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 PFerredoxin-NADP+ reductase (FNR) catalyses the production of NADPH in photosynthetic organisms, where its

FAD cofactor takes two electrons from two reduced ferredoxin (Fd)molecules in two sequential steps, and trans-
fers them to NADP+ in a single hydride transfer (HT) step. Despite the good knowledge of this catalytic machin-
ery, additional roles can still be envisaged for already reported key residues, and new features are added to
residues not previously identified as having a particular role in the mechanism. Here, we analyse for the first
time the role of Ser59 in Anabaena FNR, a residue suggested by recent theoretical simulations as putatively in-
volved in competent binding of the coenzyme in the active site by cooperating with Ser80. We show that
Ser59 indirectly modulates the geometry of the active site, the interaction with substrates and the electronic
properties of the isoalloxazine ring, and in consequence the electron transfer (ET) andHTprocesses. Additionally,
we revise the role of Tyr79 and Ser80, previously investigated in homologous enzymes from plants. Our results
probe that the active site of FNR is tuned by a H-bond network that involves the side-chains of these residues
and that results to critical optimal substrate binding, exchange of electrons and, particularly, competent disposi-
tion of the C4n (hydride acceptor/donor) of the nicotinamide moiety of the coenzyme during the reversible HT
event.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

In the photosynthetic electron transfer (ET) chain of plants, algae
and cyanobacteria, the isoalloxazine ring of the FAD cofactor of
ferredoxin-NADP+ reductase (FNR) gets reduced to its hydroquinone
state by sequentially accepting two electrons from two ferredoxin
(Fd) molecules. Subsequently, it transfers a hydride from the N5 atom
(N5Hi) of the isoalloxazine of its FAD cofactor to the nicotinamide C4
atom of NADP+ (C4n) to provide the cell with reduction power in the
form of NADPH [1–3]. The overall ET process from Fd to NADP+ is re-
versible, with transitory ternary complexes, Fd:FNR:NADP+, formed
during catalysis [4]. Structural, mutational and theoretical studies re-
vealed residues on the protein surface and in the isoalloxazine environ-
ment involved in the interaction and ET with the protein partner,
contributing to the optimal architecture of the active site for proton
and electron transfer, aswell as playing key roles in the catalytic binding
of the nicotinamidemoiety of the coenzyme (NMN) during the hydride
transfer (HT) event [5–13]. Among them, a particular role is proposed
for the C-terminal Tyr (Tyr303 in Anabaena FNR (AnFNR), numbering
used herein) (Fig. 1A). This residue stacks at the re-face of the isoallox-
azine ring of FAD, modulates its midpoint reduction potential and re-
duces the probability of a too strong stacking interaction between the
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
i.org/10.1016/j.bbabio.2013.10.010

http://dx.doi.org/10.1016/j.bbabio.2013.10.010
mailto:mmedina@unizar.es
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FAD

NADP+

Y303

E301

C261

Y79

S80

S59

Anabaena PCC7119 FNR
Spirulina sp. FNR
Synechococcus sp. FNR
Synechocystis sp. FNR
Arabidopsis thaliana leaf FNR
Nicotiana tabacum leaf FNR
Oryza sativa leaf FNR
Pisum sativum leaf FNR
Spinacea oleracea FNR
Arabidopsis thaliana root FNR
Nicotiana tabacum root FNR
Oryza sativa root FNR
Pisum sativum root FNR
Leptospira interrogans FNR
Azotobacter vinelandii FPR
Escherichia coli FPR
Rhodobacter capsulatus FPR
Zea mays NR
Rattus norvegicus cb5R
Sus sctofa cb5R
Bos Taurus cb5R
Plasmodium falciparum FNR

60          70                         80
IEGQSIGIIPPGVD--KNGK-----------------PEKLRLYSIASTR
LEGQSIGIIPPGTD--NNGK-----------------PHKLRLYSIASTR
LEGQSIGIIPPGED--KNGK-----------------PHKLRLYSIASTR
LEGQSIGIIPPGED--DKGK-----------------PHKLRLYSIASTR
REGQSIGVIPEGID--KNGK-----------------PHKLRLYSIASSA
REGQSIGVIADGVD--ANGK-----------------PHKLRLYSTASSA
REGQSIGVIADGVD--KNGK-----------------PHKLRLYSIASSA
REGQSIGIVPDGID--KNGK-----------------PHKLRLYSIASSA
REGQSVGVIPDGED--KNGK-----------------PHKLRLYSIASSA
WEGQSYGVIPPGENPKKPGA-----------------PHNVRLYSIASTR
WEGQSYGVIPPGENPKKPGN-----------------PHNVRLYLIASTR
WEGQSYGIIPPGENPKKPGA-----------------PHNVRLYSIASTR
WEGQSYGVIPPGENPKKPGS-----------------PHNVRLYSIASTR
VIGQSGGVIPPGEDPEKKAKGLA------------DVGYTVRLYSIASPS
ENGQFVMIGLEVD-----------------------GRPLMRAYSIASPN
TAGQFTKLGLEID-----------------------GERVQRAYSYVNSP
RSGEFVMIGLLDDN----------------------GKPIMRAYSIASPA
PIGKHIFVCASIE-----------------------GKLCMRAYTPTSMV
PIGQHIYLSTRID-----------------------GNLVIRPYTPVSSD
PVGQHIYLSARID-----------------------GNLVIRPYTPVSSD
PVGKHVYLSARID-----------------------GSLVIRPYTPVTSD
LEGHTCGIIPYYNELDNNPNNQINKDHNIINTTNHTNHNNIALSHIKKQR

A

N5i

C4n

Fig. 1. Key residues at the AnFNR active site. (A) Surface representation of the active site environment at the equilibrium of a MD simulation of a theoretical catalytically competent WT
FNRhq:NADP+ complex [15]. NADP+, FAD, and selected key side-chains are shown in sticks with C in blue, orange and wheat, respectively. Selected water molecules at the active site are
also shown as balls and sticks. (B) Sequence alignment of differentmembers of the FNR superfamily (ClustalW2). Position of residues equivalent to thosemutated in this work is shown in
bold.

2 A. Sánchez-Azqueta et al. / Biochimica et Biophysica Acta xxx (2013) xxx–xxx
isoalloxazine and nicotinamide rings, thus contributing to the
optimal geometry among the N5i, the C4n and the hydrogen
that have to be transferred between them [5,12,14–18]. A sec-
ond highly conserved aromatic side-chain, Tyr79, stacks at the
isoalloxazine si-face with its hydroxyl H-bonding the 4′-ribityl
hydroxyl of FAD, which is also connected through a complex H-bond
network assisted by water molecules to the C2 of the isoalloxazine
and to the side-chain Arg100 [8,19–22]. Other key highly conserved res-
idues at the active site are the neighbours of Tyr303 at the re-face:
Ser80, Cys261 and Glu301 [3,8,11,15,23–26]. They contribute to the
Please cite this article as: A. Sánchez-Azqueta, et al., A hydrogen bond netw
ulates its catalytic efficiency..., Biochim. Biophys. Acta (2013), http://dx.do
fine modulation of the FAD midpoint reduction potential, the affinity
for Fd, the architecture of the catalytically competent complex, and/or
the ET and HT rates [5,7,10,11,26–28]. Despite the fact that structural
changes detected upon spinach FNR reduction areminor, they implicate
a slight approach of the hydroxyl of Ser96 (Ser80 in AnFNR) to N5i that
loses its H-bond with Glu312 (Glu301 in AnFNR) leading to the dis-
placement of Tyr314 (Tyr303 in AnFNR) away from the flavin ring
(decreasing the π–π stacking with the reduced isoalloxazine), as
well as the displacement of two highly conserved water molecules,
W406 and W571, (W404 and W457 in AnFNR) located near the
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
i.org/10.1016/j.bbabio.2013.10.010
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ribityl of FAD [29]. Theoretical calculations for the HT process be-
tween the isoalloxazine and the nicotinamide of the coenzyme, also
supported by experimental evidences, confirm that the sulfhydryl
group of Cys261 contributes to the approach of the N7n in the
NMN amide to the isoalloxazine along the reaction path, while the
O7n in the same amide H-bonds Ser80 (Fig. 1A) [18,28]. Ser80 is
kept in the C4n and N5Hi atom environments along the reaction co-
ordinate, contributing to a network of interactions involving the iso-
alloxazine ring, the nicotinamide ring, Cys261 and Ser80 itself
(Fig. 1A). This network facilitates the approach of the reacting N5Hi
and C4n atoms, and therefore, it is expected to contribute towards
the adequategeometry for the chemical stepof the reaction [6,10,11,15].
Thus, the architecture of the active site for the HT event must precisely
contribute to the orientation of the N5Hi of the FADhq isoalloxazine and
the C4n of the coenzyme nicotinamide rings and, therefore, to the effi-
ciency of the HT process [14–16]. Molecular dynamics (MD) simula-
tions additionally indicated that H-bonds between the side-chains of
Ser80 and Ser59 are highly populated (Fig. 1A) [15]. These side-chains
also H-bond Glu301, proposed by theoretical and experimental evi-
dences to switch positions in and out of the active site to provide a path-
way for proton transfer between the external medium and N5i, via
Ser80, during FNR reduction by Fd [14,27]. This routemight also include
Ser59, highly conserved in the plant type FNR family (Fig. 1B) [21,29].

In this study, we further analyse the roles of Ser59, Tyr79 and Ser80
in AnFNR during catalysis to better understand the function of the
interacting network to which they contribute to within the active site.
The presented results provide information about the role of this
interactingnetwork, indicating that itmodulates the electronic environ-
ment of the isoalloxazine ring and influences the ET process from Fd, as
well as the active site geometry duringHT. Particularly, we show for the
first time that Ser59 indirectly modulates the geometry of the active
site, the interaction with substrates and the efficiency of the ET and
HT processes. Additionally, the roles of these side-chains in the compe-
tent placement of the C4n (hydride acceptor/donor) atom and in the
tunnelling contribution during the HT event have been analysed,
being particularly relevant those of Ser80.

2. Materials and methods

2.1. Biological material

pET28a-AnFNR plasmids containing the S59A, S80A or Y79F muta-
tions were obtained from the company Mutagenex® and used to pro-
duce and purify the corresponding proteins from Escherichia coli
cultures as previously reported [30]. Samples were prepared in
50 mM Tris/HCl, pH 8.0. S80A FNR was further purified using a HiPrep
™ 26/60 Sephacryl™ S-200 HR column (GE Healthcare). FNRhq variants
were obtained by anaerobic photoreduction of the samples in the pres-
ence of 2 μM 5-deazariboflavin (dRf) and 3 mM EDTA in 50 mM Tris/
HCl, pH 8.0, by irradiation from a 250 W light source [31]. Deuterated
FNRhq (D-FNRhq) variants were produced by photoreduction with
EDTA and dRf of the corresponding FNRox previously dialysed in
50 mMTris/DCl, pD ~ 8.0 in D2O. NADPD (4R-form, with the deuterium
in the A face of the nicotinamide) was produced and purified as
described [14,32]. Anabaena Fd (AnFd) was produced as previously de-
scribed [12].

2.2. Spectroscopic assays

UV/vis spectra were recorded in a Cary-100 spectrophotometer. The
molar absorption coefficient for each FNR variant was spectrophoto-
metrically determined by thermal denaturation of the protein for
10 min at 90 °C, followed by centrifugation and separation of the pre-
cipitated apoprotein, and spectroscopic quantification of the FAD re-
leased to the supernatant [33]. Interaction parameters with NADP+,
NAD+ and Fd were determined by difference absorption spectroscopy
Please cite this article as: A. Sánchez-Azqueta, et al., A hydrogen bond netw
ulates its catalytic efficiency..., Biochim. Biophys. Acta (2013), http://dx.do
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at 25 °C in 50 mMTris/HCl, pH 8.0, as previously described [7,34]. Titra-
tions were carried out by adding aliquots of 1 mM NADP+ or Fd, and
50 mM NAD+ to 20–80 μM FNR solutions. Errors in the determination
of Kd and Δε were ±10% and ±5%, respectively.

2.3. Determination of midpoint reduction potentials of the FNR variants

Midpoint reduction potentials for the ox/hq couple (Eox/hq, two-
electron reduction process) of WT, S59A, Y79F, and S80A FNRs
were determined at 25 °C by potentiometric titration under anaero-
bic conditions using a gold electrode and a calomel electrode as ref-
erence (Em = +244.4 mV at 25 °C). Due to the low degree of FNR
semiquinone stabilisation it was not possible to measure the poten-
tial for the two one-electron steps. Typically, the solution contained
~20 μM FNR, 50 mM Tris/HCl buffer, pH 8.0, 3 mM EDTA and 2 μM
dRf. 0.02% n-dodecyl-β-D-maltoside was also added to S80A FNR
to increase its stability. Methylviologen (Em = −446 mV) and
benzylviologen (Em = −359 mV) were additionally used as medi-
ators. Solutions were made anaerobic over a 2–4 h period. Stepwise
reduction of the protein was achieved by photoreduction using the
equipment previously described [35]. The system was considered
equilibrated when the potential (E), measured with a Fluke 177
true-RMS multimeter, remained stable for at least 10 min. The
UV/vis absorbance spectrum was then recorded and used to deter-
mine [FNRox] and [FNRhq] at the equilibrium after each reduction
step. Eox/hq was calculated by linear regression analysis according
to the Nernst equation. The values of each one-electron single
step, Eox/sq and Esq/hq, were derived from Eqs. (1) and (2) using
the experimentally determined Eox/hq and the molar faction of the
maximum percentage of SQ stabilised.

Eox=sq−Esq=hq ¼ 0:11 � log
2 SQ½ �
1− SQ½ � ; ð1Þ

Eox=sq þ Esq=hq
2

¼ Eox=hq: ð2Þ

Error in the determined Eox/hq, Eox/sq and Esq/hq valueswas estimated
to be ±5 mV.

2.4. Steady-state kinetics measurements

The diaphorase activity of FNR was determined in a double beam
Cary-100 spectrophotometer using either 2,6-dichlorophenolindophenol
(DCPIP) (Δε620 nm 21 mM−1 cm−1) or K3Fe(CN)6 (Δε420 nm

1.05 mM−1 cm−1) as two- or one-electron acceptors, respectively.
The final reaction mixture contained 4 nM FNR, 0.1 mM DCPIP or
1.5 mMK3Fe(CN)6, and NADPH in the range 0–200 μM,while the ref-
erence cuvette contained 0.06 mM DCPIP when using this acceptor.
Higher concentrations of FNR (1 μM) and/or nucleotide (0–5 mM)
were required for the analysis of the reactions with NADH. The
NADPH-dependent cytochrome c reductase activity was determined
using AnFd, and horse heart cytochrome c (Cytc) asfinal electron accep-
tor. Reaction mixtures contained 4 nM FNR, 200 μM NADPH,
0.75 mg/ml Cytc and 0–15 μM AnFd. All measurements were carried
out in 50 mM Tris/HCl, pH 8.0, at 25 °C. Km and kcat values were
obtained by fitting the dependence of the observed initial rates on
coenzyme concentration to the Michaelis–Menten equation. Esti-
mated errors in Km and kcat were ±20% and ±10%, respectively.

2.5. Laser-flash induced kinetics

Laser-flash experiments were performed anaerobically at 25 °C in a
1 cm path-length cuvette using EDTA as electron donor and dRf as pho-
tosensitizer as previously described [7,36]. The standard reaction mix-
ture contained, in a final volume of 1.5 mL, 4 mM sodium phosphate,
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
i.org/10.1016/j.bbabio.2013.10.010
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pH 7.0, 2 mMEDTA and 100 μMdRf (low ionic strength (I) buffer). The
laser-generated dRf triplet abstracts a hydrogen atom from EDTAwhich
is present in large excess and produces the dRf semiquinone (dRfH•)
which, in competition with its own disproportionation, reduces the
oxidised protein. Direct reduction of AnFNRox by the laser-flash
photoreduced dRf (dRfH•) was followed by measuring the decrease of
absorbance in the flavin band-I maxima at 458 nm. When both Fd and
FNR are present simultaneously in the solution, the flash generated
dRfH• reacts almost exclusively with free Fdox, and thus the subsequent
ET process from the generated Fdrd to FNRox can bemonitored [7,12,13].
FNR reduction by Fdrd was followed as the increase of absorbance at
600 nm, a wavelength at which the production of FNRsq can be moni-
tored as FNRox is reduced by Fdrd. Control experiments collected at
489–500 nm, an isosbestic point of the FNRox/sq couple, allowed tomon-
itor the oxidation of Fdrd, yielding rate constants that were the same,
within experimental error, as those determined from the 600 nm
data, as expected from the two step mechanism shown in Eq. (3). For
these experiments, 40 μM AnFd and AnFNR at varying concentrations
were added to the standard reaction mixture, either in the absence or
in the presence of 100 mM NaCl. For I dependence experiments, small
amounts of a concentrated solution of 5 M NaCl were added to a reac-
tion cuvette containing the low I buffer, 40 μM AnFd and 30 μM
AnFNR. All experiments were performed under pseudo-first-order con-
ditions, for which the amount of acceptor (FNRox) was maintained well
in excess over the amount of the generated Fdrd (b1 μM). Each kinetic
trace was the average of 8–15 measurements. All kinetic traces were
fitted to monoexponential curves by using the Marquardt method to
obtain the observed rate constants (kobs). Linear fittings of kobs values
on FNR concentration allowed obtaining second-order bimolecular
rate constants (k2). Non-linear kobs dependences on FNR concentration
were adjusted to a two-step mechanism, given in Eq. (3) [37], to esti-
mate minimal values of both the complex dissociation constant (Kd)
and the ET rate constant (ket).

Fdrd þ FNRox ↔
Kd Fdrd : FNRox½ �→ket Fdox þ FNRsq: ð3Þ

Errors in the estimated values of Kd and ket were ±20% and ±10%,
respectively.

2.6. Stopped-flow pre-steady-state kinetic measurements

Transient charge transfer complex (CTC) formation and HT process-
es between the FNRhq/ox variants and NADP+/H were followed by
stopped-flow in 50 mM Tris/HCl, pH 8.0, at 6 °C and under anaerobic
conditions [14,38]. Final FNR concentrations were 25 μM, while a 25–
250 μM range was used for the nucleotide. Reactions were followed
by the evolution of the absorption spectra (400–1000 nm) using an Ap-
plied Photophysics SX17.MV stopped-flow equipment with a photodi-
ode array detector (App. Photo. Ltd.). Typically, spectra were collected
every 2.5 ms. Multiple wavelength absorption data were processed
using the X-Scan software (App. Photo. Ltd.). Analysis of time dependent
spectral changes was performed by global analysis and numerical inte-
grationmethods using Pro-Kineticist (App. Photo. Ltd.). Datawerefit to a
single step model allowing estimation of the apparent conversion rate
constants (kA → B, kB → C). In general, the first spectra after mixing
show formation of some amount of CTC; this means a previous reaction,
A → B, has occurred in the instrumental dead time (2–3 ms in our con-
ditions), then we correlate the observed reaction with a B → C model.
A, B and C are spectral species, reflecting a distribution of enzyme inter-
mediates (reactants, CTCs, products, Michaelis-complexes) at a certain
point along the reaction time course, and do not necessarily represent
a single distinct enzyme intermediate. Moreover, none of them repre-
sents individual species, and their spectra cannot be included as fixed
values in the global-fitting. Model validity was assessed by lack of
systematic deviations from residual plots at different wavelengths,
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inspection of calculated spectra and consistence among the number of
significant singular values with the fit model. The apparent rate con-
stants as a function of coenzyme concentration were globally fit to the
reaction mechanisms including all the experimental data for processes
in both directions (Figure S2C) [14]. In the simplest case the time-
course of the reaction (kA → B) will be equal to the sum of the rates for
the forward (kHT) HT and reverse (kHT-1) HT at equilibrium [14,39]. In
the presence of excess of coenzyme the dependence of kHT and kHT-1
on substrate concentration is given by standard functions for substrate
saturation and competitive inhibition (inhibition constant Ki), respec-
tively:

kA→B ¼ NADPH½ �kHT
NADPH½ � þ KNADPH

þ NADPþ
� �

kHT−1

NADPþ½ � þ KNADPþ 1þ NADPH½ �=K ið Þ : ð4Þ

The concentration of NADP+/H at equilibrium can also be estimated
from the difference in the midpoint reduction potentials for NADP+/H
and FNRox/hq redox couples (ΔEm) and the total concentration of en-
zyme (Et) (Eq. (5)):

NADPþ
h i

¼ NADPH½ �
1þ 4FNRt�10ΔEm=29:5

= NADPH½ �
� �1=2−1

2�10ΔEm=29:5 : ð5Þ

Errors in the determination of these kinetic constants were ±15–
20%.

Single-wavelength kinetic traces were recorded for accurate esti-
mation of the hydride or deuteride transfer (HT and DT, respectively)
rate constants (kobsHT/HT-1 or kobsDT/DT-1) in the temperature depen-
dence assays. In these cases traces at 458 nm were recorded with
the single-wavelength monochromator using the SX18.MV software
(App. Photo. Ltd.). A 1:1 enzyme:coenzyme concentration ratio was
used for these experiments using temperatures between 5.3 and
17.3 °C, since, due to the reversibility of the process, this ratio relates
with the maximal experimental values for kobsHT/HT-1 or kobsDT/DT-1.
Traces were fit to monoexponential decays to determine kobsHT,
kobsHT-1, kobsDT and kobsDT-1. Errors in the determination of these kinetic
constants were ±10%. The kinetic isotope effects (KIEs) were calculated
as:

KIE ¼ kobsHT
kobsDT

or KIE ¼ kobsHT−1

kobsDT−1
: ð6Þ

Fitting the experimentally obtained rates to the Arrhenius equation
allowed determining the Arrhenius pre-exponential factors (AH and
AD) and the Activation Energy values (EaH and EaD). Combination of
the Arrhenius equation with Eq. (6) leads to the graphical representa-
tion of the temperature dependence of the KIE.

2.7. Crystal growth, data collection and structure refinement

Crystals of S59A, Y79F and S80A AnFNR were produced under the
same conditions previously reported for the WT [5,22], while those for
the S80A FNR:NADP+ complex were similarly obtained but without
(NH4)2SO4 and adding 1 μL of 10 mM NADP+ to the drop. X-ray data
sets for S59A and S80A AnFNR were collected on a Bruker-Incoatec
1 μS microfocus generator with an Axiom detector. A microstar genera-
tor with an Image Plate detector was used to collect data for Y79F FNR,
whereas data for the S80A FNR:NADP+ complex were collected on the
ID23-1 line at ESRF (Grenoble, France). Data were processed with
Proteum Suite (Bruker) and XDS [40] and scaled and reduced with
SCALA from CCP4 [41]. All structures were solved by MOLREP [42]
from CCP4, using the structures of WT AnFNR (PDB ID: 1QUE) and the
AnFNR:NADP+ complex (PDB ID: 1GJR) as reference models. Refine-
ment of all structures was performed with CCP4 and COOT [43] and
SFCHECK [44]. PROCHECK [45] and MOLPROBITY [46] were used to
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
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assess final structures. S59A, Y79F and S80A FNRs diffracted up to
1.92, 2.0 and 1.9 Å, respectively, and belonged to the P65 hexagonal
space group. Their Vm were 2.85, 2.86 and 2.68 Å3/Da with one FNR
molecule in their asymmetric units and 56.8, 57.0 and 53.7% solvent
contents, respectively. Each model comprised residues 9-303 (S59A
and Y79F FNRs) or 10-303 (S80A FNR), one FAD molecule, one
SO4

2− ion and water molecules. The S80A FNR:NADP+ complex was
solved at 2.3 Å and crystals belonged to the I4 tetragonal space
group. Vm was 3.26 Å3/Da with two molecules in the asymmetric
unit and 61.93% solvent. The model included residues 9-303, one
FAD, one NADP+ and waters. Data for collection and refinement pro-
cesses can be found in Table SP1. Coordinates and structure factors
were deposited in the Protein Data Bank with accession codes 3ZBT
for S59A FNR, 4BPR for Y79F FNR, 3ZBU for S80A FNR and 3ZC3 for
S80A FNR:NADP+.

3. Results

3.1. Interaction with partners, and oxido-reduction properties of the FNR
variants

Purification of S59A, Y79F and S80A AnFNR variants produced
protein yields and spectral properties (including UV–vis spectral
shape, maxima position and A274 nm/A458 nm ratio) similar to the
WT, indicating that mutations prevented neither the assembly of
FAD nor the protein folding. Nevertheless, S80A UV/vis spectral max-
ima slightly shifted to longer wavelengths (to 276, 397 and 466 nm),
and its extinction coefficient in the flavin band-II was larger than that
of WT (Fig. 2A). This suggests that Ser80 directly influences the elec-
tronic environment of the FAD isoalloxazine. Titration of the FNRox

variants with NADP+ induced the typical difference spectra of
cyanobacterial FNRs (Fig. 2B) indicative of coenzyme binding, but
lacking the positive band at 509 nm detected in enzymes from plants
and relatedwith direct stacking between the NMN and the isoalloxazine
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Fig. 2. Spectroscopic properties of the AnFNR variants. (A) Absorbance spectra in the visible reg
addition of NADP+ at saturating concentrations toWT (──), S59A (·····), Y79F (─·), and S80A
of Y79F AnFNR (20 μM). (D) Nernst plots for the reduction potential titrations of WT (●), Y79F
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[5,30,34,47]. When Ala substituted for Ser80 changes in the position
and intensities of spectral features were observed with respect to
WT FNR, this again suggests modification of the isoalloxazine envi-
ronment (Fig. 2B) [34,48]. Saturation of the difference spectra upon
increasing NADP+ concentration allowed determination of Kd

NADP+

and Δε (see Supplementary material, Figure S1). The affinity of S59A
and Y79F FNRoxs for NADP+ was within a factor of two of that of WT,
but decreased up to 4-fold for the S80A variant (Table 1). Altogether
these observations suggest that removal of the Ser80 side-chain
modifies the nicotinamide disposition into the active site. Titration of
the different FNR variants with NAD+ did not induce the appearance
of difference spectra. This indicated that the presence of NAD+ does
not have any effect in the environment of the isoalloxazine ring and
suggested that binding of the coenzyme is not produced, similar to
that described for the WT [30,34].

Difference spectra obtained upon titration of S59A and Y79F
FNRox with Fdox produced perturbations in the visible region very
similar to those reported for the WT FNRox [7], while the S80A variant
showed a slight displacement of the maxima to shorter wavelengths
(not shown). All the variants showed interaction parameters in the
same range as for WT FNRox with Fdox, the only exception was S59A,
whose affinity for Fdox increased by 3-fold (Table 1).

Photoreduction of S59A and Y79F FNRs took place following similar
spectral evolution andmaximal percentage of semiquinone stabilisation
(ranging 16–19%) as for theWT (Fig. 2C), but reduction of the S80A var-
iant occurred with very little semiquinone stabilisation (b4%). Due to
the lowdegree of FNRsq stabilisation itwas not possible to independent-
ly measure the potential for the two one-electron steps; therefore, mid-
point reduction potentials for the two electron processes (Eox/hq) were
determined for all of them. Eox/hq for the mutants yielded values only
slightly less negative (8–12 mV) than for WT AnFNR (Fig. 2D, Table 2).
This was clearly the consequence of less negative Esq/hq values for the
S59A and Y79F variants. The very little semiquinone stabilisation of
S80A FNR also prevented estimation of Eox/sq and Esq/hq.
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Table 1t1:1

t1:2 Interaction parameters for complex formation of AnFNRox variants with NADP+ and
t1:3 AnFdox as determined by difference spectroscopy in 50 mM Tris/HCl, pH 8.0, at 25 °C.

t1:4 NADP+ AnFdox

t1:5 FNR variant Kd

(μM)
Δε(482 − 390)

(mM−1 cm−1)
Kd

(μM)
Δε(462)
(mM−1 cm−1)

t1:6 WT 4.0 1.15 6.7 1.95
t1:7 S59A 8.5 1.28a 2.2 1.60
t1:8 Y79F 8.6 1.28 6.7 2.09
t1:9 S80A 13.8 1.79b 6.4 3.22c

a Δε(458 − 396).t1:10
b Δε(456 − 400).t1:11
c Δε(449).t1:12

t2:1

t2:2

t2:3

t2:4

t2:5

t2:6

t2:7

t2:8
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3.2. Steady-state efficiency of the FNR variants

Kinetic parameters for the diaphorase activity of Y79F AnFNR
reflected a very similar behaviour to the WT (Table 3). Replacement of
Ser59 with Ala significantly increased the enzyme turnover (kcat) with
both one- and two-electron acceptors, but the effect in the catalytic ef-
ficiency only resulted relevant when using the two-electron acceptor,
due to the increase in Km

NADPH when using the one-electron acceptor.
On the contrary, when Ser80 was substituted by Ala the catalytic effi-
ciency decreased by 2- to 4-fold, due to a decrease in the enzyme turn-
over. None of the mutations improved the AnFNR ability to catalyse the
DCPIP diaphorase activity using NADH as electron donor. This activity
was not detected at all in the S80A variant, making it evenmore specific
towards the phosphorylated coenzyme.

Kinetic parameters for the FNR NADPH-dependent Cytc reductase
activity yielded lower kcat values for the S59A and, particularly, Y79F
variants with respect to WT FNR (37% and 5.5%, respectively), with un-
altered Km

Fd values (Table 3). No activity at all was detected for the S80A
AnFNR, a fact probably related with its low ability to stabilise the
semiquinone. These results indicate important deleterious effects in
the ET from FNRhq to Fdox by the introduced mutations.

3.3. Pre-steady-state kinetic analysis of the reduction of FNRox by Fdrd

Reduction of the isoalloxazine of S59A, Y79F and S80A AnFNRs to
the semiquinone state by the laser generated dRfH• followed a
monoexponential absorbance decrease at 458 nm, as observed for
the WT AnFNR. kobs values for these reactions were linearly dependent
on the FNR concentration with second-order rate constants indicating
that all variants are as efficiently reduced by dRfH• as WT (Table 4) [7].

Fd/FNR ET reactions are optimised at relatively high I, as at very
low salt concentrations the strong protein–protein charge interac-
tions freeze the Fd:FNR complex in a non-optimal configuration [7].
FNRox reduction by Fdrd has been here investigated in the presence
of a moderately high salt concentration (I = 120 mM). When an ex-
cess of Fdox is additionally present in the cuvette, the laser-generated
dRfH• causes its fast reduction, and a subsequent step of ET from Fdrd

to WT FNRox can be monitored by formation of neutral FNRsq [7,12].
The FNRsq formation observed at 600 nm is concomitant with Fdrd

oxidation, as inferred from an absorbance increase at 498 nm (an

482
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491

Table 2
Midpoint reduction potentials of the AnFNR variants at 25 °C and pH 8.0a.

FNR variant Em (mV) % SQ Eox/sq (mV) Esq/hq (mV)

WT −370 22 −384 −357
S59A −364 19 −382 −346
Y79F −363 16 −386 −340
S80A −358 4 – –

a Potentiometric titrationswere carried out using 30 μMFNR, 1 μMmethylviologen and
benzylviologen, 2 μM dRf and 3 mM EDTA in 50 mM Tris/HCl, pH 8.0.
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isosbestic point for FNRox/sq) in the same time frame. A similar kinet-
ic behaviour was observed for S59A and Y79F AnFNRs. However, ab-
sorbance changes related with ET from Fdrd to S80A AnFNRox were
detected neither at 600 nm nor at the S80A isosbestic point
(500 nm), indicating that the S80A variant resulted in highly im-
paired accepting electrons from Fdrd. At I = 120 mM the kobs values
for WT FNRsq formation present a hyperbolic dependence on FNR
concentration, that can be related with the formation of a transient
FNRox:Fdrd complex prior to the ET step (Fig. 3A). Applying the for-
malism previously described [37], minimal values for ket, and Kd

can be estimated (Table 4), which are in agreement with previously
reported data [7]. The two-step model here applied to estimate Kd

and ket values has largely demonstrated to be extremely useful in the
characterization of ET in transient protein:protein reactions [13,35–37].
Thismodel is based in the total amount of FNRox in the sample, although
under the experimental conditions used (an excess of Fdox), part of the
FNRmolecules would be transiently complexed with Fdox, and thus the
free Fdrd generated by dRfH• has to replace FNR-bound Fdox. However, it
is widely accepted that, in transient protein complexes, protein associ-
ation/dissociation is much faster than ET itself, and thus the ET process
would be the rate limiting step rather than Fd exchange. It is worth to
note that although the Kd values here described by difference spectros-
copy upon titration refer to the Fdox:FNRox interaction, and the Kd

values estimated by laser-flash experiments correspond to the interac-
tion between Fdrd and FNRox (which is only observable by kineticmeth-
odology), both Kd values are of the same order of magnitude and
comparable in both cases, thus supporting the validity of the kinetic
models used. Regarding the kinetic properties of the FNR mutants, a
similar behaviour was observed for Y79F AnFNR with ket in the same
range as for theWT,while the lowerKd suggested a stronger interaction
between Fdrd and this FNRox mutant. This later result is in agreement
with the lower turnover for this variant in the Cytc reductase activity.
However, a linear dependencewas observed on the enzyme concentra-
tionwhen analysing reduction of S59A AnFNRox (Fig. 3A), allowing only
estimation of a bimolecular second-order rate constant (Table 4). De-
creasing the I of the medium, slowed kobs and induced a hyperbolic de-
pendence on FNR concentration (Fig. 3A, Table 4). This indicates the
formation of a transient complex between S59A FNRox and Fdrd at
lower I, while more physiological salt concentrations make the system
shift to a collisional ETmechanism. Changes in the concentration profile
dependence have also been reported for the WT enzyme at different Is
(Fig. 3A, Table 4) [49].

The influence of I on the Fd/FNR interaction was further analysed to
investigate the effects induced by the mutations on the electrostatics of
the interaction. Biphasic dependences of kobs with increasing NaCl con-
centration were observed with the WT, S59A and Y79F variants
(Fig. 3B), despite the fact that for S59A FNR the kobs maximum is shifted
to higher I. The S80A variant did not showhowever significant reactivity
at any salt concentration (not shown). The bell-shaped profile for the
dependence of kobs with I is related with the re-arrangement of the ini-
tial FNRox:Fdrd interaction to achieve the optimal ET conformation, indi-
cating the occurrence of protein–protein dynamic motions that are
blocked by strong electrostatic interactions at very low I [7].

3.4. Transient kinetics of the hydride transfer reactions between FNR and
the coenzyme. Kinetic isotopic effect (KIE) and dependence of the
temperature

Stopped-flow analysis of the transient HT processes between S59A
FNRhq/ox and NADP+/H followed very similar patterns to those reported
for the WT enzyme: fast formation of two intermediate CTCs prior and
after the HT event, whatever the direction of the reaction (CTC-1 and
CTC-2, characterised by spectral bands centred at 600 nm and 800 nm,
respectively (Figure S2)) [4,14,16,38]. Similar to the WT system, evolu-
tion of the initial CTC species for S59A also started in the instrumental
dead time (Fig. 4A and D), but a slight increase in kHT can be envisaged
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
i.org/10.1016/j.bbabio.2013.10.010
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Table 3t3:1

t3:2 Steady-state kinetic parameters of the differentAnFNR variants for thediaphorase (with eitherDCPIP or ferricyanide as electron acceptors) and cytochrome c reductase activities in 50 mM
t3:3 Tris/HCl, pH 8.0 at 25 °C.

t3:4 DCPIP diaphorase Fe(CN)63− diaphorase Cytochrome c reductase

t3:5 NADPH NADH NADPH

t3:6 FNR variant Km
NADPH

(μM)
kcat
(s−1)

kcat/Km

(μM−1 s−1)
Km
NADH

(μM)
kcat
(s−1)

kcat/Km

(μM−1 s−1)
Km
NADPH

(μM)
kcat
(s−1)

kcat/Km

(μM−1 s−1)
Km
Fd

(μM−1)
kcat
(s−1)

kcat/Km

(μM−1 s−1)

t3:7 WT 6.0 81.5 13.6 800 0.16 2.0.10−4 11 370 34 1 176 176
t3:8 S59A 5.3 146.0 27.5 990 0.56 5.6.10−4 42 1000 24 0.99 65.7 66
t3:9 Y79F 3.8 73.0 19.2 640 0.21 3.3.10−4 13.6 304 22 1.16 9.6 8.3
t3:10 S80A 4.6 30.4 6.6 n.d.a n.d.a n.d.a 7.2 93.4 13 n.d.a n.d.a n.d.a

a Activity was not detected.t3:11

t4:1

t4:2

t4:3

t4:4

t4:5

t4:6

t4:7

t4:8

t4:9

t4:10

t4:11

t4:12
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for this variant with respect toWT (Table 5). Replacements at Tyr79 and
Ser80 produced more evident effects (Fig. 4, Table 5). A decrease in the
amplitude of the spectral band for CTC-2 was observed upon reduction
of Y79F FNRox by NADPH, while HTwas slightly hampered in both direc-
tions (Fig. 4B and E, Table 5). More drastic effects were observed when
Ala substituted for Ser80. Reduction of S80A FNRox by NADPH occurred
without spectral CTC-2 stabilisation (Fig. 4C), and no spectral features
of CTC at all were detected for the reverse reaction (Fig. 4F). Additionally,
both reactions showed less than 5% of the WT efficiency in HT (Table 5).

Due to the reversibility of the process producing the apparent de-
crease in the experimentally measured rate constants upon increasing
coenzyme concentration and to the kHT and kHT-1 rates being in close
to the instrumental detection limit for some variants, equimolecular
concentrations of enzyme and coenzyme, as well as the use of the
single-wavelength detector, were selected to further investigate this
mechanism by analysing KIEs on the HT processes. Themain observable
difference between HT and DT processes was the considerable decrease
in kobsDT and kobsDT-1 values with respect to the corresponding kobsHT
and kobsHT-1 ones for all the FNR variants (Fig. 5A and B, Table 6), there-
fore, inducing moderate to important KIEs. For each particular variant
the KIE was slightly larger for the reduction of FNRox by the coenzyme
than for the reverse reaction. KIEs for the S59A and Y79F variants
were in the same range as forWT, but processeswith S80A FNR showed
considerably larger KIEs (up to 6-fold for the FNR reductive process).
kobs values for the reduction of the different FNRox forms by NADPH
and NADPD, as well as for the reverse processes, resulted highly depen-
dent on temperature (Fig. 5A and B), indicating high activation energies
(Ea) (Table 6), particularly for the reaction of S80A FNRox with NADPD.
The obtained parameters were evaluated within the environmentally
coupled tunnelling model that distinguishes between two dynamics
contributions to the protein motion: active (or gating) and passive
(environmental reorganisation) [50–53]. Arrhenius plots for the HT
and DT reactions of WT, S59A and Y79F FNRs corresponded to two
almost parallel straight lines (Fig. 5A and B), which produced an al-
most temperature-independent KIE in the assayed range (Fig. 5C
and D). In the reactions of WT FNR, the moderate KIEs and Arrhenius
pre-exponential factors ratios (AH/AD and AH-1/AD-1 just above
U
N 564

565
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569
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Table 4
Rate constants for the laser-flash induced reduction of the AnFNRox variants by dRf and
AnFd.

Reduction by dRfHa Reduction by AnFdb

FNR variant k2
(M−1 s−1)

k2
(M−1 s−1)

ket
(s−1)

Kd

(μM)

WT 2.3 × 108 3.0 × 107a 7780 17.0
S59A 3.5 × 108 2.5 × 108 7100c 26.0c

Y79F 3.5 × 108 10,870 4.0
S80A 2.2 × 108 – –

a Reaction in 4 mM phosphate, pH 7.0 (I = 20 mM).
b Reaction in 4 mM phosphate, pH 7.0 at 100 mM NaCl (I = 120 mM), unless other-

wise stated.
c Reaction in 4 mM phosphate, pH 7.0 at 20 mM NaCl (I = 40 mM).
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Funity), together with the high Ea and small ΔEa, were interpreted as

mainly tunnelling of the light isotope and contribution of both the envi-
ronmental reorganisation (passive) and the vibrationally enhanced
modulation (gating) to the tunnel reaction [14,54]. A similar behaviour
might be predicted for S59A and Y79F FNRs in their non-photosynthetic
reactions, with an apparent more predominant gating contribution, in-
dicated by their slightly larger and lower, respectively, ΔEa and AH/AD
values. Backward processes for these two variants showed slightly
lower KIEs that were temperature-independent (Fig. 5C and D), ΔEa
close to zero and larger AH-1/AD-1 values with respect to the WT
(Table 6). Altogether these parameters appear consistent with environ-
mental heavy atom reorganisation contributing to the tunnel for the re-
action of S59A and Y79F FNRox with NADPH/D, and almost no gating
contribution. Reduction of NADP+ by S80A FNRhq behaved similarly to
S59A and Y79F FNRs, but with larger KIE and AH/AD ratio, suggesting
that a full tunnelling passive dynamics model with protein environ-
mental reorganisation dominates the HT (without gating contribution).
The most striking results were observed for reduction of S80A FNRox by
the coenzyme. This reaction occurredwith a large KIE that considerably
decreasedwith temperature (Fig. 5C), as consequence of a large EaD that
also produced a considerable increase in ΔEa. This, together with the
much lower than unity AH/AD, suggests that vibrationally enhanced
modulation of the tunnel probability (gating or active dynamics) is
dominating this reaction [50–53].

3.5. The structural environment of the mutated positions

S59A, Y79F and S80A FNRoxs showed overall crystal structures sim-
ilar to that of WT (r.m.s.d. ~0.26 on Cα atoms aligned for all of them).
Mutations did not lead to significant modification of the FAD isoalloxa-
zine environment andwere constricted to the interactions involving the
modified side-chains (Fig. 6A). The larger differences resulted in the
loop 105–111, flexible in all AnFNR structures so far described and sug-
gested to accommodate the adenosine moiety of the FAD [21,22,55].
Y79F FNR showed the highest B factors for the residues contained in
this loop; from 103 to 114 the B factor is higher than 40 Å2 (being its
overall B factor of 21.54 Å2). Thismight be due to the fact that the cofac-
tor is not engaged through its ribityl motif with this residue and no
watermolecule ismimicking the removed hydroxyl group. Ala substitu-
tion for Ser59 provoked removal of two defined water molecules that
interact with the OG atom of Ser59 and with the OE1 atom of Glu301,
respectively, in WT FNR. Besides this, the FAD environment, especially
the H-bond network involving Ser80 and Glu301, is not much affected
by the mutation. Changes in the S80A FNR crystal structure are restrict-
ed to the H-bonds involving the removed hydroxyl group. Ala80 cannot
H-bond the side-chain of Glu301, being only in contact with N5i
through a H-bond with its main chain N. Again, no water molecule
mimics the H-bond network established by the Ser80 side-chain. The
highly conserved water molecule, proposed to act as a proton donor
to the N5i of FAD, is found in the S80A FNR structure, as in that of WT,
interacting with the hydroxyl of Tyr303, but it is at closer distance
with the O4 atom of FAD (2.9 Å) than in the WT structure (3.17 Å)
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
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Fig. 3. Laser-flash induced transient kinetic analysis for the reduction of the AnFNRox variants by AnFdrd. (A) Dependence of kobs on FNR concentration for the reduction by Fdrd of
WT (○) FNRox at I = 20 mM, andofWT (●), Y79F (■) and S59A (♦) FNRox at I = 120 mM, and of S59A (◊) FNRox at I = 40 mM.Reactionmixtures contained 40 μMFdox. (B) Dependence
of kobs on the square root of I for the reduction of WT (●), Y79F (■) and S59A (♦) FNRox by Fdrd. Reaction mixtures contained 40 μM Fdox and 30 μM FNRox.
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Fig. 4. Spectral evolution along the HT processes between AnFNR and the coenzyme followed by stopped-flow. Reduction by NADPH of (A) S59A FNRox (spectra recorded at 1.28, 3.84, 6.4,
8.96 and 49.92 ms after mixing), (B) Y79F FNRox (spectra recorded at 1.28, 3.84, 8.96, 24.32 and 49.92 ms), and (C) S80A FNRox (spectra recorded at 3.84, 29.4, 80.6, 157.4 and 997.1 ms).
Reoxidation by NADP+ of photoreduced (D) S59A FNRhq (spectra recorded at 1.28, 3.84, 6.4, 8.96 and 49.92 ms), (E) Y79F FNRhq (spectra recorded at 1.28, 3.84, 8.96, 19.2 and 49.92 ms)
and (F) S80A FNRhq (spectra recorded at 3.84, 29.4, 80.6, 157.4 and 997.1 ms). In all cases the thick line is the spectrumof the oxidised (for A, B and C) or reduced (D, E and F) protein before
mixing. Insets show the time evolution of the absorption at 458 nm. Reactions were carried out with FNR at ~25 μM and coenzyme ~100 μM final concentrations in 50 mM Tris/HCl
pH 8.0 at 6 °C.
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Table 5t5:1

t5:2 Transient-kinetics parameters for the HT processes between AnFNRhq/ox and NADP+/H at
t5:3 6 °C in 50 mM Tris/HCl, pH 8.0.

t5:4 FNRox and NADPH FNRhq and NADP+

t5:5 FNR variant kHT1
(s−1)

kHT-1
(s−1)

t5:6 WTa 300 285
t5:7 S59A 390 253
t5:8 Y79F 122.6 186
t5:9 S80A 13.2 10.1

a Data from [14].t5:10
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(Fig. 6A). Another common characteristic in these structures, and in
contrast with the WT, is the orientation of Arg264 towards the
C-terminal, its guanidinium H-bonding the C-terminal carboxylate
of Tyr303 (Fig. 6A). This interaction was already predicted by MD
simulations [15] and does not appear related with the introduced
mutations, further suggesting a contribution for Arg264 in the displace-
ment of Tyr303 to trigger the entrance of the nicotinamide into the
catalytic site.

Finally, in the S80A FNR:NADP+ complex, the N atom of Ala80
H-bonds N5i and O4i. In this structure, NADP+ binds in a similar
unproductive conformation to that previously reported for WT [22], al-
though the isoalloxacine-Tyr303 rings stacking distance gets slightly
larger (around 0.4 Å) and the nicotinamide lies slightly closer to
Tyr303, bridging its N7n atom and the OH of Tyr303.

4. Discussion

Here we show that replacement of Ser59with Ala improved the cat-
alytic efficiency of the diaphorase activity of AnFNR (particularly the
kcat) with respect to the WT, as consequence of increasing the kHT
U
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(Tables 3 and 5). This mutation also influences the affinity between
FNR and Fd as a function of their oxido-reduction states and of the I of
the media (Tables 1 and 4, Fig. 3). Thus, despite steady-state and pre-
steady-state kinetics indicate that S59A FNRox is able to efficiently re-
ceive electrons from Fdrd (the photosynthetic process) once the interac-
tion is formed, its differential behaviour dependence on the ionic
strength with respect to the WT indicates that the mutation influences
the electrostatic and hydrophobic contributions to produce the most
productive complex for ET (Table 4, Fig. 3) [56]. Moreover, the intro-
duced mutation particularly favours the non-photosynthetic HT from
NADPH to FNRox, as well as the ET from Fdrd, particularly at higher
ionic strengths than for the WT. This might correlate with the Esq/hq of
the variant being slightly less negative. Additionally, KIE analyses for
the reactions of S59A FNR with the coenzyme (Fig. 5, Table 6) suggest
larger contribution of the vibrationally enhancedmodulation to the tun-
nel reaction duringHT for the reduction of the protein by the coenzyme.
These data indicate higher flexibility at the active site environment for
the non-photosynthetic process along the reaction coordinate for
S59A FNR, regarding both its photosynthetic reaction and the WT
behaviour. Therefore, Ser59 indirectly modulates the geometry of the
active site, the interaction with substrates and the electronic properties
of the isoalloxazine ring, and in consequence the ET and HT processes.
Altogether these data support the hypothesis derived from MD studies
on AnFNR [15], and confirm that the side-chain of Ser59 indirectly mod-
ulates the architecture of the reactive complexes during both ETwith Fd
and HT with the coenzyme.

Previous substitutions at Tyr89 in Pisum sativum FNR (Tyr79 in
AnFNR)with Ser or Glu led to fatal consequences in terms of protein sta-
bility and FADbinding, while replacements by Phe and Trp considerably
reduced the catalytic efficiency and affinity for the coenzyme [8]. On the
contrary, replacement of Tyr79 by Phe in AnFNR only slightlymodulated
the binding and diaphorase activity parameters with the coenzyme, as
B
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Table 6t6:1

t6:2 KIEs for the HT processes catalysed by the different AnFNR variants.

t6:3 FNR variant HT (FNRox + NADPH) DT (FNRox + NADPD) KIEa ΔEa
EaD − EaH
(kcal mol−1)

AH/AD

t6:4 kobsHT
a

(s−1)
EaH
(kcal mol−1)

AH
(s−1)

kobsDT
a

(s−1)
EaD
(kcal mol−1)

AD
(s−1)

t6:5 WTc 175 12.8 1.8 × 1012 27 13.5 1.2 × 1012 6.4 0.7 1.5
t6:6 S59A 212 12.2 8.2 × 1011 29.2 14.2 4.2 × 1012 7.5 2.0 0.2
t6:7 Y79F 90 10.2 9.1 × 109 19 12.1 6.4 × 1010 4.8 1.9 0.14
t6:8 S80A 6.8 14.4 1.3 × 1012 0.17 33.5 4.2 × 1025 39b 19.2 3 × 10−14

t6:9

t6:10 HT-1 (FNRhq + NADP+) DT-1 (D-FNRhq + NADP+) ΔEa − 1

t6:11 kobsHT-1
a

(s−1)
EaH-1
(kcal mol−1)

AH-1
(s−1)

kobsDT-1
a

(s−1)
EaD-1
(kcal mol−1)

AD-1
(s−1)

KIEa EaD-1 − EaH-1
(kcal mol−1)

AH-1/AD-1

t6:12 WTc 229 11.6 3.2 × 1011 37 12.1 1.1 × 1011 5.7 0.5 2.8
t6:13 S59A 196 11.5 2.0 × 1011 40.5 11.2 2.6 × 1010 4.8 −0.2 7.5
t6:14 Y79F 73 15.1 5.0 × 1013 19.7 15.0 1.3 × 1013 3.7 −0.1 3.8
t6:15 S80A 5.8 18.7 2.8 × 1015 0.36 18.4 1.1 × 1014 16.1 −0.3 15

a Values obtained in a stopped-flow equipment at 5.3 °C and with equimolecular concentrations of protein and coenzyme. Evolution of the reaction was followed at the single wave-
length of 458 nm.t6:16

b Temperature dependent KIEs.t6:17
c Data from [14].t6:18
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well as the stabilisation of CTCs duringHT, beingmajor changes reduced
to a decrease in kHT1 and kHT-1within 2-fold regarding theWT (Tables 1,
3, 5 and 6). Regarding Fd, themutation increases the affinity of the Fdrd:
FNRox complex and the ET rate between them (Table 4), while the re-
verse ET appears considerably hindered (Table 3). These effects with
Fd might relate with the slightly less negative midpoint reduction po-
tential of the variant, particularly Esq/hq, that will favour its reduction re-
garding the WT (Table 2). Therefore, altogether the observed effects
suggest that the H-bond between the hydroxyl group of Tyr79 and the
ribityl portion of the cofactor, despite not being critical for ET andHT, in-
directly contributes to the reactivity in productive complexes. These
data agree with previous mutations in the Lys75–Leu78 peptide,
where side-chains, despite not being in direct contact with the isoallox-
azine ring, have been shown to slightly displace its midpoint reduction
potentials to less negative values [57,58]. Thus, Tyr79 can be included
among the side-chains tuning the flavin midpoint potential by creating
a defined environment that modulates the FAD conformation.

The last residue here analysed, Ser80, is a key one in the active site of
plastidic type FNRs where together with Cys261 and Glu301, it consti-
tutes a highly conserved catalytic triad (Fig. 1A) [2,27,28]. Its main-
chain directly H-bonds the isoalloxazine N5i atom as well as the O4i
atom via a conserved water molecule, while its hydroxyl interacts
with another conserved water molecule that H-bonds Glu301, Tyr303,
and N5i (Fig. 6A) [21,59]. Mutations at the equivalent position in spin-
ach leaves FNR, Ser96, [11] impaired catalysis for the S96V and S96G
variants with respect to the WT, while it was not possible to produce
the S96A variant. We have succeeded in producing the S80A mutant
in AnFNR. This replacement slightly modifies the electronic environ-
ment of the FAD isoalloxazine ring regarding the WT, and has a delete-
rious effect in its semiquinone stabilisation (Fig. 2), suggesting that this
later process is finely controlled by the H-bond network involving
Ser80, Glu301, Tyr303 and N5i. This observation is also consistent
with the mutant lacking the ability to accept a single electron from
Fdrd in the Fd-mediated laser-flash induced ET experiments as well as
to donate a single electron to Fdox in the Cytc reductase assay, given
the formation of the FNRsq intermediate is necessary for both reactions.
Noticeably, the S80A mutant shows a similar decrease in efficiency, re-
garding de WT, in the diaphorase assay when using either one-
electron or two-electron acceptors. This suggests that the nature of
the small, non-specific and non-physiological collisional K3Fe(CN)6
one-electron acceptor allows it to extract a single electron from S80A
FNRhq through the reduce amount of semiquinone that this mutant sta-
bilizes (Table 2). On the contrary, processes with Fd include complex
formation and dissociation rate limiting steps thatmodify FNRmidpoint
Please cite this article as: A. Sánchez-Azqueta, et al., A hydrogen bond netw
ulates its catalytic efficiency..., Biochim. Biophys. Acta (2013), http://dx.do
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Rreduction potentials [13]. The results here present suggest that in the
case of S80A FNR interaction with Fd further decreases the low stability
of its semiquinone. Regarding the coenzyme the mutation produced
minor effects in its affinity. Despite the fact that its Em, slightly less neg-
ative than inWT (Table 2), would apparently favour HT events from the
coenzyme, we observed important deleterious effects in turnover, cata-
lytic efficiency, HT rate constants, and the stabilisation of CTCs during
the HT event for both the forward and reverse HT reactions (Fig. 4,
Tables 3 and 5). All these data are in agreement with those reported
for the Ser96 mutants in spinach FNR [11], further indicating that this
Ser is critical to generate the architecture of the catalytically competent
complex upon coenzyme binding in both the cyanobacterial and plant
enzymes. Since the structures obtained for mutants at this Ser (both in
AnFNR (Ser80) and the spinach enzyme (S96)) only show changes in
the H-bond network involving this position (Fig. 6A), this network
must be critical for the efficiency of the HT process. In agreement with
this conclusion previous MD simulations suggested that the Ser80
side-chain might contribute to fix the position of the amide of NADP+

and, as consequence, the position of the nicotinamide ring in the active
site cavity [15]. The contribution of the Ser80 side-chain to the optimal
architecture of the catalytically competent complex between FNR and
the coenzyme is here further supported by the analysis of the active
site dynamics during the HT event (Fig. 5 and Table 6). HT and DT reac-
tions forWT FNR, in both the forward and reverse directions, have been
explained applying a tunnelling model in which both environmental
reorganisation (passive dynamics) and vibrational enhancement (ac-
tive dynamics) contribute to the reaction [14,16]. However, KIE analyses
for the processes of the S80A FNRmutant best fitted to the two extreme
cases in which the tunnelling reaction is completely dominated by ei-
ther environmental reorganisation or vibrational enhancement [60].
Thus, reduction of S80A FNRox by NADPH/D was consistent with a full
tunnelling model in which vibrational fluctuations of the active site
(gating) are able to compress the hydrogen donor–acceptor distance
during the HT event, making tunnelling more probable (specially for
the light isotope) as long as the temperature increases. On the contrary,
parameters measured for the oxidation of S80A FNRhq by NADP+ sug-
gest no gating contribution to the HT event, being the initial environ-
mental thermal reorganisation of the whole active site the only
dynamics contribution controlling the process. Therefore, modifications
on the H-bond network caused by substitution of Ser80 with alanine
entail important perturbations on the flexibility of the active site of
FNR along the HT reaction coordinate. In the case of the reaction of
S80A FNRox with NADPH, the organisation of the close environment
of the donor (C4n) and acceptor (N5i) atoms allows them to undergo
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
i.org/10.1016/j.bbabio.2013.10.010
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Fig. 6. Influence of the mutations in the active site geometry of AnFNR. (A) H-bond network at the active sites of the WT FNR (C in blue, PDB ID: 1QUE), S59A FNR (C in orange),
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important vibrational fluctuations to attain the optimal distance and
orientation for efficient HT. On the contrary, for the reverse reaction,
once the NADP+ nicotinamide reaches the active site of S80A FNRhq

the reduced isoalloxazine and oxidised nicotinamide rings remain
“frozen”, without any further flexibility of the active site contribut-
ing to improve its relative distance and orientation to reach the
hydrogen tunnelling ready conformation. Therefore, the S80A muta-
tion highly compromises the active site environment fluctuations re-
quired in FNR to increase the HT probability, producing important
Please cite this article as: A. Sánchez-Azqueta, et al., A hydrogen bond netw
ulates its catalytic efficiency..., Biochim. Biophys. Acta (2013), http://dx.do
thermodynamic and kinetic consequences in the process that are
reflected in the enzyme efficiency, mechanism and reversibility of
the process, all of them particular facts of plant type FNRs. Altogether
these data confirm the importance of Ser80 in both the ET and HT
processes, adding information about its roles. Thus, this Ser side-
chain modulates the midpoint reduction potential of the flavin ring
and contributes to the stabilisation of its semiquinone state, a key
factor for efficient ET exchange between FNR and Fd. Additionally,
it also contributes to stabilise the nicotinamide ring in the optimal
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
i.org/10.1016/j.bbabio.2013.10.010
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geometric conformation regarding the isoalloxazine ring for an efficient
HT event through a tunnelling process following similar dynamics for
both the photosynthetic and non-photosynthetic reactions, thus ensur-
ing the efficiency and reversibility of the process.

In conclusion, as new information becomes available additional roles
might be envisaged for residues in the active site of FNR. Among these
residues are Tyr79 and Ser80, previously analysed in FNRs from higher
plants [8,11,26]. Additionally, other residues not considered previously,
such as Ser59, might indirectly contribute to the efficiency of the HT
with the coenzyme bymodulating the architecture of the reactive com-
plexes [15]. Here, we present proofs for the implication of H-bond con-
nections between the flavin and the polypeptide chain, direct or via
water molecules, in the FNR catalytic efficiency, showing that the isoal-
loxazine environment strongly influences FADsq stabilisation and ET
from Fd. Moreover, an additional key role is predicted for Ser80 during
the HT step providing optimal active site geometry, including not only
the final disposition between the reacting N5Hi and C4n atoms but
also the active site motions required to achieve it.

Acknowledgements

This work has been supported by the Ministerio de Ciencia e
Innovación, Spain (BIO2010-14983 to M.M.), the Aragonian Government-
FSE (B18) and the Andalusian Government-FEDER (PAIDI BIO-022 to
J.A.N.A.). A.S.-A. holds a FPU fellowship from the Spanish Ministry of
Education.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbabio.2013.10.010.

References

[1] M. Medina, Structural and mechanistic aspects of flavoproteins: photosynthetic
electron transfer from photosystem I to NADP+, FEBS J. 276 (2009) 3942–3958.

[2] A. Aliverti, V. Pandini, A. Pennati, M. de Rosa, G. Zanetti, Structural and function-
al diversity of ferredoxin-NADP+ reductases, Arch. Biochem. Biophys. 474 (2008)
283–291.

[3] E.A. Ceccarelli, A.K. Arakaki, N. Cortez, N. Carrillo, Functional plasticity and catalytic
efficiency in plant and bacterial ferredoxin-NADP(H) reductases, Biochim. Biophys.
Acta 1698 (2004) 155–165.

[4] C.J. Batie, H. Kamin, Electron transfer by ferredoxin:NADP+ reductase. Rapid-
reaction evidence for participation of a ternary complex, J. Biol. Chem. 259 (1984)
11976–11985.

[5] J. Tejero, I. Pérez-Dorado, C. Maya, M. Martínez-Júlvez, J. Sanz-Aparicio, C. Gómez-
Moreno, J.A. Hermoso, M. Medina, C-terminal tyrosine of ferredoxin-NADP+ reduc-
tase in hydride transfer processes with NAD(P)+/H, Biochemistry 44 (2005)
13477–13490.

[6] M.A. Musumeci, A.K. Arakaki, D.V. Rial, D.L. Catalano-Dupuy, E.A. Ceccarelli, Modula-
tion of the enzymatic efficiency of ferredoxin-NADP(H) reductase by the amino acid
volume around the catalytic site, FEBS J. 275 (2008) 1350–1366.

[7] M. Medina, M. Martínez-Júlvez, J.K. Hurley, G. Tollin, C. Gómez-Moreno, Involve-
ment of glutamic acid 301 in the catalytic mechanism of ferredoxin-NADP+ reduc-
tase from Anabaena PCC 7119, Biochemistry 37 (1998) 2715–2728.

[8] A.K. Arakaki, E.G. Orellano, N.B. Calcaterra, J. Ottado, E.A. Ceccarelli, Involvement of the
flavin si-face tyrosine on the structure and function of ferredoxin-NADP+ reductases,
J. Biol. Chem. 276 (2001) 44419–44426.

[9] A. Aliverti, T. Lubberstedt, G. Zanetti, R.G. Herrmann, B. Curti, Probing the role of ly-
sine 116 and lysine 244 in the spinach ferredoxin-NADP+ reductase by site-directed
mutagenesis, J. Biol. Chem. 266 (1991) 17760–17763.

[10] A. Aliverti, L. Piubelli, G. Zanetti, T. Lubberstedt, R.G. Herrmann, B. Curti, The role of cys-
teine residues of spinach ferredoxin-NADP+ reductase as assessed by site-directed
mutagenesis, Biochemistry 32 (1993) 6374–6380.

[11] A. Aliverti, C.M. Bruns, V.E. Pandini, P.A. Karplus, M.A. Vanoni, B. Curti, G. Zanetti, In-
volvement of serine 96 in the catalytic mechanism of ferredoxin-NADP+ reductase:
structure–function relationship as studied by site-directed mutagenesis and X-ray
crystallography, Biochemistry 34 (1995) 8371–8379.

[12] I. Nogués, J. Tejero, J.K. Hurley, D. Paladini, S. Frago, G. Tollin, S.G. Mayhew, C.
Gómez-Moreno, E.A. Ceccarelli, N. Carrillo, M. Medina, Role of the C-terminal tyro-
sine of ferredoxin-nicotinamide adenine dinucleotide phosphate reductase in the
electron transfer processes with its protein partners ferredoxin and flavodoxin, Bio-
chemistry 43 (2004) 6127–6137.

[13] J.K. Hurley, R. Morales, M. Martínez-Júlvez, T.B. Brodie, M. Medina, C. Gómez-Moreno,
G. Tollin, Structure–function relationships in Anabaena ferredoxin/ferredoxin-NADP+
Please cite this article as: A. Sánchez-Azqueta, et al., A hydrogen bond netw
ulates its catalytic efficiency..., Biochim. Biophys. Acta (2013), http://dx.do
E
D
 P

R
O

O
F

reductase electron transfer: insights from site-directedmutagenesis, transient absorp-
tion spectroscopy and X-ray crystallography, Biochim. Biophys. Acta 1554 (2002)
5–21.

[14] J.R. Peregrina, A. Sánchez-Azqueta, B. Herguedas, M. Martínez-Júlvez, M. Medina,
Role of specific residues in coenzyme binding, charge-transfer complex formation,
and catalysis in Anabaena ferredoxin-NADP+ reductase, Biochim. Biophys. Acta
1797 (2010) 1638–1646.

[15] J.R. Peregrina, I. Lans, M. Medina, The transient catalytically competent coenzyme
allocation into the active site of Anabaena ferredoxin-NADP+ reductase, Eur. Biophys.
J. (2012).

[16] I. Lans, J.R. Peregrina, M. Medina, M. García-Viloca, A. González-Lafont, J.M. Lluch,
Mechanism of the hydride transfer between Anabaena Tyr303Ser FNRrd/FNRox and
NADP+/H. A combined pre-steady-state kinetic/ensemble-averaged transition-
state theory with multidimensional tunneling study, J. Phys. Chem. B 114 (2010)
3368–3379.

[17] Z. Deng, A. Aliverti, G. Zanetti, A.K. Arakaki, J. Ottado, E.G. Orellano, N.B. Calcaterra,
E.A. Ceccarelli, N. Carrillo, P.A. Karplus, A productive NADP+ binding mode of
ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic
studies, Nat. Struct. Biol. 6 (1999) 847–853.

[18] I. Lans, M. Medina, E. Rosta, G. Hummer, M. García-Viloca, J.M. Lluch, A.
González-Lafont, Theoretical study of the mechanism of the hydride transfer be-
tween ferredoxin-NADP+ reductase and NADP+: the role of Tyr303, J. Am. Chem.
Soc. 134 (2012) 20544–20553.

[19] P.A. Karplus, C.M. Bruns, Structure–function relations for ferredoxin reductase, J.
Bioenerg. Biomembr. 26 (1994) 89–99.

[20] M. Ingelman, S. Ramaswamy, V. Niviere, M. Fontecave, H. Eklund, Crystal structure
of NAD(P)H:flavin oxidoreductase from Escherichia coli, Biochemistry 38 (1999)
7040–7049.

[21] L. Serre, F.M. Vellieux, M. Medina, C. Gómez-Moreno, J.C. Fontecilla-Camps, M. Frey,
X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium
Anabaena PCC 7119 at 1.8 Å resolution, and crystallographic studies of NADP+ bind-
ing at 2.25 Å resolution, J. Mol. Biol. 263 (1996) 20–39.

[22] J.A. Hermoso, T. Mayoral, M. Faro, C. Gomez-Moreno, J. Sanz-Aparicio, M. Medina,
Mechanism of coenzyme recognition and binding revealed by crystal structure anal-
ysis of ferredoxin-NADP+ reductase complexedwith NADP+, J.Mol. Biol. 319 (2002)
1133–1142.

[23] M.B. Murataliev, R. Feyereisen, F.A. Walker, Electron transfer by diflavin reductases,
Biochim. Biophys. Acta 1698 (2004) 1–26.

[24] C.C. Correll, C.J. Batie, D.P. Ballou, M.L. Ludwig, Phthalate dioxygenase reductase: a
modular structure for electron transfer from pyridine nucleotides to [2Fe–2S], Sci-
ence 258 (1992) 1604–1610.

[25] C.C. Correll, M.L. Ludwig, C.M. Bruns, P.A. Karplus, Structural prototypes for an ex-
tended family of flavoprotein reductases: comparison of phthalate dioxygenase re-
ductase with ferredoxin reductase and ferredoxin, Protein Sci. 2 (1993) 2112–2133.

[26] A. Aliverti, Z. Deng, D. Ravasi, L. Piubelli, P.A. Karplus, G. Zanetti, Probing the function
of the invariant glutamyl residue 312 in spinach ferredoxin-NADP+ reductase, J. Biol.
Chem. 273 (1998) 34008–34015.

[27] V.I. Dumit, T. Essigke, N. Cortez, G.M. Ullmann, Mechanistic insights into
ferredoxin-NADP(H) reductase catalysis involving the conserved glutamate in the
active site, J. Mol. Biol. 397 (2010) 814–825.

[28] A. Sánchez-Azqueta, M.A. Musumeci, M. Martínez-Júlvez, E.A. Ceccarelli, M. Medina,
Structural backgrounds for the formation of a catalytically competent complex with
NADP(H) during hydride transfer in ferredoxin-NADP+ reductases, Biochim.
Biophys. Acta 1817 (2012) 1063–1071.

[29] C.M. Bruns, P.A. Karplus, Refined crystal structure of spinach ferredoxin reductase at
1.7 Å resolution: oxidized, reduced and 2′-phospho-5′-AMP bound states, J. Mol.
Biol. 247 (1995) 125–145.

[30] J. Tejero, M. Martínez-Júlvez, T. Mayoral, A. Luquita, J. Sanz-Aparicio, J.A. Hermoso,
J.K. Hurley, G. Tollin, C. Gómez-Moreno, M. Medina, Involvement of the pyrophos-
phate and the 2′-phosphate binding regions of ferredoxin-NADP+ reductase in co-
enzyme specificity, J. Biol. Chem. 278 (2003) 49203–49214.

[31] M. Martínez-Júlvez, J. Hermoso, J.K. Hurley, T. Mayoral, J. Sanz-Aparicio, G. Tollin, C.
Gómez-Moreno, M. Medina, Role of Arg100 and Arg264 from Anabaena PCC 7119
ferredoxin-NADP+ reductase for optimal NADP+ binding and electron transfer, Bio-
chemistry 37 (1998) 17680–17691.

[32] V.V. Pollock, M.J. Barber, Kinetic and mechanistic properties of biotin sulfoxide re-
ductase, Biochemistry 40 (2001) 1430–1440.

[33] P. Macheroux, UV–visible spectroscopy as a tool to study flavoproteins, Methods
Mol. Biol. 131 (1999) 1–7.

[34] M. Medina, A. Luquita, J. Tejero, J. Hermoso, T. Mayoral, J. Sanz-Aparicio, K.
Grever, C. Gómez-Moreno, Probing the determinants of coenzyme specificity
in ferredoxin-NADP+ reductase by site-directed mutagenesis, J. Biol. Chem. 276
(2001) 11902–11912.

[35] S. Frago, I. Lans, J.A. Navarro, M. Hervás, D.E. Edmondson, M.A. De la Rosa, C.
Gómez-Moreno, S.G. Mayhew, M. Medina, Dual role of FMN in flavodoxin function:
electron transfer cofactor andmodulation of the protein–protein interaction surface,
Biochim. Biophys. Acta 1797 (2010) 262–271.

[36] V. Rodríguez-Roldán, J.M. García-Heredia, J.A. Navarro, M. Hervás, B. De la Cerda, F.P.
Molina-Heredia, M.A. De la Rosa, A comparative kinetic analysis of the reactivity of
plant, horse, and human respiratory cytochrome c towards cytochrome c oxidase,
Biochem. Biophys. Res. Commun. 346 (2006) 1108–1113.

[37] T.E. Meyer, Z.G. Zhao, M.A. Cusanovich, G. Tollin, Transient kinetics of electron trans-
fer from a variety of c-type cytochromes to plastocyanin, Biochemistry 32 (1993)
4552–4559.

[38] J. Tejero, J.R. Peregrina, M. Martínez-Júlvez, A. Gutiérrez, C. Gómez-Moreno, N.S.
Scrutton, M. Medina, Catalytic mechanism of hydride transfer between NADP+/H
ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
i.org/10.1016/j.bbabio.2013.10.010

http://dx.doi.org/10.1016/j.bbabio.2013.10.010
http://dx.doi.org/10.1016/j.bbabio.2013.10.010
http://dx.doi.org/10.1016/j.bbabio.2013.10.010
Original text:
Inserted Text
"proves "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"'"

Original text:
Inserted Text
"'"

Original text:
Inserted Text
"'"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"



890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955Q20

957

13A. Sánchez-Azqueta et al. / Biochimica et Biophysica Acta xxx (2013) xxx–xxx
and ferredoxin-NADP+ reductase from Anabaena PCC 7119, Arch. Biochem. Biophys.
459 (2007) 79–90.

[39] S. Daff, An appraisal of multiple NADPH binding-site models proposed for cyto-
chrome P450 reductase, NO synthase, and related diflavin reductase systems, Bio-
chemistry 43 (2004) 3929–3932.

[40] W. Kabsch, XDS, Acta Crystallogr. D Biol. Crystallogr. 66 (2010) 125–132.
[41] M.D. Winn, C.C. Ballard, K.D. Cowtan, E.J. Dodson, P. Emsley, P.R. Evans, R.M. Keegan,

E.B. Krissinel, A.G. Leslie, A. McCoy, S.J. McNicholas, G.N. Murshudov, N.S. Pannu, E.A.
Potterton, H.R. Powell, R.J. Read, A. Vagin, K.S. Wilson, Overview of the CCP4 suite
and current developments, Acta Crystallogr. D Biol. Crystallogr. 67 (2011) 235–242.

[42] A. Vagin, A. Teplyakov, MOLREP: an automated program for molecular replacement,
J. Appl. Crystallogr. 30 (1997) 1022–1025.

[43] P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics, Acta
Crystallogr. D Biol. Crystallogr. 60 (2004) 2126–2132.

[44] A.A. Vaguine, J. Richelle, S.J. Wodak, SFCHECK: a unified set of procedures for evalu-
ating the quality of macromolecular structure-factor data and their agreement with
the atomic model, Acta Crystallogr. D Biol. Crystallogr. 55 (1999) 191–205.

[45] R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, PROCHECK: a program to
check the stereochemical quality of protein structures, J. Appl. Crystallogr. 26 (1993)
283–291.

[46] I.W. Davis, L.W. Murray, J.S. Richardson, D.C. Richardson, MOLPROBITY: structure
validation and all-atom contact analysis for nucleic acids and their complexes,
Nucleic Acids Res. 32 (2004) W615–W619.

[47] J. Sancho, C. Gómez-Moreno, Interaction of ferredoxin-NADP+ reductase from
Anabaena with its substrates, Arch. Biochem. Biophys. 288 (1991) 231–238.

[48] M. Martínez-Júlvez, J. Tejero, J.R. Peregrina, I. Nogués, S. Frago, C. Gómez-Moreno, M.
Medina, Towards a new interaction enzyme:coenzyme, Biophys. Chem. 115 (2005)
219–224.

[49] J.K. Hurley, M. Fillat, C. Gómez-Moreno, G. Tollin, Structure–function relationships in
the ferredoxin/ferredoxin:NADP+ reductase system from Anabaena, Biochimie 77
(1995) 539–548.

[50] M.J. Knapp, J.P. Klinman, Environmentally coupled hydrogen tunneling. Linking ca-
talysis to dynamics, Eur. J. Biochem. 269 (2002) 3113–3121.
U
N
C
O

R
R
E
C
T

956

Please cite this article as: A. Sánchez-Azqueta, et al., A hydrogen bond netw
ulates its catalytic efficiency..., Biochim. Biophys. Acta (2013), http://dx.do
R
O

O
F

[51] M.J. Knapp, K. Rickert, J.P. Klinman, Temperature-dependent isotope effects in
soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics,
J. Am. Chem. Soc. 124 (2002) 3865–3874.

[52] Z.D. Nagel, J.P. Klinman, A 21st century revisionist's view at a turning point in enzy-
mology, Nat. Chem. Biol. 5 (2009) 543–550.

[53] J. Basran, R.J. Harris, M.J. Sutcliffe, N.S. Scrutton, H-tunneling in the multiple
H-transfers of the catalytic cycle of morphinone reductase and in the reductive
half-reaction of the homologous pentaerythritol tetranitrate reductase, J. Biol.
Chem. 278 (2003) 43973–43982.

[54] A. Kohen, Kinetic Isotope Effects as Probes for Hydrogen Tunneling in En-
zyme Catalysis, Isotope Effects in Chemistry and Biology, CRC Press, 2005.
743–764.

[55] J.R. Peregrina, B. Herguedas, J.A. Hermoso, M. Martínez-Júlvez, M. Medina, Protein
motifs involved in coenzyme interaction and enzymatic efficiency in Anabaena
ferredoxin-NADP+ reductase, Biochemistry 48 (2009) 3109–3119.

[56] J.K. Hurley, J.L. Schmeits, C. Genzor, C. Gómez-Moreno, G. Tollin, Charge reversal
mutations in a conserved acidic patch in Anabaena ferredoxin can attenuate or
enhance electron transfer to ferredoxin:NADP+ reductase by altering protein/
protein orientation within the intermediate complex, Arch. Biochem. Biophys.
333 (1996) 243–250.

[57] M. Faro, C. Gomez-Moreno, M. Stankovich, M. Medina, Role of critical charged resi-
dues in reduction potential modulation of ferredoxin-NADP+ reductase, Eur. J.
Biochem. 269 (2002) 2656–2661.

[58] M. Martínez-Júlvez, I. Nogués, M. Faro, J.K. Hurley, T.B. Brodie, T. Mayoral, J.
Sanz-Aparicio, J.A. Hermoso, M.T. Stankovich, M. Medina, G. Tollin, C. Gómez-
Moreno, Role of a cluster of hydrophobic residues near the FAD cofactor in Anabaena
PCC 7119 ferredoxin-NADP+ reductase for optimal complex formation and electron
transfer to ferredoxin, J. Biol. Chem. 276 (2001) 27498–27510.

[59] P.A. Karplus, M.J. Daniels, J.R. Herriott, Atomic structure of ferredoxin-NADP+

reductase: prototype for a structurally novel flavoenzyme family, Science 251
(1991) 60–66.

[60] J.P. Klinman, Importance of protein dynamics during enzymatic C\H bond cleavage
catalysis, Biochemistry (2013).
P
E
D
 

ork in the active site of Anabaena ferredoxin-NADP+ reductase mod-
i.org/10.1016/j.bbabio.2013.10.010

http://dx.doi.org/10.1016/j.bbabio.2013.10.010
Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"


	A hydrogen bond network in the active site of Anabaena ferredoxin-�NADP+ reductase modulates its catalytic efficiency
	1. Introduction
	2. Materials and methods
	2.1. Biological material
	2.2. Spectroscopic assays
	2.3. Determination of midpoint reduction potentials of the FNR variants
	2.4. Steady-state kinetics measurements
	2.5. Laser-flash induced kinetics
	2.6. Stopped-flow pre-steady-state kinetic measurements
	2.7. Crystal growth, data collection and structure refinement

	3. Results
	3.1. Interaction with partners, and oxido-reduction properties of the FNR variants
	3.2. Steady-state efficiency of the FNR variants
	3.3. Pre-steady-state kinetic analysis of the reduction of FNRox by Fdrd
	3.4. Transient kinetics of the hydride transfer reactions between FNR and the coenzyme. Kinetic isotopic effect (KIE) and d...
	3.5. The structural environment of the mutated positions

	4. Discussion
	Acknowledgements
	Appendix A. Supplementary data
	References




