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Abstract

This work presents the idea of the predictive Time Temperature
Integrator sensors (pTTIs) as a means to recover and to predict safety
and quality evolution in thermal processing. Predictive TTIs com-
bine a rigorous and computationally efficient model of the process
with standard TTIs. The calibration of the pTTIs requires several
steps, including the definition of the model, the appropriate means
for its simulation and the use of adequate parameter estimation
and optimal experimental design techniques to recover food and
package thermo-physical properties.

Results show how a limited number of experiments and stan-
dard TTIs are required to calibrate predictive sensors. Possible uses
include the prediction of microbial lethality and quality attributes,
recovery of processing conditions considering eventual perturba-
tions or optimal process design.

Calibration and uses are illustrated here with examples related
to the tunnel pasteurization of highly viscous liquid foods.

Keywords: Thermal processing, Time-temperature integrators, Predictive
sensors, Reduced order models, Parameter estimation, Optimal experimental
design

1 Introduction
Food thermal processing persists as one of the most widely used methods
for food preservation. The product is treated at a given temperature for a
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given period of time to minimize public health hazards due to the presence of
pathogenic microorganisms and to extend product shelf-life.

As the number of processes, products and packaging types increases, food
companies are faced with the challenge of satisfying safety constraints. Differ-
ent time-temperature combinations could be used to achieve safety. However,
the related time-temperature histories would affect the quality of the prod-
uct in different ways. This has led to a common practice of over-processing
food products to guarantee safety but at the expense of higher product quality
deterioration.

Anyhow, consumers demands go beyond the basic requirements of safety
and shelf-stability. Therefore more emphasis is to be placed in high quality
and added value products. This calls for appropriate process validation and
optimization techniques (Awuah et al, 2007).

However, designing thermal processes requires a deep understanding of
the heating process of the given product, the impact on the target microorgan-
ism and quality factors. The thermal treatment will depend on the thermo-
physical characteristics, shape and size of the food product and container; the
type and thermal resistance of the microorganisms that are likely to be present
in the product and the kinetics of quality degradation.

To achieve such understanding is of critical importance to have access
to adequate sensors: i) temperature probes to follow temperature evolution
throughout the process; ii) microbiological techniques to study the thermal
inactivation kinetics and iii) chemical and biochemical techniques to assess
quality loss. It is important to remark here that microbial, chemical and bio-
chemical techniques are used off-line.

Microbial destruction typically follows a first order kinetics. Microbial
counting data can, then, be used to determine the two key parameters that
characterize microbial lethality: D (the heating time required to reduce micro-
bial population in a 90%) and z (the temperature change that results in a 10-fold
change in D). Similarly D and z values can be determined to characterize loss
of nutrients, for example.

Differences between the D and z values of microorganisms and quality fac-
tors can be exploited to optimize thermal processes. In this regard, model based
approaches have been exploited in the context of the thermal sterilization of
packaged solid food products, see for example Banga et al (1991); Holdsworth
(1996); Banga et al (2003); Miri et al (2008) among others.

In fact, thermocouples can be used to follow temperature evolution on-line
for solid food products, enabling the possibility of implementing model based
real time optimization strategies capable of handling process perturbations and
uncertainties (Alonso et al, 2013).

Unfortunately, direct registration of the time-temperature profile is not
possible in other thermal processes. In continuous processes or rotating retorts,
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for instance, thermocouples are impractical, and their size may also be an issue
(Marra and Romano, 2003). To overcome that difficulty, time temperature
integrators (TTIs) were introduced to validate pasteurization processes. A TTI
is a mechanical, chemical or enzymatic system that indicates the cumulative
time-temperature history of the associated product by means of an irreversible
change during the thermal treatment. The change is usually expressed as a
visible response, in the form of a mechanical deformation or color modification.
The use of enzymes, more specifically amylases, has been suggested since their
breakdown by heat shows first order reaction kinetics with z values similar to
those of the target microorganisms (Hendrickx et al, 1995; Van Loey et al, 1996;
Guiavarc’h et al, 2002, 2005). Similarly TTIs can be designed so as to assess
the degradation of particular quality factors (see Bobelyn et al (2006); Vaikousi
et al (2009); Ellouze and Augustin (2010) among others). The time-temperature
history of the product is, therefore, not necessary to determine the impact of
thermal treatments with respect to the specific product attribute the TTI is
designed for.

Potential limitations of the TTIs have to do with the fact that they are
usually located in the surface of the product and the relationship between
the surface and the product temperature varies from product to product and
depends on the process, the thermo-physical properties of the product, the
type of package, etc. In addition, different microorganisms and quality factors
require different TTIs. In fact, many recent works suggest different possibilities
(see, for example, Tucker et al (2002); Guiavarc’h et al (2005); Mehauden et al
(2007); Tucker et al (2009); Ellouze and Augustin (2010)). Finally, the use of TTI
measurements for process design, requires extensive experimentation any time
the product or the package is to be changed, with the associated implications
in terms of time-to-market and economic cost.

In order to surmount these difficulties, this work addresses the following
questions: i) Is it possible to document the evolution of temperature in the
interior of food from measurements of TTIs? and, as a consequence, ii) is it
possible to use a single type of TTIs to validate the process and analyze quality
loss? We argue that the answer to both questions is positive provided that
we combine a rigorous model of the temperature evolution during thermal
processing with TTIs. Of course, to calibrate the models we may also use
TTIs. So that, with a reduced number of optimally designed experiments,
it is possible to retrieve the thermo-physical properties of food product and
container, and therefore the evolution of temperature and quality factors.

We regard the combination of TTIs with a rigorous, yet computationally
efficient, model of the process as pTTIs since they may document the thermal
history of the process and make predictions, provided it is possible to remove
the TTIs at different stages in a multistage process. In addition, they can be
used to design product-package specific optimal operating conditions.
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The proposed methodology is general and applicable to any type of food
product and any type or size of container. However, for illustrative purposes,
we consider here the case of pasteurization in tunnels which is used to treat
soups, soft drinks, beer, sausages and other foods previously prepacked in
closed bottles or cans.

Table 1: Nomenclature
Symbol Parameter Units Value
aµ Viscosity coefficient [ ] 2.596 × 10−4

bµ Viscosity coefficient [ ] 0.06219
cµ Viscosity coefficient [ ] 4.135
Cp Specific heat [ J

Kg0C ] 4100
g Gravity acceleration [ m

s2 ] 9.81
h Heat transfer coefficient [ W

0Cm2 ] 100
k Thermal conductivity [ W

0Cm ] 0.7
Pc Lethality at cold point [s]
r Package radial coordinate [m]
R Package radius [m] 0.04
Rg Ideal gases constant [ kJ

kmolK ] 8.3
Z Package height [m] 0.09
t Time [s]
T Temperature [K]
Tre f Kinetic parameter [0C] 70
z Package height coordinate [m]
Zre f Kinetic parameter [0C] 7.5
Greek letters
α Thermal diffusivity [m2

s ] 1.7872 × 10−7

β Thermal dilatation coefficient [ ] 0.0002
µ Viscosity [sPa] Eqn.(4)
ρ Density [Kg

m3 ] 950
Subscripts
f f Falling film
ini Initial
prod Product

4

https://doi.org/10.1016/j.foodcont.2014.04.001


To cite this article:
Arias-Mendez A., Vilas C., Alonso A.A., Balsa-Canto E. Time-temperature integrators as predictive
temperature sensors.Food Control, 2014, 44:258-266. DOI:https://doi.org/10.1016/j.foodcont.2014.04.001

2 Material and methods

2.1 Process and product description
In this work we consider the tunnel pasteurization of highly viscous liquid
foods such as tomato or carrot puree in cylindrical food jars, see Figure 1.
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Pasteurization 
       stage

Cooling stageHeating stage

a)

b)

Figure 1: Typical industrial tunnel pasteurization equipment: a) traditional
configuration of the tunnel itself and b) detail of the package typically em-
ployed

The containers are loaded at one end of the pasteurizer and passed under
sprinkles of water as they move along the conveyor belt. Temperature of the
water changes in the main three different zones (see Figure 1(a)) so as to achieve
the required lethality (Horn et al, 1997). The heat transfer occurs between the
hot water film, usually called falling film, and the package surface, and from the
package to the food product. Heat transfer within the food product is driven by
heat conduction and convection, which induces a temperature gradient within
the food product. Safety will be then assessed by means of the lethality as
evaluated in the coldest point, whereas quality is typically quantified as a
surface or volumetric measure.

However, eventual temperature deviations in one or more of the heating
zones considered during the pasteurization process may end up with products
which do not comply with the safety requirements or with lower quality of
the final product than expected (due, for instance, to over-processing). In such
scenarios it is of remarkable importance to be able to guarantee the proper
process operation or at least to be capable of quantifying the relevance of such
perturbations in the final product specifications.
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2.2 Time-temperature integrators
Time-temperature integrators (TTIs) considered in this work are prepared us-
ing silicon tubes of 15 mm length, 2 mm bore and 0.5 mm wall. Tubes are filled
with an enzyme with the following kinetic characteristics Tre f = 70 ◦C and
zre f = 7.5, equivalent to those of the target microorganisms (see details about
the definition of Tre f and zre f in the following section). It should be remarked
that any other TTIs could have been selected.

TTIs will be placed inside the food package and fixed to the jar walls.

2.3 Process model
The evolution of temperature and velocity within the food product during
the pasteurization is described by means of conservation laws. The package
(Figure 1) is assumed to be homogeneously heated therefore axial symmetry
allows to consider a 2D geometry, Figure 2. The process can be mathematically
described as follows (Erdogdu et al, 2010):

Axi-symmetr y

r   
 z

Falling film

F
alling film

Thermal isolation

Figure 2: Definition of the geometry for model simulation

Continuity equation:
∂u
∂z
+

v
r
+
∂v
∂r
= 0, (1)

being r and z being the spatial coordinates (radius and height of the package)
while v and u are the velocity field components, i.e., w = [u, v]T.

Momentum conservation:
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)
+
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+ ρ̂g, (3)
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where p is the pressure, ρprod corresponds with the food stuff density, g is the
gravity constant, T represents the temperature distribution inside the food,µprod
stands for the viscosity expressed as a function of the temperature (Erdogdu
et al, 2010)

µprod = aµT2
− bµT + cµ, (4)

and the density ρ̂ is usually expressed in terms of the fluid temperature as
follows:

ρ̂ = ρre f (1 − β(T − Tre f )), (5)

with β being the thermal dilatation coefficient. ρre f and Tre f are given reference
values.

Energy conservation:

∂T
∂t
+ v
∂T
∂r
+ u
∂T
∂z
= αprod

(1
r
∂
∂r

(
r
∂T
∂r

)
+
∂2T
∂z2

)
. (6)

The system in Eqns.(1-6) is subject to the following initial and boundary
conditions:

• Initially the food stuff is at rest (v = 0) and at uniform temperature
Tini = T0.

• The velocity field components (u, v) are zero in the package walls, i.e.:

u|z=0 = u|z=Z = u|r=R = 0, (7)
v|z=0 = v|z=Z = v|r=R = 0. (8)

• Symmetry conditions are imposed in the symmetry axis (r = 0):

∂T
∂r

∣∣∣∣∣
r=0
=
∂u
∂r

∣∣∣∣∣
r=0
=
∂v
∂r

∣∣∣∣∣
r=0
= 0. (9)

• The package bottom is touching the transportation belt assumed to be
an insulating material:

∂T
∂z

∣∣∣∣∣
z=0
= 0. (10)

• At the right and upper sides, the package is in direct contact with the
falling film of heating fluid:

kprod
∂T
∂r

∣∣∣∣∣
r=R
= h jar

(
T f f (t) − T(R, z, t)

)
, (11)
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kprod
∂T
∂z

∣∣∣∣∣
z=Z
= h jar

(
T f f (t) − T(r,Z, t)

)
, (12)

with T f f being the temperature of the falling film, h jar the jar heat transfer
coefficient and kprod the product thermal conductivity.

2.3.1 Pasteurization value

The thermal death time method relates parameter D with the temperature. Defin-
ing the lethality as the relation between the current and a reference treatment,
i.e. dP0/dt = Dre f /D , the following equation is obtained:

dP0

dt
= 10

Tc(t)−Tre f
zre f , (13)

where Tc is the temperature at the coldest point. Parameters Tre f and zre f
represent the kinetic coefficients for the target pathogen which coincide (or are
close to) the TTIs characteristic values.

2.3.2 Quality attributes

The quality degradation of a food product, can also be modelled by the thermal
death time equation in every point of the food product. In this work, the
superficial retention is used as a measure of the quality of the food:

Ret = 10
−

1
Dre f

∫ t f
0

Ts(t)−Tre f
zre f

dt

, (14)

where Ts is the temperature at the different points in the surface of the food,
and parameters Tre f , Dre f and zre f depend on the type of nutrient considered.

2.4 Calibration of the predictive TTIs
To calibrate the predictive TTIs the following elements will be necessary: i)
model simulation methods, ii) parameter estimation techniques and iii) exper-
imental data.

2.4.1 Model simulation

Models as the one presented in Eqns.(1-14) are typically solved using spatial
discretization based techniques -such as the finite element method (FEM)-.
However, it has been recognised that reducer order models like those obtained
by means of the proper orthogonal decomposition (POD) approach, are accurate
yet computationally efficient alternatives more suited to optimization and real-
time applications (Balsa-Canto et al, 2002).
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For the sake of clarity, mathematical details about the derivation of a re-
duced order model using the POD method are included in A. Only the main
practical steps are summarized here:

1. Obtain a set of snapshots that characterizes the spatio-temporal distri-
bution of the variable of interest (temperature, velocity, etc). In our case
all the snapshots are obtained from a FEM based simulation of system
Eqns.(1-14) under different possible experimental conditions and prod-
uct and package parameter values.

2. Computation of the POD basis. The snapshots are then used to compute
the so-called POD basis as described in (Garcı́a et al, 2007).

3. Projection. Projection is carried out by multiplying the original system
by the POD basis and integrating the result over the spatial domain.
Note that the FEM structure may be exploited to numerically perform
the projection (Garcı́a et al, 2007).

As a result a reduced set of ordinary differential equations is finally ob-
tained.

2.4.2 Parameter estimation

The parameter estimation problem consists of finding the unknown model
parameters that minimize the distance between model predictions and exper-
imental measurements as measured by the log-likelihood function:

JPE =

nexp∑
k=1

nl∑
i=1

(
PTTI

k,i (θ)k − Pm
k,i

)2
σ2

k,i

, (15)

where nexp and nl are the number of experiments and TTIs, respectively and
σ the experimental noise standard deviation. θ represents the set of model
unknown parameters that must be estimated. In this work we have chosen
those parameters which are difficult to measure and whose values depend
on the fluid composition, package specifications, heating fluid characteristics,
etc. and therefore they cannot be found in the literature. Such parameters are
h jar, αprod, β, aµ, bµ and cµ. PTTI

k,i represents the lethality achieved at the end of
the process under experimental conditions k as measured by the TTI located
at i position. Finally Pm corresponds to the model predictions computed as
follows:

dPm

dt
= 10

T̄(t)−Tre f
Zre f , (16)
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where T̄ regards the mean temperature within the corresponding TTI:

T̄ =
∫

VTTI

T(r, z) dVTTI, (17)

with VTTI being the volume of the TTI tubes.
A number of constraints must be considered in the task of searching for the

minimum value of JPE in Eqn.(15):

• Model equations which provide us with the values of Pm for a given set
of parameters θ.

• Parameters a, b and c must comply with the physical requirement that
the viscosity of the product is positive, i.e., µprod > 0.

• Physically meaningful bounds for the parameters.

The solution of the parameter estimation problem will be the parameter
values that are able to reproduce the experimental data as close as possible (θ∗)
together with the corresponding confidence intervals which provide informa-
tion about the reliability of the estimates.

The confidence interval of a given parameter θ∗i can be computed by means
of the Fisher information matrix (F ) and the Crammer-Rao inequality(Ljung and
Glad, 1994; Walter and Pronzato, 1997) as follows:

±tγ
α/2

√
Cii (18)

where C corresponds to the inverse of the Fisher Information Matrix:

F = EPm|θ∗

{[
∂JPE(θ)
∂θ

][
∂JPE(θ)
∂θ

]T}
, (19)

and tγ
α/2 is given by Students t-distribution, γ = Nd − nθ corresponds to the

number of degrees of freedom and α is the (1-α) 100% confidence interval
selected, typically 95% is used.

The correlation by pairs of parameters can be assessed by means of the
correlation matrix as computed by:

Cr =
Cij√
CiiC j j

, (20)

in such a way that two parameters θi and θ j are highly correlated if Crij = ±1
and uncorrelated if Crij = 0. And the mean correlation can be computed as
follows:

10

https://doi.org/10.1016/j.foodcont.2014.04.001


To cite this article:
Arias-Mendez A., Vilas C., Alonso A.A., Balsa-Canto E. Time-temperature integrators as predictive
temperature sensors.Food Control, 2014, 44:258-266. DOI:https://doi.org/10.1016/j.foodcont.2014.04.001

Crm =

∑i=nθ−1
i=1

∑j=nθ
j=i+1 Crij∑k=nθ−1

k=1 k
, (21)

with nθ the number of unknown parameters.

2.4.3 Optimal experimental design

The objective of optimal experimental design (OED) is to find the experimental
set-up that maximizes the information provided by the experiments for the
purpose of parameter estimation as encoded, for example, in the Fisher infor-
mation matrix (ϕ(F )) (Walter and Pronzato, 1997). The problem can be stated
as a dynamic optimization problem as follows:

Find the number of experiments and experimental conditions -falling film temper-
ature profile, experiment duration and number and location of TTIs- so as to minimize
JOED = ϕ(F ) subject to the system dynamics, maximum and minimum processing
temperatures and a maximum number of TTIs with specific locations as shown in
Figure 3.

1

7

6

5

32

11 9

8

4

12 10

a) b)

Figure 3: Conditions for OED: a) Allowed positions for TTIs inside the jar
numbered from 1 to 12, b) Mesh used for the purpose of FEM based computa-
tion of the TTI mean temperature Eqn.(17)

Several possibilities exist to define the scalar function ϕ(F ). In this work
the ratio between the determinant and the minimum eigenvalue was used so
as to achieve a compromise confidence-correlation (Garcı́a, 2008).

Parameter estimation and optimal experimental design problems were
solved using the AMIGO toolbox (Balsa-Canto and Banga, 2011). It should
be remarked that this tool offers the possibility of selecting several optimizers
including global optimization methods to deal with the usual multimodal char-
acter of these problems. In particular the metaheuristic approach eSS (Egea
et al, 2009) was selected to perform the optimization tasks due to its robustness
and efficiency.
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2.5 Predictive TTIs examples of use
By complementing direct measurements of quality and safety factors with
mathematical physico-chemical models, the pTTI concept provides a full pic-
ture of the process history and its effects on the product. Among other capa-
bilities we remark:

• A complete documentation of the process itself.

When the results of the pasteurization process are those expected in terms
of final lethality of the product, pTTIs can provide a full documentation of
the process, since they allow the reconstruction of product temperature
and fluid velocity distributions and profiles which are at the basis of the
estimation of other unmeasured quality or safety parameters.

• Detection and prevention of deviations of process conditions.

In the presence of disturbances that may include changes of process tem-
perature profiles or undocumented product specifications for instance,
pTTIs allow, via optimization, to infer possible causes of process de-
viations (perturbations) thus contributing to enhance on-line process
diagnosis, at least on a batch to batch basis.

The optimization problem to recover the actual conditions of the process
under the presence of perturbations can be formulated as:

min
T f f (t)

ϕ =

p∑
i=1

(PTTI
i − Pm

i

PTTI
i

)2
Subject to

f (T,u,w,T f f , tp, ξ, t) = 0,

TL(t) ≤ T(t) ≤ TU(t),

(22)

where tp is the duration of the process itself, f stands for the model
equations (1-14) and T f f (t) is the actual temperature of the falling film
within the pasteurizer which may be discretized by using the control
vector parameterization approach (CVP). Finally, ϕ refers to the distance
from the expected (Pm

i ) to the measured (PTTI
i ) final lethality.

3 Results and discussion

3.1 Model simulation
The finite element method, with a mesh of 725 discretization points, was em-
ployed to numerically solve the system of Eqns.(1-14). This implies solving
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2900 differential equations. A reduced order model with 40 ODEs was achieved
by means of the POD technique. The reduced order model is able to accurately
describe the system. Differences between FEM and POD based simulations
remain bellow the 2% for a validation example, as shown in Figure 4.
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Figure 4: Dynamic evolution of the temperature and velocity fields at five
spatial locations distributed along the diagonal of the spatial domain (p1 =
(0, 0), p2 = (0.011, 0.022), p3 = (0.019, 0.045), p4 = (0.029, 0.067), p5 = (0.04, 0.09)).
Continuous lines correspond to the FEM simulation while marks represent the
solution of the POD based model.

3.2 Parameter estimation
The starting point for parameter estimation was a factorial plan consisting of
three experiments. The experiments were designed to provide information
about both heating and cooling dynamics, as follows:

• Four TTIs were used and placed at the locations 3, 7, 10 and 12 as shown
in Figure 3.

• The process duration was 60 minutes for all experiments and lethality
(PTTI) was measured at the end of the process.
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• Constant falling film temperature profiles were considered: T f f = 72 ◦C,
T f f = 65 ◦C and T f f = 20 ◦C, for the first, second and third experiments,
respectively.

• Initial conditions for the first two experiments were T0 = 20 ◦C and
P0(0) = 0 min. The third experiment started from T0 = 70 ◦C and P0(0) = 1
min1.

Uniformly distributed error with a maximum of 20% standard deviation was
included in the in-silico experimental data to emulate experimental error.

Parameters were normalized to one using a reference value. The solution
of the corresponding parameter estimation problem is: h̄ jar = 0.92, ᾱprod = 0.97,
β̄ = 1.33, āµ = 0.84, b̄µ = 0.94 and c̄µ = 0.87. The optimal solution is far from the
expected optimum (all parameters equal to 1). Besides the mean confidence
interval is 254% and the maximum confidence interval is 545%. The high con-
fidence intervals reveal reduced sensitivity of model predictions to parameter
values under the experimental conditions. In addition, the correlation between
parameters is also rather significant (Crm = 0.71).

In order to improve the quality of parameter estimates a sequential optimal
experimental design was performed. The underlying idea is to add an exper-
iment at a time so as to progressively converge to the parameters real value
and to reduce the confidence intervals. Table 3 presents a summary of results,
showing how the use of the factorial plan (FP) plus four optimally designed
(OD) experiments results in a 2.3% maximum confidence interval.

Table 2: Parameter estimation results (optimal value of the parameters and
mean and maximum value of the confident intervals,CI) for the sequence of
optimally designed experiments.

h jar αprod β aµ bµ cµ mean CI max CI
FP+1OD 1.02 0.88 2.74 1.19 0.81 1.20 94% 210%
FP+2OD 1.01 0.97 1.55 1.17 0.81 1.03 45% 104%
FP+3OD 1.01 0.98 1.47 0.96 0.85 1.07 12% 27%
FP+4OD 1.01 0.99 1.02 1.08 1.00 1.01 1% 2.3%

The optimal experiments achieved as well as the corresponding parameter
correlation matrix are shown in Figure 5.

All designed experiments make use of a time varying temperature profile,
three of them correspond to a heating process while one corresponds to a
cooling process. Temperature switching times as well as the optimal sensor

1Initial temperature different from the ambient and P0(0) different from zero are
achieved by perfectly mixed precooking process
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Figure 5: Optimal experimental conditions and corresponding correlation ma-
trix. a) First optimally designed (OD) experiment and correlation matrix (CM)
for FP+1OD. b) Second OD experiment and CM for FP+2OD. c)Third OD ex-
periment and CM for FP+3OD. d) Fourth OD experiment and CM for FP+4OD

locations change from one experiment to the other. Note that the maximum
allowed number of sensors (4) is used in all experiments and their locations are
such that all package walls are visited, although mostly towards the bottom of
the package.

Figure 5 also shows how the parameters tend to decorrelate with the ad-
dition of optimally designed experiments. This facilitating the convergence to
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the optimal solution.

3.3 Examples of use
In this section we present two practical scenarios of use of pTTIs.

3.3.1 Prediction of quality attributes

To asses the quality of pTTIs as quality sensors we considered a new experimen-
tal set-up and compared the results achieved with pTTIs with those obtained
with two standard TTIs. Results reveal good predictive capabilities of the pTTI
with errors within the expected experimental error (Figure 6).
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Figure 6: Comparison of the TTI measurements and pTTI predictions: a) micro-
bial lethality and b) acid ascorbic retention. In the dynamic of the acid ascorbic
degradation the next values of the kinetic parameters have been considered,
zre f = 7.5 and D70 = 1354

It should be noted that pTTIs enable the possibility of documenting the
temperature and velocity distribution as well as quality and safety dynamics
throughout the process. Figure 7 presents the distribution of temperature and
velocity of the product at a given time.

3.3.2 Process reconstruction in the presence of perturbations

The objective is to recover, from standard TTI measurements, the “real” falling
film temperature profile, in the presence of perturbations, through the solution
of the dynamic optimization problem stated in Eqns.(22).

In the example it is possible to infer perturbed temperature profiles using
four pTTIs (see Table 3). The profiles recovered from the process lead to very
small discrepancies between real and predicted lethalities (see Figure 8).
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Figure 7: Distribution of the product temperature and velocity field at a given
time as predicted by the pTTI

Table 3: Results of the recovering problem using the pTTI structure.
T(heating) T(pasteurization) T(cooling)

Ideal process conditions 500C 750C 300C
Recovered conditions 50.030C 74.990C 29.40C

4 Conclusions
This work presented the idea of predictive time temperature integrators as a means
to recover and to predict safety and quality evolution in thermal processing.
The underlying idea is to combine a rigorous but computationally efficient
model of the process with standard TTIs.

The calibration of the pTTIs and their practical uses were illustrated with
an example related to thermal pasteurization of food products in tunnels.
The results showed how with a reduced number of experiments and TTIs, it is
possible to calibrate the pTTI to accurately recover the evolution of temperature
in the interior of the food product and, therefore, the microbial lethality and
the deterioration of quality attributes. Remark that for pTTIs to assess quality
attributes the kinetics of quality deterioration must be known and therefore
further experiments may be required for this purpose.

The use of pTTIs brings new possibilities for process monitoring and opti-
mization: i) a unique type of pTTIs may be used to validate the process and
to follow quality loss ii) and allow the recuperation of process conditions un-
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Figure 8: Real and recovered lethality profiles obtained by solving the opti-
mization problem. Lines stand for the measured values obtained after per-
forming the experiment, and dots for the values estimated with the recovered
temperatures

der unexpected perturbations; iii) they facilitate the design of product-package
specific operating conditions which guarantee food safety, while minimizing
the impact on quality related factors and iv) their computational efficiency
enables the possibility of taking decisions in real time, provided TTIs can be
retrieved at different stages of the process.
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A The proper orthogonal decomposition
In this section we present the basics of the proper orthogonal decomposition (POD)
technique using the pasteurization model to illustrate the different steps. A
more detailed descriptions can be found in Sirovich (1987); Garcı́a et al (2007).

The first step is to approximate the dependent variables T and w = [u, v]T

18

https://doi.org/10.1016/j.foodcont.2014.04.001


To cite this article:
Arias-Mendez A., Vilas C., Alonso A.A., Balsa-Canto E. Time-temperature integrators as predictive
temperature sensors.Food Control, 2014, 44:258-266. DOI:https://doi.org/10.1016/j.foodcont.2014.04.001

by a truncated Fourier series of the form:

T(ξ, t) ≈
NT∑
i=1

mTi(t)ϕTi(ξ), (23)

w(ξ, t) ≈
Nw∑
i=1

mwi(t)ϕwi(ξ), (24)

whereξ represents the spatial coordinates z and r. The basis functions in the sets
{ϕT,i(ξ)}

NT
i=1 and {ϕw,i(ξ)}

Nw
i=1 are orthogonal and contain the spatial dependency of

the solution, while the sets {mT,i(t)}
NT
i=1 and {mw,i(t)}

Nw
i=1 collect the time dependent

coefficients. Instead of computing T(ξ, t) and w(ξ, t) directly, we will compute
the basis functions and the time dependent coefficients. Then, variables T(ξ, t)
and w(ξ, t) can be reconstructed using Eqns.(23) and (24).

The POD basis are obtained using experimental data (either in silico or
in vitro). Such experimental data (snapshots) must characterize the spatio-
temporal distribution of the variable of interest (temperature, velocity, etc). In
our case all the snapshots are obtained from a FEM based simulation of system
(1)-(12) under different possible experimental conditions (T f f , T0) and using
different values for the unknown parameters. The snapshots are then used to
compute, solving an eigenvalue problem, the so-called POD basis as described
in Sirovich (1987); Garcı́a et al (2007).

The time dependent coefficients {mx,i(t)}
Nx
i=1 with x = T,w are computed by

projecting the original PDE system into POD basis. In practice this is performed
by multiplying the original PDE system by the POD basis and integrating the
result over the spatial domain (Garcı́a et al, 2007):∫

V
ϕT,i
∂T
∂t

dξ =
∫

V
ϕT,i(α∆T − w∇T)dξ, (25)

ρ

∫
V
ϕw,i
∂w
∂t

dξ =
∫

V
ϕw,i
(
µ∆w − ρw∇w − ∇P + ρg

(
1 − β(T − T0)

)
z⃗
)

dξ, (26)

with i = 1, ...,Nx and z⃗ being a unitary vector with the direction of the spatial
coordinate z. Eqn.(26) with w = [u, v]T is equivalent to Eqns (2)-(3).

Using relations (23)-(24) and after some algebraic manipulations, Eqns.(25)
- (26) can be rewritten as:

dmT

dt
=
(
αprodAT + BT + αprodDT

)
mT, (27)

ρ
dmw

dt
=
(
µAw + ρBw + µDw

)
mw − ρgβCT,wmT + ρg(1 + βT0), (28)
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where each component of matrices Ax, Bx, CT,w and Dx are of the form:

Ax(i; j) =
∫

V
∇ϕx,i∇ϕx, jdξ; Bx(i; j) =

∫
V
ϕx,i(w∇ϕx, j)dξ.

CT,w(i; j) =
∫

V
ϕw,iϕT, jdξ; Dx(i; j) =

∫
∂V
ϕx,i∇ϕx, jdξ.

with ∂V denoting the boundary of V. The vector of time dependent functions
mx is of the form: mx = [mx,1, mx,2, · · · , mx,N]T.

At this point both the basis functions and the time dependent coefficients
are known so the field can be recovered using equations (A.4)-(A.5). Note that
the accuracy of the approximation can be improved arbitrarily by increasing
the number of elements Nx in the basis set Φx.
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