z4 y4 x4z4 y4z4 1

∣∣∣∣∣∣∣∣∣∣

= 0





(5.45)

where C̃i equals cofactor Ci when evaluated at {x = x5, y = y5, z = z5}. Then, the roots

of this system define the locus of the 5th leg attachments that make the manipulator

architecturally singular. By expanding the determinants in (5.45) by their first rows,

the above system results in:

D1,2 x + D1,3 y + D1,4 zx + D1,5 zy + D1,6 = 0
D1,2 z + D2,3 y + D2,4 zx + D2,5 zy + D2,6 = 0

}
(5.46)

which can be rewritten as
(

D1,4 x + D1,5 y D1,2 x + D1,3 y + D1,6

D2,4 x + D2,5 y + D1,2 D2,3 y + D2,6

)(
z
1

)
=

(
0
0

)
,

which clearly has a solution for z if, and only if,
∣∣∣∣

D1,4 x + D1,5 y D1,2 x + D1,3 y + D1,6

D2,4 x + D2,5 y + D1,2 D2,3 y + D2,6

∣∣∣∣ = 0. (5.47)

In conclusion, there exists a value for z that satisfies (5.45) only for the points on

the conic

C5 =
{
(x, y) | n1x

2 + n2xy + n3y
2 + n4x + n5y + n6 = 0

}
,

where

n1 = D1,2D2,4

n2 = D2,3D1,4 − D1,2D2,5 − D1,3D2,4

n3 = D1,3D2,5 − D2,3D1,5

n4 = D2
1,2 + D1,6D2,4 − D2,6D1,4

n5 = D2,6D1,5 − D1,6D2,5 − D1,3D1,2

n6 = D1,6D1,2.

87



5.7 Architecture singularities

The other way round, for a given value of z, system (5.45) gives a point on this

conic. In other words, system (5.45) defines a one-to-one correspondence between the

points in Λ and the points of conic C5 embedded in Π.

Actually, five different one-to-one correspondences of the same type exist: the corre-

spondences between points in Ci and points in Λ, where Ci is the conic that contains all

base attachments but ai. Each of these correspondences will be called Ci-correspondence

and the coordinates of aj and bj , for j ∈ {1, . . . , 5}\{i}, satisfy it by construction.

When the ith leg attachments coordinates also satisfy it, the manipulator becomes

architecturally singular. In this particular case, all conics collapse into a single conic,

which can be simply expressed as

C =





(x, y) |

∣∣∣∣∣∣∣∣∣∣∣∣

x2 xy y2 x y 1
x2

1 x1y1 y2
1 x1 y1 1

x2
2 x2y2 y2

2 x2 y2 1
x2

3 x3y3 y2
3 x3 y3 1

x2
4 x4y4 y2

4 x4 y4 1
x2

5 x4y5 y2
5 x5 y5 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0





, (5.48)

because five points on a plane define a conic.

5.7.3 Proximity to architectural singularities

Conics Ci can be used to evaluate the proximity of a pentapod to an architectural

singularity, but the resulting algebraic expressions are quite involved. To obtain a

deeper geometric insight into the problem, it is necessary to study the relation between

the Ci-correspondences given by equation (5.7.2) and the B-correspondence defined by

(5.13).

Consider the following composition:

Ci
Ci-correspondence←→ Λ

B-correspondence←→ Pencil in Π
(x, y) ⇆ z ⇆ Bz

(5.49)

First of all, note that any (x, y, z) satisfying the Ci-correspondence satisfies also the

B-correspondence, i.e., any point (x, y, 0) ∈ Ci lies on its corresponding B-line Bz. This

is because, particularizing to C5, (5.45) implies that two cofactors of the elements of the

last row of the matrix in (5.13) are zero, which makes its determinant zero irrespective

of the values given to (x5, y5, z5). Therefore, the z coordinate corresponding to (x, y, 0)
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a1

a2

a3

a4

a5

b1
b2

b3
b4

b5

Bz1

Bz2

Bz3

Bz4

Bz5

B

C5

Λ

Π

Figure 5.11: The composition of the one-to-one B-correspondence between points on
Λ and B-lines on Π, and the one-to-one C5-correspondence between points on Λ and
points of conic C5. The point on Λ corresponding to the point on the conic coincident
with B necessarily corresponds to the B-line tangent to C5 on B.

on the conic Ci is the same as the one corresponding to the Bz-line through (x, y, 0)

(in Fig. 5.11 there is a graphical representation of the C5-correspondence and the B-

correspondence).

As the composition of two one-to-one correspondences is one-to-one, there is a one-

to-one correspondence between points in Ci and lines of the pencil embedded in Π. This

fact has two consequences:

1. Point B lies on the conic, otherwise there would be two points of the conic corre-

sponding to the same B-line.

2. Point B has a unique corresponding point in Λ through the Ci-correspondence,

which is necessarily the point corresponding to the B-line tangent to conic Ci on

B through the B-correspondence.

As a consequence, a generic pentapod is architecturally singular when the base

attachment ai lies on conic Ci defined by the attachments of the other four legs and

B. This observation is of practical interest to derive a distance to an architectural

singularity: the distance from point B to the conic defined in (5.48). This distance can

be evaluated by substituting (x, y) in the conic expression (5.48) by the coordinates of
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a1 a2

a3

a4

a5

B

b1

b2

b3

b4

b5

λ1 λ2

λ3λ4

λ5

i xi yi zi

1 0 2 0

2 −3/2 9/4 1

3 −3 1 2

4 −1 0 3

5 −1 −1 4

Figure 5.12: The pentapod analyzed in Section 5.7.4 and its attachment coordinates
(ai = (xi, yi, 0) and bi = p + zii).

the B point:

C(bx, by) =

∣∣∣∣∣∣∣∣∣∣∣∣

b2
x bxby b2

y bx by 1

x2
1 x1y1 y2

1 x1 y1 1
x2

2 x2y2 y2
2 x2 y2 1

x2
3 x3y3 y2

3 x3 y3 1
x2

4 x4y4 y2
4 x4 y4 1

x2
5 x4y5 y2

5 x5 y5 1

∣∣∣∣∣∣∣∣∣∣∣∣

, (5.50)

where B = (bx, by, 0).

5.7.4 An example

Consider the pentapod in Fig. 5.12 with the attachments coordinates appearing in the

corresponding table.

Let λi be the distance between ai and B. Then, for all generic cases, λi 6= 0

for i = 1, . . . , 5. The coordinates in Fig. 5.12 correspond to the configuration {λ1 =
√

2, λ2 = 5
√

5/4, λ3 = 4, λ4 =
√

5, λ5 = 2
√

2}.

For a general configuration given by {λ1, . . . , λ5}, the value of the cofactors of matrix

T are
C1 = K, C2 = 2K, C3 = 2K,
C4 = −K, C5 = 0, C6 = −4K
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where

K =

√
10

50
(−15

√
2λ1λ2λ5 + 12

√
5λ1λ4λ2 − 15

√
2λ5λ1λ4 − 45λ1λ4λ3 + 8

√
10λ4λ2λ3

− 45λ5λ2λ3 − 5λ1λ2λ3 + 12
√

5λ5λ4λ2 + 20
√

10λ5λ1λ3 − 5λ5λ4λ3).

(5.51)

which depends only on λ1, . . . , λ5. Then, the singularities are given by the roots of

det(T) = K(izpz − 2iz(pxiz − pzix) − 2iz(pyiz − pziy) − pz(pxiz − pzix) + 4w2)

Hence, this example makes clear how modifying the values of λi (i.e., moving the

base attachments along their B-lines) does not modify the singularities of the manipu-

lator.

The distance measure to an architectural singularity is given in equation (5.50).

Using the coordinates of ai, which can be parametrized depending on λi as

ai = B + λi
B − a0i

‖B − a0i‖
, for i = 1, . . . , 5,

where a0i is the initial location of ai, and B = (1, 1, 0), one obtains

C(bx, by) = (λ1λ2λ3λ4λ5)
K

10
,

where λi > 0. If λi = 0, ai would be coincident with B, which does not correspond to

an architectural singularity, but it is a non-generic case that must be studied separately.

Then, K can be taken as a measure of distance. Note that the greater is the distance to

an architectural singularity, the greater is the constant that multiplies the singularity

polynomial, and thus, the manipulator will behave better near a singularity.

The constant C(bx, by) is a measure of distance of point B to the conic defined

by the 5 base attachments. Nonetheless, it can be more intuitive to measure the

distance of ai to its associated singular conic, that is, the conic formed by the other 4

attachments plus point B, i.e. Ci (defined in Section 5.7.2). For the current example,

at its initial configuration, the five conics Ci, i = 1, . . . , 5, passing through B and all

base attachments except ai are depicted in Fig. 5.13.

Then, if attachment a4 is moved along its B-line, the singularity locus of the an-

alyzed robot remains unaltered, unless it is located on conic C4 (the fourth conic in

Fig. 5.13). In this case, the manipulator becomes architecturally singular. The new
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Figure 5.13: Singular conics, Ci, for i = 1, . . . , 5 for the pentapod in Fig. 5.12.
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a1

a2

a3 a′
4

a5

B

b1

b2

b3

b4

b5

Figure 5.14: Self-motion of the analyzed architecturally singular pentapod.

vector of coordinates for this attachment is a′
4 = (−63

29 ,−17
29 , 0). Fig. 5.14 shows the self-

motion associated with the resulting architecturally singular pentapod with l1 = 4.243,

l2 = 3.786, l3 = 4.315, l4 = 4.893, and l5 = 5.363. The reference point p = (px, py, pz)
T

and the director vector i = (u, v, w)T of Λ is represented along the resulting self-motion.

To compute this self-motion, the forward kinematics is expressed as a system of the

equations dependent on two of the unknowns, one of them playing the role of a param-

eter, and then the equations are solved following the procedure described in Section

5.6.3 or [111]. For the detailed computations, see [13].

For the architecturally singular manipulator, the five conics, C1, . . . ,C5 are coinci-

dent and can be computed using equation (5.48). Moreover, there exists a one-to-one

correspondence between the moving platform attachments and the base attachments

given by this unique Ci-correspondence (Section 5.7.2).
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5.8 The role of cross-ratios

In Section 5.4 it has been shown that attachment ai can be freely relocated on the

plane, as long as bi is relocated in the corresponding platform location. Nevertheless,

special attention must be paid to avoid that, at each step,

• no three attachments in the plane are located in the same B-line because three

leg lengths would become dependent [Fig. 2.4-(a)],

• no four attachments in the plane are collinear as, in this case, the Line-Plane

component would contain an architecturally singular Line-Line component, and

• no 5 attachments and B are in the same conic.

In this section, the last two conditions will be reformulated in terms of cross-ratios.

First of all, note that all the geometric entities involved in this chapter are 1-

dimensional projective domains: ranges of points, pencils of lines and conics. Then,

the cross-ratio of any set of 4 points (on a conic or on a line) and the cross-ratio of any

set of 4 lines of the pencil are well-defined (see Appendix B).

The B-correspondence is a one-to-one correspondence between the pencil of lines

formed by linear combinations of B0 and B∞. In other words, if {Bi} is defined as the

set of points belonging to the line Bi, then, the set of points that belong to one of the

lines of the pencil is defined by the parameter z in the form

{B0} + z{B∞}.

Furthermore, each point of the range on Λ is defined by the local coordinate z. Thus, z

can be used as the projective parameter for both one-dimensional projective domains,

and thus, the correspondence between them is projective1 (see Appendix B for details).

As a consequence, the cross-ratio of any four B-lines must be equal to the cross-ratio of

the corresponding attachments in Λ. This provides and alternative way for computing

B and, what is more important, an alternative way of defining all singularity-invariant

changes in the location of the attachments as those that keep invariant the cross-ratios

between the B-lines and their corresponding attachments in Λ.

1This correspondence is equivalent to the correspondence depicted in Fig. 5.9, which is clearly
projective [89, Chapter IV-Theorem 11]
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Figure 5.15: (a) The pencil of B-lines defines a projective one-to-one correspondence
between a range of points on Λ, points on any conic through B and a range of points
on any line not through B (here represented by l). (b) When four attachments are
collinear, the cross-ratio between them and their corresponding b+

i is the same. (c)
When five base attachments and B are in the same conic, the cross-ratios of the base
attachments is the cross-ratios of their corresponding B-lines, which at the same time
is equal to the cross-ratios of their corresponding b+

i .
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In addition, the cross-ratio of points on Ci can be defined as the cross-ratio of

their corresponding B-lines (as B always belong to Ci for i = 1, . . . 5). Then, B-lines,

attachments on conics Ci and attachments on Λ have equal cross-ratios taken 4 by

4 [Fig. 5.15-(a)]. As a consequence, all Ci-correspondences are also projective (see

Appendix B).

To prevent falling into an architectural singularity, while performing a Line-Plane

singularity-invariant leg rearrangement, it is just necessary to avoid two simple condi-

tions:

1. Locate 4 attachments collinearly.

2. Locate the 5 attachments and B on the same conic.

For the first condition, it has already been shown in Section 4.7 of Chapter 4, that

any Line-Line component with equal cross-ratios for the attachments on both lines is

architecturally singular. Then, when performing rearrangements following B-lines, any

four attachments located on a line will form a Line-Line component, and they will

have the same cross-ratio as their B-lines, and thus, the same as their corresponding

attachments on Λ [Fig. 5.15-(b)].

When the second condition is satisfied [as in Fig. 5.15-(c)], the cross-ratio of any 4

attachments on the base conic are the same than the cross-ratios of their corresponding

B-lines, and the same of their corresponding platform attachments on Λ. Thus, it

can be concluded that there exists a projectivity between them (see Appendix B)

which is precisely, the Ci-correspondence. Then, as a line can always be considered

a degenerated conic, Chasles theorem (enunciated in Chapter 2) applies: base and

platform attachments belong to conic sections in projective correspondence. Thus, the

manipulator is architecturally singular.

Now, the first condition can be seen as a particular case of the second because, when

4 attachments are collinear, they belong to a degenerate conic formed by the line they

define and the line defined by B and the remaining non-collinear attachment.Therefore,

platform and base attachments are placed in degenerated conic sections in projective

correspondence (in Fig. 5.15-(b), such degenerated conic is formed by l and the B4-line).
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Figure 5.16: The legs of this upside-down Line-Plane component can be rearranged to
form an uncoupled manipulator.

5.9 Examples

5.9.1 Uncoupled parallel manipulator

Consider the Stewart-Gough platform in Fig. 5.16-(top). It contains an upside-down

Line-Plane component. Hence, the associated pencil of lines lies, in this case, in the

platform plane. Moreover, the attachment in the platform of the leg not included in

the Line-Plane component is made to be coincident with the focus of the pencil, B.

According to the results presented in Section 5.4, two platform attachments can

be moved along their B-lines to meet at B without modifying the singularity locus

of the considered platform. A Point-Plane component thus arises [Fig. 5.16-(bottom-

left)]. In Chapter 4 it has been shown how the attachments in the plane of a Point-

Plane component can be arbitrarily relocated, without changing the singularity locus

of the whole platform, provided that no architectural singularities are introduced. As a
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consequence, it is possible to misalign two of the base attachments [Fig. 5.16-(bottom-

right)]. The result is an uncoupled parallel platform because the legs of the Point-Plane

component determine the location of a point in the moving platform and the other three

legs, the platform’s orientation. It can be said that the resulting uncoupled manipulator

contains a concealed Line-Plane component. Thus, it is clear that the presented study

transcends that of pentapods.

5.9.2 Elimination of multiple spherical joints

Multiple spherical joints exist in most well-studied Gough-Stewart platforms. Such

joints simplify the kinematics and singularity analysis of parallel manipulators, but

they are difficult to construct and present small joint ranges, which make them of little

practical interest. In this example it is shown how the presented leg rearrangements can

be used to eliminate multiple spherical joints from a particular design, as it has been

already done in Section 4.5, without losing the advantages of having simple kinematics

and maintaining the same singularity locus.

Consider the pentapod depicted in Fig. 5.17-(top), which is clearly of the Line-

Plane type studied in this chapter. A set of leg rearrangements can be performed to

transform it into a platform with the same singularities, but with no multiple spherical

joints. One of the possible sequences of leg rearrangements to attain this goal appears

in Fig. 5.17-(bottom).

5.9.3 Numerical example of a quadratically-solvable pentapod

A family of quadratically-solvable manipulators has been introduced in Section 5.6.4.

They are characterized by having B at infinity and the distance between the parallel

B-lines proportional to the distances of the attachments in the platform line. The next

example corresponds to one of such manipulators, the one depicted in Fig. 5.18.

The singular conic definitions established in Section 5.7 are also applicable when

B is at infinity, provided that equations are handled using homogeneous coordinates.

In this example, the homogeneous coordinates of point B are BH = (0, 1, 0)H , which

means that all conics are parabolas or hyperbolas having a vertical asymptote. In

Fig. 5.19 the five singular conics are plotted.
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Figure 5.17: Singularity-invariant leg rearrangements can be used at the manipulator
design stage to eliminate multiple spherical joints.

Let λi denote the distance from each attachment to a line crossing perpendicularly

all the B-lines. By properly choosing the reference frame, all B-lines are parallel to

the y axis, and the crossing line can be selected to be the x axis, so that λi = yi for

i = 1, . . . , 5.

With this parametrization, the cofactors of matrix T are

C1 = −K, C2 = K, C3 = C4 = C5 = C6 = 0,

and the Jacobian matrix determinant is given by

det(T) = K((ix − 1)pz − pxiz)iz,

99



5.9 Examples

i xi yi zi

1 −2 2 −2

2 −1 −2 −1

3 0 3 0

4 1 −2 1

5 2 2 2

Figure 5.18: Pentapod analyzed in Section 5.9.3 and its attachment coordinates (ai =
(xi, yi, 0)T and bi = p + zii).

where

K = 2(9λ2λ5 + λ5λ4 + 6λ3λ4 + λ2λ1 + 9λ1λ4

− 6λ3λ5 + 6λ3λ2 − 6λ3λ1 − 4λ1λ5 − 16λ2λ4).

In this case, the distance measure to architectural singularities given in equation (5.50)

coincides exactly with the constant factor of the determinant, that is,

C(bx, by) = K.

Again, the configuration shown in Fig. 5.18 is the furthest to an architectural singular-

ity, when −2 ≤ λi ≤ 2 for i = 1, . . . , 5. Note that K coincides with the architectural

singularity factor found in Section 5.6.4, equation (5.38).

This example is interesting because the two algebraic conditions given by Husty and

Karger in [49] are satisfied, as C4 = C5 = 0, but the manipulator is not architecturally

singular. This is not a counter-example because it is not a case in general-position,

in the sense that the coordinates of the attachments in the base and in the platform

100



5.9 Examples

a1

a2

a3

a4

a5 a1

a2

a3

a4

a5

a1

a2

a3

a4

a5

a1

a2

a3

a4

a5 a1

a2

a3

a4

a5

Figure 5.19: Ci, for i = 1, . . . , 5, for the pentapod with attachment coordinates appear-
ing in Fig. 5.18.
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do satisfy a relation, although a non-trivial one. On the other hand, this example

does show that the two algebraic conditions characterizing architectural singularities

are only valid when the leg attachments are in general position. They cannot charac-

terize architectural singularities of non-generic pentapods such as, for example, all the

members of the family of quadratically-solvable pentapods. On the contrary, both the

algebraic generalization and the geometric interpretation provided here allow to identify

architectural singularities of all kinds of pentapods with coplanar base attachments.

5.10 Non-generic cases

In the previous sections, generic cases have been considered. In a non-generic case,

attachments are not in general position. For example, one of the attachments can be

placed coincident with B. This does not lead to an architectural singularity, but the

equation for the distance measure proposed in equation (5.50) cannot be used.

5.10.1 One attachment in B

Consider the manipulator in Fig. 5.12. In the example analyzed in Section 5.7.4 attach-

ment a4 is moved towards its singular conic C4 to obtain an architecturally singular

manipulator, but if it is moved until it is made coincident with B instead (with coordi-

nates (1, 1, 0)), a non-generic manipulator with the same singularity locus is obtained

(Fig. 5.20). As a4 is the rearranged attachment, architectural singularities are deter-

mined by the C4-correspondence, which is defined similarly to (5.45), but substituting

(x4, y4, z4) by (x, y, z) instead of (x5, y5, z5), that is

C̃1 =

∣∣∣∣∣∣∣∣∣∣

x y xz yz 1
x1 y1 x1z1 y1z1 1
x2 y2 x2z2 y2z2 1
x3 y3 x3z3 y3z3 1
x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣

= 0

C̃2 =

∣∣∣∣∣∣∣∣∣∣

z y xz yz 1
z1 y1 x1z1 y1z1 1
z2 y2 x2z2 y2z2 1
z3 y3 x3z3 y3z3 1
z5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣

= 0




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Then, the manipulator is architecturally singular if, and only if, the forth leg attach-

ment coordinates satisfy the above system of equations (remember that D1,2 6= 0 for

this example). Thus, in this situation, although attachment a4 lies on its singular conic,

the manipulator is not architecturally singular because the corresponding attachment

on Λ, b4, is not on the corresponding location given by the C4-correspondence.

Equation (5.47) can be used to obtain all the singular conics of this manipulator

(which are depicted in Fig. 5.20). Thus, two options arise to obtain an architecturally

singular manipulator:

• Locate ai ∈ {a1, a2, a3 or a5} on Ci as in the example of Section 5.7.4, or

• locate b4 in Λ so that z4 makes C1 = C2 = 0. In other words, locate b4 on the

point of Λ given by the C4-correspondence.

If the first option is chosen, placing any other attachment on its singular conic

would lead to an architecturally singular manipulator with a different self-motion with

respect to the example in Section 5.7.4, as the base conic would not be the same.

If the second option is chosen, the corresponding value is z4 = −11
4 , which corre-

sponding B-line must be tangent to C4 at B. If b4 is placed on this point, an architec-

turally singular manipulator is obtained which has exactly the same self-motion as the

one in the Section 5.7.4, depicted in Fig. 5.14 because the base conic is the same, with

the same leg-lengths except for the new leg l4 = 6.318.

5.10.2 Two attachments in B

Consider again the example in Fig. 5.12, in which two base attachments are made

coincident with B, for example a1 and a5 [Fig. 5.21-(a,b,c)]. As long as these two

attachments are on B, the resulting robot cannot be architecturally singular unless

other attachments are made coincident, which would lead to a trivial architectural

singularity. Next it is discussed why.

The computation of the singular conics (again, equation (5.47) must be used) leads

to 3 degenerate conics, C2, C3 and C4 (Fig. 5.22), which consist of two lines intersecting

at B.
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a1 a2

a3

a4 = B

a5

b1

b2

b3

b4

b5

B∞

Bz4

Bz4

Step 1

Step 2

Figure 5.20: The pentapod described in Section 5.7.4, and its singular conics. The first
step of the described rearrangement locates a4 on B. Then, to make the manipulator
architecturally singular, the second step rearranges b4 so that its associated B-line is
tangent to C4 at B (dotted line in the figure).
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l4

a2

a3

a4

b1

b2

b3

b4

b5

B = a4 = a5

B∞

Figure 5.21: The same example as in Section 5.7.4, after rearranging a4 and a5 on B,
with their corresponding singular conics.
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a1

a2

a3

a4

a5

BC2

a1

a2

a3

a4

a5

BC3

(a) (b)

a1

a2

a3

a4

a5

B
C4

a4

a4

a4

a4

a5
B

C1

C5

(c) (d)

Figure 5.22: When two attachments are made coincident with B, three of the singular
conics are degenerate.

In this case, to obtain an architecturally singular manipulator, the following options

arise:

• Locate attachment a2 on C2. If a2 is moved along its corresponding B-line, the

only intersecting point with C2 is B, but three points on B form a degenerate

inverted tripod.

• Place a2 on the B3-line if the corresponding b2 is made coincident with b3, which

leads to a trivial architecturally singular Line-Line component (shaped /\\/, see

[25]-Tab. 4-3B).

• The other two singular conics C1 and C5 are not degenerate but the correspond-

ing attachments are on point B [Fig. 5.22-(d)]. Thus, to make the manipulator

architecturally singular, b1 (or b5) must be placed to the corresponding point

given by the C1-correspondence (or C5-correspondence). The C1-correspondence
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a1 a2

a3

a4

a5

b1
b2

b3
b4 b5

Figure 5.23: A Line-Plane component containing a Line-Line subcomponent.

gives z = 4, which is the same coordinate as that of b5. Otherwise, the C5-

correspondence gives z = 0, which is the coordinate of b1 (in other words, the

B5-line is tangent to C1, and the B1-line is tangent to C5). In conclusion, the only

possible architectural singularity is attained by making coincident legs 4 and 5,

which is again a trivial singularity.

In short, a Line-Plane component with two attachments coincident on B cannot be

architecturally singular, except for the architectural singularities of lower order (planar

pencils involving 3 legs, or regulus involving 4 legs (Fig. 2.4).

5.10.3 Four aligned attachments

Consider a Line-Plane component containing a Line-Line subcomponent (Fig. 5.23).

The nature of the singularities and kinematics of this example is different from the gen-

eral Line-Plane because this rigid sub-component, but the definition of the singularity-

invariant leg rearrangements for the Line-Plane still applies.

When 4 of the attachments are collinear, the reference frame in Π can be placed so

that y1 = y2 = y3 = y4 = 0. Then, the B-correspondence defined in equation (5.13) is
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of the form 



(x, y, z) ∈ R
3|

∣∣∣∣∣∣∣∣∣∣∣∣

z x y xz yz 1
z1 x1 0 x1z1 0 1
z2 x2 0 x2z2 0 1
z3 x3 0 x3z3 0 1
z4 x4 0 x4z4 0 1
z5 x5 y5 x5z5 y5z5 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0





.

The matrix T cofactors are C3 = −y5z5D3,5, C5 = y5D3,5 and C1 = C2 = C4 = C6 = 0.

Thus, the singularity invariant rearrangements are defined by the equation

C3y + C5yz = D3,5y5y(z5 − z) = 0. (5.52)

where Di,j is the determinant of the matrix formed by the first 4 rows of T̂ after

removing columns i and j.

Then, one of the legs can be substituted by another one going from a = (x, y, 0) to

b = p + zi without modifying the singularity factor as long as

• y = 0. This means that the new leg belongs to the Line-Line component, and

its corresponding x and z coordinate can take any value. This is coherent with

the singularity-invariant leg rearrangements of the Line-Line found in Chapter

4, i.e., attachments can be freely moved along the lines they belong within this

component, or

• z5−z = 0. In other words, if the attachment on Λ of the new leg is located at b5.

Then its corresponding attachment on Π can be freely moved on the base plane,

because x and y can take any value.

In conclusion, equation (5.52) can be used to define the singularity-invariant leg rear-

rangements in the Line-Line components, and in addition, the rearrangements of the

fifth leg.

Architectural singularities only occur when:

• y5 = 0. Then the fifth base attachment is also collinear, leading to a Linear

Congruence [Fig. 2.4-(d)].
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5.11 Applications on reconfigurable pentapods

• D3,5 = 0. This condition written in matrix form is

∣∣∣∣∣∣∣∣

z1 x1 x1z1 1
z2 x2 x2z2 1
z3 x3 x3z3 1
z4 x4 x4z4 1

∣∣∣∣∣∣∣∣
= 0,

which is exactly the same architectural condition condition of the Line-Line com-

ponent found in equation (4.25) (which is zero when the cross-ratios of the base

and platform attachments coincide).

This is a degenerate example of a Line-Plane component, where B is not defined

because all the B lines coincide in a unique line.

Finally, it is important to note that when a general Line-Plane is defined, by per-

forming singularity-invariant leg rearrangements, it is impossible to get a Line-Line

subcomponent. Indeed, it has been proved in Section 5.8 that when 4 of the attach-

ments are made collinear, the resulting Line-Line component is architecturally singular

by construction, as the cross-ratios of the base and platform attachments will coincide.

5.11 Applications on reconfigurable pentapods

The investment cost to purchase a parallel robot for a particular task could be worth if

there is the possibility to reconfigure it for another task. Static and dynamic reconfig-

urations can be distinguished [93], [60], [44]. Static reconfiguration denotes a manual

rebuilding of a robot which might lead to a robot with new kinematic characteristics

and a new workspace. Using singularity-invariant leg rearrangements, a less radical ap-

proach can be followed. Under this approach some leg attachments can be rearranged

so that the geometry of the robot is modified but its kinematic equations are related

through an affine relationship between their variables, before and after the reconfigu-

ration. This kind of reconfigurations can be carried out not only statically but also

dynamically without increasing significantly the control of the platform.

Consider the singularity-invariant leg rearrangements of the Line-Plane component

studied in this chapter. Each base attachment can be rearranged along its B-line.

Then, the base attachments can be placed on actuated guides like in Fig. 5.24, while

the moving platform attachments remain unaltered.
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5.11 Applications on reconfigurable pentapods

Figure 5.24: A reconfigurable leg along a guide.

In the robotics literature, reconfigurations are normally done to change the location

of singularities so that, after a rearrangement, the manipulator can reach positions that

were singular before the reconfiguration. Here, a rather different idea is proposed: the

singularity locus remains invariant, but the manipulator exhibits an improved behavior

because its versatility is increased for different tasks. For example, the static workspace

[45] (or usable workspace) can be enlarged locally so that the manipulator can move

nearer to the singularity at some locations, or the forces on the legs can be optimally

distributed for each task. The advantage is that, while the major part of reconfigurable

robots are difficult to control because the kinematic equations change after each recon-

figuration, with singularity-invariant rearrangements the kinematic equations will be

always the same.

The following two examples show two possible reconfigurable Line-Plane pentapods.

The first one is designed such that, it is impossible to fall in an architectural singularity.

The second is based on the quadratically-solvable manipulator presented in Section

5.9.3.

For reconfigurable manipulators, the geometric interpretation of architectural sin-

gularities becomes more relevant, as the manipulator has to avoid them while reconfig-

uring.

Let us define λi as the distance between B and ai, for i = 1, . . . , 5, then, it will be
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5.11 Applications on reconfigurable pentapods

shown how the measure of distance to an architectural singularity proposed in equation

(5.50) can be expressed as K = K(λ1, . . . , λ5), and that this function appears as a factor

in the determinant of the Jacobian matrix computed in Section 5.3. Maximizing K in

terms of λi, for i = 1, . . . , 5, leads to a global optimum which is independent from the

pose of the moving platform.

Maximizing K is independent of the manipulator pose. Alternatively, an optimiza-

tion that takes into account the pose of the robot can be envisaged by considering how

a force applied on the moving platform is transmitted to the base though the legs.

Consider the external force F = (f1, f2, f3) applied to a point of the platform in a given

pose. To compute the forces transmitted through each leg, τi, for i = 1, . . . , 5, one has

to solve the static equilibrium equations system. This has already been done for the

Line-Plane in Section 5.3.1, and the resulting system appears in (5.8). For a specific

task, it would be desirable to arrange the legs so that the module of these forces are as

close to each other as possible. To this end, the cost function

F = F (λ1, . . . λ5, µ) =
5∑

i=1

(τ2
i − µ)2 (5.53)

can be minimized. For comparison purposes, a commonly used local index, the manip-

ulability index defined as

M =
√

det(JJT ), (5.54)

will be also optimized.

Next, optimizations using the above global and local indices will be carried out for

two examples. The results are summarized in Tables 5.1 and 5.2. These tables are

divided into two parts which correspond to the same pose but to two different applied

forces on the platform. In both examples, the first case corresponds to a situation

in which a weight hangs at the end of the platform line, and the second one, to a

situation in which a force is exerted along the platform line itself. The first row of the

tables contains the optima obtained by maximizing |K|. The second and the third rows

contain the optima obtained by maximizing M and minimizing F , respectively, for a

particular pose.

For each optimization, the resulting values of λi, the values of |K|, F , M , and

the resulting distribution of forces are arranged by columns. The rightmost column
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5.11 Applications on reconfigurable pentapods

contains a depiction of the resulting leg arrangement. All optimizations are carried

out using a gradient descent method taking as starting point the initial configuration

defined by the given coordinates.

As expected, it will be seen how the optima resulting from maximizing |K| may not

be a good solution in some poses and hence the interest of performing optimizations

for particular poses.

5.11.1 A design free from architectural singularities

Thanks to the geometric interpretation of the architectural singularities given in Sec-

tion 5.7, it is possible to design a reconfigurable pentapod that cannot be architecturally

singular in any of its possible configurations. In the next example, point B is located

at the origin, and the B-lines are radially arranged passing though the vertices of a

pentagon.

i xi yi zi

1 2 0 0

2 6/5 8/5 4/3

3 −
√

2
√

2 −1

4 −
√

2 −
√

2 1

5 6/5 −8/5 −4/3

Figure 5.25: A reconfigurable pentapod free from architectural singularities and its
corresponding attachment coordinates (ai = (xi, yi, 0)T and bi = p + zii).

Consider the pentapod appearing in Fig. 5.25 represented in the configuration λ1 =

λ2 = λ3 = λ4 = λ5 = 2. In Section 5.7 it has been shown that a Line-Plane component

is architecturally singular when all the attachments and point B lie on the same conic.

Then, for each attachment, the corresponding singular conics are defined by the rest of
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5.11 Applications on reconfigurable pentapods

the attachments and B, so that the manipulator become architecturally singular when

this attachment is located on its singular conic. Such conics are depicted in Fig. 5.26.

If each base attachment is limited to move along half its B-line, from the origin to

infinity, it can never reach its singular conic Ci and, hence, the manipulator will never

be architecturally singular.

For a general configuration given by λ1, . . . , λ5, the determinant of the Jacobian

computed in Section 5.3 reads as

det(J) = K(iz(pyiz − iypz) + pz(pxiz − ixpz)) (5.55)

where

K = −2
√

2

225
(192

√
2λ1λ2λ5 + 42λ2λ3λ5 + 5λ1λ2λ4+

5λ1λ3λ5 + 245λ1λ4λ5 + 35
√

2λ2λ3λ4 + 245λ1λ2λ3+

42λ2λ4λ5 + 35
√

2λ3λ4λ5 + 150
√

2λ1λ3λ4).

In other words, the cofactor values are C1 = C2 = C5 = C6 = 0, C3 = −K and C4 = K.

Note that, for positive λi’s, K is always different from zero and monotone.

For this example, the distance to architectural singularities defined in equation

(5.50) reads

C(bx, by) = − 9

50
λ1λ2λ3λ4λ5K.

Maximizing |K| becomes trivial because the further ai is from point B, the bigger K

is. The optimum values always reach the upper limits given to λi, i = 1, . . . , 5. This may

seem a contradiction, as if λi, i = 1, . . . , 5, grow enough, the manipulator is approaching

to a singular pose at which all legs tend to be coplanar. This is because K does not take

into account the length of the legs. The manipulability index optimization introduces

the dividing leg lengths factor, which quickly corrects this effect. The manipulability

index depend on the pose and reads as

M =

√
K2(iz(pyiz − iypz) + pz(pxiz − ixpz))2

l21l
2
2l

2
3l

2
4l

2
5

where the length of the legs also depend on the given pose (and on λi, i = 1, . . . , 5). All

the results of the optimizations performed for this example can be found in Table 5.1.

The limits given for the optimization procedure are 0.5 ≤ λi ≤ 6 for i = 1, . . . , 5.
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a1

a2a3

a4 a5

B a1

a2a3

a4 a5

B

a1

a2a3

a4 a5

B

a1

a2a3

a4 a5

B a1

a2a3

a4 a5

B

Figure 5.26: Ci, for i = 1, . . . , 5 for the pentapod with attachment coordinates appearing
in Fig. 5.25.
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Table 5.1: Optimization results for a reconfigurable pentapod free from architectural
singularities.

p = (−1, 0,−2), i =
√

2
6 (1, 1, 4), F = (0, 0,−1)

Optimum Values Forces

Max(|K|)

λ1 = 6.0
λ2 = 6.0
λ3 = 6.0
λ4 = 6.0
λ5 = 6.0

K = −3167.8
M = 2.2
F = 0.41

τ1 = −0.23
τ2 = 0.2
τ3 = −0.88
τ4 = 0.05
τ5 = −0.52

Max(M)

λ1 = 6.0
λ2 = 6.0
λ3 = 1.68
λ4 = 2.47
λ5 = 0.5

K = −367.1
M = 0.45
F = 0.58

τ1 = −0.05
τ2 = 0.11
τ3 = −0.94
τ4 = 0.05
τ5 = −0.56

Min(F)

λ1 = 1.51
λ2 = 0.5
λ3 = 4.24
λ4 = 1.3
λ5 = 1.5
µ = 0.3

K = −54.6
M = 0.09
F = 0.05

τ1 = −0.51
τ2 = 0.64
τ3 = −0.58
τ4 = −0.35
τ5 = −0.6

p = (−1, 0,−2), i =
√

2
6 (1, 1, 4), F = −i

Optimum Values Forces

Max(|K|)

λ1 = 6.0
λ2 = 6.0
λ3 = 6.0
λ4 = 6.0
λ5 = 6.0

K = −3167.8
M = 0.13
F = 0.04

τ1 = 0.12
τ2 = −0.03
τ3 = 0.48
τ4 = 0.02
τ5 = 0.29

Max(M)

λ1 = 6.0
λ2 = 6.0
λ3 = 1.68
λ4 = 2.47
λ5 = 0.5

K = −367.1
M = 0.45
F = 0.05

τ1 = 0.02
τ2 = 0.01
τ3 = 0.51
τ4 = 0.04
τ5 = 0.32

Min(F)

λ1 = 1.67
λ2 = 0.5
λ3 = 6.0
λ4 = 0.5
λ5 = 3.64
µ = 0.07

K = −64.9
M = 0.03
F = 0.006

τ1 = 0.29
τ2 = −0.21
τ3 = 0.35
τ4 = 0.15
τ5 = 0.31
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5.11.2 A pentaglide with parallel arrangement of guides

Consider the quadratically-solvable example developed in Section 5.9.3 for which B

is at infinity and all B-lines are parallel (its reconfigurable counterpart appears in

Fig. 5.27). For this example, λi denotes the distance from each attachment to a line

crossing perpendicularly all the B-lines. By choosing properly the reference frame, all

B-lines are parallel to the y axis, and the crossing line coincides with the x axis, so

that λi = yi for i = 1, . . . , 5.

x

y

z

Figure 5.27: A reconfigurable Line-Plane prototype.

With this parametrization, the cofactors of T are

C1 = −K, C2 = K, C3 = · · · = C6 = 0 (5.56)

and the Jacobian matrix determinant is given by

det(J) = K((u − 1)pz − pxw)w (5.57)

where the constant factor is now given by

K = 2(9λ2λ5 + λ5λ4 + 6λ3λ4 + λ2λ1 + 9λ1λ4

− 6λ3λ5 + 6λ3λ2 − 6λ3λ1 − 4λ1λ5 − 16λ2λ4) (5.58)

In this case, the distance measure to the architectural singularity, given in equation

(5.50), coincides exactly with the constant factor

C(Bx, By) = K. (5.59)
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Optimization results for this example can be found in Table 5.2. The limits given for

the guides are −5 ≤ λi ≤ 5 for i = 1, . . . , 5.
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Table 5.2: Optimization of the quadratically-solvable pentapod

p = (−1, 0,−3), i =
√

2
6 (1, 1, 4), F = (0, 0,−1)

Optimum Values Forces

Max(|K|)

λ1 = 5.0
λ2 = −5.0
λ3 = 5.0
λ4 = −5.0
λ5 = 5.0

K = −3200
M = 0.96
F = 0.03

τ1 = 0.04
τ2 = −0.15
τ3 = −0.45
τ4 = −0.07
τ5 = 0.18

Max(M)

λ1 = 0.8982
λ2 = −3.5652
λ3 = 1.6421
λ4 = −5.
λ5 = 4.0862

K = −1257.1
M = 2.26
F = 0.08

τ1 = 0.02
τ2 = −0.06
τ3 = −0.57
τ4 = 0.01
τ5 = 0.16

Min(F)

λ1 = 1.8652
λ2 = −0.6671
λ3 = 5.0
λ4 = −1.5846
λ5 = 2.2309
µ = 0.0470

K = −537.5
M = 1.46
F = 0.002

τ1 = 0.06
τ2 = −0.25
τ3 = −0.25
τ4 = −0.23
τ5 = 0.23

p = (−1, 0,−3), i =
√

2
6 (1, 1, 4), F = −i

Optimum Values Forces

Max(|K|)

λ1 = 5.0
λ2 = −5.0
λ3 = 5.0
λ4 = −5.0
λ5 = 5.0

K = −3200
M = 0.96
F = 0.002

τ1 = −0.003
τ2 = 0.09
τ3 = 0.23
τ4 = 0.05
τ5 = −0.03

Max(M)

λ1 = 0.8982
λ2 = −3.5652
λ3 = 1.6421
λ4 = −5.,
λ5 = 4.0862

K = −1257.1
M = 2.26
F = 0.006

τ1 = 0.01
τ2 = 0.04
τ3 = 0.30
τ4 = 0.01
τ5 = −0.02

Min(F)

λ1 = 1.9677
λ2 = −1.0624
λ3 = 4.1937
λ4 = −0.6947
λ5 = 1.3293
µ = 0.0113

K = −354.9
M = 1.06

F = 0.0003

τ1 = −0.01
τ2 = 0.13
τ3 = 0.14
τ4 = 0.13
τ5 = −0.05
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Based on this architecture, a prototype has been build at IRI [see picture in Fig

5.28-(top)]. The spherical joints of the base are build using universal joints with an

additional rotational axis, and they are all on actuated guides as show in Fig. 5.28-

(bottom-left). The universal joints of the platform are aligned so that one of their axis

is made coincident with the axe of the platform bar [Fig. 5.28-(bottom-right)].

119



5.11 Applications on reconfigurable pentapods

Figure 5.28: Prototype of the reconfigurable quadratically-solvable pentapod and its
joint implementations.
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Chapter 6

The Line-Body component

6.1 Rewriting the Jacobian matrix determinant

The Line-Body component is formed by five legs attached to a moving platform through

collinear attachments. As in the previous section, let Λ denote the line to which these

collinear attachments are incident. According to Fig. 6.1, the pose of Λ is defined by

a position vector of a point in it, p = (px, py, pz)
T , and a unit vector, i = (ix, iy, iz)

T ,

pointing in its direction. Finally, let leg i have base and platform attachments with

coordinates, in the base reference frame, ai = (xi, yi, zi)
T and bi = p+rii, i = 1, . . . , 5,

respectively.

Let us assume a Stewart-Gough platform containing a Line-Body component. As

it has been discussed before, the singularities of a Stewart-Gough platform are given

by the determinant of the Jacobian matrix whose rows are the Plücker coordinates of

the leg lines:

J =




cT
1
...

cT
6


 where ci =

(
bi − ai

ai × (bi − ai)

)
.

Then, with the introduced notation,

ci =




px + riu − xi

py + riv − yi

pz + riw − zi

zi(py + r1iy) − yi(pz + riiz)
xi(pz + r1iz) − zi(px + riix)
yi(px + r1ix) − xi(py + riiy)



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p i

x
y

z
a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

Λ

Figure 6.1: Notation associated with a Line-Body component.

for i = 1, . . . , 5.

As it has been said before, when a Stewart-Gough platform contains rigid com-

ponents, the determinant of its Jacobian factors into several terms. For the analyzed

platform, the Jacobian determinant factors as follows:

det(J) = F1(c1, ...c5)F2(c6), (6.1)

where

F2(c6) = (px − x6)kx + (py − y6)ky + (pz − z6)kz

that depends on k = i × j, R = (i, j,k) being the rotation matrix defining the plat-

form orientation. Thus, this factor only depends on the sixth leg, and F1(c1, ...c5)

accounts for the singularities of the Line-Body component embedded in the considered

platform. It can be checked, using a computer algebra system, that this polynomial
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can be expressed as the determinant of the following matrix:

T =




1 ix iy iz px py pz 0
0 px py pz 0 0 0 1
0 0 0 0 ix iy iz 0
r1 x1 y1 z1 r1x1 r1y1 r1z1 1
r2 x2 y2 z2 r2x2 r2y2 r2z2 1
r3 x3 y3 z3 r3x3 r3y3 r3z3 1
r4 x4 y4 z4 r4x4 r4y4 r4z4 1
r5 x5 y5 z5 r5x5 r5y5 r5z5 1




. (6.2)

This is a very convenient representation of the singularities of a Line-Body compo-

nent because the first three rows depend only on its pose and the remaining four, on

the coordinates of the attachments.

Let T̂ denote the 5×8 matrix formed by the last five rows of T. Since the coefficients

of the singularity polynomial of the Line-Body component are the 5× 4 minors of this

matrix, the following two observations arise:

1. If T̂ is rank defective, the Line-Body component will always be singular irrespec-

tive of its leg lengths. In other words, it will be architecturally singular.

2. If one of the five rows of T̂ is substituted by another row linearly dependent on

these five row vectors, the resulting matrix will have the same 5× 5 minors up to

a constant multiple. As in the previous chapter, this observation will allow, in the

next section, to obtain leg rearrangements that leave the Line-Body component

singularities invariant.

6.2 Singularity-invariant leg rearrangements rules

A leg rearrangement consist in the substitutution of a leg i by another leg with base and

platform attachment coordinates a = (x, y, z)T and b = pT + riT , respectively. Next,

the conditions that (x, y, z, r) must satisfy to leave the singularities of the Line-Body

unaltered will be deduced.
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6.2 Singularity-invariant leg rearrangements rules

To this end, consider the matrix

P =




r1 x1 y1 z1 r1x1 r1y1 r1z1 1
r2 x2 y2 z2 r2x2 r2y2 r2z2 1
r3 x3 y3 z3 r3x3 r3y3 r3z3 1
r4 x4 y4 z4 r4x4 r4y4 r4z4 1
r5 x5 y5 z5 r5x5 r5y5 r5z5 1
r x y z rx ry rz 1




(6.3)

and take (x, y, z, r) such that P is rank defective. Then, if you substitute any row in T̂

by (r, x, y, z, rx, ry, rz, 1), all the 5 × 5 minors of the resulting matrix will be equal to

those of T̂ up to a constant multiple. Hence, the corresponding singularity polynomial

will be also the same, up to a constant factor. In other words, if any of the legs of

the analyzed Line-Body is substituted by another leg whose attachments coordinates

are defined by a set of values for (x, y, z, r) that make P rank defective, the singularity

locus of the pentapod will remain unchanged.

If Gaussian Elimination is applied on P, the last row of the resulting matrix is:

1

P678

(
0 0 0 0 0 P78 P68 P67

)
,

where Pij is the determinant of the matrix obtained from P after removing the columns

i and j, and Pijk the determinant of the matrix formed by the first five rows of P after

removing the columns i, j and k. Then, assuming that P567 6= 0, P is rank defective
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6.2 Singularity-invariant leg rearrangements rules

if, and only if,

P78 =

∣∣∣∣∣∣∣∣∣∣∣∣

r1 x1 y1 z1 r1x1 r1y1

r2 x2 y2 z2 r2x2 r2y2

r3 x3 y3 z3 r3x3 r3y3

r4 x4 y4 z4 r4x4 r4y4

r5 x5 y5 z5 r5x5 r5y5

r x y z rx ry

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

P68 =

∣∣∣∣∣∣∣∣∣∣∣∣

r1 x1 y1 z1 r1x1 r1z1

r2 x2 y2 z2 r2x2 r2z2

r3 x3 y3 z3 r3x3 r3z3

r4 x4 y4 z4 r4x4 r4z4

r5 x5 y5 z5 r5x5 r5z5

r x y z rx rz

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

P67 =

∣∣∣∣∣∣∣∣∣∣∣∣

r1 x1 y1 z1 r1x1 1
r2 x2 y2 z2 r2x2 1
r3 x3 y3 z3 r3x3 1
r4 x4 y4 z4 r4x4 1
r5 x5 y5 z5 r5x5 1
r x y z rx 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0





(6.4)

Since this system is linear in x, y, and z, it can be rewritten, after cofactor expansion,

in matrix form as:



P278 − P578r P678r − P378 P478

P268 − P568r −P368 P678r + P468

P267 − P567r −P367 P467







x
y
z


 =




P178r
P168r

P167r − P678


 , (6.5)

whose solution, using Cramer’s rule, yields:

x =
f1(r)

f(r)
, y =

f2(r)

f(r)
, z =

f3(r)

f(r)
, (6.6)

where f(r), f1(r), f2(r) and f3(r) are cubic polynomials in r. Thus, it can be concluded

that all singularity-invariant leg substitutions will be defined by a correspondence be-

tween points on Λ and points on a cubic space curve attached to the base (Fig. 6.4).

In other words, for each platform attachment b = p + ri, there is a point on the

cubic curve defined by the coordinates in equation (6.6).
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6.3 Classification of Line-Body designs

Figure 6.2: In general, a singularity-invariant leg substitution is defined by a 1-1 cor-
respondence between the points on the moving platform and the points on a cubic
attached to the base. Some candidates for a leg substitution appear in gray. The coor-
dinates appearing in the graphic correspond to the numeric example in Section 6.5.1.

6.3 Classification of Line-Body designs

Generally, most interesting cases will occur when the cubic curve factor into lower

degree terms, which are degenerate cases in which the determinant of the linear system

(6.5) is null, i.e., the case in which the solutions given by (6.6) are undefined because

f(r) = 0 for a given r. In this case, two situations arise:

1. System (6.5) is consistent. One of the equations can be discarded and, for a given

value of r, infinitely many solutions can be found for (x, y, z) which correspond

to points of a line (as they correspond to the intersection of two planes).

2. System (6.5) is inconsistent. It represents a system of three parallel planes.
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6.3 Classification of Line-Body designs

If the determinant of the linear system (6.5) is null, the system is consistent if, and

only if, f1(r) = 0, f2(r) = 0, or f3(r) = 0. Lets suppose that ρ1 is a real root of f(r) = 0

that makes the system consistent. Then, one of the equations can be discarded and the

system solution is the intersection line between the two remaining plane equations. In

other words, if one of the platform attachments of the new leg is placed at bρ1 = p+ρ1i,

the corresponding base attachment can be placed at any point on the corresponding

line in the base. Thus, there is a point-to-line correspondence, in a similar way as in

the Point-Line component. Indeed, in this situation, an additional leg can be placed

from bρ1 to the line, forming a Point-Line component. Thus, the number of real roots

of f(r) = 0 determine the number of Point-Line components, with the difference, with

respect to Chapter 4, that now, a Point-Line component is not necessarily explicit, but

it can be obtained through the proper leg rearrangement.

From now on, a distinction between implicit and explicit components will be made.

An explicit component is the one containing all its legs. These components can be

detected in a Stewart-Gough platform at a first glance. On the contrary, an implicit

component appears after performing a set of singularity-invariant leg rearrangements.

The possible architectures of a pentapod can be classified depending on the number

of real roots of f(r) = 0 that lead to a consistent linear system. Depending on this

number, the cubic curve obtained for the general case degenerates into a plane conic

curve and a line, or a set of lines. Table 6.1 summarizes the different possibilities.

Table 6.1: The 4 possible architectures for a pentapod
Number of consistent Base attachment locus

real roots

0 1 cubic curve

1 1 line and 1 plane conic

2 3 non-concurrent lines

3 3 concurrent lines

6.3.1 No consistent real roots

For any non-consistent real root, system (6.5) gives a solution line at infinity, but

the finite curve is still of degree 3. This means that there is a finite attachment on

the platform for which its corresponding attachment lies at infinity. Fig. 6.3 shows a
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6.3 Classification of Line-Body designs

manipulator where r = 2 is a non-consistent real root of f(r) = 0. Same colors in the

platform and in the base cubic represent corresponding points through (6.6). Such root

appears in the platform as the discontinuity of colors between red and green, which

correspond to points of the cubic curve approaching to infinity.

Figure 6.3: Corresponding colors in the platform and in the base cubic illustrate the
correspondence when there are no consistent real roots.

This case represents the most general case of pentapods where the space cubic does

not factor into lower degree curves. Note that there will always be at least one real root

for the polynomial f(r) because it is of degree 3 and complex roots appear in complex

conjugate pairs.

6.3.2 One consistent real root

Suppose ρ1 is the only real consistent root, then

f(r) =(r − ρ1)f̃(r),

f1(r) =(r − ρ1)f̃1(r),

f2(r) =(r − ρ1)f̃2(r),

f3(r) =(r − ρ1)f̃3(r),

(6.7)
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6.3 Classification of Line-Body designs

where f̃(r), f̃1(r), f̃2(r) and f̃3(r) are polynomials of degree 2 for which ρ1 is not a

root, i.e. f̃(ρ1) 6= 0 and f̃i(ρ1) 6= 0 for i = 1, 2, 3. Then, the system (6.5) has two sets

of solutions. First, when r = ρ1, the system becomes degenerate so that only two of its

equations are independent. Let pρ1 and qρ1 be that two independent equations. Note

that they are linear in x, y and z. Then, the first solution set is

∆ = {(x, y, z, r) | r = ρ1, qρ1(x, y, z) = 0, pρ1(x, y, z) = 0} .

Interpreting this set of solutions in the space of leg attachments, it can be concluded

that, for any attachment with platform coordinate r = ρ1, the corresponding base

attachment can be located on any point of the line defined by the intersection of the two

planes pρ1 and qρ1 , say Λ1. Thus, this solution corresponds to a Point-Line component.

The second set of solutions can be obtained substituting (6.7) into the general

solution obtained in equation (6.6), yielding

L − C =

{
(x, y, z, r) | r = λ, x =

f̃1(λ)

f̃(λ)
, y =

f̃2(λ)

f̃(λ)
, z =

f̃3(λ)

f̃(λ)
; λ ∈ R

}
. (6.8)

Interpreting this set of solutions in the space of leg attachments, a leg belongs to the

set L− C when its platform attachments lies in a point of Λ while its base attachment

belong to a conic with parametric equation C = {(x, y, z) | x = f̃1(λ)

f̃(λ)
, y = f̃2(λ)

f̃(λ)
, z =

f̃3(λ)

f̃(λ)
; λ ∈ R}. That is, this set represents a one-to-one correspondence between points

on line Λ, and points on conic C.

Note that C is well defined also when r = ρ1. Then, it can be concluded that line

Λ1 and conic C have one intersecting point, because the evaluation of (6.8) at r = ρ1

gives a point on the conic that must also belong to Λ1, precisely because r = ρ1.

The existence of a factor of degree 1 implies that other factor is of degree 2 and, as

a consequence, it defines a planar curve (all quadratic curves are planar). The other

way round, if four of the attachments are coplanar, then the cubic factors into a line

and a conic. Indeed, suppose that four attachments are coplanar. Then, choosing

conveniently the reference frame and renumbering the attachments, zi = 0 for i =

1, 2, 3, 4 without loss of generality. In this situation, note that the equation defined by

P68 = 0 in (6.4) factors as

P68 = z(r − r5)z5K.
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6.3 Classification of Line-Body designs

In other words, the second row of the augmented matrix of system (6.5) has the form

(
0 0 (r − r5)z5K 0

)
,

and hence, r = r5 makes such matrix rank deficient, i.e., r = r5 is a real root that

makes the system consistent. The cubic curve attached to the base degenerates into

line Λ1 and conic C, with one coincident point. Finally, note that there can only be two

attachments placed on Λ1, whose corresponding platform attachments must coincide,

because the solution ∆ implies the existence of a Point-Line component. Therefore,

three situations can arise

• Two attachments coincident on the platform, whose corresponding base attach-

ments are on line Λ1. Then, two legs form an explicit Point-Line component.

• Four base attachments are coplanar and belonging C. The remaining leg base

attachment lies on Λ1. Thus, there is an implicit Point-Line component.

• All the base attachments are coplanar and belong to the conic. This would lead

to an architectural singularity, because all points belong to a conic section in

projective correspondence (the projectivity given by (6.8)).

In Section 6.5.2 a numerical example is presented.

6.3.3 Two consistent real roots

Suppose now that r = ρ1 and r = ρ2 are the only two consistent roots. Then, neces-

sarily, the third one must be non-consistent.

f(r) =(r − ρ1)(r − ρ2)(r − ρ3),

f1(r) =k1(r − ρ1)(r − ρ2)(r − ρ4),

f2(r) =k2(r − ρ1)(r − ρ2)(r − ρ5),

f3(r) =k3(r − ρ1)(r − ρ2)(r − ρ6),

(6.9)

with ρ3 6= ρi for i = 4, 5, 6. Then, system (6.5) has 3 different solution sets. Two of

them corresponding to Point-Line components:

∆1 = {(x, y, z, r) | r = ρ1, q1(x, y, z) = 0, p1(x, y, z) = 0}

∆2 = {(x, y, z, r) | r = ρ2, q2(x, y, z) = 0, p2(x, y, z) = 0}
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6.3 Classification of Line-Body designs

where pi, qi are two independent equations from system (6.5) after substituting r by ρi

(similarly as done in the previous case). Each Point-Line component defines the line

Λi given by the intersection of planes pi and qi, i = 1, 2.

The other solution set can be obtained substituting (6.9) in the general solution

obtained in (6.6), yielding

L =

{
(x, y, z, r) | r = λ, x = k1

λ − ρ4

λ − ρ3
, y = k2

λ − ρ5

λ − ρ3
, z = k3

λ − ρ6

λ − ρ3
; λ ∈ R

}
.

Again, interpreting this solution in the space of leg attachments, for each platform point

in Λ, described by the coordinate r, the solution set L gives a point on a parametric line

attached to the base (and vice-versa). Let Λ3 be such line in the base. The platform

point with coordinate r = ρ3 corresponds to the point at infinity of Λ3.

Again, note that Λ3 is well defined also when r = ρi, i=1,2. As a consequence, Λ1

and Λ2 intersect Λ3 on the points

(
k1(ρ1 − ρ4)

ρ1 − ρ3
,
k2(ρ1 − ρ5)

ρ1 − ρ3
,
k3(ρ1 − ρ6)

ρ1 − ρ3

)
and

(
k1(ρ2 − ρ4)

ρ2 − ρ3
,
k2(ρ2 − ρ5)

ρ2 − ρ3
,
k3(ρ2 − ρ6)

ρ2 − ρ3

)
,

respectively.

Finally, Λ1 and Λ2 do not intersect. This can be proved by reductio ad absurdum.

To this end, suppose that Λ1 and Λ2 intersect at a0 = (x0, y0, z0), this means that one

leg can be rearranged to go from a0 to bρ1 = p + ρ1i and another leg from a0 to bρ2 .

Then, there is a Point-Line component with the point defined by a0 and, using results

in Chapter 4, singularity-invariant leg rearrangements can be done so that one of these

legs can be substituted by another one from a0 to any bρ. This is a contradiction with

the solution set L because, for any value of r, there is only one possible attachment,

which is different for each r.

In conclusion, the locus of the cubic curve for this family degenerates into 3 lines

in space: two skew lines Λ1 and Λ2 and a third line Λ3 crossing them. In Section 6.5.3

a numerical example is presented.
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6.3.4 Three consistent real roots

Proceeding in a similar way as before, the existence of three consistent real roots ρ1,

ρ2 and ρ3 implies that

f(r) =(r − ρ1)(r − ρ2)(r − ρ3),

f1(r) =k1(r − ρ1)(r − ρ2)(r − ρ3),

f2(r) =k2(r − ρ1)(r − ρ2)(r − ρ3),

f3(r) =k3(r − ρ1)(r − ρ2)(r − ρ3),

(6.10)

First of all, is it clear that there are 3 Point-Line components corresponding to the

solution sets

∆1 = {(x, y, z, r) | r = ρ1, q1(x, y, z) = 0, p1(x, y, z) = 0}

∆2 = {(x, y, z, r) | r = ρ2, q2(x, y, z) = 0, p2(x, y, z) = 0}

∆3 = {(x, y, z, r) | r = ρ3, q3(x, y, z) = 0, p3(x, y, z) = 0}

where qi, pi are two independent equations from the system (6.5) after substituting r

by ρi, for i = 1, 2, 3. Let Λi be the line given by the intersection of the planes qi and

pi.

Secondly, there is an additional Point-Line component. To find it, substitute (6.10)

into the general solution given by (6.6) and consider any value of r 6= ρi for i = 1, 2, 3.

The resulting solution set is

∆4 = {(x, y, z, r) | r = λ, x = k1, y = k2, z = k3, λ ∈ R}

which means that any leg whose base attachment is a = (k1, k2, k3) can be rearranged to

any platform attachment b = p+ ri. In other words, it corresponds to an upside-down

Point-Line component, where the line of the component is Λ.

Finally, for any i = 1, 2, 3, consider a leg from the platform attachment bρi
= p+ρii

to the base attachment a = (k1, k2, k3). On the first hand, these legs belong to the

solution set ∆4 for Λ = ρi for i = 1, 2, 3. On the other hand, they also belong to the

solution set ∆i, thus, a must be on the line Λi. As a consequence, a belongs to the

three lines, Λ1, Λ2 and Λ3.
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In conclusion, the cubic curve degenerates into three lines intersecting at a =

(k1, k2, k3).

Section 6.5.4 shows a numerical example of a manipulator of this type.

6.4 Architectural singularities

The architectural singularities of a Line-Body component will be defined by those ge-

ometric parameters that make T̂ rank-deficient. In this section it will be shown how,

rearranging a single leg, no architectural singularities can be obtained in general.

Consider the 5 × 8 matrix

T̂ =




r1 x1 y1 z1 r1x1 r1y1 r1z1 1
r2 x2 y2 z2 r2x2 r2y2 r2z2 1
r3 x3 y3 z3 r3x3 r3y3 r3z3 1
r4 x4 y4 z4 r4x4 r4y4 r4z4 1
r5 x5 y5 z5 r5x5 r5y5 r5z5 1




.

The rank-deficiency of this matrix can be characterized by performing Gaussian Elim-

ination on it, which leads to a row with 4 zero elements of the form

1

P5678

(
0 0 0 0 P678 P578 P568 P567

)

where P5678 is the determinant of the matrix obtained from the first 4 rows of P after

removing columns 5, 6, 7 and 8, that is,

P5678 =

∣∣∣∣∣∣∣∣

r1 x1 y1 z1

r2 x2 y2 z2

r3 x3 y3 z3

r4 x4 y4 z4

∣∣∣∣∣∣∣∣
.

Note that P5678 = 0 if, and only if, ai for i = 1, 2, 3, 4 are coplanar.

Now suppose that the fifth leg is rearranged, and its new attachment coordinates are

(x, y, z, r). Then, the locus of poses of the fifth leg attachments that make the manipula-

tor architecturally singular is defined by the system P678 = 0, P578 = 0, P568 = 0, P567 = 0

where x5, y5, z5 and r5 have been substituted by x, y, z and r.

First of all, note that {x = xi, y = yi, z = zi, r = ri} for i = 1, 2, 3, 4 are solutions of

the system, because they will make the coordinates of the fifth leg coincide with one of
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the existent legs. Therefore, such a rearrangement would lead to a trivial architectural

singularity.

Now, it will be shown that the system has no more solutions. First, the system is

rearranged in the following matrix form

M(r)




x
y
z


 = m(r)

where M(r) and m(r) are a matrix and a vector depending on r. The augmented

matrix of this system is a 4 × 4 matrix of the form (M|m), and the solutions of the

system must correspond to zeros of det(M|m). In other words, for each solution of the

system {P678 = 0, P578 = 0, P568 = 0, P567 = 0}, the corresponding value for r must be

a root of det(M|m).

Using a symbolic computation tool, it can be checked that

det(M|m) =
(r − r1)(r − r2)(r − r3)(r − r4)K

P5678

where

K = (x3y2 − x3y4 − x2y3 + x2y4 − x4y2 + x4y3)z1

+ (x1y3 − x3y1 + x4y1 − x4y3 − x1y4 + x3y4)z2

+ (x4y2 + x1y4 − x1y2 − x4y1 + x2y1 − x2y4)z3

+ (x3y1 − x1y3 − x2y1 − x3y2 + x1y2 + x2y3)z4

is a constant. Thus, the only solutions of the system correspond to the other 4 legs.

For some cases not in general position, rearranging a leg could lead to an architec-

tural singularity. For example, for the family with one real consistent root, the existence

of a conic implies that 4 of the attachments are already coplanar. Therefore, P5678 = 0.

Then, in Section 6.3.2, it has been shown that if the fifth leg is made coplanar, the

manipulator become architecturally singular.

6.5 Examples

In this section, for each type of pentapod listed in Table 6.1, a numerical example is

analyzed.
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6.5.1 No consistent real roots

i xi yi zi ri

1 0 0 0 0

2 6 0 10 1

3 13 10 12 3

4 9 16 7 5

5 −3 16 3 7

Figure 6.4: Generic pentapod analyzed in Section 6.5.1 with its corresponding attach-
ment coordinates (ai = (xi, yi, zi)

T ,bi = p + rii).

Consider the pentapod in Fig. 6.4. To guarantee the rank-deficiency of P in (6.3)

after substituting the values, the following systems of equations must be satisfied:



288r − 6612 6306 5676
−3136 288r + 3904 3520
1076 −2306 288r − 1484







x
y
z


 =




18816r
16384r
−5504r


 , (6.11)

whose determinant is 2654208(9r3−131r2−r−1365). The roots are 15.22, −0.33+3.14i,

and −0.33− 3.14i. The evaluation of system (6.11) for r = 15.22 yields an inconsistent

linear system. As a consequence, the base attachment locus for a leg substituting any

of the legs of the analyzed pentapod that would leave its singularity locus invariant is

a cubic.

Solving (6.11) using Cramer’s rule gives

x =
12r(49r2 − 240r − 553)

9r3 − 131r2 − r − 1365
,

y =
256r(−23r + 2r2 + 21)

9r3 − 131r2 − r − 1365
,

z =
−4r(−880r + 4557 + 43r2)

9r3 − 131r2 − r − 1365
.
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Fig. 6.4 shows the manipulator and the cubic curve defined by these equations. All

legs in gray satisfy the correspondence between r and (x, y, z) through the above curve

parameterization, so any of the original pentapod legs can be substituted by any of

these legs in gray without modifying the singularity locus of the analyzed pentapod.

For the point of the platform corresponding to the coordinate r = 15.22, the system

(6.11) in homogeneous coordinates gives the solution line

(2.495592037y, y,−0.1308360559y, 0)H

which lies at infinity. In practice, no attachment can be placed on b = p + 15.22i.

6.5.2 One consistent real root

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

q

Λ1

i xi yi zi ri

1 0 0 0 0

2 −2 2
√

3 −1 1

3 −9 4
√

3 −3 3

4 −8 0 −1 5

5 −6 −2
√

3 0 7

Figure 6.5: Pentapod analyzed in Section 6.5.2 and its corresponding attachment co-
ordinates (ai = (xi, yi, zi)

T ,bi = p + rii). One consistent real root results in a base
attachment locus formed by a line and a conic.

Consider the pentapod in Fig. 6.5. To guarantee the rank-deficiency of the matrix

P in (6.3) the following system of equations must be satisfied:




√
3(−18r + 70) 84 40

√
3

−144 18
√

3(1 − r) 72

20
√

3 24
√

3(50 − 18r)







x
y
z


 =




24r
√

3
216r

−24r
√

3


 . (6.12)
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The solution of the above system, obtained using Cramer’s rule, is

x =
−4r(r + 11)

3r2 − 14r + 35
,

y =
−12r(r − 5)

√
3

3r2 − 14r + 35
,

z =
4r(r − 7)

3r2 − 14r + 35
.

which corresponds to a conic parameterized in r.

The determinant of system (6.12) is −5832
√

3(3r2 − 14r +35)(r− 3). The only real

root is r = 3. After evaluating (6.12) for this real root, a consistent degenerate system

is obtained whose solution is:

Λ1 =

{
(x, y, z) | x = λ − 6, y = −2(λ − 3)

√
3

3
, z = λ; λ ∈ R

}
,

that is, a line parameterized in λ. Note that the intersecting point of the conic and the

line can be obtained substituting r = 3 on the parameterized conic, yielding the point

q = (−42
5 ,

18
√

(3)

5 , −12
5 ), which can also be obtained evaluating Λ1 at λ = −12

5 .

Summarizing, the locus of the base attachments consists of a line and a conic (see

Fig. 6.5).

In the design process, is it possible to fix the location of the line beforehand, because

one can always define a pentapod containing a Point-Line component. When this

happens, the cubic curve attached to the platform will factor into a conic and a line,

and the line will be defined by the two base attachments belonging to the Point-Line

component. Later, the Point-Line can always be made to be implicit by rearranging

one of its legs.

6.5.3 Two consistent real roots

In a similar way as in the previous example, a manipulator with two Point-Line com-

ponents will correspond to the family of two real roots as long as the lines that define

the these components do not intersect at a point. Consider the pentapod in Fig. 6.6.

It has two Point-Line components, the first one from b1 to Λ1 and the second one from

b3 to Λ2, and, thus, the cubic curve must factor into 3 lines.
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x

y

z

a1

a2

a3

a4

a5

b5

b1 = b2

b3 = b4

Λ
Λ1

Λ2

Λ3 i xi yi zi ri

1 3 2 0 -1

2 3 -2 0 -1

3 -3 0 2 1

4 -3 0 -2 1

5 0 -3 3 3

Figure 6.6: A pentapod with two real consistent roots analyzed in Section 6.5.3 and its
attachment coordinates (ai = (xi, yi, zi)

T ,bi = p + rii).

After substituting the coordinates in equation (6.5), the system reads as



1152 864 + 864r 0
−576 0 864r − 864

288r − 96 0 0







x
y
z


 =




−3456r
1728r

288r − 864


 .

and its system determinant is 71663616(−1+3r)(1+r)(−1+r). The only non-consistent

root is r = 1/3. The resolution of the system gives three solution sets:

∆1 = {(x, y, z, r) | r = 1, x = −3, y = 0, z = λ; λ ∈ R},

∆2 = {(x, y, z, r) | r = −1, x = 3, y = λ, z = 0;λ ∈ R},

L = {(x, y, z, r) | r = λ, x =
3(−3 + λ)

−1 + 3λ
, y = −12(λ − 1)

3λ − 1
, z =

6(1 + λ)

3λ − 1
; λ ∈ R}

Therefore, there are two point-line correspondences, and the last solution gives a point-

to-point correspondence between two lines, the platform line Λ and Λ3 with parametric

equation [x = 3(−3+t)
−1+3t

, y = −12(t−1)
3t−1 , z = 6(1+t)

3t−1 ]. The legs with platform attachments

coordinates b1 = b2 and b3 = b4 correspond to solutions in ∆1, ∆2 respectively. The

fifth leg attachments correspond to the solution set L (b5 corresponds to a5 following

the parameterization in L).
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x

y

z
a1

a2

a3

a4

a5

b1

b2

b5

b3 = b4

Λ

Λ1

Λ2

Λ3

x

y

z
a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

Λ

Λ1

Λ2

Λ3

(a) (b)

Figure 6.7: Two consistent real root results in a base attachment locus formed by 3
space lines crossing two by two.

Now, two possibilities arise:

• One Point-Line is made to disappear through a rearrangement. Then, the re-

sulting manipulator has one remaining Point-Line component and two legs with

attachments going from Λ3 to Λ. In Fig. 6.7-(a), the first leg has been substituted

by a new leg from r = 7
5 to (−3/2,−3/2, 9/2).

• Two Point-Line components are made to disappear through a rearrangement.

Then, the resulting manipulator has three legs with attachments going from from

Λ3 to Λ. In Fig. 6.7-(b), also the fourth leg has been substituted by a leg from

r = 2 to (−3/5,−12/5, 18/5).

6.5.4 Three consistent real roots

Consider the pentapod in Fig. 6.8. Substituting the table values in (6.5) yields



2304 − 512r −128 128
−256 2688 − 512r 384
256 384 2688 − 512r







x
y
z


 = 0 (6.13)
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a3 a4

a5

a1 = a2

b1

b2

b3

b4

b5

i xi yi zi ri

1 0 0 0 0

2 0 0 0 2

3 2 2 −2 4

4 4 −4 −4 5

5 0 −4 −4 6

Figure 6.8: Pentapod analyzed in Section 6.5.4 and its attachment coordinates (ai =
(xi, yi, zi)

T ,bi = p + rii). In this case the cubic curve degenerates into three lines.

whose determinant is −134217728(r− 5)(r− 6)(r− 4). All the roots are real and make

the system consistent. This system has the trivial solution x = y = z = 0 for any value

of r. In other words, any leg can be substituted, without modifying the singularities of

the analyzed pentapod, by any other with attachments located at (0, 0, 0) in the base

and anywhere in the moving platform.

Now, consider one of the above roots, for example r = 4. The substitution of this

value in (6.13) yields
2x − y + z = 0
2x − 5y − 3z = 0
2x + 3y + 5z = 0





which is a consistent linear system. That is, the three plane equations intersect at the

same line. Solving this system for x and y leads to a parametrization of such line:

{(x, y, z) | x = −t, y = −t, z = t, t ∈ R}. Proceeding in a similar way for the other

two roots, two more line parameterizations are obtained. Summarizing, there are four

solution sets, namely:

∆1 = {(x, y, z, r) | r = 4, x = −λ, y = −λ, z = λ;λ ∈ R}

∆2 = {(x, y, z, r) | r = 5, x = λ, y = −λ, z = λ;λ ∈ R}
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a1

a2

a3
a4

a5

b1

b4

b5

b2 = b3

a3 a4

a5

a1 = a2

b1

b4

b5

b2 = b3

(a) (b)

Figure 6.9: The base attachments can be moved along the lines without modifying
the singularity locus of the pentapod. This permits coalescing two attachments in the
moving platform (a), or two attachments in the base and the platform at the same time
(b).

∆3 = {(x, y, z, r) | r = 6, x = 0, y = λ, z = λ;λ ∈ R}

∆4 = {(x, y, z, r) | r = λ, x = 0, y = 0, z = 0;λ ∈ R}

In Fig. 6.8, the legs in gray have attachments whose coordinates are in one of

the above solution sets. The legs with platform attachments coordinates b3, b4 and b5

correspond to solutions in ∆1, ∆2 and ∆3, respectively. The solution set ∆4 corresponds

to legs with base attachment at (0, 0, 0) and platform attachment anywhere in the

moving platform line.

Several equivalent manipulators, from the point of view of their singularities, can

be obtained by substituting only leg 2. For example, in Fig. 6.9-(a), this leg has been

substituted by a leg whose attachments coordinates are in ∆1. Its attachments are

a2 = (4, 4,−4) and b2 = p + 4i, thus making coincident b2 and b3. In Fig. 6.9-(b),

leg 2 has been substituted by a leg whose attachments coordinates are in ∆4. In this

case, the new attachments have coordinates a2 = (0, 0, 0) and b2 = p+ 4i thus making

coincident a1 with a2, and b2 with b3.

If actuated guides are placed on the lines defined by ∆1, ∆2, and ∆3, the ma-
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nipulator can reconfigure its base attachments following singularity-invariant leg rear-

rangements. This increases its usable workspace because, though singularities remain

unchanged, its stiffness does change at each reconfiguration, so that it can be optimized

for each specific task at different regions of the workspace.
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Chapter 7

The Plane-Plane component

7.1 Finding the affine relation between leg lengths

The Plane-Plane is the first component that represents a full Stewart-Gough platform,

generally called doubly-planar Stewart-Gough platform to denote that both base and

platform attachments are coplanar. Its singularity-invariant leg rearrangements were

first studied in [16]. Here, the results presented therein are extended.

Following the notation introduced in Chapter 3, the Plane-Plane component has,

for each leg i, a base attachment with coordinates ai = (xi, yi, 0)T and a platform

attachment whose coordinates are bi = p + R(zi, ti, 0)T .

p

i

j

a1

a2

a3

a4

a5

a6

b1 b2

b3

b4

b5

b6

a

b

d

Figure 7.1: Notation associated with a Plane-Plane component.
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7.1 Finding the affine relation between leg lengths

In this case, a leg rearrangement with coordinates (x, y, z, t) stands for the substi-

tution of any of the legs by another one going from the base attachment located at

a = (x, y, 0)T to the platform attachment at b = p+R(z, t, 0)T (Fig. 7.1). In a similar

way as in Section 5.2, the corresponding affine relation will be found by computing the

length of the introduced leg, d2 = ‖b − a‖2. To this end, consider the system

(a1 − b1)
2 = l21
...

(a6 − b6)
2 = l26

(a − b)2 = d2





Subtracting the equations i2x + i2y + i2z = 1 and j2
x + j2

y + j2
z = 1, and using the relation

i·j = ixjx+iyjy+izjz = 0, quadratic terms in the rotation variables cancel out, yielding

−p2
x+p2

y+p2
z

2 − z1u − t1v + x1px + y1py + x1z1ix + y1z1iy + x1t1jx + y1t1jy − k1 = 0
...

−p2
x+p2

y+p2
z

2 − z6u − t6v + x6px + y6py + x6z6ix + y6z6iy + x6t6jx + y6t6jy − k6 = 0

−p2
x+p2

y+p2
z

2 − zu − tv + xpx + ypy + xzix + yziy + xtjx + ytjy − k + d2/2 = 0





where u = p · i, v = p · j, and the constant factors ki = 1
2(x2

i + y2
i + z2

i + t2i − l2i ) and

k = 1
2(x2 + y2 + z2 + t2).

Subtracting the first equation from the others, quadratic terms in px, py and pz

cancel too, yielding six linear equations in the 9 unknowns px, py, u, v, ix, iy , jx, jy

and d2 which can be rewritten in matrix form as:

Q




u
v
px

py

ix
iy
jx

jy

d2




=




k2 − k1

k3 − k1

k4 − k1

k5 − k1

k6 − k1

k − k1




, (7.1)
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where

Q =




z1 − z2 t1 − t2 x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1 x2t2 − x1t1 y2t2 − y1t1 0
z1 − z3 t1 − t3 x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1 x3t3 − x1t1 y3t3 − y1t1 0
z1 − z4 t1 − t4 x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1 x4t4 − x1t1 y4t4 − y1t1 0
z1 − z5 t1 − t5 x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1 x5t5 − x1t1 y5t5 − y1t1 0
z1 − z6 t1 − t6 x6 − x1 y6 − y1 x6z6 − x1z1 y6z6 − y1z1 x6t6 − x1t1 y6t6 − y1t1 0
z1 − z t1 − t x − x1 y − y1 xz − x1z1 yz − y1z1 xt − x1t1 yt − y1t1

1

2




.

Note that only ki depends on li, for i = 1, . . . , 6.

Now, let Qijk be the square matrix obtained from Q after deleting columns i, j

and k, and Qijk its determinant. System (7.1) can be solved taking three unknowns as

parameters, for example u, v, px. The resulting linear system is:

Q123




py

ix
iy
jx

jy

d2




=




(z2 − z1)u + (t2 − t1)v − (x2 − x1)px + k2 − k1

(z3 − z1)u + (t3 − t1)v − (x3 − x1)px + k3 − k1

(z4 − z1)u + (t4 − t1)v − (x4 − x1)px + k4 − k1

(z5 − z1)u + (t5 − t1)v − (x5 − x1)px + k5 − k1

(z6 − z1)u + (t6 − t1)v − (x6 − x1)px + k6 − k1

(z − z1)u + (t − t1)v − (x − x1)px + k − k1




.

Solving this system for d2 using Cramer’s rule and then applying multi-linear properties

of determinants to split the determinant of the resulting matrix into 4 determinants

yields

d2 =
Q239u + Q139v + Q129px + Q∗

123
1
2Q123

, (7.2)

where Q∗
123 is the determinant of Q123 except for the last column that contains the

elements ki − k1 for i = 2, . . . , 6 and k − k1. As a result, imposing Q239 = Q139 =

Q129 = 0, equation (7.2) becomes affine in l21, . . . , l
2
6. Indeed, expanding Q∗

123 leads to

an expression of the form

d2 = c1l
2
1 + c2l

2
2 + c3l

2
3 + c4l

2
4 + c5l

2
5 + c6l

2
6 + c0,

where all coefficients depend on known constants. Then, any leg rearrangement satisfy-

ing Q239 = Q139 = Q129 = 0 leaves singularities invariant. In other words, substituting

any leg by a new leg with base attachment located at a = (x, y, 0)T and platform

attachment at b = p + R(z, t, 0)T , the singularities will remain invariant as long as

(x, y, z, t) satisfies the system Q239 = Q139 = Q129 = 0, where Qijk can be simplified

into a 7× 7 determinant using simple row/column operations, yielding a system of the
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following three determinants equated to zero:

Q239 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 x1z1 y1z1 x1t1 y1t1 z1 1
y2 x2z2 y2z2 x2t2 y2t2 z2 1
y3 x3z3 y3z3 x3t3 y3t3 z3 1
y4 x4z4 y4z4 x4t4 y4t4 z4 1
y5 x5z5 y5z5 x5t5 y5t5 z5 1
y6 x6z6 y6z6 x6t6 y6t6 z6 1
y xz yz xt yt z 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (7.3)

Q139 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 x1z1 y1z1 x1t1 y1t1 t1 1
y2 x2z2 y2z2 x2t2 y2t2 t2 1
y3 x3z3 y3z3 x3t3 y3t3 t3 1
y4 x4z4 y4z4 x4t4 y4t4 t4 1
y5 x5z5 y5z5 x5t5 y5t5 t5 1
y6 x6z6 y6z6 x6t6 y6t6 t6 1
y xz yz xt yt t 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (7.4)

Q129 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 x1z1 y1z1 x1t1 y1t1 −x1 1
y2 x2z2 y2z2 x2t2 y2t2 −x2 1
y3 x3z3 y3z3 x3t3 y3t3 −x3 1
y4 x4z4 y4z4 x4t4 y4t4 −x4 1
y5 x5z5 y5z5 x5t5 y5t5 −x5 1
y6 x6z6 y6z6 x6t6 y6t6 −x6 1
y xz yz xt yt −x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (7.5)

7.1.1 Generalizing and simplifying the condition

The above reasoning fails if Q123 = 0 but, for a non-architecturally singular manipula-

tor, a set of parameters other than {u, v, px} can be chosen, leading to a non- degenerate

system. However, this may change the expression of the singularity-invariant leg rear-

rangement condition in equations (7.3)-(7.5). To avoid such ambiguity, the condition

can be reformulated in terms of rank deficiency of the matrix Q9 (that is, matrix Q in

equation (7.1) without the last column). The submatrix of the 5 first rows of Q9 are

full rank for any non-architecturally singular manipulator. Furthermore, Q9 is rank

defective if, and only if, all its submatrices have null determinant. However, it is only

necessary to check 3 of its 6 × 6 submatrices. Thus, the condition given by (7.3)-(7.5)

is equivalent to the rank deficiency of Q9. The advantage of this formulation is that

any set of 3 6 × 6 submatrices could be used instead of (7.3)-(7.5).
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To simplify the notation, consider the following matrix:

P =




−z1 −t1 x1 y1 x1z1 y1z1 x1t1 y1t1 1
−z2 −t2 x2 y2 x2z2 y2z2 x2t2 y2t2 1
−z3 −t3 x3 y3 x3z3 y3z3 x3t3 y3t3 1
−z4 −t4 x4 y4 x4z4 y4z4 x4t4 y4t4 1
−z5 −t5 x5 y5 x5z5 y5z5 x5t5 y5t5 1
−z6 −t6 x6 y6 x6z6 y6z6 x6t6 y6t6 1
−z −t x y xz yz xt yt 1




. (7.6)

Let Pij be the determinant of the submatrix obtained from P after deleting columns i

and j, and Pijk the determinant of the submatrix formed by the first 6 rows of P after

deleting columns i, j and k.

Note that Pij = Qij9 for i, j 6= 9 and Pijk = 1
2Qijk for k 6= 9. Using these relations, it

can be proved that Q9 is rank defective if, and only if, P is also rank defective. Thus,

a much simpler condition can now be stated: a leg rearrangement with coordinates

(x, y, z, t) leaves singularities invariant as long as matrix P is rank defective.

Again, to check rank deficiency, Gaussian Elimination is applied on P. The last

row of the resulting matrix has 3 nonzero terms dependent on x, y, z and t. The corre-

sponding 3 equations are equivalent to impose the conditions given by (7.3), (7.4), (7.5).

Different equations arise depending on the order of the columns. For example, Gaus-

sian Elimination on matrix P as it appears in equation (7.6) leads to a matrix whose

last row is
1

P789

(
0 0 0 0 0 0 P89 P79 P78

)
.

Then, as long as P789 6= 0, the singularity-invariant leg rearrangements are defined

by the condition

P89 = P79 = P78 = 0. (7.7)

Alternatively, if the columns of P are sorted as [y, xz, yz, xt, yt, 1,−z,−t, x], then the

corresponding condition is P23 = P13 = P12 = 0, provided that P123 6= 0.

7.2 Singularity-invariant leg rearrangement rules

In this section, a geometric interpretation of the singularity-invariant condition is given,

in a similar way as in the previous chapters.
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Note that any equation consisting of a submatrix determinant Pij equated to zero

will be bilinear in the unknowns, but with different monomials. Consider the condition

given in (7.7) which, after cofactor expansion, leads to

−P891z + P892t + P893x − P894y + P895xz − P896yz + P897xt = 0
−P791z + P792t + P793x − P794y + P795xz − P796yz + P798yt = 0
−P781z + P782t + P783x − P784y + P785xz − P786yz + P789 = 0



 (7.8)

As the system is linear both in (x, y) and in (z, t), it can be rewritten in matrix

form as

Sb




z
t
1


 =




0
0
0


 , (7.9)

where

Sb =




P895x − P896y − P891 P892 + P897x P893x − P894y
P795x − P796y − P791 P792 + P798y P793x − P794y
P785x − P786y − P781 P782 P783x − P784y + P789




only depends on x and y (b refers to base, as x and y are the coordinates of the base

attachments). The other way round, the system can also be written as

Sp




x
y
1


 =




0
0
0


 , (7.10)

where

Sp =




P893 + P895z + P897t −P894 − P896z P892t − P891z
P793 + P795z P798t − P794 − P796z P792t − P791z
P783 + P785z −P784 − P786z P782t − P781z + P789




only depends on z and t (p refers to platform, as z and t are the coordinates of the

platform attachments).

From equation (7.9) it is clear that the system has a solution for (z, t) only for those

(x, y) that satisfy det(Sb) = 0, and this solution is unique (assuming that Sb has rank

2). In the same way, there exists a solution for (x, y) only for those (z, t) that make

det(Sp) = 0. Both determinants define cubic curves on the base and platform planes,

respectively. In other words, system (7.8) defines a one-to-one correspondence between

generic points on two cubic curves. However, the correspondence may be not one-to-one

for special points on the cubics, as will be seen in the example of Section 7.3.2.
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a1

a2

a3

a4

a5

a6

b1
b2 b3

b4

b5

b6

i xi yi zi ti

1 −3 0 −5 0

2 3 0 5 0

3 10 10 7 3

4 6 16 2 10

5 −6 16 −2 10

6 −10 10 −7 3

Figure 7.2: Manipulator analyzed in Section 7.3.1 with its corresponding attachment
coordinates (ai = (xi, yi, 0)T ,bi = p + R(zi, ti, 0)T ).

Depending on the placement of the attachments, these curves can be generic curves

of degree 3, or a line and a conic, or even 3 lines crossing 2 by 2. This will be exemplified

in the following section.

7.3 Examples

7.3.1 A doubly-planar Stewart-Gough platform

In [48] Husty et al. analyzed a Stewart-Gough platform, searching where additional

legs could be placed without changing its forward kinematics solution, to obtain a

redundant manipulator. The same example is analyzed here. The local coordinates of

the attachments are listed in the table of Fig 7.2.

After substituting the corresponding numerical values, the system of equations (7.8)

results in:
2430z − 4050x + 255yz + 188xt = 0

−280t + 45y + 13yt = 0
−70t + 43y − 4xz + 60 = 0




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b1 b2

b3

b4
b5

b6

t

z

a1 a2

a3

a4a5

a6

Figure 7.3: The base and the platform curves defined in (7.11).

and, thus, matrices Sb and Sp are:

Sb =




2430 + 255y 188x −4050x
0 13y − 280 45y

−4x −70 60 + 43y


 ,

and

Sp =




188t − 4050 255z 2430z
0 13t + 45 −280t

−4z 43 60 − 70t


 ,

whose determinants equated to zero give the two equations of cubic curves

−16296x2y + 9503y3 + 302400x2 − 47312y2 − 1599420y − 2721600 = 0,

20598z2t − 8554t3 + 21870z2 + 275173t2 − 1932795t − 546750 = 0;
(7.11)

plotted in Fig. 7.3. The cubic in the base coincides with the one appearing in [48],

whereas the cubic in the platform is not given explicitly there. In [48], the authors

propose to add additional legs to obtain redundant manipulators. Instead, here legs

are substituted by other legs satisfying the one-to-one correspondence between the base

and platform cubics defined by (7.11). The singularity locus will remain unchanged, but

other performance indices could thus be improved, such as stiffness, or maneuverability,

or even the workspace could be enlarged by reducing the risk of leg collisions.
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a1

a2

a3

a4

a5

a6

b1

b2 = b3

b4

b5

b6

a1

a2

a3

a4

a5

a6

b1

b2
b3

b4

b5

b6

Figure 7.4: Platform described in Table 7.1 (left), and the resulting platform after
rearranging its 3rd leg (right).

7.3.2 Platform with degenerate cubic curves

Interesting cases appear when one or both of the curves are degenerate. Consider

the example with attachment coordinates given in Table 7.1, where two of the attach-

ments on the platform are made coincident, b2 = b3. The corresponding platform is

represented in Fig. 7.4-(left). The two legs sharing an attachment form a Point-Line

component and, as it has been proved in Chapter 4, base attachments a2 and a3 can

be rearranged on any point on the line a2a3 without modifying the singularity locus.

Table 7.1: Coordinates of the attachments ai = (xi, yi, 0) and bi = p+R(zi, ti, 0)T for
the analyzed robot

i xi yi zi ti

1 3 −4 −2 −2

2 5 −2 2 −1/2

3 5 2 2 −1/2

4 3 4 −2 2

5 −4 1 −3 1

6 −4 −1 −3 −1
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a1

a2

a3

a4

a5

a6

z

t

b1

b2 = b3

b4

b5

b6

Figure 7.5: The base and the platform curves defined by (7.13).

After applying Gaussian elimination on P, the following equations are obtained:

372z + 18988t + 1302x − 5656y + 527xz + 2828yz + 1212xt = 0
5172z + 808t − 2502x + 404y + 257xz + 404yz + 2424yt = 0

74z − 44x − 13xz + 202 = 0



 (7.12)

and the corresponding cubic curves are defined by

(x − 5)(31x2 − 280y2 + 631x + 2308) = 0,

(−132z3 + 124z2t + 476zt2 + 191z2 + 620zt + 1528t2 + 1259z + 744t − 1606) = 0.

(7.13)

In other words, the cubic curve in the base factorizes into a conic (an hyperbola) and a

line, while the platform curve remains a cubic, but with a singular point (called node)

on the point of the Point-Line component. Fig. 7.5 contains the plot of these two curves

and the corresponding location of the attachments.

The correspondence between the base line and the platform cubic curve can be

derived by solving system (7.12) as follows. Take any point on the base line a2a3, that

is, substitute x = 5 on the system, then

3007z + 25048t + 6510 − 5656y + 2828yz = 0
+6457z + 808t − 12510 + 404y + 404yz + 2424yt = 0

9z − 18 = 0





From the last equation, z = 2. Substituting this value into the first two equations and

factorizing the result yields

12524(1 + 2t) = 0
404(1 + 3y)(1 + 2t) = 0

}
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The solution of the system is

∆ = {(x, y, z, t) | x = 5, y = s, z = 2, t = −1/2, s ∈ R},

that is, any point on the line x = 5 corresponds to the vertex b2 = b3, in accor-

dance with the singularity-invariant leg rearrangements of the Point-Line component

(Chapter 4).

For the rest of the points on the cubic curve, the correspondence can be written in

terms of a single parameter z. Given a point on the platform cubic
(

z,
−31z2 − 155z − 186 ±

√
δ

2(119z + 382)

)
,

the corresponding point on the base hyperbola is
(

2(37z + 101)

44 + 13z
,
3(z − 2)(16669z2 + 103981z + 162022) ∓ (26z + 88)

√
δ

4(2 − z)(44 + 13z)2 ± 2(39z + 132)
√

δ

)
, (7.14)

where the discriminant δ = (16669z2 + 103981z + 162022)(z − 2)2 determines whether

points are real or complex. Real points on the platform always correspond to real

points on the base, and vice versa. Observe that, for the singular point z = 2, (7.14) is

apparently undefined. However, terms (z − 2) can be simplified and then the resulting

point gives the intersection between the line and the hyperbola. In other words, this

parametrization represents the one-to-one correspondence between points on the plat-

form cubic and the base hyperbola, except for the singular platform point (2,−1/2), a

double point that corresponds to two points on the hyperbola (the two intersections of

the line with the conic).

To avoid multiple spherical joints, here the Point-Line component can be split by

substituting any of its legs by another leg going from the conic to the base cubic. For

example, take the point on the platform cubic given by z = 0 and t = −93+
√

162022
382 , and

solve system (7.12) after evaluating it on this point, or equivalently, evaluate expression

(7.14) for z = 0. The result is:

x =
101

22
and y =

243033 − 44
√

162022

−3872 + 132
√

162022
.

Hence, the 3rd leg can be substituted by a new leg going from the base point

(101
22 , 243033−44

√
162022

−3872+132
√

162022
, 0) to the platform attachment with local coordinates (0, −93+

√
162022

382 , 0)
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Figure 7.6: Possible leg substitutions are shown in gray.

and the resulting Jacobian determinant is the same as before the rearrangement, but

multiplied by 15990+93
√

162022
67232 = 0.794. After this leg rearrangement, the platform has

no coincident attachments [Fig. 7.4-(right)], in other words, the Point-Line component

has been made implicit.

In Fig. 7.6, other possible leg rearrangements for this example are shown in gray.

7.3.3 Griffis-Duffy platforms

In 1993, Griffis and Duffy patented two manipulators named thereafter Griffis-Duffy

type I and II platforms [42]. Both platforms have their attachments distributed on

triangles, three attachments on the vertices and three on the midpoints of the edges.

Type I platforms are formed by joining the attachments on the midpoints on the base

to the vertices on the platform, and the vertices on the base to midpoints on the

platform [Fig. 7.7-(left)]. Type II join midpoints to midpoints and vertices to vertices

[Fig. 7.8-(left)].

In Chapter 4.5.2, type I Griffis-Duffy platforms have been shown to be singularity

equivalent to the octahedral manipulator. In [50], type II Griffis-Duffy manipulators

are shown to be always non-architecturally singular.

Consider the two examples with the attachment coordinates given in Table 7.2,

where the same triangles define two Griffis-Duffy manipulators of type I and type II,

respectively. A representation of these manipulators can be found in Fig. 7.7 and

Fig. 7.8, respectively.
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Λb2

Λb3

b1 = b2 b3 = b4

b5 = b6

a2 = a3

a4 = a5

a6 = a1

Λp1

Λp2

Λp3

Λb1

Λb2

Λb3

Figure 7.7: Griffis-Duffy type I platform with the attachment coordinates given in in
Table 7.2 (left), and its equivalent octahedral manipulator after applying a leg rear-
rangement (right).

The computation of the base and platform cubic curves factorizes into the 3 same

lines for both type I and type II platforms:

(
√

3z − t +
√

3)(
√

3z + t −
√

3)t = 0,

(−3x +
√

3y − 6)(3x +
√

3y − 6)y = 0.
(7.15)

Let

Λp1 be the line on the platform given by equation
√

3z − t +
√

3 = 0,

Λp2 be the line on the platform given by equation
√

3z + t +
√

3 = 0,

Λp3 be the line on the platform given by equation t = 0,

Λb1 be the line on the base given by equation − 3x +
√

3y − 6 = 0,

Λb2 be the line on the base given by equation 3x +
√

3y − 6 = 0 and

Λb3 be the line on the base given by equation y = 0.

Whereas the obtained lines are the same for type I and II, the system obtained by

applying Gaussian elimination on matrix P results in different equations. The system
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Table 7.2: Coordinates of the attachments ai = (xi, yi, 0) and bi = p+R(zi, ti, 0)T for
the analyzed robots

i zi ti

1 1 0

2 1/2 0

3 −1 0

4 −1/2
√

3/2

5 0
√

3

6 1/2
√

3/2

i i
Type I Type II xi yi

2 1 2 0

3 2 2/3 0

4 3 −2 0

5 4 −2/3 (4/3)
√

3

6 5 0 2
√

3

1 6 1
√

3

corresponding to the type I platform is:

2t − y + yz + xt = 0

(
√

3z + t −
√

3)y = 0

−2
√

3z + 4t +
√

3x − y +
√

3xz + 3yz − 2
√

3 = 0



 (7.16)

whereas that for the type II platform is:

2t − y + xt − yz = 0

3
√

3y − 8
√

3t +
√

3yz + yt = 0

10
√

3z − 16t − 5
√

3x + 9y +
√

3xz + yz − 2
√

3 = 0



 (7.17)

The resolution of these systems gives correspondences between base and platform at-

tachments that leave the singularities invariant.

Using the same notation as in the previous chapter, for the Griffis-Duffy type I

manipulator, system (7.16) has 6 sets of solutions

∆b1 = {(x, y, z, t) | x = λ, y = (λ + 2)
√

3, z = 0, t =
√

3; λ ∈ R},

∆b2 = {(x, y, z, t) | x = λ, y = (2 − λ)
√

3, z = 1, t = 0;λ ∈ R},

∆b3 = {(x, y, z, t) | x = λ, y = 0, z = −1, t = 0;λ ∈ R},

∆p1 = {(x, y, z, t) | x = −2, y = 0, z = λ, t =
√

3(λ + 1);λ ∈ R},

∆p2 = {(x, y, z, t) | x = 0, y = 2
√

3, z = λ, t =
√

3(1 − λ); λ ∈ R},

∆p3 = {(x, y, z, t) | x = 2, y = 0, z = λ, t = 0;λ ∈ R}.

In other words, all the correspondences are between points and lines (in accordance

with the results in Chapter 4), that is, to each vertex of the base (platform) triangle
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Figure 7.8: Griffis-Duffy type II platform with attachment coordinates given in Table
7.2 (left), and its equivalent platform after removing all collinearities (right).

corresponds a line on the platform (base) triangle. Thus, by moving the six midpoint

attachments along their supporting lines, the manipulator can be rearranged into the

equivalent octahedral manipulator depicted in Fig. 7.7-(right) (a result in accordance

with that in Chapter 4).

On the other hand, for the Griffis-Duffy type II, system (7.17) has three sets of

solutions given by

L1 = {(x, y, z, t) | x = 2λ
λ+2 , y = 4(λ+1)

√
3

λ+2 , z = λ, t = (λ + 1)
√

3, λ ∈ R}
L2 = {(x, y, z, t) | x = 2λ, y = −2(λ − 1)

√
3, z = λ, t = (1 − λ)

√
3, λ ∈ R}

L3 = {(x, y, z, t) | x = 2−10λ
λ−5 , y = 0, z = λ, t = 0, λ ∈ R}

Each set Li defines a one-to-one correspondence between points of Λbi and Λpi for

i = 1, 2, 3.

In conclusion, the same geometrical elements determine the invariance of the sin-

gularity locus, but in the first case the correspondence is between points and lines and

in the second case it is between points in two lines.

The legs of the type II manipulator can be rearranged following the obtained line-

line correspondences, but some rearrangements must be avoided. For example, placing
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four legs in the same line-line correspondence would lead to an architecturally singular

manipulator, as it would contain a Line-Line component in projective correspondence

(see Section 4.4).

An interesting rearrangement consists in removing all collinearities from the type II

manipulator. As a result, an equivalent platform such as that shown in Fig. 7.8-(right)

is obtained.

To remove collinearities, all legs from vertex to vertex need to be rearranged. The

first leg can be placed going from a point on Λb2 to the corresponding point on Λp2. In

other words, take a point on Λb2, substitute its coordinates in system (7.17) and the

solution gives a point on Λp2:

x = 1/2

y = (3/2)
√

3
︸ ︷︷ ︸

on Λb2

Substitute in (7.17)
−→

and solve

z = 1/4

t = (3/4)
√

3
︸ ︷︷ ︸

on Λp2

The same can be done to substitute the 3rd leg by a leg going from Λb3 to Λp3:

x = −2/3
y = 0

︸ ︷︷ ︸
on Λb3

Substitute in (7.17)
−→

and solve

z = −1/7
t = 0

︸ ︷︷ ︸
on Λp3

and finally, the 5th leg is substituted by a leg going from a point on Λb1 to a point on

Λp1

x = −3/2

y = (1/2)
√

3
︸ ︷︷ ︸

on Λb1

Substitute in (7.17)
−→

and solve

z = −6/7

t = (1/7)
√

3
︸ ︷︷ ︸

on Λp1

The resulting manipulator, depicted in Fig. 7.8-(right), is equivalent to the one in

Fig. 7.8-(left), in terms of both its forward kinematics and its singularity locus.

In conclusion, this proves that it is not necessary that a platform has collinear

attachments to behave like a Griffis-Duffy type II manipulator.
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7.4 Classification of doubly-planar Stewart-Gough plat-

forms

7.4.1 General doubly-planar manipulators

This section presents a theory that generalizes the results presented in all the previ-

ous chapters, as all the singularity-invariant leg rearrangements found between points,

lines and planes can be seen as particular cases in Plane-Plane rearrangements. In-

deed, in the following table, all possible doubly-planar Stewart-Gough platforms are

analyzed, attending to their topology, detecting also all the equivalences between them.

In Merlet’s book [68, Table 4.6] all Stewart-Gough platforms are listed, attending to

their topology, for the general case. Next, the same manipulators will be analyzed,

considering all of them with coplanar attachments and analyzing a generic example for

each architecture. They will be identified with a number, corresponding to the order

of appearance in Merlet’s table. For each manipulator, the solution of system (7.8) is

given, as well as a representation of the curves defining the singularity invariant leg

rearrangements. Finally, equivalences between manipulators are listed so that all the

cases of Merlet’s table are covered.

The solutions sets for system (7.8) can be of several types:

∆ A solution set that represents a correspondence between a point and a line (see

Chapter 4). In the figures, they are plotted in blue when the line is at the

platform, and in green when the line lies at the base.

T A solution set that represents a correspondence between a point and a plane, i.e,

a Point-Plane component.

L A solution set that represents a one-to-one correspondence between points of two

lines.

LL A solution set corresponding to the Line-Line component (see Chapter 4). They

are plotted in pink in the figures.

LP A solution set corresponding to the Line-Plane component (see Chapter 5).

C − F A solution set corresponding to a one-to-one correspondence between a conic and

a cubic curve.
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C − L A solution set corresponding to a one-to-one correspondence between a conic and

a line.

F − F The more general case, a one-to-one correspondence between two cubic curves.

All one-to-one correspondences between points are plotted in red if there is only

one, in red and yellow when there are two correspondences, and in red yellow and

cyan if three correspondences coexist in the manipulator. For T and LP solution sets,

no curve is shown, as points can belong to any point of the plane. All the pictures

correspond to examples of generic manipulators.

This classification also uses the 35 classes defined by Fauger and Lazard in [33], as it

is commonly used to identify manipulators. On the other hand, it is quite different from

other classifications like that in [57], with 11 classes according to rigid components, but

elements of the same class are not necessarily equivalent from the point of view of their

kinematics nor their singularities.
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4

F − F = {(x, y, z, t) | x = Fb(λ), y = Fb(λ), z = Fp(λ), t = Fp(λ); λ ∈ R}

7

∆ = {(x, y, z, t) | x = 5, y = λ, z = 2, t = −1/2; λ ∈ R},
C − F = {(x, y, z, t) | x = Cb(λ), y = Cb(λ), z = Fp(λ), t = Fp(λ); λ ∈ R}
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8

15

30

38

T = {(x, y, z, t) | x = λ, y = µ, z = 7, t = 5; λ, µ ∈ R},
∆1 = {(x, y, z, t) | x = 13, y = 5, z = λ, t = 5; λ ∈ R}
∆2 = {(x, y, z, t) | x = 2, y = 1, z = λ, t = λ − 2; λ ∈ R},
∆3 = {(x, y, z, t) | x = 2, y = 10, z = λ, t = 12 − λ; λ ∈ R}

9

14

C − L =
{

(x, y, z, t) | x = λ, y = 2, z = 6(−165λ+675+14λ2)
11λ2−150λ+675

, t = 89λ2−1230λ+4725
11λ2−150λ+675

; λ ∈ R

}

∆1 = {(x, y, z, t) | x = 15/2, y = 19/2, z = z, t = 7;λ ∈ R} ,
∆2 = {(x, y, z, t) | x = x, y = 2 + x, z = 6, t = 7;λ ∈ R} ,
∆3 = {(x, y, z, t) | x = x, y = 17 − x, z = 9, t = 7;λ ∈ R}
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10

23

20

34

41,42

37

32

T = {(x, y, z, t) | x = λ, y = µ, z = 4, t = 3;λ, µ ∈ R},
∆ = {(x, y, z, t) | x = 6, y = 11, z = λ, t = 3λ − 9; λ ∈ R},
LL = {(x, y, z, t) | x = 11, y = λ, z = µ, t = (11 + µ)/5, ; λ, µ ∈ R}

12

∆1 = {(x, y, z, t) | x = −3λ
2 + 9, y = λ, z = 5, t = 2;λ ∈ R},

∆2 = {(x, y, z, t) | x = 6, y = 2, z = λ, t = 2;λ ∈ R},
C − C = {(x, y, z, t) | x = Cb(λ), y = Cb(λ), z = Cp(λ), t = Cp(λ); λ ∈ R}
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13

∆1 = {(x, y, z, t) | x = λ, y = 2, z = 7, t = 4;λ ∈ R},
∆2 = {(x, y, z, t) | x = 7, y = 9, z = λ, t = 7;λ ∈ R},
L1 = {(x, y, z, t) | x = −21(λ−25)

2(λ+5) , y = 23λ−137
λ+5 , z = λ, t = λ+1

2 ; λ ∈ R},
L3 = {(x, y, z, t) | x = 7(7λ−43)

2(λ−19) , y = 23λ−185
λ−19 , z = z, t = 15−λ

2 ; λ ∈ R}

19

29

∆ = {(x, y, z, t) | x = 7, y = 2, z = λ, t = 4;λ ∈ R},
LP = {(x, y, z, t) | z(15x − y − 103) − 114x + 30y + 570 = 0, t = 7}
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16

3622

31

25

33

39

T1 = {(x, y, z, t) | x = λ, y = µ, z = 4, t = 3;λ, µ ∈ R},
T2 = {(x, y, z, t) | x = 8, y = 8, z = λ, t = µ; λ, µ ∈ R},
LL = {(x, y, z, t) | x = −3λ/4 + 14, y = λ, z = µ, t = (µ + 11)/5; λ, µ ∈ R},
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24

18

18

∆1 = {(x, y, z, t) | x = λ, y = 34−5λ
2 , z = 4, t = 2;λ ∈ R},

∆2 = {(x, y, z, t) | x = λ, y = 18−2λ
3 , z = 5, t = 2;λ ∈ R},

∆3 = {(x, y, z, t) | x = 4, y = 7, z = λ, t = 2λ − 6; λ ∈ R},
∆4 = {(x, y, z, t) | x = 6, y = 2, z = λ, t = 2;λ ∈ R},
L = {(x, y, z, t) | x = 27(10λ−47)

40λ−221 , y = 6(43λ−245)
40λ−221 , z = λ, t = 2λ−4

3 ; λ ∈ R}

28

LL = {(x, y, z, t) | x = 7, y = λ, z = µ, t = 6;λ, µ ∈ R},
L = {(x, y, z, t) | x = (10λ − 6)/7, y = λ, z = 7, t = (9 + 6λ)/7; λ ∈ R}
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40

35

21

11

27

∆1 = {(x, y, z, t) | x = λ, y = −2λ/3 + 6, z = 5, t = 2;λ ∈ R},
∆2 = {(x, y, z, t) | x = λ, y = (39 − λ)/5, z = 7, t = 6;λ ∈ R},
∆3 = {(x, y, z, t) | x = λ, y = 17 − 5λ/2, z = 3, t = 2;λ ∈ R},
∆4 = {(x, y, z, t) | x = 4, y = 7, z = λ, t = λ − 1; λ ∈ R},
∆5 = {(x, y, z, t) | x = 6, y = 2, z = λ, t = 2;λ ∈ R},
∆6 = {(x, y, z, t) | x = −27/7, y = 60/7, z = λ, t = 2λ − 8; λ ∈ R}

7.4.2 Families of doubly-planar 3-3 manipulators

Next, the three families of manipulators corresponding to the three 3-3 manipulators

are presented. They are called flagged, partially flagged and octahedral manipulators

[1, 2, 46]. It was shown in [12] that the singularities of any doubly-planar platform

can be written as a linear combination of the 3-3 manipulator singularity polynomials.

Therefore, these three manipulators can be seen as the basis of all the doubly-planar

Stewart-Gough platforms from the singularities point of view.

b1

a1

b2

a2

b3

a3

Flagged

b1

a1

b2

a2

b3

a3

Partially-flagged

b1

a1

b2

a2

b3

a3

Octahedral

Figure 7.9: The basic 3-3 Stewart-Gough manipulators. They are named, from left to
right, flagged, partially flagged and octahedral manipulators.

All three families are obtained applying Point-Line singularity-invariant leg rear-
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7.4 Classification of doubly-planar Stewart-Gough platforms

rangements.

The flagged family of manipulators consists of 39 manipulators with different topolo-

gies whose forward kinematics can be solved by 3 trilaterations and their singularities

can be interpreted geometrically as the degeneration of three tetrahedra (see [2] for

details). The singularity-invariant curves for all members of this family are defined by

two Point-Plane solutions and one Line-Line solution. This family first appeared in

[10].

The partially flagged family of manipulators has 46 members, their forward kine-

matics can be also solved with three trilaterations and their singularities can be also

interpreted geometrically as the degeneracy of 3 tetrahedra. Thus, the two families are

quite similar, but not equivalent because the singularity-invariant curves are defined,

in this case, by a Point-Plane, a Point-Line and a Line-Line solution.

Finally, the members of the octahedral family of manipulators have 16 solutions of

the forward kinematics (with a characteristic polynomial of degree 8) and its singular-

ities can be geometrically interpreted as the intersection of four planes. This family,

which first appeared in [84], has 22 members.

Additionally to these families, in the table of the previous section, 12 families of

manipulators have been enumerated. This is the first classification of manipulators

according to their kinematic properties, and also the first that takes into account only

doubly-planar Stewart-Gough platforms, which are common in most implementations.
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7.4 Classification of doubly-planar Stewart-Gough platforms

Table 7.3: Family of flagged parallel manipulators
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7.4 Classification of doubly-planar Stewart-Gough platforms

Table 7.4: Family of partially flagged parallel manipulators
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7.5 Rewriting the Jacobian matrix determinant

Table 7.5: Family of octahedral manipulators

7.5 Rewriting the Jacobian matrix determinant

Matrix P defined in (7.6) has an aspect similar to the corresponding matrices defining

singularity-invariant leg rearrangements for the Line-Plane (equation (5.12) in Chapter

5) or for the Line-Body (equation (6.3) in Chapter 6) components. As a consequence,

there is the intuition that matrix P can be transformed into a 9×9 matrix by replacing

the last row by 3 extra rows depending only on pose parameters.
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7.6 Architectural Singularities

Let matrix T̂ be matrix P with the last row removed and

T =




r1(X)
r2(X)
r3(X)

T̂




so that det(J) = det(T). While it has been checked that all the coefficients of det(J)

are minors of matrix T̂, until the moment, it has not been possible to find r1(X), r2(X)

and r3(X) so that det(J) = det(T).

7.6 Architectural Singularities

7.6.1 Algebraic characterization

Consider matrix T̂, that is, P without its last row

T̂ =




−z1 −t1 x1 y1 x1z1 y1z1 x1t1 y1t1 1
−z2 −t2 x2 y2 x2z2 y2z2 x2t2 y2t2 1
−z3 −t3 x3 y3 x3z3 y3z3 x3t3 y3t3 1
−z4 −t4 x4 y4 x4z4 y4z4 x4t4 y4t4 1
−z5 −t5 x5 y5 x5z5 y5z5 x5t5 y5t5 1
−z6 −t6 x6 y6 x6z6 y6z6 x6t6 y6t6 1




. (7.18)

When this matrix loses rank, the manipulator is architecturally singular. Alterna-

tively, if matrix T would exist, it would be clear that the rank deficiency of T̂ would

imply that all coefficients of the singularity polynomial are zero.

Then, in a similar way as in previous chapters, suppose that the rearrangement is

done to only one of the legs (say l6). Then, for any new position of its attachments,

the locus of architectural singularities is defined by those (x, y, z, t) for which T̂ loses

rank. Again, applying Gaussian Elimination, the last row of the resulting matrix has

the form
1

P6789
(0, . . . , 0, P789, P689, P679, P678)

where P6789 is the determinant of T̂ after deleting its last row, and columns 6,7,8 and

9.

The 6th leg attachments are a = (x, y, 0) and b = p+R(z, t, 0). Then, the condition

P789 = P689 = P679 = P678 = 0 (7.19)
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7.6 Architectural Singularities

define the locus of architectural singularities for the sixth leg (assuming P6789 6= 0). By

construction, the attachments of the other five legs must satisfy this condition. It can

be proved that the above system has 6 solutions. The additional sixth solution corre-

spond to an architectural singularity. Such architectural singularity was first studied

by Bricard [21], Borel [7] and Duporcq [31, 32], and lately was revisited by Karger in

[53].

7.6.2 Geometric interpretation

French mathematicians at the end of XIX century studied the feasible spherical paths

that a body supported by six legs can perform [7, 21, 31]. They provided several math-

ematic interpretations of the singularity point found in the previous section. Next,

the one presented by Ernest Duporcq in [32] is described with a numerical exam-

ple, because it is highly related to the existence of the cubic curve that defines the

singularity-invariant leg rearrangements. Indeed, it will be shown how this point on

the cubic curve is a very special point that is geometrically defined given 5 of the legs

of the manipulator.

y

a1

a2

a3

a4

a5
a6

b1

b2
b3

b4

b5

b6

i xi yi zi ti

1 -3 -5 -1 -3

2 1 -5 2 -3

3 4 0 4 0

4 1 3 2 2

5 -1 3 -2 2

6 -4 0 -4 0

Figure 7.10: A doubly-planar Stewart-Gough platform and its corresponding attach-
ment coordinates (ai = (xi, yi, 0)T and bi = p + R(zi, ti, 0)T ). In addition, the cor-
responding cubic curves defining its singularity-invariant leg rearrangements are also
plotted.

Consider the example in Fig 7.10. After performing Gaussian Elimination on the
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7.6 Architectural Singularities

corresponding matrix P, the system of equations that define the singularity-invariant

leg rearrangements is

9xt − 10yz − 42x + 230y + 42z − 345t = 0
yt + 48y − 75t = 0

−9xz + yz + 6x + 598y − 6z − 960t + 144 = 0



 (7.20)

Then, the equations of the platform and base cubic curves are:

−59z2t − 23zt2 − 80t3 + 168z2 + 46zt + 302t2 + 960t − 2688 = 0,

and

−79x2y + 46xy2 − 115y3 + 525x2 − 138xy + 249y2 + 2992y − 8400 = 0,

respectively. The cubics are also represented in Fig. 7.10.

Now, consider that the sixth leg is rearranged. The locus of architectural singular-

ities has been algebraically defined in the previous section as the points that satisfy

condition (7.19), which are the solution of

−3xz + 7yz + 66x − 254y − 54z + 384t = 0
−10xz + 21xt + 122x − 310y − 82z + 475t = 0

yt + 48y − 75t = 0
−5xz − 2x + 370y + z − 592t + 84 = 0





(7.21)

It has 6 solutions, 5 corresponding the the other leg attachments and the sixth is

{
x =

237

1553
, y =

5019

1553
, z =

467

774
, t =

1673

774

}
. (7.22)

The geometric interpretation of this point given by Duporcq is based on the fact

that you can always determine 3 special points on the cubic curves attached to the

base and the platform. Then, the 5 base and platform attachments, plus that 3 special

points, on the base and on the platform, define a pencil of cubics through these 8

points. Any pencil of cubic curves through 8 points intersect all at one 9th point, and

this particular point is the one that gives the architectural singularity [32, no182]. The

idea is that, given 5 couples of corresponding points (defined by the 5 legs), a 6th couple

can be computed independently of the pose of the platform, and thus, it corresponds to

an architectural singularity. Next, this point will be derived in detail for this example.
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7.6 Architectural Singularities

Consider the systems of equations in (7.21) or in (7.20). Each equation of the sys-

tem define a correlation, that is, given the coordinates of a point in the plane (z, t), the

equation defines a line on the plane (x, y), and vice-versa. Then, two of these equations

define what in [32, no181] is called a rational quadratic transformation between points,

because given a point in the plane (z, t), the two equations define two lines that inter-

sect at one point on the plane (x, y). For a generic case, that is, for non-degenerate

correlations, any of these transformations have always 3 singular points, that is, points

for which the two lines coincide and thus, do not intersect at one point.

Consider the first and the third equations in system (7.20) (the results are inde-

pendent of this choice). The rational quadratic transformation defined by these two

equations is

(9t − 42)x + (230 − 10z)y + 42z − 345t = 0
(6 − 9z)x + (z + 598)y + 144 − 6z − 960t = 0

(7.23)

so that, given a value of (z, t), the above equations correspond to two lines on the plane

(x, y). The three singular points αP , βP and γP for which the two lines are coincident

can be computed by imposing the coefficients of the lines to be proportional, that is,

imposing

∣∣∣∣
9t − 42 230 − 10z
6 − 9z z + 598

∣∣∣∣ = 0,

∣∣∣∣
230 − 10z 42z − 345t
z + 598 144 − 6z − 960t

∣∣∣∣ = 0,

∣∣∣∣
9t − 42 42z − 345t
6 − 9z 144 − 6z − 960t

∣∣∣∣ = 0.

The solutions of this system are the singular points of the quadratic transformation,

αP =

(
2,

21

5

)
, βP =

(
2300

307
,
896

307

)
, γP =

(
46

3
,
17

6

)
,

which, at the same time, belong to the platform cubic curve. Then, the eight points

bi for i = 1, . . . , 5, αP , βP and γP define a pencil of cubics. In Fig. 7.11-(top) all these

points and the pencil of cubics are plotted, for this example.

Any pencil of cubics through 8 points intersect at a 9th point, which can be com-

puted for example, as the intersection point of any two of the cubics of the pencil. In
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7.6 Architectural Singularities

Fig. 7.11-(top) it is represented by the big red dot and has coordinates

(
467

774
,
1673

774

)
. (7.24)

The same computations can be done for the base attachments. Choosing the same

polynomials, the singular points on the base are

αB =

(
1,

105

23

)
, βB =

(
4945

449
,
15087

2245

)
, γB = (25, 7) ,

and the pencil of cubics is shown in Fig. 7.11-(bottom). The singular point given by

the intersection of all the cubics of the pencil have base coordinates
(

237

1553
,
5019

1553

)
. (7.25)

Note that both singular points are in correspondence, in other words, are solution

of the system (7.20), and coincide with the solution given in (7.22). See [32, pp.133]

for details.

7.6.3 Comparison with previous results

In most of the literature, the architectural singularity for the Plane-Plane component

is characterized by all base and platform attachments being on conics, and in addition,

in projective correspondence. But such characterization is far from being general.

On the one hand, when all the base and platform attachments belong to a base and

a platform conic, respectively, singularity-invariant leg rearrangements are defined as

in the general case (because 6 points can belong to a conic and a cubic at the same

time). Therefore, as in the general case, the attachments belong to a cubic and the

condition of being on the same conic has nothing to do with the singularity condition.

On the other hand, when a projectivity between base and platform attachments ex-

ists, singularity-invariant leg rearrangements are defined by the roots of system (7.8),

which gives exactly the projectivity as solution. In other words, leg attachments can be

rearranged to any point of the base and platform planes without modifying the singu-

larity locus as long as the attachments belong to the projectivity. Then, architectural

singularities will occur if, and only if, all the base and platform attachments belong to

conics.
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7.6 Architectural Singularities

The architecturally singular condition found here is more general, and the pre-

sented methodology to find it gives the solution independently of the existence of such

projectivity (contrary to other characterizations like the one in [53]).
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z

t

b1 b2

b3

b4
b5

b6

αP

βP γP

a1
a2

a3

a4
a5

a6

αB

βB
γB

Figure 7.11: The pencil of cubics through the first five platform and base attachments
and the 3 singular points (top and bottom respectively). They all intersect at another
point (represented by the big red dot) which corresponds to the platform and base
location of the sixth leg that leads to an architectural singularity.
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Chapter 8

The Plane-Body and the

Body-Body components

All singularity-invariant leg rearrangements have already been obtained for all the rigid

components, except for the Plane-Body and the Body-Body. In this chapter it will

be explained why singularity-invariant leg rearrangements are not possible for generic

Plane-Body or Body-Body components.

Until Chapter 5, obtaining the a singularity-invariant leg rearrangements by finding

an affine relationship, entails solving the system of forward kinematics equations,

(ai − bi)
2 = l2i , for i = 1, . . . , 6

plus one equation involving the location of the new attachments for the rearranged leg,

(a − b)2 = d2.

To derive its associated linear system, the same simplifications have to be used for

all the cases. First, using the orthogonality of the rotation matrix, 6 equations can be

used to simplify the quadratic terms of all the orientation variables

i2x + i2y + i2z = 1, i · j = 0,

j2
x + j2

y + j2
z = 1, i · k = 0,

k2
x + k2

y + k2
z = 1, j · k = 0.

Secondly, the introduction of additional unknowns allows the linearization of all bilinear
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8.1 The Plane-Body component

terms by simple variable changes

u = p · i = pxix + pyiy + pziz,

v = p · j = pxjx + pyjy + pzjz,

w = p · k = pxkx + pyky + pzkz

and finally, substracting the first equation from all the others, quadratic terms in px,

py and pz are eliminated.

The matrix associated with the linear system, after some manipulation using row

operations, has always been named P and has a regular appearance (matrix (5.13) for

the Line-Plane component, matrix (6.3) for the Line-Body component and matrix (7.6)

for the Plane-Plane component).

In all cases, singularity-invariant leg rearrangements are defined by the rank de-

ficiency of matrix P. In the next sections, the same matrix will be analyzed for the

Plane-Body and the Body-Body components to conclude that no singularity-invariant

leg rearrangements are possible for generic instances of these components.

8.1 The Plane-Body component

The Plane-Body component consists of 6 legs, whose base attachments have coordinates

a = (xi, yi, zi)
T and the corresponding platform attachments lie in a plane, and thus,

have local coordinates b̃i = (ri, si, 0)T , for i = 1, . . . , 6. So, the space of leg attachments

is a 5-dimensional space defined by (x, y, z, r, s) ∈ R
5.

Using the same equations and simplifications explained above, it can be checked

that the corresponding P matrix for the Plane-Body component is




−r1 −s1 x1 y1 z1 r1x1 r1y1 r1z1 s1x1 s1y1 s1z1 1
−r2 −s2 x2 y2 z2 r2x2 r2y2 r2z2 s2x2 s2y2 s2z2 1
−r3 −s3 x3 y3 z3 r3x3 r3y3 r3z3 s3x3 s3y3 s3z3 1
−r4 −s4 x4 y4 z4 r4x4 r4y4 r4z4 s4x4 s4y4 s4z4 1
−r5 −s5 x5 y5 z5 r5x5 r5y5 r5z5 s5x5 s5y5 s5z5 1
−r6 −s6 x6 y6 z6 r6x6 r6y6 r6z6 s6x6 s6y6 s6z6 1
−r −s x y z rx ry rz sx sy sz 1




. (8.1)
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8.2 The Body-Body component

Singularity-invariant leg rearrangements for the Plane-Body component would be

defined by those (x, y, z, r, s) that make P lose rank. Such condition can be translated

into a system of equations by applying Gaussian Elimination. As P is a 7× 12 matrix,

the last row of the resulting matrix has 6 elements different from zero. In other words,

the singularity-invariant leg rearrangements would be defined by the solutions of a

system of 6 equations in the 5 unknowns (x, y, z, r, s). For any generic case, this is an

overdetermined system that has no solution, and so, there are no singularity-invariant

leg rearrangements for a generic Plane-Body manipulator.

8.2 The Body-Body component

The generic Stewart-Gough platform also consists of 6 legs with base attachments

a = (xi, yi, zi)
T and platform attachments b̃i = (ri, si, ti)

T , for i = 1, . . . , 6.

Repeating the same steps as above, the associated linear system leads to the fol-

lowing P matrix




−r1 −s1 −t1 x1 y1 z1 r1x1 r1y1 r1z1 s1x1 s1y1 s1z1 t1x1 t1y1 t1z1 1
−r2 −s2 −t2 x2 y2 z2 r2x2 r2y2 r2z2 s2x2 s2y2 s2z2 t2x2 t2y2 t2z2 1
−r3 −s3 −t3 x3 y3 z3 r3x3 r3y3 r3z3 s3x3 s3y3 s3z3 t3x3 t3y3 t3z3 1
−r4 −s4 −t4 x4 y4 z4 r4x4 r4y4 r4z4 s4x4 s4y4 s4z4 t4x4 t4y4 t4z4 1
−r5 −s5 −t5 x5 y5 z5 r5x5 r5y5 r5z5 s5x5 s5y5 s5z5 t5x5 t5y5 t5z5 1
−r6 −s6 −t6 x6 y6 z6 r6x6 r6y6 r6z6 s6x6 s6y6 s6z6 t6x6 t6y6 t6z6 1
−r −s −t x y z rx ry rz sx sy sz tx ty tz 1




.

(8.2)

This is a 7× 16 matrix whose last row, after Gaussian Elimination, has 10 non-zero

elements. Then, for this case, singularity-invariant leg rearrangements are defined by

the zeros of a system of 10 equations in the 6 unknowns (x, y, z, r, s, t).

In conclusion, if any of the legs is relocated to the new attachments a = (x, y, z)T

and b̃ = (r, s, t)T , the resulting leg rearrangement is singularity-invariant if, and only

if, the 10 polynomials do simultaneously vanish.

This is an overdetermined system that has no solution for a generic case. We need

to impose at least 5 more scalar equations to obtain a 1-dimensional set of solutions.

For example, non-generic manipulators could lead to cases where such overdetermined

systems have solutions. The important point here is that, for any of those cases, the
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8.3 Example of a non-generic case: a decoupled Stewart-Gough platform

rank deficiency of matrix P would characterize all possible singularity-invariant leg

rearrangements. In conclusion, all the generic singularity-invariant leg rearrangements

have been classified in this work and any non-generic case can be obtained through the

study of the matrix P.

8.3 Example of a non-generic case: a decoupled Stewart-

Gough platform

Consider the Plane-Body component in Fig. 8.1. It contains a Point-Plane subcompo-

nent and 3 legs, and only the base attachments are all coplanar. The doubly-planar

version with the same topology appears in Section 7.4 under number 8, and it turns

out that the singularity-invariant leg rearrangements that can be done are exactly the

same as in the doubly-planar version.

a1

a2

a3

a4

a5

a6

b4

b5

b6

i xi yi ri si ti

1 2 -1 2 2 0

2 5 4 2 2 0

3 -1 4 2 2 0

4 7 -2 5 0 1

5 2 7 2 5 1

6 -3 -2 -1 0 1

Figure 8.1: A decoupled manipulator with non-planar platform and its correspond-
ing attachment coordinates (ai = (xi, yi, 0) and bi = p + R(ri, si, ti)

T ). In blue, its
singularity-invariant leg rearrangement lines.

This manipulator is said to be decoupled because the three legs forming the tripod

give the position of the platform, while the three remaining ones orient it. When the

tripod is rigid, i. e., fixed at a position, this manipulator is also known as spherical
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8.3 Example of a non-generic case: a decoupled Stewart-Gough platform

[6, 39]. Note that when b4, b5 and b6 are collinear, the manipulator contains a Line-

Plane component (see the example in Section 5.9.1), and when they are coplanar with

the 4th attachment, it contains a Plane-Plane component.

After performing Gaussian Elimination on the corresponding matrix P, only six

non-zero elements remain at the last row. That is, a leg rearrangement will be singularity-

invariant if it fulfills the following 6 conditions

−2xr + yr + 4x − 2y + 6r − 6s + 18t = 0,

−4xr/3 + xs + 2x/3 + 6r − 6s + 12t = 0,

1/5(17xr + ys − 34x − 10y − 34r + 34s − 207t) = 0,

5xr/3 + xt − 10x/3 − 5r + 5s − 17t = 0,

9xr/5 + yt − 18x/5 − 18r/5 + 18s/5 − 89t/5 = 0,

−1xr/2 + x + r − 3s/2 + 9t/2 + 1 = 0.

This system of equations has 4 sets of solutions:

T = {(x, y), (r, s, t) |

x = λ, y = µ; r = 2, s = 2, t = 0, λ, µ ∈ R},

∆1 = {(x, y), (r, s, t) |

x = 2, y = 7; r = 2, s = 2 + 3λ, t = λ, λ ∈ R},

∆2 = {(x, y), (r, s, t) | x = 7, y = −2;

r = 5 − 3λ/2, s = λ, t = 1 − λ/2, λ ∈ R},

∆3 = {(x, y), (r, s, t) | x = −3, y = −2;

r = 2 − 3λ, s = 2 − 2λ, t = λ, λ ∈ R}.

The first one corresponds to the tripod component and it means that base attachments

can be rearranged to any point of the base plane as long as its corresponding platform

attachment is the vertex of the tripod. The other 3 sets correspond to point-line

correspondences as before, depicted as red lines in Fig. 8.1. This means that b4, b5 and

b6 can be relocated to any other point of the blue lines (as long as their corresponding

base attachments remain the same).
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8.3 Example of a non-generic case: a decoupled Stewart-Gough platform

a1

a2

a3

a4

a5

a6

b4

b5

b6

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

Figure 8.2: Singularity-invariant leg rearrangements from the example in Fig. 8.1.

In Fig. 8.2 we show two possible singularity-invariant leg rearrangements of the

manipulator at hand. For all of them, the decoupling properties remain the same as

they are all equivalent manipulators.
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Chapter 9

Conclusions: contributions and

prospects for further research

To the best of our knowledge, the concept of singularity-invariant leg rearrangements

is new. This concept has allowed us not only to contribute to new geometric inter-

pretations of singularities, but also to the detection of kinematic equivalences, and to

provide a new geometric point of view to architectural singularities.

A complete characterization of all possible singularity-invariant leg rearrangements

for Stewart-Gough platforms has been done. On the one hand, three of the possible

rigid components of a Stewart-Gough platform, the Point-Line, the Point-Plane and

the Line-Line, admit any leg rearrangement that preserves the lines and the planes

to which their attachments belong. On the other hand, the rest of rigid components

only admit rearrangements that preserve some extra geometric constrains. Although

this may seem more restrictive, it provides a lot of geometric information about the

kinematics of the platform, by, among other things, allowing to identify the complexity

of its singularity locus at a glance.

Despite its simplicity, the Point-Line singularity-invariant leg rearrangements have

been proved to be very powerful to detect equivalences and to perform complex rear-

rangements, specially when several of these rearrangements are applied simultaneously.

Unfortunately, these rearrangements alone are incomplete because they cannot be ap-

plied to manipulators with no multiple spherical joints. This has been proved, for

example, for the Line-Line component, whose singularity-invariant leg rearrangements

require an in-depth independent analysis for the general case. In addition, leg rear-
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rangements in Point-Line components have also been used to obtain parameterizations

of self-motions of some architecturally singular versions of well-known manipulators,

such as the Griffis-Duffy type I and the Zhang-Song platform.

The most fruitful singularity-invariant leg rearrangements have been obtained through

the analysis of the Line-Plane component, in the sense that they have led to a lot of

unknown properties of this component. Indeed, this analysis permitted to identify dif-

ferent topologies, each of them with different degree for its characteristic polynomial.

In addition, this analysis has also provided a geometric interpretation of type II singu-

larities and a measure of distance to architectural singularities. All these results had

never appeared before in the literature. Its generalization to Line-Body components

have revealed a more complex correspondence between the platform line and a cubic

space curve attached to the base. In addition, for this component, a very interesting

property has been found: in a singular position, it is always possible to relocate a leg

through a singularity-invariant rearrangement so that it has zero length. This provides

a connection between type I and type II singularities of the platform, but more research

has to be done to generalize this result to more general components like the Plane-Plane

component.

The singularity-invariant leg rearrangements for the Plane-Plane component have

revealed a hidden geometric world to explore. The correspondence between the planar

cubic curves attached to the base and the platform can be seen as a generalization of

all the other singularity-invariant leg rearrangements on components involving points,

lines and planes. Factorizations of such cubics provide kinematic simplifications, and its

generic architectural singularity can be seen as a particular degenerate rearrangement.

The remaining Line-Body and Body-Body components have been shown not to

admit any singularity-invariant leg rearrangement in general, but for some non-generic

cases such rearrangements exist and tools have been provided to compute them.

Regarding the classifications of Stewart-Gough platforms, two types of classifica-

tions have been done in this thesis. On the one hand, families of manipulators with the

same singularities have been generated for all doubly-planar Stewart-Gough platforms.

To this end, the Faugère and Lazard classification, using bipartite graphs, is used to

identify each architecture. Then, they are all grouped into families where each member

has the same forward kinematic solution and essentially, the same singularity locus.
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On the other hand, a different type of classification is done, which finds classes inside

the same architecture. Indeed, for the Line-Plane, three types of singularity loci with

different topology have been found, each one corresponding to different degrees of the

characteristic polynomial, but them all corresponding to the same bipartite graph, that

is, to the same type of architecture. For the Line-Body and the Plane-Plane compo-

nents, classifications depending on the factorizations of the cubic curves that define

their singularity-invariant leg rearrangements have been done. It is still an open prob-

lem to elucidate if they all correspond to different characteristic polynomial degrees.

Finally, several applications have been reported. An octahedral manipulator kine-

matically equivalent to a 6-6 parallel platform with only simple spherical joints has been

presented and its implementation briefly described. It has also been presented the first

optimizations done using singularity-invariant leg rearrangements. More research can

be done to study the impact of such rearrangements in other indexes like the condition

number or the volume of the static workspace. In short, the optimizations that can be

done using singularity-invariant leg rearrangements present an interesting paradigm to

be taken into account in the future.

In conclusion, singularity-invariant leg rearrangements are proved to be a powerful

tool for the study of several aspects of robot kinematics. We hope that the obtained

results will encourage other researchers to follow this new research line.
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Appendix A

Cayley-Menger determinants and

Distance Geometry

Cayley-Menger determinants play a fundamental role in the so-called Distance Geom-

etry, a branch of Geometry devoted to the characterization and study of sets of points

on the basis of only their pairwise distances (see [73] for a complete review of these

determinants and their generalizations). Hence, Distance Geometry has immediate rel-

evance where distances between points are determined or considered, as for example,

the resolution of the forward kinematics problem of parallel manipulators.

Let us define:

D(p1, . . . ,pn;q1, . . . ,qn) =

∣∣∣∣∣∣∣∣∣

0 1 . . . 1
1 s1,1 . . . s1,n

...
...

. . .
...

1 sn,1 . . . sn,n

∣∣∣∣∣∣∣∣∣
, (A.1)

with si,j = ‖pi−qj‖2. This determinant is known as the Cayley-Menger bi-determinant

of the point sequences p1, . . . ,pn, and q1, . . . ,qn. When the two point sequences are the

same, it will be convenient to abbreviate D(p1, . . . ,pn;p1, . . . ,pn) by D(p1, . . . ,pn),

which is simply called the Cayley-Menger determinant of the involved points.

The square volume V 2(p1, . . . ,pk+1) of the k−dimensional simplex defined by the

k + 1 points p1, . . . ,pk+1 can be expressed as follows:

V 2(p1, . . . ,pk+1) =
(−1)k+1

2k(k!)2
D(p1, . . . ,pk+1). (A.2)
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The direct consequence of the above property is that any Cayley-Menger determinant

involving 5 or more points will be proportional to a degenerate volume, because any

set of points embedded in R
3 have degenerate volumes in 4 or higher dimensions.

There are several other properties of Cayley-Menger determinants that can be very

useful to the geometric interpretation of results obtained using this methodology [98].

For example,

D(p1,p2,p3;q1,q2,q3) = ((p1 − p3) × (p2 − p3)) · ((q1 − q3) × (q2 − q3)), (A.3)

which means that D(p1,p2,p3;q1,q2,q3) is the product of the areas of the two triangles

defined by the two sets of points, and

D(p1,p2,p3,p4;q1,q2,q3,q4) =

|p1 − p4,p2 − p4,p3 − p4| · |q1 − q4,q2 − q4,q3 − q4|, (A.4)

which again means that the bi-determinant is the product of the volumes of the 2

tetrahedral formed by the two sets of points.

The Jacobi’s theorem can be applied to a Cayely-Menger determinants to simplify

its expansion [104]. In this context, a simple minor Mij of a matrix is defined as the

determinant of the matrix after deleting the ith row and the jth column.

Jacobi’s Theorem. Given a n × n matrix A = (aij), consider the following
submatrices

M(r) It is the (n − r) × (n − r) matrix determinant obtained from the determinant
of the matrix A after deleting rows i1, . . . , ir and columns k1, . . . , kr, with sign
(−1)i1+...ir+k1+···+kr .

∆r It is the r-minor of the cofactor matrix. That is, if Aij = (−1)i+jMij is the ij’s
cofactor of the matrix A, ∆r is the determinant of the matrix defined by the first
r rows and columns of the matrix (Aij).

Then, the Jacobi’s theorem states that

∆r = |A|r−1M(r)

where |A| stands for the determinant of the matrix A.

For r = 1, it can be checked that the Jacobi’s theorem gives the trivial relation

A11 = A11. Otherwise, for r = 2, Jacobi’s theorem says

∆2 = |A|M(2) =⇒ |A| =
A11A22 − A12A21

M(2)
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where

M(2) = (−1)1+2+1+2

∣∣∣∣∣∣∣

a33 . . . a3n

...
...

an3 . . . ann

∣∣∣∣∣∣∣

supposing that the chosen indexes to delete, i1 and i2, are 1 and 2.

Consider now that A is the matrix of the Cayley-Menger determinant of 5 points,

so that |A| = D(p1,p2,p3,p4,p5). Note that any minor Mii will correspond to the

Cayley-Menger determinant of the four points {p1,p2,p3,p4,p5} \ pi. On the other

hand, a minor Mij for i 6= j gives the bi-determinant of the two sets {p1,p2,p3,p4,p5}\
pi and {p1,p2,p3,p4,p5} \ pj .

Then, for a 5-point Cayley-Menger determinant, one can directly apply Jacobi’s

theorem for r = 2 to the follwing partition of the Cayley-Menger determinant:

D(p1,p2,p3,p4,p5) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 s1,2 s1,3 s1,4 s1,5

1 s2,1 0 s2,3 s2,4 s2,5

1 s3,1 s3,2 0 s3,4 s3,5

1 s4,1 s4,2 s4,3 0 s4,5

1 s5,1 s5,2 s5,3 s5,4 0

∣∣∣∣∣∣∣∣∣∣∣∣

=
A55A66 − A56A65

D(p1,p2,p3)
,

that is,

D(p1,p2,p3,p4,p5) =

D(p1,p2,p3,p4)D(p1,p2,p3,p5) − D(p1,p2,p3,p4;p1,p2,p3,p5)
2

D(p1,p2,p3)
. (A.5)

In conclusion, Jacobi’s theorem is used to express Cayley-Menger determinants as

a function of lower degree Cayley-Menger determinants. This is used in [77, 78, 79] to

solve the kinematics of both serial and parallel robots using Distance Geometry. During

the development of the present thesis, it was used to proof several singularity-invariant

leg rearrangements of some of the rigid components [9], but here it is only applied to

the Point-Plane component in Section 4.6 in the 4th chapter.
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Appendix B

Cross-ratios and Projective

Geometry

One of the objectives of the present work is to give a common framework to deal

with architectural singularities, whose characterizations found until the moment deal

with projective invariants that must be preserved between the platform and the base

attachments in their local coordinates. In this context, it could be useful to interpret

the leg rearrangements in terms of Projective Geometry. To this end, next a brief review

of some basic concepts and some of the theorems used in this thesis is presented.

The cross-ratio of four points on a line1 pi = (ni, 0, 0), for i = 1, . . . 4, is defined as:

{p1,p2;p3,p4} =
(n3 − n1)(n4 − n2)

(n4 − n1)(n3 − n2)
. (B.1)

Likewise, for a pencil of lines l1, l2, l3, l4 with focus v, their cross-ratio {l1, l2; l3, l4} can

be defined as the cross-ratio of the four points resulting from intersecting these four

lines with an arbitrary line, in general position, lying in the same plane [23, Section

IV.3] (points p1, p2, p3 and p4 in Fig. B.1).

The cross-ratio of four points lying on a conic is defined as the cross-ratio of the

pencil of lines formed by joining the four points with any other different point of the

conic. Chasles’s Theorem states that the value of this cross-ratio is independent of the

position of the pencil focus on the conic [89, Section V].

1The set of points of a fixed line a is called range of points, having a as its axis; dually, the set of
all lines through a fixed point A is called pencil of lines, having A as its vertex [89].
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p1

p2
p3

p4

v

l1
l2 l3

l4

Figure B.1: A range of points on a line, and a pencil of lines through them, and four
points on a conic.

Pencils of lines, ranges of points and conics are all one-dimensional projective

domains. Thus, their elements (lines or points) can be defined by a single non-

homogeneous coordinate which is called the projective parameter.

Theorem Given a one-to-one correspondence between two one-dimensional projec-
tive domains, the three following statements are equivalent:

1. The correspondence is projective.

2. The cross-ratio of any four elements is equal to the cross ratio of the four cor-
responding elements, taken in the corresponding order. Actually, the cross-ratio
can be used to define the correspondence.

3. The correspondence is associated with a bilinear relation between their projective
parameters θ and θ′ of the form

θ′ =
αθ + β

γθ + δ
, with αδ − βγ 6= 0. (B.2)

All these concepts of plane Projective Geometry are used in Chapter 5 in some of

the geometrical interpretations of the singularity-invariant leg rearrangements and for

the architectural singularity characterization. All the one-to-one correspondences that

appear in this thesis can be defined in a Projective Space.
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[17] J. Borràs, F. Thomas, and C. Torras. Singularity-invariant leg rearrangements

in Stewart-Gough platforms. In International Symposium on Advances in Robot

Kinematics, pages 421–428, 2010.
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[84] N. Rojas, J. Borràs, and F. Thomas. A distance-based formulation of the octa-

hedral manipulator kinematics. In IFToMM Symposium on Mechanism Design

for Robotics, 2010.

[85] N. Rojas and F. Thomas. The forward kinematics of 3-RPR planar robots:

A review and a distance-based formulation. IEEE Transactions on Robotics,

27(1):143–150, 2011.

[86] F. Ronga and T. Vust. Stewart platforms without computer? Preprint, Université
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