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The relative entropy of the massive free bosonic field theory is studied on various compact Riemann surfaces
as a universal quantity with physical significance, in particular, for gravitational phenomena. The exact ex-
pression for the sphere is obtained, as well as its asymptotic series for large mass and its Taylor series for small
mass. One can also derive exact expressions for the torus but not for higher genus. However, the asymptotic
behavior for large mass can always be established—up to a constant—with heat-kernel methods. It consists of
an asymptotic series determined only by the curvature—and, hence, is common for homogeneous surfaces of
genus higher than one—and exponentially vanishing corrections whose form is determined by the concrete
topology. The coefficient of the logarithmic term in this series gives the conformal anomaly.

PACS numbgs): 04.62:+v, 11.10.Gh, 11.10.Kk

[. INTRODUCTION tion. However, this function, or say the free energy, is ultra-
violet (UV) divergent and hence ill defined. Fortunately, the
The entropy of a statistical model relative to its critical relative entropy of the 2D bosonic massive field theory is
point has been shown to be an interesting quantity in fieldJV finite [2] and so it is likely to have a role in the geo-
theory, especially in regard to the renormalization grfllp  metrical characterization of a Riemann surface. This charac-
On the one hand, it exhibits better behavior than the frederization consists of local parametetthe curvaturg and
energy when the ultraviolet cutoff is sent to infinity and, onglobal parameters, specifying the boundary conditions and
the other hand, it is monotonic with the coupling constantspeing topologically significant. The study of homogeneous
unlike the free energy. This second property makes it suitsurfaces will provide insight into the dependence of the rela-
able to embody the irreversible nature of the renomalizatiortive entropy on both types of parameters.
group, which can in particular be substantiated in a finite Generically, the relative entropy is not related to the quan-
geometry as monotonicity with respect to its characteristicum field theory entropy, but there is a direct relation on the
scale[2]. The computation of theelative entropyfor various  torus (or cylinde) geometry. The relative entropy isgeo-
models on a cylinder clearly shows its monotoni¢y. The  metric entropy of the sort already considered in connection
cylinder is appropriate to illustrate finite size effects but itwith the entropy of black hole§7]. Indeed, the geometry
may not be the finite geometry of choice in the context ofrelevant to this case is that of the cone, which is noncompact
renormalization-group irreversibility. There is a celebratedand is actually related to the cylinder geometry, and hence to
result on renormalization-group irreversibility in two- the usual quantum field theory entropy, as analyzed in Ref.
dimensional(2D) field theories, Zamolodchiko€ theorem. [2]. One can expect that the relative entropy for homoge-
The monotonicity theorem for the relative entropy on theneous spaces will be applicable in a cosmological context,
cylinder, once it is conveniently formulated, resemblesonce suitably generalized. Thus the results of this paper must
ZamolodchikovC theorem[2]. However, this resemblance have some bearing on entropic considerationslénSitter
can hardly lead to a direct relationship, since the proof ofandanti—de Sitterspace-time. An attempt at introducing the
Zamolodchikov C theorem demands rotation as well as maximum entropy principle in quantum cosmology has been
translation symmetry. In other words, that proof demands tanade in Ref[8]. On the other hand, the application of scal-
consider a maximally symmetric space, namely, the spheréng and renormalization group concepts in gravitat[@n
the plane, or the hyperbolic plane. Both the sphere and thand cosmology[10] is gaining momentum. Therefore, it
hyperbolic plane possess an infrared scale, the curvature raeems interesting to study properties of the entropy relative
dius, but only the sphere is finite and therefore the computato the scales defining some curved space. Furthermore, the
tion of the relative entropy on the sphere is of particularrole of the relative entropy as a monotonic function with the
value. renormalization group may have some relevance in modern
From a different point of view, the calculation of the theories of quantum gravity, as recent work seems to indicate
spectrum of the Laplacian operator on general compact Rig-1].
mann surfaces has first held the interest of mathematicians Therefore, our main concern here will be the computation
[3,4] and second of physicisi{$,6] for some time. The par- of the universal relative entropy of the 2D bosonic massive
tition function of the bosonic massive field theory on a com-field theory on homogeneous and compact Riemann sur-
pact Riemann surface is a global object which can be confaces, for its own sake and with a view to its application in
structed from the knowledge of the spectrum of theconnection with Zamolodchiko€ theorem. For the plane
Laplacian operator. Since this spectrum is highly dependerdand cylinder, the relative entropy has been computed in Ref.
on the topologic and geometric properties of the Riemani2]. Since we are now concerned with compact Riemann
surface, these properties are reflected by the partition funcsurfaces, we shall first focus on the simplest case, namely,
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the sphere. In general, the topological classification of comwhere we have introduced the dimensionless coupfing
pact Riemann surfaces is given by thgenus that is, the =(mR)? and the UV cutoff is related to the maximum value
number of handles in a three-dimensional embedding. Thef |, A~I,,../R. We have also removed the zero madde
genus of the sphere is zero, of course. Compact Riemana 0 from the sum, which is not allowed far=0, and we
surfaces of higher genus, with zero or negative constant cuirave taken the degeneracy into account by the fadter12
vature, will also be considered here, even though they are not From the previous expression ¥¥ one can obtain the
globally isotropic, since they are derived from the plane orrelative entropy as a universal quantity, that is, as a conver-
the hyperbolic space by imposing boundary conditions on gent series in the limit,,—®. However, the sum of that
finite domain, which break rotation invariance. The case okeries is very hard to carry out, so we choose another way.
zero curvature is the torus and is actually related to the cylOne can lower the degree of divergenceVwby taking de-
inder, treated in Ref.2]. Compact Riemann surfaces of ge- rivatives with respect to. In fact,

nus g>1 are always related to the hyperbolic plane. The

spectrum of the Laplacian on them is too complicated to dw 1'mx 2141

allow derivation of closed expressions for the relative en- dr - 2@& 10+ 1)+ ®
tropy. Thus, the casg>1 will be discussed summarily and

only some general properties of the free energy and the relgghich is still logarithmically divergent. We can remove this

tive entropy will be extracted. The method used to obtaingjyergence just by substracting its value at0 and write, in
these properties, namely, the heat-kernel method, is howeveka |imit |

— 0,
of general interest and we shall dedicate considerable atten-

tiOnAtOit't t of literature has been devoted to th dw_ dw ri 2ltl (4)
great amount of literature has been devoted to the com- —_——— =—c= .
putation of vacuum energy densities on various manifolds, dr dr r=0 2= I+ +r]id+1)

mostly in regard to field theory in curved space-time and to ) )

the Casimir effect. That energy is divergent, of course, andi€nce, ~we define the function U(r):=(dW/dr)
needs regularization. The usual technique is the zeta-function (dW/dr), o, which turns out to be computable in terms of
regularization[12—14, as introduced earlier in the math- the digamma function(x). The full expression is rather
ematical literaturd4]. It is related to the heat-kernel repre- 10ng; itis given in the Appendix. o
sentation that will be utilized here by a Mellin transform. We ~ The functionU(r) has interest on its own, since it is the
will see how this relationship materializes fgr-1 Riemann substracted.energy, but we are more interested in the relative
surfaces in the last sectidrHowever, since the relative en- €ntropy. This can be expressed in termsJdf) as

tropy is a universal quantity we do not need to bother with dW(r) .

prescribing any regularization method and we shall only doit  gy)=w(r)—w(0)—r = f U(s)ds—ru(r).

to make connections, for instance, with the conformal dr 0

anomaly or with partition functions in string theory. 5

Unfortunately, this integral cannot be done in closed form.
However, it is possible to establish the behavioiSof) for

The free energyW, namely, minus the logarithm of the small or larger. For larger the correlation length is much
partition function, for the cutoff bosonic massive field theory smaller than the radius of the sphere and the result in the
can be expressed §%,2] plane,S(r)=r/(8), should be relevant. AR— oo the sum
overl can be substituted by an integral,

Il. THE RELATIVE ENTROPY OF THE SPHERE

52+m2
A2

© A2

> (2I+1)—>Af P
=1

0 (277)2’

W[m,A]z—mZ[m,A]:%Z In (1)
p

The set of momenta to be summed depends on the type of

geometry and is such tha< AZ. If we try to remove the Where the area of the sphereAs-47R*. We see that to
cutoff we see thaw is UV divergent, and hence it is non- compare with the value in the plane we must multiply this
universal. The eigenvalues of the Laplacian on the sphere aM@lue by 4r. To extract the dominant large behavior of
well known, namelyp?=1(l + 1)/R?, whereR is the sphere U(r), we usey(x)~Inx. A lengthy but straightforward cal-

radius. Thus, the sSum over momenta is a sum o we culatlc_)n shows that) (r)~ —Inr/2. Hence, using first an in-
write tegration by parts,

_1Imax [(1+21)+r S(r)=— rsU’(s)dS~£,
V\I[r,A]—EIZl (2|+1)|nW, ) JO 2

as expected.
The full asymptotic expansion &(r) near infinity results
1For a comprehensive review of all these techniques, see Refrom that ofU(r), which in turn can be worked out with the
[15]. help of the known asymptotic expansion pfx). However,
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FIG. 1. S(r) on the sphere compared to the first two terms of the asymptotic for(Buknd to the Taylor expansiof3).

this procedure yields the asymptotic expansiors@f) only
up to a constant, because the condit®(®)=0 cannot be
implemented. It begins as

roInr 1 2 4 O14 6
07373 s 10w ame Olr) 0 ©

S(r)= %r2+ %[2+ pA(1)]r3

+136[12+5w<2>(1>—w<2>(2>]r4+0(r>5, ®)

wherey(M(x) is the polygamma function. The behavior pro-
The presence of a subleading ternt was to be expected vided by the series truncated to this order is compared with
P g P . the total S(r) in the second plot of Fig. 1. The radius of

owing o the existence of a conformgl an_om_aly for any Rle'convergence of the Taylor series is determined by the singu-

mann surface, coming from thg Ioganthmlc divergence of thqar points of U(r). Since the only singularities aj(x) are

fL:'rtr'](;a:)er teoir:aergy. The logarithmic term of the free energysimple poles for nonpositive integers, it is easy to see that the
singularity closest ta =0 is a simple pole at=-2, and
hence the radius of convergence is 2.

W= — 112|n(A2R2), @)
I1l. THE RELATIVE ENTROPY OF THE TORUS

whereA is the UV cutoff,R the size, and is the integral of We consider the torus as a rectangular box with periodic
the curvature divided by #, equal to the Euler-Poincare boundary conditions, which is the natural finite geometry in
number of the Riemann surface, according to the Gaussnany applications. One can slightly generalize the boundary
Bonnet theorem. The calculation of the conformal anomalyconditions by considering periodicity along two nonorthogo-
from the logarithmic divergence of the critical free energy isnal directions, that is, by letting the box be a parallelogram.
probably very old but was popularized by the developmenialthough a parallelogram is in principle equivalent to a rect-
of string theory[5]. It was further discussed in RdfL3], in  angle by an affine transformation, this is only true in real
the context of the Casimir energy. In the presence of mass, geometry, because in complex geometry such transformation
term proportional to Inf?/A?) must appear when the corre- is not allowed. Nevertheless, we shall consider a rectangle
lation lengthm™! becomes smaller thaR. Therefore, it is  for simplicity and deduce the more general form from holo-
not surprising to have the termirin the previous expansion. morphic factorization.
The concrete way in which it appears will be explained in  The partition function on the torus in the critical theory,
Sec. IV, when we consider the heat-kernel derivation of then=0, is essentially the modulus of Dedekind’'s function
asymptotic expansion. This is a much more effective method,;(7). The classical proof of this result involves the use of
to find the larger behavior, capable of providing the generic the proper time representation and Poisson resummation, af-
form of the coefficients of the asymptotic series for arbitraryter analytical continuation in the manner function regu-
Riemann surfaces. larization, since the partition function is UV divergent. This
A plot of S(r) is shown in Fig. 1, in comparison with the method can be extended to the noncritical thd§] (also
asymptotic behavior given by just the two growing terms insee[17]). However, we favor a method similar to the one
the previous formul&6). The agreement is quite remarkable, used for the sphere, where we calculate the enei@y. The
even almost down to=1. The numerical value of the miss- substraction of the critical value will not be necessary since
ing constant is approximately 0.254381. the UV divergence lends itself to straightforward identifica-
The smallr behavior ofS(r) is given by the power series tion.
expansion near=0, which is easy to derive sinc® (r) = Let L and M denote the periods in the horizontal and
—rU’(r). We obtain that vertical directions, respectively. Thésee Appendix
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M * obtain the perturbative expansion\f nearm=0 [16], and
W(r)== e+ > Inf[1—e MD]+C, (9  from it the expansion of(r;L,A3). The asymptotic expan-
1= 1= sion for largem is just given by the value o for the plane

where we have introduced the one-boson energig3 and it comes from the first terng(r;L), in Eq. (11), since

— J(2a1IL)%+ m? and whereC is a constant irrelevant for the second one decays exponentially withA more precise
the relative entropy description of this asymptotic behavior is provided by the

Now, we may notice that the previous expression\\ér heat-kernel method.

can be interpreted as the free energy of quantabdsons The quantum @ entropy of free bosonsg,, can b‘? re-
. . - lated to the entanglement entropy of black holes 1l
confined in a segment of length at finite temperature

=1/M and constitutes a slight generalization of the expresg'menS'onS' The Euclidean version Rindler spaces just

sion for the cylinder considered befofé]. To prevent a the punctured plane, which is conformally diffeomorphic to

. _ the cylinder. In addition, the entanglement entropy of this
divergence whem=0 we remove the zero mode=0 and b d with hi lth d .
write space can be computed with a path integral that reduces it to

an ordinary entropy, when considered on the cylindgr
o o Therefore, one can use the formulas above, taking into ac-
W(r)=ME 6(|)+22 In[1—eMe7], (10) count that the conformal transformation implies that the
=1 =1 modular parameter becomes a function of the quotient of the
two cutoffs for the radius, namely/r=L/B=In(r,/rg). The
w0 . complete expression of the cylinder entropy can be deduced
Eo=2/_,€(l). However, forr =0 they can be-reqularized o the results in Ref[2]. The first term of the low mass

to give Eg=(2m/L){(—1)=—n/(6L). The other term is  oynansion agrees with the one calculated by other methods in
the free energy of the bosonic excitations of the vacuum angh¢ [7].

is finite. Forr=0 it combines withE, to yield W=—-InZ
=In 7(q)>, where 7z(q) is the Dedekind function,q
=exp 2mi7, and the modular parameteris=i(M/L). In the

case of a parallelogram thE modular parameter is, of course, The computation of thermodynamic quantities for the
complex andZ= 1/ 5(q) »(q) ]. sphere or the torus, regardless of ulterior difficulties, begins
Most of the discussion about the relative entropy of thewith the preliminary step of determining the eigenvalues of
cylinder in Ref.[2] holds as well for the torus. Hence, we the Laplacian. Unfortunately, even this preliminary step can-
change the notation for the vertical peridd— 3, in accord not be taken for an arbitrary compact Riemman surface.
with the 1d thermodynamic interpretation. The specific rela- Therefore, one cannot start from a more or less formal but
tive entropy is related to the quantund kentropy of free  explicit expression of those quantities. Nevertheless, the situ-
bosonsS,, as ation is not hopeless for there is a powerful method to extract
information on thermodynamic quantities, namely, the heat-
kernel representation of Green functiof3-6]. We now
study this method, for the purpose of applying itdo-1
Riemman surfaces and for its own sake: actually, it provides
where useful insight for the sphere and the torus.
First, let us recall that
dey(r;L)

dr '’

The UV divergences concentrate in thd $acuum energy

IV. HEAT-KERNEL TECHNIQUES

LA =SriL) - 4 T (12)
2L3 " 68

S(r;L)=eg(r;L)—eq(0;L)—r

1 .- 1 .
W(m)=— ET%; InG(x,y), U(m)= ETrg,gG(x,y),

Eo(r;L) (12 (13

eg(r;L):= T

The quantityeo(0:L)= — m/(6L2) is dual to — /(64). with G(x,y) theZGregnﬁfunctiS)n* of the Helmholtz equation,
Note that namely, A+m9)G(x,y)=48(x,y). If we introduce the
Green function of the heat equation
S(r;L)=lim S(r;L,B)
—w J
’ 2p=22, (19
is the relative entropy of the cylinder. Of course,
lim__..S(r;L)=r/2. While S(r;L,) is modular invariant, - -
the 1d quantum entropyg, comes only from the free energy called the heat kernelK(x,y;t), we can expres$ as a
of the bosonic excitations, namely, the second term in Eq-aPlace transform,
(10), and is not modular invarian§(r;L,8) can be com- .
puted by the heat-kernel method, studied in the next section, Gr(i,ﬁ):j dte "K(X,y;t), (15)
in terms of a double series of Bessel functions. Its cylinder 0
limit coincides with the single series of Bessel functions
computed in Ref[2]. On the other hand, it is feasible to after definingr :=m?. Furthermore,
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1 (- N
U(r)= Ejo dte™ " Tryy K(X,y;t), (16)

and integrating over,

1[=dt —rt Tp- - .\
W(r)=—§f0 Te Trgy K(X,y;t). a7
In the plane
- 1 Ix—y|?
K(x,y;t)= i T (18

so the specific energy is

U(r)_lfw dt 1
A T 2),amte (19

with A= [d?x the total area. To avoid the logarithmic UV

divergence at=0 we may take a further derivative,

ur 1 fwdt a1 o0
A 8o T Bar 20
After integrating twice over,
W) __ 1 Inr+Cyr+C 21
A~ gy rInr+Cir+Cy), (21)

whereC; andC, are two integration constants that are ac-
tually infinite due to UV divergences. Of course, this expres- e /4
sion agrees with the one derived[i2] using UV regulariza-

tion in momentum space.

In a general curved surface HK(x,y;t)

= [d?xK(x,x;t) (the integrated heat kernel for coincident

points. Note thatk (x,x;t) explicitly depends on the point

PHYSICAL REVIEW b1 084001

For example, we consider the torug,=—(27)?k|?,
wherek e ) *, the lattice dual td), the one defining period-
icity on the torus. Then we can use the Jacobi identity to
write

Ki=S ex—(2m2kP= -~ S exd— 19
_kEQ* i B 4t wel) 4t
(25

The latter sum is & O[exp(—1/)], reproducing the result
for U in the plane plus the corrections vanishing exponen-
tially whenr—oo.

Generically, the heat kernéd(t) admits an asymptotic
power series expansion &t 0 [18],

1
K(t)~ m

1+ 21 ant”) , (26)

in terms of some numerical coefficients determined by the
Riemann curvature. This expansion, upon integration tver
leads to asymptotic expansions of thermodynamic quantities
for large r. For the hyperbolic plane, it can be calculated
from the integral of exp-7t times the density of states of
frequencyr [19,20Q:

e—t/4

2

K(t)= f:dvvtanf(wv)e”’zt. (27)

It yields

e 1_21—2n
oy 2"

K(t)y=— P Al

n
yp Bat"f, (29
whereB,,, are the Bernoulli numbers. The expansion for the
sphere is related to it by analytic continuation from the hy-
perbolic to the elliptic geometry; it has an additional

However, for homogeneous surfaces it becomes independefit 1)" in the sum, ana&* instead ofe V4.

of it. According to Eq.(16),

U 1 (=
(Tr)zifo dte”"K(t), (22

where K(t) is the heat kernel for coincident points. If the

eigenvalues of the Laplacian are availalde),= vy, ¢, , the
heat kernel is just

K(t):ngo ent, (23)

From the expressio(22) for the energy we can derive the
heat-kernel integral for the specific relative entropy,

1 (> dt
%:ﬂo T[1—(1+rt)e—”]|<(t), (29

which can be easily shown to be convergent=ad, taking
into account the behavior of the heat kernel for sth&#6).

For a compact surface, it also convergeg-as» if we re-
move the zero mode, since th&rft) decays exponentially,
according to Eq(23). To obtain the asymptotic— o expan-
sion we could be tempted to just substitute the aymptotic

The first eigenvalue ig,=0, corresponding to the constant expansion(26) into this integral. However, we would find
solution; the others are negative and ordered by their absdhat the coefficients are given by divergent integralst as
lute value(in fact, y;<<—1/4 [4]). Substituting forK(t) in —o, The problem is that we cannot prolong the aymptotic
the integral representatid22) we recover the expression for expansion(26) to t=<«. However, the aymptotic expansion
the energy used before, (26) can be substituted into the integral f8f(r),

1< 1 S'(r) U'(r) rf=__.
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to provide its asymptotic expansian—«, owing to Wat-  wherel'(0,x) is the incomplete gamma function. This agrees
son’s lemmd21]. This expansion can in turn be subjected towith the previous result. We can interpret the cutoft as an
indefinite integration to yield5(r), of course, up to a con- UV cutoff, e~A ~2. By reinstating the radius of curvature

stant: we can then splim?e so that
S(r) 1 - (n+1)! In(m?€)=Inr —In(A?R?).
A &8s —r—allnrJrnZ:lan+l = r .

(31) The second term agrees with the critical value in &g but
the first term diverges as— 0. In fact, this limit is not mean-

We can obtain the whole asymptotic seriesS¢f) for the  ingful since the logarithmic term arises in the asymptotic
sphere by just taking the coefficients from the correspondingxpansion for large. Neither is it meaningful to utilize the
asymptotic series oK(t), given by Eq.(28) with (—1)"  asymptotic expansion dk(t) [see Eq.(26)], to obtain the
inserted. The coefficients of its succesive terms coincide witlsmall+ behavior; forr=0 the integrals for thermodynamic
the ones in the previous expressi@ except for the one of quantities are determined by the entire rangeanfd not just
the logarithmic term. This term, which was already remarkedy its asymptotic behavior, whether it is for small or latge
upon, is particularly interesting and we will now discuss it in Nevertheless, Eq26) can still be utilized to determine the
more detail. form of the UV divergence o¥V(0). Indeed,

The logarithmic term in the asymptotic expansion ofS(r) and WIOA]= - éfx gK(t) 39
the conformal anomaly ' 2)p-2 t

The logarithmic term in the asymptotic expansiorSgr) implies that
comes from the constant term in the asymptotic power series
of K(t) [see Eq.(26)], namely,a;/(4). In particular, for- IW[O,A] A
mula (28) yields a,=+1/3 for the sphere and hyperbolic = A ———= —AK(A"2)=— 4—[A2+ a;+O(A?)].
plane, respectively. If we substitute this constantKdt) in & (36)
Eq. (30) we obtain

, / ” In the infinite-cutoff limit, AR>1, we can discard the nega-
S'(r) u'(r) r A . ' o

=—r =—| dte"t-—=-——. (32 tive powers ofA and this equation is none other than the
A A 2Jo 4w 8ar conformal anomaly equation for a rigid scale transformation
(recall thata, is just the Riemann curvature divided by. 3
Integration overA yields the desired term,

(Notice the slight abuse of notation, for we deal here with
truncated quantities.For a curved compact homogeneous
surface the Gauss-Bonnet theorem implies that27|y|

. . - Aa.l X
=4m|g—1|, where y is the Euler-Poincar@umber. Then ——In(AR)=—-ZIn(AR),
the coefficient of the logarithmic term of the total value of 4 6
S(r) is
on a compact surface.
aA x 1-g Notice however thatW(0) can also be calculated with
8r 12 6 zeta-function regularization and that it yields a finite result

[6]. This may seem puzzling, for we have then lost track of

only related to the topology of the Riemann surface. Thisthe conformal anomaly. In any evett(0) is a pure number
result also holds for Compact surfaces of variable Curvaturea..nd its value is to some extent irrelevant. Nevertheless, in the
We can obtain as well the coefficient of the logarithmic massive case, zeta-function regularization also yields a finite
term of W. Upon integratingu ’(r) twice over r, we con- W(r), as we remark in the next section. But then the confor-
clude that mal anomaly can be extracted from the asymptotice/Orf)
for large r. Moreover, with any type of regularization, the
asymptotics ofS(r) for large r provides the conformal
anomaly. This conclusion is not particularly interesting for
the massive bosonic field theory, the only one considered
Hence we can try to connect with the critical value stated irhere, but it may be very interesting for interacting theories.
Eqg. (7) as follows. Let us return to the heat-kernel represen- We have concluded that the coefficient of the logarithmic
tation and perform the divergent integral #(r), from Eq.  term in the entropy must be the opposite of the conformal

W) _ Cir+C 33
A —gnrﬁL 1r+Cy. (33

(17), with a lower cutoff. We find that anomaly, that isy/12. While we had obtained- 1/3 in Eq.
(6) now we obtainy/12=1/6. This discrepancy stems from
W) & (= ﬂefmzt: _ EF(O mZe) having suppressed the zero mode in the calculatiod (@
A 8m)e t 8 ' for the sphere. This contributes 1/2 in any compact surface

and 1/2-1/3=1/6. We may make a little disgression here
__ ﬂ[_ In(mZ2e) — y+O(m?e)] (34) and recall that the calculation of the smialbehavior of ten-
8 ' sor Laplacians on compact Riemann surfaces provides a
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proof of the Riemann-Roch theord,22]. In the case of the e 4 o pe b4
scalar LaplacianA = "4, this theorem states that Ky(t) = (477,[)3/2J’0 dbsinr(b/Z) :
7(9)=dimKerg—dimKera'=1—g, (37) Although the Selberg trace formula is a much more com-

plicated formula than the Abelian orig5), it has the same

n structure; namely, it is a sum of the part corresponding to
where the adjoint(ﬁzvi is the covariant derivative on the infinite surface, now the hyperbolic plane, plus
forms. Then Keﬂi is the space of Abelian differentials, O[exp(—1/t)] corrections due to the boundary conditions.
with dimensiong, and Kerd is the space of globally holo- AS Well as for the torus, these corrections give rise to expo-
morphic functiongthat is, constanjswith dimension Xcor- ~ hentially vanishing terms which do not appear in the
responding to the Laplacian zero mad&heir difference is ~@Symptotic expansion of the entropy aroune . There-
1—g=x/2. According to our discussion on the presence offore, all the higher genus Riemann surfaces share the same
logarithmic terms irr, we can interpret the zero mode as the@Symptotic expansion in .
logarithmic term forr—0 whereas the logarithmic terms  Formula(38) has been widely used to establish the modu-
found in the asymptotics— » are related to the existence of 'ar dependence of partition functions in string thef8y22].
nontrivial boundary conditions and hence to the existence of N€ partition functions in string theory are those of critical
Abelian differentials. They subtract the right numiggirom theories, apd Selbgrg’s formula results in generalizations of
1 such that the difference is proportional to the Euler-the Ded’eklnd function of the torus @>1; they are called
Poincafenumber. Indeed, we observe that, e.g., for the torus€lberg’s zeta functiorigl]. Although we are interested here
the zero-mode term [a—e “M~In(mL) asm—0, while it I the massive case, the procedure to calculate the critical
vanishes exponentially in the opposite limit,—c. This is [4,6] actually applies to the noncritical one as well. It con-

in accord with the torus being flat, so that0. sists of a part corresponding to the hyperbolic plane, which,
is common for any homogeneous surface wjth1, and a
part in terms of Selberg’s zeta function, which accounts for
V. THERMODYNAMIC QUANTITIES FOR COMPACT the topology of the surface; namely,
RIEMANN SURFACES OF HIGHER GENUS

1 [ 11
A compact Riemann surface gf>1 can be characterized W(r)=—=¢/(0)—(4r+1) Y4nzg r+—+=|.

. . . . 2 4 2
by its fundamental group. When this surface is represented in

its covering space, the hyperbolic plane, this surface gives (39)
rise to a tesselation of the hyperbolic plane, in which the tilesThe zeta function of the hyperbolic plane is

are identified by a discrete group of motions isomorphic to

the fundamental group. Since the total group of motions of A (= dt Xe*(”l/“)t »  peb¥(4n

the hyperbolic plane iSL(2,R), that group is one of its é“&@-mfo R (4m) fo dbsinf(b/Z) (40
discrete noncommutative subgroups, which are called Fuch-

sian groups. This construction becomes analogous to the

construction of the torus by factoring the plane by a lattice _ A (1+4r )34

Q), where the fundamental groups<Z. We have seen that 47371 (x)

there is an expression for the heat kernel of the torus as the

kernel in the plane plus a series of powers of expf) [Eq. y fwdb x4 K b1+ 1 41
(25]. There is a noncommutative analogue fge1: o 9P Sinn(br2) 2 r+4]. (4D

namely, the Selberg trace formyl]
Notice that it is a meromorphic function &fwith one single

et (o pole atx=1, as long agr|<1/4. In the critical case the
K(t)= > f dvvtanh mv)e” vt common part can be calculated exactly to yield
7 Jo
1
1 o | e 4 nl,)? {0(0)=2(g—1) —In(2w)+——4§’(—1)} (42)
o D D> exp(—( ) 0 2
2A 7=1 B3 sinh(nl,/2) (44t)Y2 4t
Selberg’s zeta function is defined as
(38)
: - - zs)=]1 II (1—e 0tPly), (43)
In this formula{ y} are the primitive conjugacy classes of the S 7 p=0

Fuchsian group antl, is the length of the shortest geodesic

along the corresponding noncontractible loop. The first ternThe function,(x), as a regularization o#V on the hyper-

is just the integral representation of the heat kernel in théolic plane, must lead to the asymptotic expansion of the
hyperbolic planeH [see Eq(27)]. It admits a different rep- relative entropy provided by Eq&8) and(29). The Selberg
resentation, more useful for computations, derived from theeta function leads to the asymptotically vanishing correc-
form of the corresponding Green functipf—6|, tions.
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VI. CONCLUSIONS to large scale peculiarities of the surface, as already re-
arked, but one can check that it always remains monotonic.

We have seen that the general structure of the entropy of We may wonder how much of the above can be general-

the free massive bosonic field theory on compact homoge-

. . . ~"zed to higher dimensions or to interacting field theories. The
neous Riemann surfaces consists of a part corresponding g

) ; %ectrum of the Laplacian and the heat kernel for homoge-
the maximally symmetric surface, namely, to the sphere, th?1eous spaces are well knoy20]. In fact, the heat kernel is
plane, or the hyperbolic plane, and a part due to the boundar%mpler in odd-dimensional homogeneous spaces than in
cond!uons. The f'rSt. part can be expressed asa CorT]pl'Cateeven—dimensional ones, so the formulas for the three-
function, analytic inre[0p°). Furthermore, it has an

. . S imensional sphere or hyperboli mn im-
asymptotic expansion arourrd=c, which is fully comput- dimensional sphere or hyperbolic space turn out to be s

. . ler well. As regards massive interacting theori n
able. The second part embodies the topology and is mo er as we S regards massive interacting theories, a

) . . ) symptotic expansion for larga must exist in general and,
delicate to treat, but it vanishes exponentially gsows and moreover, the leading and subleading terms can also be stud-

therefore does not appear in the asymptotic expansion. qud_ The leading term is always proportional ité for di-

behavior of the_entropy for smaft—the crmpal "”?'t—'s mensional reasons, and its coefficient positive. To determine
also calculable, in terms of a convergent series. It is strongl){li]is coefficient one can use thieermodynamic-Bethe-ansatz

dependent on the global parameters defining the toDOIOgiC%omputation of thauniversal bulk ternof the free energy, as

nature of the surface. Indeed, one can observe, for exampla. : .
) : . iscussed befor¢2]. The subleading term is likely to be
that the series for the sphef® has nothing to do with the related to the coff(])rmal anomaky()(/g)lnm, wherec)i/s the

one for the cylinder, obtained in R¢2]. Thekth term of the central charge of the conformal field theory for=0. This

small+ expansion is easily seen to be proportional to ; .

N o o may provide a new way to find the central charge of a model.
Zn(~¥n) 7, beginning W'thk._z' But forg>1 these SUMS * The smallm behavior can be studied with conformal pertur-
cannot be computed analytically, because the Laplacian hation theory, see Ref2]. However, it shall crucially de-

ger%\;]agurﬁ(s)nag; Qiztci\;?gi?;?.of the entropy can be checked i end on the nature of the surface, as well as on the particular
Py eld theory. This perturbation theory is presumably conver-

our calculations. For largm the entropy tends tan?/(87), : ;
independently of the topology of the surface, which is thegggé;?é Sffgl)g %rl])/eg?;evanperturbatlons, like that of the free

value for the plane. However, the topology lets itself be felt
in the subleading term, proportional torm which is actually
related to the conformal anomaly. These two terms are the ACKNOWLEDGMENTS

only ones divergent as—. There is also a constant term

in the asymptotic expansion, which cannot be determined | acknowledge partial support under Grant PB96-0887. |
exactly, however. The three terms together already provide thank Alvaro Domnguez for conversations and Matt Visser
good approximation down tmL~1. As we decreasmmwe  for a careful reading of a preliminary version of this manu-
approach criticality and the entropy becomes very sensitivscript.

APPENDIX

1. Subtracted energy for the sphere
We here perform the computation of the substracted energy for the sphere.

M < 1 - 1
U(r):_i[z[|(|+1)+r](|+1)+|_21[|(|+1)+r]| ! (A1)
taking into account that
- 1 1 1 3—\1-4r 1 3+\1—-4r

2D 2r| 27| 1_4r)‘”( 2 )+(1_ 1_4r>‘” 2 : *2)

. . —((1—y)(1—4r—\/1—4r))—(\/1—4r+2r—1)¢<1_— ‘Zl_M)—zrlp iz 21_‘")

D (ESEn S i (—1+V1_4r)y1_arr '
(A3)

we have that
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1 1 3—V1-4r 1 3+\/m
I B 1—4r)¢( 2 )_(1_ 1—4r)¢ 2 )
’ (1_7)(1_4r_Jl_4r)+(\/1‘4f+2f—l)¢($)+2r¢ HTM))

N . (A4)

(=1++1—-4r)J1-—-4r

The apparent pole at=0 must cancel and a careful analysis shows that it does; the poteldd cancels as well. Notice that
whenr>1/4 the argument of the digamma functions becomes complex. Neverthglggstemains real and is an analytic
function ofr atr=1/4.

2. W(r) for the torus convergent and one can apply term by term integration to
We will let L andM denote the periods in the horizontal that series. The ensuing series represi¥its) —U(0)r mi-
and vertical directions, respectively. Then nus a UV quadratically divergent constant. Of cout$€Q)r

is the UV logarithmic divergence ofV(r). Since the UV

1 = 271\2 [ 2mn\2 divergences ofV(r) can be easily segregated, we can pro-
W[m]=—In Z[m]ZE > In (T) +<W +m?|, ceed with the integration term by term without further con-
hn=-e (A5) oM
and M dr .
— | —=——==cotH{ #M J(I/L)*+r
. 2) J(IL)%+r i (L)*r]
u(r AL ! (A6)
dr 216 (/L)% + (nIM)2+1 :%f decotr(%f)
wherer :=(m/27)?. To work out this sum we can use the
k_nown expansion of the hyperbolic cotangent in simple frac- =In Sin.{Mf) ,
tions[23],
x = 1 where we have introduced the one-boson energi@$
coth(mx) = p IRE (A7) =(271/L)%+m?. Finally,
n=-—w
Hence, W(r)= >, Insin){?e(l)) =5 > €l
= ==
1 < M
U(r) cotr[wM\/(I/L)err].

3.2, JaILZ+r

+ > In[1—e MO+, (A9)
(A8) 1==e

Now we can obtaiW(r) by integration. Notice, however, whereC=—(In2)S,___1 is an irrelevant divergent constant.
that the serie$A8) is divergent, so term by term integration The other divergences appear in the first term and are of the
is not warranted. However, the series f0(r)—U(0) is form C;+C,r, as already remarked.
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