Optical properties of nanostructures from time-dependent density functional theory
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We review the time-dependent density functional theory (TDDFT) and its use to investigate excited states of
nanostructures. These excited states are routinely probed using electromagnetic fields. In this case, two different
regimes are usually distinguished: i) If the electromagnetic field is “weak” — as in optical absorption of light
— it is sufficient to treat the field within linear response theory; ii) Otherwise, nonlinear effects are important,
and one has to resort to the full solution of the time-dependent Kohn-Sham equations. This latter regime is of
paramount relevance in the emerging field of research with intense and ultrashort laser pulses. This review is
divided in two parts: First we give a brief overview of the theoretical foundations of the theory, both in the
linear and non-linear regimes, with special emphasis on the problem of the choice of the exchange-correlation
functional. Then we present a sample of applications of TDDFT to systems ranging from atoms to clusters and
to large biomolecules. Although, most of these applications are in the linear regime, we show a few examples of
non-linear phenomena, such as the photo-induced dissociation of molecules. Many of these applications have
been performed with the recently developed code octopus (http://www.tddft.org/programs/octopus) .

Keywords: linear response, optical response, clusters, nonlinear processes, TDDFT, non-adiabatic molecular dynamics, high
harmonic generation

Contents 1. Electron ion-dynamics of a van der Waals
complex: Ba..FCHj3 16
L Introduction 1 2. Photofragmentation: the case of the noble gas
A. Relation between theory and experiment 2 molecule. He3 17
B. Sum rules ) 3. Clusters in strong laser fields 18
C. High harmonic generation 19
II. Time Dependent Density Functional Theory ) )
(TDDFT) 3 IV. Conclusions and perspectives 20
A. Excitation energies in TDDFT 3
1. Matrix eigenvalue method 4 Acknowledgements 21
2. Selfconsistent Green’s Function Method 5 References 21
B. Full solution of the TDDFT-Kohn-Sham equations 5
C. Assessment of exchange-correlation kernels 6
1. Metal clusters 7 L INTRODUCTION
2. Silanes 8
T Applications of TDDFT 8 Nanostructures, . including clusters, biomolecules and
. molecular-nanodevices, are nowadays at the heart of many
A. Linear response processes 8 . . h
. fundamental and technological research projects. Characteri-
1. Optical response of atoms 8 . . . . ..
. zation of their electronic, structural, and bonding properties is
2. Optical response of cl}lsters 104 real necessity. Optical, electron and time-resolved spectro-
3. Thermal line broadening 12 scopies offer this possibility, allowing the study of static and
4. Applications to carbon clusters 13 dynamic electron-electron correlations. The electronic prop-
5. Benzene 14 erties are sensitive to the evolution of the energy levels as the
6. Applications to biomolecules 15 number of atoms in the cluster increases. The optical spec-

B. Nonlinear processes 16  trum provides information on the electronic structure. In par-



ticular, the optical response of the clusters depends on their
size and also on the cluster structure. This is an important
feature, since the determination of the structure is, in general,
a hard task, either for experimental techniques or for sophis-
ticated total energy calculations, and knowledge of the geo-
metrical structure of a cluster is required as a basis for under-
standing many of its properties.

This article is divided in two main parts: In section II we
briefly review the theory of time-dependent density functional
theory (TDDFT),™* and the basic framework for the calcu-
lation of optical spectra of clusters and nanostructures. For
a deeper study of the theoretical foundations and limitations
we refer the reader to the available excellent reviews, namely
Refs. [1,2] for the basics of TDDFT, and Ref. [4] for a detailed
comparison of TDDFT with approaches based on many-body
perturbation theory — including applications to nanostructures
and solid-state systems. We have recently implemented this
framework in the first principles code octopus,’ that allows
the study electron-ion dynamics of many-electron systems un-
der the presence of arbitrary external electromagnetic fields.
Section III is devoted to the applications of TDDFT, both in
the linear and non-linear regimes, some of them performed
with octopus. Contact with experiments and other works and
techniques will be made all throughout the present paper.

A. Relation between theory and experiment

When a nanostructure interacts with an applied time-
dependent electric field characterized by an external poten-
tial vext(r, ) the external field induces a time-dependent per-
turbation of the electron density dn(r,®). We work in the
longitudinal gauge, and neglect magnetic and current-induced
effects. In the linear response regime, the dynamical suscep-
tibility ¢ (r,r’, ) is given by
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From the value of dn(r,®), it is straightforward to calculate
the induced dipole moment (in the case of a dipolar field).
The dynamical polarizability o(®), which is the ratio between
the induced dipole moment and the magnitude of the applied
electric field Ey, then becomes

w@=%/&mﬁmm@. (1.2)

Absorption of light can be viewed as a dissipation process
induced by the electronic excitations: dn(r,®) develops an
imaginary part that represents the power absorption of the
cluster. By application of Fermi’s Golden Rule, one obtains
the photoabsorption cross section:

_ 4T

o(w) = So(w), (1.3)

c
where 30(®) is the imaginary part of the dynamical polar-
izability and c is the velocity of light. The integral of the

photoabsorption cross section leads to the dipole sum rule (or
Thomas-Reiche-Kuhn sum rule)
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where m is the electronic mass, Z is the total number of elec-
trons taking part in the collective motion. Another widely
used quantity is the strength function S(®), which is con-
nected to o (®) by
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The sum (an integral in the case of a continuum spectrum)
extends over all the excited “many-body” states of the system
|n). Furthermore, |0) denotes the ground state, ®, are the exci-
tation frequencies, and the operator 0 represents the external
field acting on the system (in what follows we will concentrate
on dipolar excitations). Note that this is not the usual defini-
tion of the strength function given, for example, in Ref. [6].
The difference is a % factor that we have added to get the
oscillator strength of the transitions. It is such that summed
over all transitions gives the total number of electrons in the
system.

Several experimental techniques can be used to extract
optical spectra of nanostructures, such as near-field optical
microscopy, photoelectron spectroscopy, scanning tunnelling
spectroscopy, or photoluminiscence. For the case of simple
metal clusters a different method has been employed to mea-
sure the photoabsorption spectrum.”® It is based on the fact
that the clusters warm up and fragment upon absorption of
light: the ratio between the number of clusters of a given size
arriving at the detector with and without light is then propor-
tional to the absorption cross section. In the case of metal-
lic clusters, the process responsible for the fragmentation is
the excitation of a collective mode, the so-called surface plas-
mon. All the valence electrons participate in this collective
resonance, moving back and forth uniformly against the pos-
itive ionic background.®® For sodium clusters, for example,
the excitation energy of the surface plasmon is about 3 eV.

B. Sum rules

The full response is not required in some applications, and
a knowledge of some moments my of the strength function
S(w) is sufficient to have a correct picture of the physical
processes (ny; = [ do®*S(w)). For instance, the average fre-
quency and the variance of the absorption spectrum can be
obtained, respectively, as ® = m;/mg and o’ = (m /mo —
m2/m3). A direct evaluation of the moments my is diffi-
cult, because the whole excitation spectrum is needed, but
the even moments can be easily obtained within the random
phase approximation (RPA).%!0 By defining mean frequen-
cies as oy = (mk/mk_g)l/z, the bounds ®; < ® < w3 and
6% < (w3 — @7)/4 can be proved. Also m_; = a/2, where
ol is the static polarizability.” Consequently, one may estimate
the centroid and the variance of S(®) by evaluating the three



RPA moments m_j, m; and m3. The physical significance of
the upper limit m3 is that of a rapid (diabatic) oscillation of the
valence electrons against the ions, whereas the lower limit ®;
is connected with a slow adiabatic motion of the electrons ad-
justing their density at any moment to the external field. This
lower limit turns out to be a good estimate of the measured en-
ergy of the collective excitation for metallic clusters.>!! The
moment m; represents the restoring force parameter for the
collective translational oscillations of the electrons against the
ionic background.® For a spherically symmetric electron den-
sity n(r), ms is given by an overlap integral of the electronic
and ionic densities. This integral is easily evaluated for a
metallic cluster of radius R in the spherical jellium model'?
and for the particular case of an external dipolar excitation
becomes m3 = ﬁe:zrzé( - 572) where r; = (3/(4mn.))!/3, and
8Z measures the spill-out of the electronic charge beyond the
radius of the positive background. By neglecting the spill-out

charge, then %m_l = R3 (the classical dipolar polarizability of

a metallic sphere is o0 = R?), and 03 = 1/ (i%2Z) / (mo) = oo
gives the resonance frequency of the classical Mie surface
plasmon coMie.13

The general expressions for the even moments correspond-
ing to ¢- and /-dependent external fields j;(¢r)Y;o(r) are given
in Ref. [14]. This field represents the angular decomposition
of an incident photon, described as a plane wave eilar—or)
With those operators one can analyze the multipolar response
and also the inelastic scattering of electrons, relevant for elec-
tron energy loss spectroscopy (EELS). In small metallic clus-
ters, and for fields of high multipolarity, there is a competition
between the coulombic contribution to the response (diffusiv-
ity and collective excitations) and the kinetic energy contri-
bution (single-particle excitations). The latter dominates for
large angular momentum / or large momentum transfer ¢, in-
dicating the vanishing of collective effects. The response of
a metallic sphere to a photon of intermediate energy is domi-
nated by dipolar excitations, and at large energies by electron-
hole excitations.®!* As the size of the cluster increases, higher
multipolar excitations start to dominate together with retarda-
tion effects (completely neglected until now).

II. TIME DEPENDENT DENSITY FUNCTIONAL THEORY
(TDDFT)

To simplify our presentation we use in the following atomic
units (2 =hi=m=1).

The original formulation of the Hohenberg-Kohn-Sham
density functional theory (DFT)!>!® is not, in general, ap-
plicable to excited states or to problems involving time-
dependent external fields, thus excluding the calculation of
optical response properties, electronic spectra, quasiparti-
cles, photochemistry, etc. However, theorems have now
been proved for time-dependent density functional theory
(TDDFT) which extend the applicability of the original the-
ory. The first applications of TDDFT were actually done be-
fore its formal development and relied on analogies to time-
dependent Hartree-Fock theory.!” In this section we briefly

present the foundations of TDDFT and refer the reader to the
reviews in Refs. [1-4] for a deeper discussion of TDDFT and
its applications. The main result of TDDFT is a set of time-
dependent Kohn-Sham (TDKS) equations whose structure is
similar to the time-dependent Hartree equations. However, the
TDKS equations include all the many-body effects through a
time-dependent exchange-correlation potential. This potential
is unknow, and has to be approximated in any practical appli-
cation of the theory.

The theoretical basis of TDDFT was laid by Runge and
Gross,'® and relies on the following theorem: There exists a
one-to-one mapping between time-dependent external poten-
tials and time-dependent densities. As a consequence of this
theorem the expectation value of any quantum mechanical op-
erator is a unique functional of the time-dependent density.
From quantum mechanics we know that the time-dependent
Schrédinger equation with the initial condition ¥(r) = ¥y
corresponds to a stationary point (not necessarily minimum)
of the quantum mechanical action integral

t .

Aln] = [ dt(‘P(t)|i%—H(t)|‘P(t)). (2.1)
0

(See Ref. [19] for an alternate definition that solves some
problems related to causality.) From the previous one-to-
one mapping between time-dependent potentials and densi-
ties, the action is a functional of the density A[n] that must
have a stationary point at the correct time-dependent density.
Thus the density can be obtained by solving the Euler equation
8A[n]/dn(r,t) = 0 with the appropriate boundary conditions.
As in the static case, a time-dependent Kohn-Sham scheme
can be introduced by considering a non-interacting system
that reproduces the exact interacting density n(r,¢). The time-
dependent Kohn-Sham equations read

1 0
[— §V2 + veff(r,t)] Qi(r,1) = ig(p,'(r,t) , (2.2)

where Vet (1,7) = vi(r,1) + vxe (T, 1) + vext (1, 7) is the effective
time dependent potential felt by the electrons. It consists of
the sum of the external time-dependent applied field, the time-
dependent Hartree term, and the exchange-correlation poten-
tial. The time-dependent density can be easily evaluated from
the Kohn-Sham eigenfunctions

N
n(r,t) = Z|(pi(r7t)|27 (2.3)
i=1

The advantage of the time-dependent KS-scheme lies in
its computational simplicity compared to other quantum-
chemical schemes such as the time-dependent Hartree-Fock
or the configuration interaction (CI) methods.

A. Excitation energies in TDDFT

TDDFT has become the most popular method for the
calculation of excitations in finite systems, both in physics
(atomic, molecular and condensed matter)!** and quantum



chemistry. As a first approximation to the excitation energies,
one can simply take differences €7 — €; between the ground-
state Kohn-Sham eigenvalues. Although this procedure is not
entirely justifiable, it is often employed to obtain a first ap-
proximation to the excitation spectrum. It is well known that
the Kohn-Sham eigenvalues and wave functions do not have
a precise physical interpretation, with the exception of the
eigenvalue of the highest occupied state, egomo, that is equal
to minus the ionization potential /P of the system.?>?! In ad-
dition, Chong et al.>? have shown that the orbital energies of
other occupied levels of atoms and molecules can be inter-
preted as approximate, but rather accurate, relaxed vertical re-
moval energies. It should be stressed that those relations are
valid in exact DFT, but may fail for the approximate exchange-
correlation energy functionals currently in use (e.g., the lo-
cal density approximation underestimates €gopmo by roughly
a factor of two).

Another approach, called Agcr (delta self-consistent field),
is based on the observation that the Hohenberg-Kohn theo-
rem and the Kohn-Sham scheme can be formulated for the
lowest state of each symmetry class.>> An unrestricted vari-
ation will clearly yield the ground-state, but by restricting
the variation to different symmetry classes it is possible to
reach some excited states. The excitation energies can then
be calculated from the difference in total-energy. However,
this approach suffers from two drawbacks: i) only the low-
est lying excitation for each symmetry class is obtainable, and
ii) the exchange-correlation (xc) functional that now enters the
Kohn-Sham equations depends on the particular symmetry we
have selected. The excitation energies calculated in this way
are only of moderate quality.

TDDFT allows to calculate the excited state energies of a
many-body system based on information from an ordinary
self-consistent DFT calculation. In the time-dependent ap-
proach, one studies the behavior of the system subject to a
time-dependent external perturbation. The response of the
system is directly related to the excited states of the N-particle
system. The linear response of the system can be determined
from the density-density response function y, that is defined
by

n(r,0) = [&7 4 Fi0)d(r,0) 24
where On is the density induced by the perturbing potential
Ovext. The same induced density can be calculated in the
Kohn-Sham system

n(r, o) / > xo(r,r'; 0)dveg (1, o) (2.5)
where Sver includes the external field plus the induced
Hartree and exchange -correlation potentials (Sveg(r,®) =

Ve
Bext(r, 0) + [ P + [ a3 §eel)dn(x')).  The Kohn-
Sham response function ¥ describes the response of non-

interacting electrons, and can be written in terms of the gound-
state Kohn-Sham eigenvalues €; and eigenfunctions @;

@i(r) @} () @; () j (r')
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xo(r, ;) =
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where ®;; = (¢; —¢;) and f; are Fermi occupation num-
bers. From Egs. (2.4, 2.5) it is simple to derive a Dyson-like
equation for the interacting response function. For a spin-
unpolarised system it reads*

x(r,r'; o) :Xo(r,r’;co)+/d3r|/d3r2x()(r,r1;oo)
1
X [7+fxc(rlar2aw):| x(r2,r'; @), (2.7)
|ri —r2f

where we have introduced the so-called time-dependent
exchange-correlation kernel

Svxe[n(r, )]

Fre(r,¥,0) = Sn(r', w)

(2.8)

SVex=0

Equation 2.7 has to be solved iteratively. Note that this scheme
provides an exact representation of the full interacting linear
density response.

Looking at the analytical structure of the interacting linear
response function for a finite system it is easy to show that
X has poles at ® = Q, where Q are the excitation energies of
the system.? As the external potential does not have any spe-
cial pole structure as a function of ®, Eq. 2.4 implies that also
on(r,) has poles at the true excitation energies . On the
other hand, y has poles at the Kohn-Sham eigenvalue differ-
ences €; — €;. Exploiting these facts, one can derive an eigen-
value equation for the exact eigenmodes and eigenfrequencies
of the system:?*

[E7 2w 05 0) = M@Ere), 9
where the function E is defined by
Er,r,0) = §(r—r)— (2.10)

1
/d3_xX()(I',X,(D) [m +fXC(X,I‘,7(D)

This is a rigorous statement, that allows the determination of
the excitation energies of the system from the knowledge of
X0 and f XC+

We now present a brief summary of the main approaches
used to solve Egs. 2.7 and 2.9 for the electromagnetic linear
response calculation of nanostructured and low dimensional
systems. For details we refer the reader to Refs. [2,24,26-28]
for the matrix eigenvalue scheme, and Refs. [1,4,17] for the
selfconsistent Green function approach. In the next subsec-
tion we will present in more detail another scheme based on
the full solution of the time-dependent Kohn-Sham equations
that can also be used to compute the linear response. This
latter scheme is the main approach used in this work (unless
otherwise stated).

1. Matrix eigenvalue method

The exact solution of Eq. 2.9 fully incorporates the collec-
tive electronic excitations. To solve the eigenvalue equation



one can expand &(r,®) in an appropriate basis and solve nu-
merically the resulting matrix-eigenvalue equation. For spin
unpolarised systems using as basis the product of occupied
and unoccupied orbitals>® we find that the matrix equation to
be solved is:

[5i,k5j,10)l~2j +2 J(ijmijl(,'(;;g[_)\/fklwkl} Eu = Qizjéij (2.11)

where w;; = €; —¢€;, fij = fi — f; is the difference of orbital
occupation numbers, and the kernels for singlet (+) and triplet
excitations (-) are given for example in Refs. [26,27]. An al-
ternative way is to expand o around one particular energy dif-
ference between the Kohn-Sham eigenvalues of the occupied
orbital k and the unoccupied orbital j. Assuming that the true
excitation energy is not far away from €; — g, it is sufficient
to consider only the lowest order terms in those expansions.
This leads for the singlet excitations to

Q ~ (ij(mkj+21(ij,kl) (2.12)

* 1 X
>~ ;+ 2R(g; <P/|m + fre(r,r o) 097 )

where R indicates the real part of the expression. This single-
pole approximation can be viewed as an attempt to correct
the Kohn-Sham excitation energies individually without in-
cluding collective electronic effects. Note that apart from
the truncation of the expansions, two main approximations
are necessary to calculate the excitation energies: (i) the
static Kohn-Sham orbitals have to be calculated with an ap-
proximate static exchange-correlation potential, and (ii) the
frequency-dependent exchange-correlation kernel has to be
approximated.

The generalization of this formalism to spin is
straightforward,’»> although the final expressions are
more complicated than in the paramagnetic case that we have
developed here. In the spin polarized case, the non-interacting
Kohn-Sham response function is diagonal in the spin vari-
ables and exhibits poles at the Kohn-Sham energy differences
corresponding to single-particle excitations within the same
spin space. The mixing of spin-channels comes into play by
the exchange-correlation kernel when building the interacting
response function. The magnetization response naturally
involves spin-flip processes.

2. Selfconsistent Green’s Function Method

There is another traditional method!” to calculate the exci-
tations in linear response by self-consistently solving Eq. 2.7:
this requires the evaluation of the independent-particle sus-
ceptibility . The expression for X involves an explicit sum
over the complete energy eigenvalue spectrum of the Kohn-
Sham effective potential. That is, not only the occupied or-
bitals are required, but also the unoccupied bound states and
the continuum orbitals as well. This problem can be circun-
vented by calculating the Kohn-Sham response function from

the expression!’

[=]

xo(r,r':0) = Y [ (r)gi(r)G(r,r':e; +hw)+
=1

0i(r)e; (r)G*(r,r';&; —hw)] , (2.13)

where the sum is now restricted to occupied states. The
Kohn-Sham retarded Green’s function is the solution of the
Schrodinger-type equation
1

o+ EVZ—Veff(r) G(r,r';0) =8(r—r'). (2.14)
The integral equation for the first order induced density
(Eq. 2.5) is then solved iteratively. If the result of the first
iteration is inserted into the Eq. 1.2 we obtain the independent
particle approximation to the dynamical polarizability o).

The photoabsorption cross section is then calculated directly
from Eq. 1.3.

B. Full solution of the TDDFT-Kohn-Sham equations

Another very efficient method to calculate the optical spec-
trum of finite systems is based on solving directly the time-
dependent Kohn-Sham equations in response to an external
electromagnetic field. This method, originally used for the
study of nuclear reactions,3! was later applied to clusters32-36
and biomolecules®”-3® and it constitutes the main body of ap-
plications of the present work.

The starting point for the time-dependent simulations is
the Kohn-Sham ground state of the electronic system in the
nuclear equilibrium configuration. To obtain the linear op-
tical absorption spectrum one excites all frequencies of the
system by applying the electric field Svex(r,t) = —Kz8(¢).
This is equivalent to giving a small momentum K to the
electrons.?"323* The Kohn-Sham wave-functions at time ¢
are simply

@i(r, 1) = ™, (r,0). (2.15)
These orbitals are then propagated in time
@iyt + Ar) = Te 0 U s g, 1) (2.16)

Note the presence of the time-ordered exponential due to the
time-dependence of the Kohn-Sham Hamiltonian. In this
method, only occupied states need to be propagated so there
is no need of computing empty states. The spectrum can
then be obtained using Eqns (1.2) and (1.3) from the induced
dipole moments, and from the pertubation dvex; The Thomas-
Reiche-Kuhn sum rule can be used to check the quality of
the calculations; another check is energy conservation, which
the TDDFT respects when there is no external field applied.
Similarly, the spin-spin response function can be computed to
get the magnetic response of nanostructures (including non-
collinear magnetism and magnon-like excitations).

It is also possible within a time-evolution scheme to calcu-
late circular dichroism,>® which is a very powerful tool used



in the characterisation of biomolecules. In particular the com-
plex rotatory strength function R(®) = R.(®) + R, (®) +R.(®)
is given in terms of the Fourier transform of the time evo-
lution of the angular momentum operator L,(r) = Y.7°(@;| —
i(r x V);|@;) (for magnetic circular dichroism one has to work
with the total angular momentum instead of the angular part,
but the equations remain the same). Results for the optical
dichroism of DNA basis as well as other organic molecules
are in rather good agreement with experiments.3® It will be
important, however, to address the role of different exchange
correlation functionals for these chiro-optical properties.

One of the major advantages of this framework is that it
can be trivially extended to handle non-linear response and
nuclear dynamics. The set of equations to be solved for the
combined electron and ion dynamics is formed by the time
dependent KS Eqs. (2.2) together with Newton’s equations for
the motion of the ions

(2.17)

The applied external field vex(r,#) appearing in Eq. 2.2 is, in
this case, the potential created by the nuclei plus a laser poten-
tial viaser(r, ) describing the classical time-dependent external
electromagnetic field acting on the system. In the Newton
equations for the ions, Ry, stands for the position of the ion
labelled o, mg, for its mass, and F, is the instantaneous force
on that ion. This force is calculated through the Ehrenfest the-
orem

Fo(R,t) =

= H|¥(1)) . (2.18)

— (90| 5
This is just the extension of the Hellmann-Feynman theorem
to the time-dependent domain. There are no Pulay corrections
to this expression when the Kohn-Sham wave functions are
expanded in a regular grid or in plane-waves; this would not
be the case if one uses localized basis sets.>3°

C. Assessment of exchange-correlation kernels

As we have seen in the previous sections, one of the
main ingredients in linear response theory is the exchange-
correlation kernel. This is a complex quantity that includes
all non-trivial many-body effects. Approximate kernels have
been proposed over the past years and we consider here some
of the most commonly used. The simplest and most used one
is the ALDA (adiabatic local density approximation) kernel*’

JALDA (yr 1) = §(r —v')8(r — ') fHES (n) |n=n(r,[) (2.19)

where fHEG(n) = %viﬁc’(n) is just the derivative of the
exchange-correlation potential of a homogeneous electron gas
(HEG) with density n. The ALDA kernel is local both in the
space and time coordinates.*!

Recently, Gorling and coworkers have derived and im-
plemented the exact-exchange kernel (EXX; see below) for
solids.*? Using the EXX, Kurth and Von Barth*} have com-
puted electronic excitations for atoms obtaining good agree-

ment with experiment, and their results are encouraging for

the development of new kernels having exact-exchange as an
ingredient. A simplified version** of the EXX scheme has
been applied to clusters and will be discussed below in the
contest of the time evolution scheme.*

Another simplified kernel, in this case based on a simple
analytical approximation to the EXX potential,***> was de-
rived by Petersilka, Gossmann and Gross (PGG) in Ref. [24].
The kernel has the form

GG

—8(r —t’)l n(On()

PGG
£ 00t X't = 37
(2.20)
As in the ALDA, this kernel is local in time.

Other kernels have been proposed in the literature, mainly
to cope with deficiencies of the usual local approximations
to describe the optical response properties of solids. One path
was started in Ref. [46] in which the kernel was derived by im-
posing the TDDFT kernel to be static and equal, in the Bloch
representation, to the screened coulomb interaction.*®47 It is
assumed that the Kohn-Sham wavefunctions coincide with the
quasiparticle ones. Important excitonic effects for semicon-
ductors are already obtained by using only the static long-
range term Afi.(q,G,G') = =85, 0/|q+ G|*, where o is
a numerical constant.*® On similar grounds, the work of
Ref. [48] has developed a robust and efficient frequency de-
pendent and non-local f;. imposing TDDFT to reproduce the
many-body diagrammatic expansion of the Bethe-Salpeter po-
larization function. In contrast to previous work a closed-
perturbative expansion of the kernel is provided that is of
general applicability. The results for the optical and electron
energy-loss spectra of wide-band gap insulators (LiF, SiO;
and diamond) with strong excitonic effects are very well re-
produced. Both spatial nonlocality and frequency dependence
of the kernel are important in order to properly describe exci-
tonic effects.

On the other hand, by using the approach of Sect. IIB
to calculate absorption spectra, the direct knowledge of the
Jxc kernel is not needed as the excitation energies are ob-
tained from the time-dependent density. In this case, the rel-
evant quantity necessary to solve the Kohn-Sham equations,
Egs. 2.2, is the the time-dependent exchange-correlation po-
tential. This potential is expected to be much simpler to model
than fx¢

The simplest approximation for vx.(r,?) is again the adia-
batic LDA in which the static LDA exchange correlation po-
tential is used in the time-dependent Kohn-Sham equations,
but evaluated with the time-dependent density. Following
the same reasoning it is straightforward to construct adiabatic
generalized-gradient approximation (GGA) potentials.*’ Un-
fortunately, the onset of absorption calculated either with the
adiabatic LDA or most GGA functionals is typically below the
observed ones (by several eV in the case of atoms). This prob-
lem is caused by the wrong asymptotic behavior of the LDA
and GGA potentials: as the exchange term does not cancel ex-
actly the self-interaction part of the Hartree potential, the po-
tentials go exponentially to zero instead of having the correct
—1/r behavior for neutral systems. One GGA that does have
the correct asymptotic behavior was derived by van Leeuven



and Baerends (LB94).°° Although much better ionization po-
tentials and energy eigenvalues are obtained in general with
the LB94 potential, high-lying excitation energies are usually
overestimated for small molecules, and the performance for
low-lying states is less accurate than with the LDA.>!

To overcome some of the shortcomings of explicit density
functionals like the LDA and the GGAs, orbital-dependent
xc-functionals can be used. For example the exact-exchange
(EXX) functional is obtained by expanding the action func-
tional of Eq. 2.1 in powers of e? (e is the electronic charge),
and retaining only the lowest order term, that is, the exchange
term, given by the Fock (action)-integral

I [0
——Z/ dt/d3r/d3r’
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From this action functional one determines the Kohn-Sham
potential by using the chain rule for functional derivatives.*
This leads to an integral equation that determines the EXX
potential. Unfortunately, this equation poses a hard numerical
problem. There is, however, a approximation due to Krieger,
Li and Iafrate (KLI),** that leads to a semi-analytical solu-
tion of the integral equation. Another example of an orbital-
dependent functional is the self-interaction corrected local
density approximation (SIC-LDA)>?

A =AM
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In this functional, ¢ is the spin index. The first term is the
LDA approximation whereas the second term subtracts the
self-interaction part of the LDA exchange-correlation func-
tional. The last term cancels exactly the self-interaction part
of the Hartree term.

nT(l' l‘) ni

1. Metal clusters

The performance of the adiabatic functionals discussed
above has been compared for small sodium and silane
molecules.** All the calculated optical spectra of Na, (LDA,
GGA, EXX, SIC-LDA and LB94) are quite similar, regard-
less of the exchange-correlation potential used. Those spectra
show three peaks in the 2-5 eV range, and compare quite well
with experiment, although the DFT peaks are all shifted to-
wards higher energies by amounts ranging from 0.2 to 0.4 eV.
The shift can be understood as resulting from the competition
between the Coulomb repulsion contribution to the response
and the electron-hole attraction in the exchange-correlation
part. The functional giving the best results, although by a
small margin, is the EXX, while the strongest departure from
experiment is found for the LB94.

All the calculations for Nay shown in Fig. 1 yield similar
spectra. The spectrum consists of three peaks in the 1.5—
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FIG. 1: Averaged dipole strength of Nay. The curve labelled exp is
the experimental photodepletion spectrum of Wang et al,” GW is the
result of a many-body calculation including self-energy and excitonic
effects,’ and PBE indicates the results of GGA calculations with
the functional of Ref. [49]. The other curves (LDA, EXX, SIC-LDA
and LB94) correspond to calculations with functionals explained in
the text. Adapted from Ref. [34] with permission of the American
Institute of Physics.

3.5eV range, and a broader feature around 4.5eV. The com-
parison with the experimental peak positions is quite good,
although the calculated peaks appear, again, shifted to higher
energies by 0.2eV. The deviation of the LB94 is a little bit
larger. In general the errors in the calculations with all these
functionals are larger for the high energy peaks, which involve
transitions to states near the ionization threshold. The figure
also contains the results of a GW quasiparticle many-body cal-
culation including excitonic effects.’® These excitonic effects
are large when screening is weak and, in fact, absorption oc-
curs in Nas at energies substantially smaller than the quasi-
particle gap.>* In summary, Fig. 1 indicates good agreement
with experiment for both the positions (within 0.2 eV) and the
relative oscillator strengths of the main peaks of the photoab-
sorption spectrum.



2. Silanes

The two simplest hydrogen-terminated silicon clusters,
silane (SiHy4) and disilane (SioHg), pose a much harder chal-
lenge that the alkali clusters, due to the presence of p electrons
and also due to the hydrogen atoms. As expected, the different
exchange-correlation functionals lead to dissimilar results.*
The HOMO-LUMO gaps obtained for SiH4 with the differ-
ent functionals are: 8.10eV (LDA), 8.12eV (GGA), 8.40eV
(LB94), 7.70eV (SIC-LDA), and 8.77 eV (EXX). The differ-
ences between them are not large, although it is woth notic-
ing that the smallest value is obtained for SIC, and the largest
ones for LB94 and EXX . All those gaps are, however, smaller
that the value of 13.0eV obtained in a GW calculation.> For
Si;Hg the HOMO-LUMO gaps are: 6.76eV (LDA), 6.80eV
(GGA), 6.58¢eV (LB%4), 5.98eV (SIC) and 7.17eV (EXX),
and again the variations are not large. Hovewer, the main dif-
ference between those methods is a nearly rigid shift of the
spectrum of the LDA and GGA energy eigenvalues with re-
spect to LB94 and EXX. The upwards shift leads to lower
electronic binding energies. The SIC spectrum is also shifted,
but much less.

The experimental absorption spectrum of silane,>® shown
in Fig. 2, has three peaks between 8 and 12 eV, followed by a
much broader feature at higher energies. The spectra obtained
with the LDA and GGA functionals (upper panel in Fig. 2)
are quite similar to each other and the onset of absorption is
underestimated by around 1eV with respect to experiment.
On the other hand, the SIC spectrum (given in the lower panel)
is unphysically shifted to lower energies, and its first peak is
split. The shifts of the SIC, LDA and GGA spectra could be
anticipated from the low HOMO-LUMO gaps. The LB94 and
EXX functionals behave quite well: the onset of absorption is
now correct and the error in the position of the first three peaks
is reduced by a factor of 2 from the LDA or GGA results. The
LDA, GGA, LB94 and EXX spectra of disilane (SioHg) are all
very similar and consist of five peaks in the interval 7-12¢V,
followed by a broader feature at higher energies. The overall
comparison with experiment is slightly better than for silane.
The SIC-LDA functional yielded again a quite unreasonable
spectrum.

III. APPLICATIONS OF TDDFT

As the optical response of nanometer structures depends
crucially on the particle size due to quantum effects, their ab-
sorption and emision spectra can be tuned by changing its size,
opening the road towards potential applications in optical nan-
odevices. Therefore it is important to have a reliable scheme
to address the calculation of response functions.

In the previous sections we dicussed optical properties of
simple metal clusters and silanes to address the role of the
exchange-correlation kernel. In this section we give a more
comprehensive overview on different applications of TDDFT,
in order to illustrate and reliability of this method, both for
linear phenomena and for non-linear electron (ion) dynam-
ics. In the case of nonlinear phenomena the present exchange-
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FIG. 2: Averaged dipole strength of SiHy. The experimental curve
(exp) is from Ref. [56]. PBE indicates the results of GGA calcula-
tions with the functional of Ref. [52]. The other curves (LDA, EXX,
SIC-LDA and LB94) correspond to calculations with functionals ex-
plained in the text. Adapted from Ref. [34] with permission of the
American Institute of Physics.

correlation functionals might not be accurate, but they never-
theless yield relevant information about the systems. Most of
the results which follow have been obtained using the code
octopus.5 When other methods are used, this will be explic-
itly indicated.

A. Linear response processes
1. Optical response of atoms

The lowest singlet excitation energies of atoms of the al-
kaline earth and the zinc groups are given in Table 1.24%7
The LDA columns were obtained with the LDA exchange-
correlation potential and the ALDA kernel. In the same way,
the OEP columns correspond to the use of the OEP potential
and the OEP kernel. First of all, the Table shows how the dif-
ferences of energy eigenvalues, W7 ps and Wpgp, are corrected
by using TDDFT (in the matrix eigenvalue implementation),



leading to improved excitation energies Qrp4 and Qogp. The
Qopp values are superior to the LDA results, and also bet-
ter than the Agcr values. The Agcp excitations are obtained
by subtracting the total energies corresponding to the ground
state and excited configurations. Petersilka et al.”?* have ar-
gued that the main reason for the superiority of the OEP po-
tential is that it is self-interaction free, and therefore has the
correct asymptotic -1/r behaviour far from the nucleus, while
the LDA exchange-correlation potential decays exponentially.
From this argument, the importance of a good description of
the static exchange-correlation potential becomes evident. A
study of the excitation energies of the CO molecule®® indi-
cates again a good agreement with experiment.

TABLE I: The lowest singlet 'S —! P and triplet 'S —3 P excita-
tion energies of various atoms. The experimental values’ are com-
pared to TDDFT calculations in two approximations: the LDA and
the OEP. The corresponding Kohn-Sham eigenvalues differences ®
are given together with the results of a Agcr calculation. For the case
of triplet excitations we provide in parenthesis the results of the OEP
plus LDA correlation. All energies are given in Rydbergs. Adapted
from Ref. [24].

Exp Qrpa QoEp AscF WLpA WOEP

Be 'S—!P 0.388 0.399 0.392  0.331 0.257 0.259
'S—3P 0.200 0.192 0.138 (0.196) 0.181

Mg 'S—'P 0.319 0.351 0.327  0.299 0.249 0.234
IS—53P 0.199 0.209 0.151(0.196) 0.206

Ca !'S—'P 0.216 0.263 0234  0.211 0.176 0.157
IS53P 0.138 0.145 0.090(0.129) 0.144

Zn 'S—'P 0426 0477 0422  0.403 0.352 0.314
1S—3P 0.296 0.314 0.250(0.280) 0.316

Sr 1S—1p 0.198 0.241 0210  0.193 0.163 0.141
'S—3P 0.132 0.136 0.081(0.117) 0.135

Cd 's—'p 0.398 0.427 0.376  0.346 0.303 0.269
IS33P 0.279 0.269 0.211(0.239) 0.272

However, Chelilowsky et al.>” have pointed out that the dif-
ferences between Qyp4 and the experimental excitation en-
ergies are due to the approximations involved in Eq. 2.12.
When the excitation energies are calculated by exactly solv-
ing Eq. (2.11) the experimental and theoretical results agree
to within 5%—10% for all atoms. The encouraging conclusion
is that the wrong asymptotic behaviour of the LDA potential
appears not to be as important for the excited state properties
as previously thought,”*>° but more work needs to be done
to clarify this point. In Table I we also report the calculated
lowest triplet transition energies for the same atoms.’* The
TDLDA transition energies, calculated this time by solving
exactly Eq. (2.11), are in better agreement with experiment
than the results obtained by the OEP or Agcr methods. The
OERP triplet transition energies are less accurate in this case,
because the OEP potential does not include Coulomb correla-
tion effects, which play a significant role for triplets. This is
clear from the improvement of the triplet excitation energies
once the LDA correlation functional is added to the OEP re-

sults (see the results between parenthesis in the column OEP
of Table I).

a. Relativistic effects: As the atomic number of the
atom increases, also does the error made by ignoring relativis-
tic corrections. For atoms, the effect of relativity on the or-
bitals is well known: s/, and py, orbitals are stabilized and
contract, whereas d and f orbitals are destabilized and ex-
pand. It is also well known that this effect undergoes a local
maximum at the coinage metals, known in the literature as the
“gold maximum”. The effect, for the gold atom, is illustrated
in the inset of Fig. 4: the difference between the relativistic
and non relativistic orbitals is depicted, both for the 65 and 5d
orbitals. It may be seen how the s curve has a negative tail,
which implies larger values for the non-relativistic orbital for
large values of r: relativistic effects contract the orbital. The
opposite effect (positive tail, i.e. expansion) takes place for
the d orbital.

The Kohn-Sham eigenvalues also undergo strong changes
as we change the level of approximation — relativistic or non-
relativistic. These eigenvalues are given in Fig. 3 — the num-
bers are obtained either with our code octopus or with a rel-
ativistic atomic code. We plotted the 6s and 5d eigenvalues,
as well as the ionization potential of the gold atom. The de-
gree to which relativistic effects are included vary from left to
right: the leftmost panel (NOT RELATIVISTIC) disregards
relativity, and shows the values obtained in the LDA, SLDA,
GGA and SGGA approximations (SLDA and SGGA stand for
spin-polarized LDA and GGA, respectively). The next panel
(RELATIVISTIC CORE) are the results obtained by making
use of a relativistic pseudopotential. The panel REL. CORE
+ SO adds to the previous results the spin-orbit (SO) cou-
pling correction (in this case spin polarization is assumed).
Finally, the rightmost panel shows fully relativistic all elec-
tron calculations, both in the LDA and GGA approximations.
The main conclusions that we can draw from the figure are:
(i) adding the SO correction term to the non-relativistic Kohn-
Sham equation yields eigenvalues in good agreement with the
fully relativistic eigenvalues obtained from the Dirac’s equa-
tion, as long as the pseudopotential core is relativistic; and
(ii) the s — d splitting is reduced dramatically by making use
of relativistic pseudopotentials — no meaningful results will
be obtained otherwise. However, for some observables such
as the ionization potential, it suffices to use a relativistic pseu-
dopotential, with no need of adding the SO correction.

We wanted to ascertain to which extent the relativistic ef-
fects influence the excited states of gold compounds by look-
ing at the optical spectra. Previous considerations about the
eigenvalues lead us to think that there is no need to use Dirac’s
equation, although adding the SO term should be relevant to
obtain correct excitation energies. The absorption spectrum
of the gold atom obtained with the octopus code is depicted in
Fig. 4. The four curves correspond to LDA and GGA results
with and without the SO correction. The arrows mark the first
two experimental spectral lines. The main conclusions that
can be drawn from Fig. 4 are:

e The SO term does have a definite influence on the spec-
trum. This is very apparent in the splitting of the first
peak into the P, /2 and ’p, /2 lines, separated by ap-
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FIG. 3: 65 and 5d Kohn-Sham eigenvalues of the gold atom, in a vari-
ety of approximations (see text for details). Regarding the exchange
and correlation approximation, the functional employed is indicated
in the horizontal axis. SLDA and SGGA stand for spin polarized
local density and generalized gradient approximations respectively.
The dotted curve stands for the ionization potential, calculated by
subtracting total energies, IP = E(Au) — E(Au™).
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FIG. 4: Optical spectrum of the gold atom, calculated in the TDLDA
and TDGGA approximations, with (thick curves) and without (thin,
dashed curves) the spin-orbit coupling correction term. The arrows
are the experimental spectral lines for the 2P, /2 and 2p, /2 excitations.
Inset: Difference between relativistic and non-relativistic 6s (light)
and 5d (dark) Kohn-Sham orbitals. The positive tail of the 5d curve
shows its relativistic expansion, whereas the negative tail of the 6s
curve shows the opposite effect. From Ref. [60].

proximately 0.5eV. This splitting is underestimated by
approximately 0.2 eV.

o There is a significant difference of 0.2-0.3eV between
LDA and GGA peaks. This is larger than the difference
we obtain for lighter atoms. Hence we conclude that
GGA should be employed in these systems.

e For higher energies (> 6eV) the results deviate more
from the experimental results. However, this may not
be related to relativistic effects, but to the well known
failure of both LDA and GGA functionals for energies
lying above the HOMO of the system.
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FIG. 5: Calculated TDLDA photoabsorption cross section of Lig.
The dashed line is obtained using the Jellium background model
for the cluster. The dotted and the continuous lines correspond to
calculations for the structure shown in the inset, using o and the
fully-interacting , response functions, respectively. The centroid of
the experimental resonance from Ref. [63] is indicated by the arrow.
Adapted from Ref. [61] with permission of the American Physical
Society.

2. Optical response of clusters

a. Simple metal clusters The TDLDA photoabsorption
cross section of Lig is given by the continuous curve in Fig. 5.
The calculated ground-state structure, given in the inset, is
a centered trigonal prism with an atom capping one of the
lateral faces. The averaged value of the static dipole polar-
izability (OL+0ly +0.;)/3 is 97 A3, which is larger than the
value of 63 A3 obtained in the spherical jellium model."-6?
From classical arguments, a larger polarizability corresponds
to a lower frequency of the collective dipole resonance, so a
redshift of the resonance with respect to the jellium value of
3.5eV should be expected. Indeed, the effect of explicitly ac-
counting for the cluster structure produces a redshift of 1eV
which leads to very good agreement between the calculated
resonance at 2.45¢eV and the experimental value of 2.5eV.%3
The nearly isotropic polarizability tensor explains the pres-
ence of a single collective-like resonance. The red shift can
be tracked down to an increase of the electron effective mass,
an effect of the Li ionic pseudopotential.

Other authors?’ have calculated the optical spectrum of
small sodium clusters (Nay, Nas and Nag) using the matrix
eigenvalue method. The results obtained from the exact cal-
culation and two approximate expressions, the two single-pole
approximations of Eq. (2.12), are reproduced in Fig. 6. The
approximate expressions do not give a good account of the
experimental data. On the other hand, the exact TDLDA cal-
culation reproduces remarkably well the experimental spectral
shape,”%* and the peak positions agree with experiment within
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FIG. 6: Calculated and experimental absorption spectra of sodium
clusters. (a) Absorption spectra from the difference of Kohn-Sham
eigenvalues. The other plots show spectra calculated from the two
single-pole approximation of Eq. (2.12) (b) and (c), respectively, and
the full solution of the matrix Eq. (2.11) (panel d). All calculated
spectra are broadened by 0.06 eV to simulate finite temperature. The
experimental spectra are from Ref. [64]. Adapted from Ref. [27] with
permission of the American Physical Society.

0.1-0.2eV. The results are almost as accurate as the spectra
calculated by the CI (configuration interaction) method.® For
increasing cluster size the spacing between the discrete lines
decreases, evolving towards the collective plasmon. For Nag,
with the rather spherical structure of a bicapped octahedron, a
single peak is already obtained. The importance of electronic
screeni6161g is evident by comparing the different panels in the
Fig. 6.

Very small mixed (Li,,Nas—,,) clusters have been studied
by quantum chemical ab initio methods®®%° motivated by the
measurements of the optical absorption spectra of LiNa3z and
Li>Na,.%” The photoabsorption spectrum is sensitive to 7z, that
is, to the relative proportion of Li and Na atoms. The spec-
trum of Nay resembles that obtained from the Mie-Drude the-
ory for an ellipsoidal droplet with three different axes. But, as
Li atoms replace Na atoms, the deviations from the Mie the-
ory increase. The measured spectra of LiNa3 and Li;Na, are
explained by the ab initio calculations. The calculations also
found low lying isomers for each Li,,Na4_,, case, correspond-
ing to different ways of arranging the Li and Na atoms in the
four vertices of the rhombus. The comparison between the
experimental absorption spectrum of Li;Nay and the spectra
calculated for the three isomers of this cluster confirmed that
the best agreement is obtained for the lowest energy isomer.
On the other hand, the calculated spectra for the two singlet
isomers of LiNa3 are so similar that it was not possible to dis-
tinguish which isomer or whether a combination of both sin-
glet isomers contributes to the measured spectrum. TDLDA
calculations for the whole Nag_,,,Li,, family70 obtained single
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(plasmon) peaks at both ends of the series, Lig and Nag, con-
sistent with a spherically symmetric electron density for both
clusters. The replacement of one or two atoms in the homo-
geneous clusters produces an spheroidal deformation of the
density and introduces extra shoulders in the spectrum.

b. Noble metal clusters: gold clusters  To illustrate the
role of spin-orbit in noble-metal clusters we have taken small
gold clusters as an example. Relativistic effects are not only
decisive for stabilizing the planar isomer as the ground state
of these small clusters (as already reported by other theoret-
ical studies’!) but also for the proper description of the op-
tical absorption spectra of the gold atom and gold clusters.
In contrast to simple metal clusters, core polarization effects
play here a fundamental role.”? This is clearly manifested in
the response of silver clusters, where the negative clusters ex-
hibit the common redshift as the cluster size is decreased,
whereas the positive clusters are blue-shifted.”> A blue-shift
of the plasma resonance as the size of the cluster is reduced
has been found in the optical response of large (2-4 nm diam-
eter gold nanoparticles supported in alumina.”* The main ef-
fect of the d-electrons is to form a size-dependent polarizable
background with dielectric function €, that strongly screens
the valence electron interactions, giving rise to a reduction
of the free-electron plasma frequency (1/3/(2+ €4)Omie),
where €; ~ 10 for Au; this leads to a change in the main
resonance peak from 5.2eV in the simple jellium model to
2.5eV in the improved model. From this discussion the gen-
eral picture that emerges is that the optical response of large
gold nanoparticles does not carry relevant information about
the underlying ionic structure. However, as the cluster size
reduces to less than 20 atoms, the specific ionic configuration
starts to play a role and deviations from the simple picture
of delocalized electrons moving in a polarizable background
appear. This is clear from the catalitic activity of small sup-
ported clusters” and from the results presented in Fig. 7 and
in Ref. [76]. It is important to remark that relativistic effects
are much more important for both structural’! and optical
properties than the specific choice of exchange and correla-
tion functional.

The details concerning our implementation of the spin-orbit
effect in the octopus code will be provided in Refs. [60,76].
Here we add to the discussion of SO effects in the gold atom
presented above, the case of the Auy cluster. The results of
GGA calculations for two isomers of Auy are presented in
Fig. 7, where the absorption spectra obtained with and with-
out spin-orbit coupling in the hamiltonian are compared. In
contrast to the case of the Au atom, the SO effect is minor in
this cluster. In particular, there is a redistribution of oscillator
strength in the low energy part of the spectrum, whereas the
high-energy part is nearly unaffected by the SO coupling. Still
this cluster is too small to show incipient plasmon-like excita-
tions. Furthermore, the spectra carries relevant information on
the structure of the cluster. The planar structure (top panel in
Fig. 7) is dominated by two main sets of excitations at about
4eV and 6.5 eV, whereas the more compact three-dimensional
isomer has a broader spectrum with a clear transition at 3 eV
absent in the planar isomer.
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FIG. 7: Calculated GGA absorption spectra of Auy using the full
solution of the time-dependent Kohn-Sham equations. Results are
shown for two isomers for Aus with (dashed curves) and without
(continuous curves) Spin-Orbit (SO) coupling in the hamiltonian.
From Ref. [76].

c. Optical response of fissioning clusters Multiply
charged metal clusters, like Na,T,q are less stable than the cor-
responding neutrals due to the coulombic repulsion of the un-
balanced positive charges, and can easily experience a process
of fission. The process of cluster fission has close analogies
to the fission of nuclei.”” In both cases a charged droplet will
become unstable towards the division into two or more frag-
ments. In simple terms, the multiply charged cluster can be
viewed as a droplet, which due to the unbalanced excess pos-
itive charge tends to deform through elongated shapes keep-
ing the total volume constant. But the shape deformation in-
creases the surface area and then the surface energy of the
cluster. This builds up an energy barrier that prevents the
spontaneous fission for large cluster sizes, even when the sum
of the energies of the fission products is lower than the energy
of the multiply charged parent. For small clusters, on the other
hand, the coulombic repulsion may be so strong that there is
no barrier, and fission occurs spontaneously. Optical spec-
troscopy has been proposed as a tool to follow the dynamics
of fragmentation’® as it provides a tool to analyze the vari-
ous configurations along the fission path. It might be experi-
mentally feasible to follow such a fission path by femtosecond
time-resolved recording of the electronic response following
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short laser pulses, as done nowadays for mapping the isomer-
ization paths of biological photoreceptors and chemical reac-
tion paths of molecules.”>%” One might even hope to have ac-
cess to fission time scales and thus be able to estimate viscos-
ity effects, in a way somewhat similar to the nuclear case.

3. Thermal line broadening

In order to compare with experiment, most TDDFT cal-
culations perform an ad hoc broadening of the photoabsorp-
tion spectrum: the spectral lines, calculated for a static geo-
metrical configuration of the cluster, are broadened through
convolution with Gaussian or Lorentzian functions.®"-8! But a
first principles description of absolute magnitudes, peak po-
sitions and line broadening can be achieved by calculating
the photoabsorption cross sections along finite temperature
molecular dynamics simulation trajectories. Shape fluctua-
tions were introduced to account for the line broadening of
simple metal clusters,}> with good results for Na clusters. A
step forward was taken in Ref. [83] by treating in perturbation
theory the deviation of the ionic potential from being spheri-
cal. However, true first principles calculations have only been
done recently by Moseler and coworkers,* who calculated the
TDLDA optical spectra of Nagr, NagL and N a; at finite temper-
atures. The excitation energies were calculated by solving the
eigenvalue Eq. (2.11) and averaging the calculated cross sec-
tions for a time propagation of 10 ps. The results are shown
in Fig. 8. The structure of Nagr is an equilateral triangle. Its
calculated spectrum at T = 100 K, given by the histograms in
panel (a) of Fig. 8, shows two peaks. The low energy peak
originates from transitions (z®; =Am,;= 2.65 eV) from the oc-
cupied s-like state to two empty p-like states with orbitals in
the plane of the cluster. The three relevant orbitals are shown
in the inset on the left of panel (a), where they are labeled as
1, 2 and 3 respectively. The other peak, centered at an energy
of 3.41¢eV, is due to the excitation to the other p-like orbital,
perpendicular to the plane of the cluster (see the inset on the
right side of the same panel). The positions of the two calcu-
lated peaks agree well with the experimental spectrum, given
by the continuous line.®> The intensity and width of the low
energy peak are correctly predicted, but the measured high en-
ergy peak is less intense than the calculated one. The reason
is that the experimental cross section is determined by mea-
suring the photodepletion of the Na}' intensity due to dissoci-
ation following the absorption of one photon. The two p-like
states in the cluster plane are antibonding, so excitation into
these states promotes dissociation, but excitation into the p-
like state perpendicular to the cluster plane does not have a
direct destabilizing effect. Thermal motion distorts the sym-
metry of NagL and lifts the degeneracy of the ®; and ®; transi-
tions. The linewidth can be explained by the combined effect
of (1) the line splitting caused by symmetry breaking, and (2)
breathing vibrations (or spectral sweeping mechanism).

At a temperatute of 100 K the dynamics distorts the ground
state Dyy symmetry of Na;r and fragments the absorption
line at 2.8 eV into two spectral lines (compare the oscillator
strengths given in the upper-right inset in panel (b)). The
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FIG. 8: Comparison of theoretical (histograms) and experimental
(solid curves)®® photoabsorption cross sections of Na;' at 100 K
(panel a), Nag' at 100 K (panel b), Nag' at 300 K (panel c), Nag'
at 100 K (panel d), and Na;" at 450 K (panel e). Insets in panel (a)
indicate constant density contour plots corresponding to electronic
orbitals relevant for the discussion of the spectrum (see text). The
contour plots in panels (d) and (e) correspond to the total electron
density and reflect the shape of the cluster. Insets on the upper right
sides of panels (b), (c), (d) and (e) give the oscillator strength for the
cluster structures shown on the left side. Reproduced from Ref. [84]
with permission of the American Physical Society.

increase of temperature to 300 K results in bent geometries
(structure 7y in panel (c)). In this case the low energy line at
2eV is fragmented. All the lines are further broadened by
the effect of the breathing modes. For larger clusters, thermal
isomerization leads to another line-broadening mechanism,
which adds to the other two discussed above. The ground state
of Nag is oblate. Consequently the absorption lines are dis-
tributed in a bimodal manner, with further broadening arising
from the line fragmentation and breathing mechanisms. By
increasing the temperature to 450 K, the spectrum transforms
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to one with a single broad maximum. The main reason for
the change in shape is the transformation between the ground
state structure o (a tricapped trigonal prism) and the isomer la-
beled PB. The static spectrum of this isomer is shifted to lower
energies compared to that of the ground state, and the broad
feature at 450 K is due to contributions from both isomers.

4. Applications to carbon clusters

The prototype of carbon clusters is the Cgp fullerene. X-
ray and energy-loss experiments3® show the presence of two
collective excitations, one around 28 eV (c-plasmon) and the
other around 6.3 eV (nt-plasmon). These are seen in the pho-
toabsorption cross section of Fig. 9, obtained from the direct
solution of the TDDFT Kohn-Sham equations. The essence
of these two experimental features can be understood in terms
of the motion of electrons in G-orbitals linking neighboring
atoms in the Cgp cage and m-orbitals extending in and out of
the cage.}” Two similar resonances have been observed for
graphite (and are explained in the same way®®) but not for
diamond or amorphous carbon where only the higher one is
observed. Photoabsorption data in the visible region® and
photoionization cross sections (above 7.5eV) have been re-
ported for free Ceo,”? and a collective excitation is seen at an
energy of ~ 20eV with a linewidth of 10eV. For an endo-
hedral hydrogen impurity there is a shift of the ®w-plasmon to
higher energy (~ 8.1eV) together with a substantial fragmen-
tation on the low and high energy sides of the resonance. The
main effect of an endohedral potassium impurity is to enlarge
the linewidth of the resonance through a large fragmentation
due to the proximity of particle-hole transitions.

Larger fullerenes are not longer spherical and exhibit inter-
esting electronic and optical properties; for example C7¢>3 is
chiro-optical. In Fig. 9 we illustrate for the case of fullerenes
the following fact known for metallic clusters: the form of the
collective resonance of “delocalised-like” electron systems is
dictated by the shape of the cluster. Therefore the spheroidal
shape of Cyq leads to a splitting of the low frequency n-like
plasmon into two resonances, with the lower one for the ex-
ternal field applied along the long-axis direction of the cluster.
The o-plasmon is much less sensitive to the specific shape of
the cluster, and its energy is very similar for both Cgg and C7p.
Furthermore, it does not depend on the direction of the applied
filed with respect to the symmetry-axis of the cluster.

Medium size carbon clusters are predicted to have a wide
variety of isomers with the form of cages, bowls, planar
graphitic structures, rings and linear chains. The theoreti-
cal and experimental study of the different isomers may help
to understand the way fullerenes form.®! The smallest possi-
ble fullerene, Cy, consists of 12 pentagons with no graphitic
hexagons intercalated. Other low energy isomers of Cyg in-
clude a bowl, several rings and other closed 3-dimensional
arrangements. The production of the cage and bowl members
of the family has been reported in Ref. [92]. The smallest
fullerene cannot be expected to form spontaneously, but has
been produced from the precursor CooHyg. The bowl was pro-
duced in the same way, and photoelectron spectroscopy has
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FIG. 9: Photoabsorption cross section, 6(®) (in arbitrary units), for
Ceo (botton panel), and for C7g (upper panel) along the two principal
symmetry axis. The long axis has been choosen along the z-direction.
The cross sections have been obtained with the octopus code.

been used to distinguish between the different species. It is
very difficult to make reliable theoretical predictions of the
most stable structure of Cyg. In fact, different levels of theory
favor different isomers. At the Hartree-Fock level, the ring is
the ground state, followed by the bowl and the cage.®® Den-
sity functional theory in the LDA approximation reverses the
order, predicting the cage as the lowest energy structure.”*%
The use of better functionals based on the generalized gradi-
ent approximation (GGA) does not clarify matters: the or-
dering of the isomers depends on the particular correction
used.”>3 Quantum Monte Carlo (QMC) and coupled cluster
(CC) methods have also been applied in an attempt to resolve
the issue, yielding bowl-ring-cage ordering using the former
method®? and cage-bowl-ring using the latter.’® Furthermore,
it seems that the results are sensitive to the pseudopotential.”’
Another complication is that entropy effects affect the rela-
tive stability, and the calculated free energies as a function
of the temperature’® have been used to assign the dominant
species produced by vaporizing graphite or prepared from pre-
cursors. Thus it is important to find experimental methods
to determine the structure that are sensitive enough to be us-
able with the available cluster beam intensities, and optical
spectroscopy fulfills the requirements. The geometrical struc-

14

tures of six members of the Cyo family are given in Fig. 10:
the smallest fullerene (cage), which is a Jahn-Teller distorted
dodecahedron, the ring, the bowl, and three other cage-like
structures, labeled as (d), (e) and (f). Structures (d) and
(f), related by a Stone-Wales transformation,” are composed
of four hexagons, four pentagons, and four four-membered
rings. These structures are the six isomers with lower energy
obtained by Jones within the LDA approximation.'® Other
structures, such as bicyclic rings, chains and tadpoles may
be favored by entropy at high temperature and have been ob-
served experimentally. However, neither of them seem to be a
possible low temperature ground state.

TDDFT calculations of the optical absorption taken from
Ref. [35] are shown in Fig. 10. While present experiments
are not able to discriminate between the different spatial di-
rections, the averaged spectra are still sufficiently different to
discriminate between the different structures. Two regions can
be distinguished in all the graphs: (a) the peaks which can be
seen in the near ultraviolet, and (b) a broad absorption that
starts at around 7.5 eV. Focussing attention on the lower en-
ergy peaks, the ring exhibits the largest optical gap and also
the strongest collective transition. The bowl also has a high
optical threshold, larger than 5 eV, but the intensity of the first
significant transition is an order of magnitude weaker than in
the ring. The relative intensities of the peaks, the fact that the
first excitation is divided into two for the bowl, and the rela-
tive strength of the excitations in the 67 eV region, can all be
used to distinguish the bowl isomer from the ring .

The spectra of the four three-dimensional isomers start at
much lower energy and are more similar to each other, which
is expected from their similar geometries. The fullerene iso-
mer exhibits two peaks at 3.9 and 5.1eV, with the second
much stronger than the first one. Most of the strength con-
centrates above the ionization threshold (7.5eV), and has a
broad plateau starting at around 7 eV. This is different from
the planar-like isomers, where an important fraction of the
strength appears below 7 eV. Isomer (d) can be distinguished
by the presence of a transition at quite low energy, 2.5¢€V, as
well as by the fragmentation into many states going up to 6eV.
Isomer (e) differs from the fullerene cage by the presence of
a transition ( labeled B in the Fig. 10) between the transitions
that would be seen in the cage. The spectrum of isomer (f)
is similar to that of the fullerene cage up to the second peak,
but it is shifted down by about 0.3 eV. Isomer (f) also has a
third peak near 6eV, in a region where there is a gap in the
spectrum of the fullerene cage, and that difference would be
definitive.

5. Benzene

As an example of an organic molecule, the results for the
benzene molecule CqHg are shown in Fig. 11. The main fea-
tures are: (i) a narrow peak at about 7 eV, that corresponds
to the transition between the T and 7* orbitals (these orbitals
are shown in the figure), a characteristic of Carbon conjugated
compounds, and (ii) the broad feature above 9 eV, which cor-
responds to the 6 — o7 transitions. The TDDFT method
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FIG. 10: Dipole strength function, in eV~!, for several isomers of
Cy( obtained with the octopus code. The dipole strength functions
have been averaged over all orientations of the system. The dashed
line in the upper panel corresponds to the independent particle ap-
proximation. Adapted from Ref. [35] with permission of the Ameri-
can Institute of Physics.

seems to work well for all organic molecules, at the LDA
level for the low lying excitations, and by making use of
more corrected functionals for high energies.!?! The quality
of the calculations for large m-conjugated systems remains
open, as recent studies show some deficiencies of the usual
exchange-correlations functionals for linear condensed acene
molecules. '0?

6. Applications to biomolecules

Besides the spectacular advances over the last years in
the characterisation of structural and dynamical properties of
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FIG. 11: Optical absorption of the benzene molecule obtained with
the octopus code. The experimental result is from Koch.!93 The bot-
tom panel shows the HOMO () and LUMO (n*) Kohn-Sham or-
bitals, respectively. Transitions between these two states are respon-
sible for the large absorption peak at 7eV. Reproduce from From
Ref. [5] with permission from Elsevier.

biomolecules by a combination of quantum mechanical and
classical molecular mechanics methods, the theoretical under-
standing of the interaction of those molecules with external
time-dependent fields is in its infancy in spite of the large
amount of experimental work on photoactive molecules. In
particular, processes related to vision and photosynthesis rely
on a subtle interplay between optical absorption in the pho-
toactive center and its decaying mechanism through the cou-
pling to the internal vibrational modes of the molecule, in-
cluding isomerization processes as well as coupling to the en-
vironment (supporting protein and solvent).

In this context the green flourescent protein (GFP) has
been studied experimentally in various environments (in so-
lution as well as in vacuo), and has been found to exhibit a
rich and complex behavior that is the subject of much cur-
rent debate. The measured optical absorption spectrum of
the wild type (wt) GFP shows two main resonances at 2.63
and 3.05eV!04105 (see Fig. 12), that are attributed to two
different thermodynamically stable protonation states of the
chromophore (neutral and negative configurations of the chro-
mophore, respectively). So far, ab initio quantum chemistry
has not been able to provide satisfactory agreement with the
spectroscopic data, and thus has not contributed too much to
confirm or rule out various possible scenarios of photody-
namics in the GFP. A good description of the optical prop-



erties of the GFP photorreceptor has been achieved?’ using
an approach combining (a) a quantum-mechanical molecular-
mechanics (QM-MM) method to obtain the structure with (b)
time-dependent density functional theory to treat the elec-
tronic excitations. The structures were optimized using a
hybrid quantum mechanical-molecular mechanics (QM-MM)
method!%%-108 with a semiempirical hamiltonian'? to de-
scribe the quantum subsystem. The QM region was formed
by three amino-acid sequences, Ser65, Tyr66 and Gly67. The
optimized structure of the chromophore with the most impor-
tant neighbor residues is shown in Fig. 12. On the other hand,
the anionic form of the chromophore was obtained by depro-
tonation of the Tyr66 and protonation of Glu222. The com-
puted photoabsorption spectra of the GFP neutral and anionic
chromophores, shown in Fig. 12, are in excellent agreement
with experiment assuming the presence of the two forms of
the photo-receptor, protonated and deprotonated respectively,
in an approximatly 4:1 ratio. Furthermore, it can be seen in
the inset of Fig. 12 that light polarized along the x-direction
is responsible for the lowest optical transition in the neutral
chromophore. The molecule is nearly transparent to visi-
ble light polarized along the other two orthogonal directions.
The GFP turns out to be a rather anisotropic molecule in the
visible region, a property that could be used to enhance the
photo-dynamical processes in well oriented GFP samples for
opto-electronic devices. The new approach developed holds
great promise for future applications in biochemistry and bio-
physics as it is able to handle not only the optical response but
also ultrashort femtosecond electron-ion dynamics. Prelimi-
nary calculations® for the optical spectra of the DNA basis
are also in excellent agreement with available experimental
data.

B. Nonlinear processes

For the purposes of obtaining nonlinear optical properties,
we follow the evolution of the system under the influence of
a laser field (treated in the dipole approximation). The emit-
ted harmonic spectrum can then be calculated from the accel-
eration of the dipole moment.!'®!!! Furthermore, electron-
ion dynamics (“non-adiabatic”) is quite relevant in a first-
principles description of the laser control of chemical reac-
tions. This topic is currently attracting considerable experi-
mental and theoretical attention.

1. Electron ion-dynamics of a van der Waals complex: Ba..FCH3

In order to understand the physical mechanisms underly-
ing the electron/ion dynamics of the Ba..FCHj3; complex, ex-
tensive excited state simulations were performed within a
TDDFT formalism.'!%. The initial configuration for studying
the laser induced reactivity is the ground state of the weakly
bound Ba..FCH3 complex. For the relaxed molecular struc-
ture, rather good agreement was noticed with previous CI
calculations'!? (differences of about 2% in the bondlengths)
and ionization potential (the calculated value is 4.9eV and
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FIG. 12: Top: Optimized structure of the neutral chromophore and its
closest charged residues inside the green fluorescent protein (GFP):
His148, Arg96 (positive) and Glu222 (negative). Bottom panel:
Computed photoabsorption cross section of the neutral (dashed line)
and anionic (dotted line) chromophores. For comparative purposes
the anionic results have been divided by 4. Experimental results at
1.6 K (dark thin solid lines)!** and room temperature (light thick
solid line)'%% are also given. The inset shows a decomposition of
the calculated spectrum of the neutral chromophore in the three di-
rections, showing the inherent anisotropy of the green fluorescent
protein molecule. The theoretical spectra have been calculated with
the octopus code. Adapted from Ref. [37] with permission of the
American Physical Society.

the measured one 4.66eV). Before discussing the combined
electron-ion dynamics, we show in Fig. 13 the calculated opti-
cal absorption cross section of Ba..FCH3. A very good agree-
ment with available experimental data (also shown in the Fig-
ure) is obtained. The visible spectrum is dominated by a sin-
gle peak around 2eV that is used afterwards to trigger and
control the chemical fragmentation of this complex. It is in-
teresting to note that the main peak of the spectrum corre-
sponds to a HOMO-LUMO like transition with major weight
on the Ba atom. However this 6s — 6p atomic-like transition
of the Ba atom has been redshifted with respect to the calcu-
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FIG. 13: Top: two lowest unoccupied (LUMO and LUMO+1)
and two highest occupied (HOMO and HOMO-1) orbitals of the
Ba..FCH3 molecule. The HOMO-LUMO orbitals are mainly located
on the Ba atom. Bottom: comparison between the computed and
measured' 12 optical absorption spectra. The strongest absorption
peak can be assigned to the HOMO-LUMO transition. The agree-
ment is very good taking into account the accuracy of the calculated
spectrum (about 0.1 eV). Reproduced from Ref. [112] with permis-
sion of EDP Sciences.

lated isolated Ba absorption to 2.4 eV. This renormalization of
the atomic transition stems from the polarization of the atomic
cloud around the Ba atom due to the dipole of the FCH3 part
(this is clearly seen in the shape of the HOMO-LUMO orbitals
in Fig. 13). The difference of HOMO-LUMO eigenvalues is
1.6 eV, therefore the Coulomb plus exchange and correlation
effects induce a blueshift of this independent-particle transi-
tion of about 0.4 eV. From this discussion it is clear that the
static electronic properties of this complex are well described
by the present approach.

The theoretical simulation performed in Ref. [112] provides
a clear picture of the cluster photodissociation mechanism,
whose main features are the following: First, the pump laser
excites the HOMO-LUMO transition of the molecule. This
excitation is mainly localized on the Ba atom (see Fig. 13).
Although this is the main excitation effect, in the short time
scale the laser also populates other Born-Oppenheimer sur-
faces that play a role in the ensuing dynamics. Then, the
coupling of this electronic excitation to the ions brings the
molecule to an excited vibrational state. The time scale for
this coupling process in the simulation is of the order of 100—
300 fs. During this vibration the laser continues to act and,
eventually, leads to the detachment of the BaF fragment from
the remaining complex. If the probe laser is applied shortly
after the pump laser, the excited state does not have time to
decay into the excited-state molecular vibration, and then as
product we get the ionized Ba..FCHgr fragment. Only when
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the delay between pump and probe is above 100 fs we ob-
serve the appearance of the BaF* and Ba™ fragments. It is
important to emphasize that with only the pump laser and for
all laser power densities, polarization and initial configura-
tions, no signal of the non-reactive channel (Ba fragment) is
observed in the simulations and only the BaF fragment is ob-
tained. This is in agreement with the fact that no Ba™ ion
signal was observed with the pump laser only, even though
high fluences were employed.

2. Photofragmentation: the case of the noble gas molecule He;'

The photofragmentation of a singly ionized helium trimer
is also a challenging problem. We have performed simula-
tions of this process for He}L,36 motivated by the fact that this
system has been studied previously. The geometry has been
predicted to be a symmetric linear trimer!'# by ab initio meth-
ods. The optical spectrum has been characterized both ex-
perimentally'!> and theoretically.!'® Haberland et al.'!” have
performed experiments studying the photodissociation of ion-
ized rare gas trimers, including He;', induced by a 10 ns laser
pulse, with photon energies ranging from 1.5 to 6eV. Their
results support the picture of a linear trimer photo-excited to
a totally repulsive state, coupled to the ground-state through a
parallel transition moment: the two lateral atoms are expelled
with high opposite velocities, whereas the central atom only
gains a small velocity at either side. The positive charge gen-
erally localizes on one of the fast outer particles. The relevant
potential energy curves are shown in Fig. 14. TDLDA calcu-
lations of the optical response have been performed varying
the nuclear geometry along the dissociation coordinate. The
inset of the Fig. 14 shows the optical absorption spectrum for
the equilibrium geometry. It is clear that only one excited po-
tential energy surface is of interest; the only relevant optical
transition is the X, — X, at 5.0eV. The experiments position
this peak at ~ 5.3eV. This excited PES is totally repulsive,
and photoinduced population of this state should lead to dis-
sociation.

In Ref. [36] we have presented a number of simulations of
the response to a laser pulse using various sets of laser pa-
rameters, and some results are shown in Fig. 15. The shape
of the laser pulse was trapezoidal in all four cases: an as-
cending linear ramp from O to & 2.5 fs, a plateau of 25 fs,
and then a descending linear ramp again of ~ 2.5 fs. Inten-
sities and frequencies, on the contrary, are different. The top
panels depict non-resonant conditions, at one third (left) and
five thirds (right) of the resonance X, — X, (5¢eV). In both
cases the two outer atoms only oscillate slightly around the
equilibrium positions. The bottonm panels represent resonant
conditions with varying intensities. Two different dissociative
channels are observed. In the left panel, a low laser intensity
is provided, and the picture corresponds with the findings in
Ref. [117] — the two outer atoms gain high opposite velocities,
whereas the central one remains almost unperturbed (note that
the intensity is the same as the one used in the upper panels,
where no dissociation was obtained). A higher intensity was
used for the simulation shown in the botton-right panel, and
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FIG. 14: X, (ground state) and X, potential energy surfaces. The ab-
scissa corresponds to the simultaneous and symmetric displacement
of the two outer atoms along the linear trimer axis. Inset: TDLDA
calculation of the photoabsorption cross section at the equilibrium
geometry. Reproduced from Ref. [35] with permission of EDP Sci-
ences.

in this case the trimer dissociates into a dimer and an isolated
atom. Most likely, the intensity of the nanosecond laser pulse
used in the experiment is low, which agrees with the symmet-
ric dissociative picture of the botton-left panel. This predic-
tion would need further experimental confirmation.

3. Clusters in strong laser fields

Progress in laser technology has opened new lines of re-
search in the domain of non-linear cluster dynamics. Lasers
offer an ideal tool for spanning various dynamical regimes,
ranging from the linear regime with plasmon-dominated dy-
namics, to the semi-linear regime of multi-photon absorp-
tion processes!'®!1% and the strongly non-linear regime of
Coulomb explosion.'?%!2! From the theoretical side, only the-
ories based on DFT have been able to deal with such different
situations and dynamical regimes for clusters.!?? In addition
to the irradiation by intense femtosecond laser pulses,'?? one
can consider another class of rapid, intense, excitations: col-
lisions with energetic highly-charged ions.'?* In both cases
the excitation takes place in times between tens of femtosec-
onds down to below 1fs. This time is directly comparable
to characteristic time scales of the valence electron cloud,
and consequently the cluster response is primarily of elec-
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FIG. 15: Time-evolution of the three nuclear displacements (solid:
top atom; dots: central atom; dashed: botton atom) with respect to
their original positions, along the linear trimer axis, for the frequen-
cies and intensities given (Ws = 5SeV, Iy = 8.8 X 10!! Wcm_z). Re-
produced from Ref. [35] with permission of EDP Sciences.

tronic nature. The first phase of the reaction is a direct emis-
sion of electrons and an oscillation of the collective plasmon
(time scales of the order 1-10fs). In a second stage, still of
purely electronic nature, damping of the collective electronic
motion takes place, both by means of Landau-like damping
and by electron-electron collisions. The time scales associ-
ated to these effects are variable depending on the cluster size
(Landau-like damping) and the deposited excitation energy
(electron-electron collisions). Landau-like damping takes 10—
201fs and collisional effects around 10-1001s. After that, the
electronic degrees of freedom slowly couple to the ionic mo-
tion, and may lead to the explosion of the charged cluster on
longer times, of several hundred femtoseconds. Two mecha-
nisms operate here: the first one is the coulombic repulsion
due to the net charge of the cluster following ionization, and
the second corresponds to energy exchanges between the hot
electron cloud and the still cold ions. The two effects interfere
constructively to activate ionic motion and to lead to evapo-
ration, fission or fragmentation. Thermal evaporation of elec-
trons proceeds on a very long time scale, usually slower than
ionic processes like monomer evaporation and fragmentation.
It can become competitive in the 100 fs range only for very
hot clusters. Indeed, experiments in platinum clusters suggest
that the highly-charged cluster rapidly undergoes a Coulomb
expansion, with a time scale of 100-500fs.'?! An interference
can thus occur between the laser pulse and the ionic motion,
which may enhanced the ionization.

We now illustrate the various stages of the excitation and re-
sponse of metal clusters in the non-linear regime. The excita-
tion of the cluster Na;fl subjected to a long laser pulse (240 fs)
of frequency 2.86 eV, shows how the ionic motion can inter-



fere with the excitation process. The excitation of this cluster
has been simulated using the TDLDA.!?> The results are pre-
sented in Fig. 16. The third panel, giving the number of elec-
trons emitted, Neg, shows that ionization takes place in sev-
eral steps. In a first phase, lasting for about 80 fs, the response
is fully electronic, and is characterized by low ionization. But
the net charge of the cluster shifts the plasmon resonance up-
wards until it comes into resonance with the laser. This results
in a sudden increase in ionization at around 100 fs, leaving the
cluster in a state with a net charge +5. From then on, ioniza-
tion proceeds at a slower pace until another burst of electrons
shows up at 250 fs, stripping again about 5 electrons. The low-
est panel of Fig. 16 gives the electric dipole signal D(¢). It is
clear that large slopes in ionization (Ngg:) are correlated with
large dipole amplitudes, which again reflects resonant condi-
tions. A relation between the two observables is observed by
plotting in the second panel the instantaneous plasmon fre-
quency calculated at each time ¢ for the instantaneous struc-
ture and charge of the cluster. The correlation between large
slopes in Neg and resonant conditions is noticeable. The first
coincidence at time 100 fs reflects the blueshift of the plasmon
due to the first stage of ionization. The Coulomb expansion
leads to a redshift of the resonance, which is responsible for
the second coincidence at 230 fs. The system thus acquires a
much higher charge state and ends up in a violent Coulomb
explosion.

C. High harmonic generation

By irradiating an atom, a molecule or a surface with a high
intensity laser, an electron may absorb several photons and
then return to its original state by emitting a single photon.
The emitted photon will have a frequency that is a multiple
number of the laser frequency. This process is known as high
harmonic generation. Since the emitted high energy photons
maintain a high coherence, they can be used as a source for X
ray lasers. Fig. 17 shows the experimental'?® and calculated
harmonic spectrum of the Helium atom. The solid line gives
the theoretical results'?” obtained from the TDDFT using the
EXX functional. The spectrum shows a series of peaks that
first decrease in amplitude, until a plateau is reached that ex-
tends to very high frequency. The frequencies of the peaks
are odd multiples of the laser frequency. The even multiples
are dipole forbidden by symmetry. All theoretical approaches
based on perturbation theory would produce a harmonic spec-
trum that decays exponentially. TDDFT, on the other hand,
reproduces well the measured intensities

Another important process in high harmonic generation
from molecules is the nuclear motion. Even harmonics may
be created by irradiating HD with an intense laser pulse, but
not by irradiating Hp: even harmonic generation is forbidden
for a centrosymmetric molecule. In an adiabatic treatment of
the nuclear coordinates, the nuclear masses play no role and
the even harmonics do not appear. This is no longer the case
if non-adiabatic effects are taken into account, for the differ-
ent masses of H and D break the symmetry. Kreibich et al.'?8
studied this process in a 1D model with a full quantum me-
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FIG. 16: TDLDA simulation of the excitation of Na;:'1 with a laser
of frequency ® = 2.86 eV, intensity / = 9 x 10° Wem 2 and pulse
length 240 fs. From top to bottom: global extension of the ionic dis-
tribution in the z direction (along laser polarization) and axial r direc-
tion (transverse to laser polarization), average resonance frequency
for the actual structure and charge state, number of emitted electrons
Nesc and dipole signal. Reproduced from Ref. [125] with permission
of World Scientific.
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FIG. 17: Calculated harmonic spectrum of He irradiated at a
wavelength of 616 nm and intensity of 3.5 x 10'* W/cm?. The
squares represent the experimental data,'?® normalized to the value
of the 33rd harmonic of the calculated spectrum. Reproduced from
Ref. [127] with permission of Kluwer.



chanical treatment of the nuclear motion, finding strong even
harmonics at high harmonic number. To discern whether the
classical treatment of nuclear motion also produces these har-
monics, we have studied the same 1D problem within our
framework, using in this case the EXX potential. The spectral
intensity of the generated harmonics, H(®), was calculated
from the expression:

2
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where € is the polarization vector, ¥(¢) the Kohn-Sham wave-
function and D(z) is the time evolution of the dipole moment
of the molecule. The laser pulse frequency was 770 nm, and
its total length 30 cycles. The shape was a linear ramp until
the 10th cycle, and constant thereafter.

We find that the classical treatment does indeed produce
even harmonics, but much smaller than the quantum treat-
ment. The results are shown in Fig. 18. The top left panel
shows the harmonic spectrum for HD, and only odd harmon-
ics are apparent. However, one can prove that the Hamiltonian
of the HD molecule already violates centrosymmetry within
our classical treatment, through a term of the form:

-l (L—i) P() [p1 + o],

3.2)
My Mp

where P(t) = 1 (Py(t) — Pp(t)) is the relative time-dependent
nuclear momentum and p; are the electronic momentum op-
erators. Its effect can be enhanced by decreasing the nu-
clear masses. In the bottom left panel, the H and D masses
have been decreased by a factor 100, and then the second-
and fourth-order harmonics become visible. As a qualitative
check of the numerics, we also show the same graphs for H»,
in which no even harmonics can occur. Thus we see that
on a qualitative level the non-adiabatic dynamics generating
even harmonics is obtained with the classical treatment of the
nuclear coordinates. However, the quantum treatment may
be needed for a quantitative result. By describing the nuclei
quantum mechanically, the ground state violates centrosym-
metry and the even harmonics can be generated. In contrast,
in the classical treatment the electronic ground state is sym-
metric and the symmetry violation only builds up as the nuclei
move.

IV. CONCLUSIONS AND PERSPECTIVES

Most characterization tools in physics, chemistry and biol-
ogy as well as electro/optical devices are based on the under-
standing of the interaction of photons and electrons with mat-
ter. Moreover, many fundamental questions concerning the
theoretical and numerical descriptions of this interaction are
still open. In the present work we focus on one technique to
describe electronic excitations in finite and extended systems,
namely, time-dependent density functional theory.!?® Some
points have been treated more in detail than others. How-
ever our goal has been to give a glimpse on the potential of
TDDFT, the open questions and future lines of development.
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FIG. 18: Harmonic spectra of HD (left panels) and Hj (right pan-
els). The nuclear masses used in the calculation are m’ = am, being
m the real mass. In this way, top plots are made using for the nu-
clear masses their real values whereas bottom plots are made using
a hundredth of their real values. Reproduced from Ref. [35] with
permission of EDP Sciences.

The first applications of TDDFT!7 (which were presented
years before the theory was mathematically well founded')
dealt with processes within the linear regime, where the elec-
tromagnetic field that probes the matter under study may be
regarded as a small perturbation to the internal fields. For
this kind of calculations (i.e. photoabsorption cross section of
organic- and bio-molecules and nanostructures, excitation en-
ergies, circular dichroism, etc.), TDDFT has become almost a
standard, and competes with increasing success with more ex-
pensive quantum-chemistry-like and many-body-perturbation
theory approaches.* In this review we presented some ex-
amples for rather different systems: from atoms to middle
sized protein chromophores; from metallic clusters to organic
molecules. Most of the results were obtained solving the time-
dependent Kohn-Sham equations directly in the time domain.
However, for completenss we have sketched the standard ap-
plication in the frequency domain.>* The good scalability of
the time-propagation methodology with system-size permits
to forecast successful calculations of large biomolecular sys-
tems as for example retinal, the optical absorption of the green
fluorescent protein, presented here, being already one first ex-
ample. Non surprisingly, the study of processes of biological
interest by means of TDDFT is currently a hot research topic.
For this purpose, one of the challenges to be achieved is the
inclusion of environment effects in the treatment of the re-
sponse to external fields of nanostructures and biostructures.
In spite of the wide variety of systems that may be handled
by the ab-initio TDDFT approach, the description of a full
protein is still beyond its scope. In this context, the objec-
tives are both a proper separation of a chemically active re-
gion from an almost-inert environment, as in standard QM-
MM techniques, %1% and a proper recipe to consider their
mutual interaction (see for example Ref. [130] for some re-



cent work along the perturbative treatment of solvent effects
in the response function of molecules in solution).

If we increase the size of the system towards a periodic
structure in one, two and three dimensions (i.e. polymers,
slabs, surfaces or solids), we must be careful with the form of
the functional and the treatment of external electric and mag-
netic fields. Difficulties arise, for example, in long conjugated
molecular chains, where the strong non-locality of the exact
functional is not well reproduced in the usual approximations.
A related problem appears for semiconductors: the exchange
and correlation kernel fy. should behave asymptotically, in
momentum space, as 1/ q* when ¢ — 0,%¢ which is not the
case for the adiabatic LDA or GGA, so succesful for small fi-
nite systems. Moreover, the technical details related to the im-
plementation of a time-propagation scheme for obtaining the
electrical response of solids has already been solved,'3! and
efforts are under way'3? to obtain a proper treatment of peri-
odic structures in one and two-dimensions (like infinite chains
and slabs). In any case, input from more accurate many-body
theories is needed to improve the exchange-correlation func-
tionals to be used within the TDDFT scheme.*

Succesful as it may be in the linear regime, one of the
main strengths of the TDDFT theory is, however, its abil-
ity to cope with nonlinear processes. The interest in these
processes has grown in recent years, partly due to the in-
creasing availability of high-intensity (> 10> W/cm?) and
short duration (< 1 fs) sources of laser radiation. The inter-
action of these fields with matter leads to a variety of new
phenomena: above-threshold dissociation or ionization, very-
high harmonic generation, bond softening, etc. The possibility
of monitoring, controlling or triggering chemical reactions by
means of properly tailored laser pulses is especially appeal-
ing; some ground-breaking experimental advances oriented to
this purpose have been reported in the past few years. By def-
inition, perturbative approaches are in principle unsuitable for
the simulation of these phenomena since the applied fields are
of the order of, or even larger than the molecular fields. It is
clear then that TDDFT has an application niche here. We have
also presented some examples of the applications of TDDFT
to this area: cluster fission, molecular photo-dissociation in
strong laser fields or generation of high harmonics. Another
relevant application concerns the characterisation and visual-
isation of the formation of chemical bonds in a chemical re-
action or by the interaction with an external electromagnetic
field.!3?

Density functional theory and its time-dependent exten-
sion are successful because of their computational advantages
compared to quantum-chemistry methodologies. An enor-
mous amount of effort is being put onto the subject by many
research groups. In this review, we have by no means tried to
describe all the numerous approaches and applications; on the
contrary, the majority of the calculations presented here have
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been performed with our home-grown octopus project. This
platform attempts to sustain a useful tool for the applications
of TDDFT. However, the optimal implementation of the nec-
essary equations in a computational scheme is far from being
simple. The research on this field must be consequent with
a twofold orientation: the main objective, which is of course
the investigation of a wide variety of physical phenomena, as
manifested in the preceding sections; second, the numerical
investigations pursuing the most practical algorithms.

In spite of its success, TDDFT has a number of commonly
invoked failures. One example is the above-mentioned diffi-
culty encountered when studying extended systems; another
one is the severe underestimation of high-lying excitation en-
ergies in molecules when simple exchange and correlation
functionals are employed. These failures, however, must be
well understood: TDDFT is an exact reformulation of the
time-dependent Schrédinger equation and, in consequence, all
those properties of physical systems coupled to external elec-
tromagnetic fields (either in the linear, or in the non linear
regime) that are properly described by Quantum Theory must
also be attainable by means of the exact TDDFT. Unfortu-
nately, one of the objects that conform the TDDFT equations,
the exchange and correlation potential, has to be approxi-
mated. The failures that are commonly adscribed to TDDFT
should in fact be imputed to the functionals in use. One of
the usual criticisms cast over DFT, the absence of a well de-
fined and systematic procedure to improve the quality of the
functionals, may well be extended to the time-dependent ver-
sion of the theory. However, the advances in the investigation
of functionals during the last years, have broaden the field of
applicability of the theory, as demonstrated by the variety of
examples presented in this review.
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