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Relative entropy for compact Riemann surfaces
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~Received 28 May 1999; published 13 March 2000!

The relative entropy of the massive free bosonic field theory is studied on various compact Riemann surfaces
as a universal quantity with physical significance, in particular, for gravitational phenomena. The exact ex-
pression for the sphere is obtained, as well as its asymptotic series for large mass and its Taylor series for small
mass. One can also derive exact expressions for the torus but not for higher genus. However, the asymptotic
behavior for large mass can always be established—up to a constant—with heat-kernel methods. It consists of
an asymptotic series determined only by the curvature—and, hence, is common for homogeneous surfaces of
genus higher than one—and exponentially vanishing corrections whose form is determined by the concrete
topology. The coefficient of the logarithmic term in this series gives the conformal anomaly.

PACS number~s!: 04.62.1v, 11.10.Gh, 11.10.Kk
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I. INTRODUCTION

The entropy of a statistical model relative to its critic
point has been shown to be an interesting quantity in fi
theory, especially in regard to the renormalization group@1#.
On the one hand, it exhibits better behavior than the f
energy when the ultraviolet cutoff is sent to infinity and,
the other hand, it is monotonic with the coupling constan
unlike the free energy. This second property makes it s
able to embody the irreversible nature of the renomaliza
group, which can in particular be substantiated in a fin
geometry as monotonicity with respect to its characteri
scale@2#. The computation of therelative entropyfor various
models on a cylinder clearly shows its monotonicity@2#. The
cylinder is appropriate to illustrate finite size effects but
may not be the finite geometry of choice in the context
renormalization-group irreversibility. There is a celebrat
result on renormalization-group irreversibility in two
dimensional~2D! field theories, ZamolodchikovC theorem.
The monotonicity theorem for the relative entropy on t
cylinder, once it is conveniently formulated, resemb
ZamolodchikovC theorem@2#. However, this resemblanc
can hardly lead to a direct relationship, since the proof
Zamolodchikov C theorem demands rotation as well
translation symmetry. In other words, that proof demands
consider a maximally symmetric space, namely, the sph
the plane, or the hyperbolic plane. Both the sphere and
hyperbolic plane possess an infrared scale, the curvatur
dius, but only the sphere is finite and therefore the comp
tion of the relative entropy on the sphere is of particu
value.

From a different point of view, the calculation of th
spectrum of the Laplacian operator on general compact
mann surfaces has first held the interest of mathematic
@3,4# and second of physicists@5,6# for some time. The par-
tition function of the bosonic massive field theory on a co
pact Riemann surface is a global object which can be c
structed from the knowledge of the spectrum of t
Laplacian operator. Since this spectrum is highly depend
on the topologic and geometric properties of the Riema
surface, these properties are reflected by the partition fu
0556-2821/2000/61~8!/084001~10!/$15.00 61 0840
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tion. However, this function, or say the free energy, is ult
violet ~UV! divergent and hence ill defined. Fortunately, t
relative entropy of the 2D bosonic massive field theory
UV finite @2# and so it is likely to have a role in the geo
metrical characterization of a Riemann surface. This cha
terization consists of local parameters~the curvature! and
global parameters, specifying the boundary conditions
being topologically significant. The study of homogeneo
surfaces will provide insight into the dependence of the re
tive entropy on both types of parameters.

Generically, the relative entropy is not related to the qu
tum field theory entropy, but there is a direct relation on t
torus ~or cylinder! geometry. The relative entropy is ageo-
metric entropy, of the sort already considered in connecti
with the entropy of black holes@7#. Indeed, the geometry
relevant to this case is that of the cone, which is noncomp
and is actually related to the cylinder geometry, and henc
the usual quantum field theory entropy, as analyzed in R
@2#. One can expect that the relative entropy for homo
neous spaces will be applicable in a cosmological cont
once suitably generalized. Thus the results of this paper m
have some bearing on entropic considerations inde Sitter
andanti–de Sitterspace-time. An attempt at introducing th
maximum entropy principle in quantum cosmology has be
made in Ref.@8#. On the other hand, the application of sca
ing and renormalization group concepts in gravitation@9#
and cosmology@10# is gaining momentum. Therefore,
seems interesting to study properties of the entropy rela
to the scales defining some curved space. Furthermore
role of the relative entropy as a monotonic function with t
renormalization group may have some relevance in mod
theories of quantum gravity, as recent work seems to indic
@11#.

Therefore, our main concern here will be the computat
of the universal relative entropy of the 2D bosonic mass
field theory on homogeneous and compact Riemann
faces, for its own sake and with a view to its application
connection with ZamolodchikovC theorem. For the plane
and cylinder, the relative entropy has been computed in R
@2#. Since we are now concerned with compact Riema
surfaces, we shall first focus on the simplest case, nam
©2000 The American Physical Society01-1
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the sphere. In general, the topological classification of co
pact Riemann surfaces is given by theirgenus, that is, the
number of handles in a three-dimensional embedding.
genus of the sphere is zero, of course. Compact Riem
surfaces of higher genus, with zero or negative constant
vature, will also be considered here, even though they are
globally isotropic, since they are derived from the plane
the hyperbolic space by imposing boundary conditions o
finite domain, which break rotation invariance. The case
zero curvature is the torus and is actually related to the
inder, treated in Ref.@2#. Compact Riemann surfaces of g
nus g.1 are always related to the hyperbolic plane. T
spectrum of the Laplacian on them is too complicated
allow derivation of closed expressions for the relative e
tropy. Thus, the caseg.1 will be discussed summarily an
only some general properties of the free energy and the r
tive entropy will be extracted. The method used to obt
these properties, namely, the heat-kernel method, is how
of general interest and we shall dedicate considerable a
tion to it.

A great amount of literature has been devoted to the c
putation of vacuum energy densities on various manifo
mostly in regard to field theory in curved space-time and
the Casimir effect. That energy is divergent, of course, a
needs regularization. The usual technique is the zeta-func
regularization@12–14#, as introduced earlier in the math
ematical literature@4#. It is related to the heat-kernel repre
sentation that will be utilized here by a Mellin transform. W
will see how this relationship materializes forg.1 Riemann
surfaces in the last section.1 However, since the relative en
tropy is a universal quantity we do not need to bother w
prescribing any regularization method and we shall only d
to make connections, for instance, with the conform
anomaly or with partition functions in string theory.

II. THE RELATIVE ENTROPY OF THE SPHERE

The free energyW, namely, minus the logarithm of th
partition function, for the cutoff bosonic massive field theo
can be expressed as@1,2#

W@m,L#[2 ln Z@m,L#5
1

2 (
pW

ln
pW 21m2

L2
. ~1!

The set of momenta to be summed depends on the typ
geometry and is such thatpW 2,L2. If we try to remove the
cutoff we see thatW is UV divergent, and hence it is non
universal. The eigenvalues of the Laplacian on the sphere
well known, namely,pW 25 l ( l 11)/R2, whereR is the sphere
radius. Thus, the sum over momenta is a sum overl and we
write

W@r ,L#5
1

2 (
l 51

l max

~2l 11!ln
l ~ l 11!1r

~LR!2 , ~2!

1For a comprehensive review of all these techniques, see
@15#.
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where we have introduced the dimensionless couplingr
5(mR)2 and the UV cutoff is related to the maximum valu
of l, L' l max/R. We have also removed the zero model
50 from the sum, which is not allowed forr 50, and we
have taken the degeneracy into account by the factor 2l 11.

From the previous expression ofW one can obtain the
relative entropy as a universal quantity, that is, as a con
gent series in the limitl max→`. However, the sum of tha
series is very hard to carry out, so we choose another w
One can lower the degree of divergence ofW by taking de-
rivatives with respect tor. In fact,

dW

dr
5

1

2 (
l 51

l max 2l 11

l ~ l 11!1r
, ~3!

which is still logarithmically divergent. We can remove th
divergence just by substracting its value atr 50 and write, in
the limit l max→`,

dW

dr
2

dW

dr U
r 50

52
r

2 (
l 51

`
2l 11

@ l ~ l 11!1r # l ~ l 11!
. ~4!

Hence, we define the function U(r )ª(dW/dr)
2(dW/dr) r 50, which turns out to be computable in terms
the digamma functionc(x). The full expression is rathe
long; it is given in the Appendix.

The functionU(r ) has interest on its own, since it is th
substracted energy, but we are more interested in the rela
entropy. This can be expressed in terms ofU(r ) as

S~r !5W~r !2W~0!2r
dW~r !

dr
5E

0

r

U~s!ds2rU ~r !.

~5!

Unfortunately, this integral cannot be done in closed for
However, it is possible to establish the behavior ofS(r ) for
small or larger. For larger the correlation length is much
smaller than the radius of the sphere and the result in
plane,S(r )5r /(8p), should be relevant. AsR→` the sum
over l can be substituted by an integral,

(
l 51

`

~2l 11!→AE
0

` d2p

~2p!2
,

where the area of the sphere isA54pR2. We see that to
compare with the value in the plane we must multiply th
value by 4p. To extract the dominant larger behavior of
U(r ), we usec(x)' ln x. A lengthy but straightforward cal-
culation shows thatU(r )'2 ln r/2. Hence, using first an in
tegration by parts,

S~r !52E
0

r

sU8~s!ds'
r

2
,

as expected.
The full asymptotic expansion ofS(r ) near infinity results

from that ofU(r ), which in turn can be worked out with th
help of the known asymptotic expansion ofc(x). However,

ef.
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FIG. 1. S(r ) on the sphere compared to the first two terms of the asymptotic formula~6! and to the Taylor expansion~8!.
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this procedure yields the asymptotic expansion ofS(r ) only
up to a constant, because the conditionS(0)50 cannot be
implemented. It begins as

S~r !'
r

2
2

ln r

3
2

1

15r
2

2

105r 2
2

4

315r 3
1OS 1

r D 4

. ~6!

The presence of a subleading term lnr was to be expected
owing to the existence of a conformal anomaly for any R
mann surface, coming from the logarithmic divergence of
critical free energy. The logarithmic term of the free ener
turns out to be

W52
x

12
ln~L2R2!, ~7!

whereL is the UV cutoff,R the size, andx is the integral of
the curvature divided by 4p, equal to the Euler-Poincar´
number of the Riemann surface, according to the Gau
Bonnet theorem. The calculation of the conformal anom
from the logarithmic divergence of the critical free energy
probably very old but was popularized by the developm
of string theory@5#. It was further discussed in Ref.@13#, in
the context of the Casimir energy. In the presence of mas
term proportional to ln(m2/L2) must appear when the corre
lation lengthm21 becomes smaller thanR. Therefore, it is
not surprising to have the term lnr in the previous expansion
The concrete way in which it appears will be explained
Sec. IV, when we consider the heat-kernel derivation of
asymptotic expansion. This is a much more effective met
to find the larger behavior, capable of providing the gener
form of the coefficients of the asymptotic series for arbitra
Riemann surfaces.

A plot of S(r ) is shown in Fig. 1, in comparison with th
asymptotic behavior given by just the two growing terms
the previous formula~6!. The agreement is quite remarkab
even almost down tor 51. The numerical value of the miss
ing constant is approximately 0.254381.

The smallr behavior ofS(r ) is given by the power serie
expansion nearr 50, which is easy to derive sinceS8(r )5
2rU 8(r ). We obtain that
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S~r !5
1

4
r 21

1

3
@21c (2)~1!#r 3

1
3

16
@1215c (2)~1!2c (2)~2!#r 41O~r !5, ~8!

wherec (n)(x) is the polygamma function. The behavior pr
vided by the series truncated to this order is compared w
the total S(r ) in the second plot of Fig. 1. The radius o
convergence of the Taylor series is determined by the sin
lar points ofU(r ). Since the only singularities ofc(x) are
simple poles for nonpositive integers, it is easy to see that
singularity closest tor 50 is a simple pole atr 522, and
hence the radius of convergence is 2.

III. THE RELATIVE ENTROPY OF THE TORUS

We consider the torus as a rectangular box with perio
boundary conditions, which is the natural finite geometry
many applications. One can slightly generalize the bound
conditions by considering periodicity along two nonorthog
nal directions, that is, by letting the box be a parallelogra
Although a parallelogram is in principle equivalent to a re
angle by an affine transformation, this is only true in re
geometry, because in complex geometry such transforma
is not allowed. Nevertheless, we shall consider a rectan
for simplicity and deduce the more general form from ho
morphic factorization.

The partition function on the torus in the critical theor
m50, is essentially the modulus of Dedekind’s functio
h(t). The classical proof of this result involves the use
the proper time representation and Poisson resummation
ter analytical continuation in the manner ofz-function regu-
larization, since the partition function is UV divergent. Th
method can be extended to the noncritical theory@16# ~also
see@17#!. However, we favor a method similar to the on
used for the sphere, where we calculate the energyU(r ). The
substraction of the critical value will not be necessary sin
the UV divergence lends itself to straightforward identific
tion.

Let L and M denote the periods in the horizontal an
vertical directions, respectively. Then~see Appendix!
1-3
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J. GAITE PHYSICAL REVIEW D 61 084001
W~r !5
M

2 (
l 52`

`

e~ l !1 (
l 52`

`

ln@12e2Me( l )#1C, ~9!

where we have introduced the one-boson energiese( l )
5A(2p l /L)21m2 and whereC is a constant irrelevant fo
the relative entropy.

Now, we may notice that the previous expression forW
can be interpreted as the free energy of quantum 1d bosons
confined in a segment of lengthL at finite temperatureT
51/M and constitutes a slight generalization of the expr
sion for the cylinder considered before@2#. To prevent a
divergence whenr 50 we remove the zero model 50 and
write

W~r !5M(
l 51

`

e~ l !12(
l 51

`

ln@12e2Me( l )#. ~10!

The UV divergences concentrate in the 1d vacuum energy
E05( l 51

` e( l ). However, forr 50 they can bez-regularized
to give E05(2p/L)z(21)52p/(6L). The other term is
the free energy of the bosonic excitations of the vacuum
is finite. For r 50 it combines withE0 to yield W[2 ln Z
5ln h(q)2, where h(q) is the Dedekind function,q
5exp 2pit, and the modular parameter ist5 i (M /L). In the
case of a parallelogram the modular parameter is, of cou
complex andZ51/@h(q)h(q̄)#.

Most of the discussion about the relative entropy of
cylinder in Ref.@2# holds as well for the torus. Hence, w
change the notation for the vertical period,M→b, in accord
with the 1d thermodynamic interpretation. The specific re
tive entropy is related to the quantum 1d entropy of free
bosons,Sq , as

S~r ;L,b!5S~r ;L !2
Sq

2Lb
1

p

6b2 , ~11!

where

S~r ;L !5e0~r ;L !2e0~0;L !2r
de0~r ;L !

dr
,

e0~r ;L !ª
E0~r ;L !

L
. ~12!

The quantitye0(0;L)52p/(6L2) is dual to 2p/(6b2).
Note that

S~r ;L !5 lim
b→`

S~r ;L,b!

is the relative entropy of the cylinder. Of cours
limL→`S(r ;L)5pr /2. WhileS(r ;L,b) is modular invariant,
the 1d quantum entropySq comes only from the free energ
of the bosonic excitations, namely, the second term in
~10!, and is not modular invariant.S(r ;L,b) can be com-
puted by the heat-kernel method, studied in the next sec
in terms of a double series of Bessel functions. Its cylin
limit coincides with the single series of Bessel functio
computed in Ref.@2#. On the other hand, it is feasible t
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obtain the perturbative expansion ofW nearm50 @16#, and
from it the expansion ofS(r ;L,b). The asymptotic expan
sion for largem is just given by the value ofS for the plane
and it comes from the first term,S(r ;L), in Eq. ~11!, since
the second one decays exponentially withL. A more precise
description of this asymptotic behavior is provided by t
heat-kernel method.

The quantum 1d entropy of free bosons,Sq , can be re-
lated to the entanglement entropy of black holes in 111
dimensions. The Euclidean version ofRindler spaceis just
the punctured plane, which is conformally diffeomorphic
the cylinder. In addition, the entanglement entropy of t
space can be computed with a path integral that reduces
an ordinary entropy, when considered on the cylinder@7#.
Therefore, one can use the formulas above, taking into
count that the conformal transformation implies that t
modular parameter becomes a function of the quotient of
two cutoffs for the radius, namely,i /t5L/b5 ln(r1 /r0). The
complete expression of the cylinder entropy can be dedu
from the results in Ref.@2#. The first term of the low mass
expansion agrees with the one calculated by other method
Ref. @7#.

IV. HEAT-KERNEL TECHNIQUES

The computation of thermodynamic quantities for t
sphere or the torus, regardless of ulterior difficulties, beg
with the preliminary step of determining the eigenvalues
the Laplacian. Unfortunately, even this preliminary step c
not be taken for an arbitrary compact Riemman surfa
Therefore, one cannot start from a more or less formal
explicit expression of those quantities. Nevertheless, the s
ation is not hopeless for there is a powerful method to extr
information on thermodynamic quantities, namely, the he
kernel representation of Green functions@3–6#. We now
study this method, for the purpose of applying it tog.1
Riemman surfaces and for its own sake: actually, it provid
useful insight for the sphere and the torus.

First, let us recall that

W~m!52
1

2
TrxW ,yW ln G~xW ,yW !, U~m!5

1

2
TrxW ,yWG~xW ,yW !,

~13!

with G(xW ,yW ) the Green function of the Helmholtz equatio
namely, (D1m2)G(xW ,yW )5d(xW ,yW ). If we introduce the
Green function of the heat equation

Df5
]f

]t
, ~14!

called the heat kernel,K(xW ,yW ;t), we can expressG as a
Laplace transform,

Gr~xW ,yW !5E
0

`

dte2rtK~xW ,yW ;t !, ~15!

after definingrªm2. Furthermore,
1-4
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U~r !5
1

2E0

`

dte2rt TrxW ,yW K~xW ,yW ;t !, ~16!

and integrating overr,

W~r !52
1

2E0

` dt

t
e2rt TrxW ,yW K~xW ,yW ;t !. ~17!

In the plane

K~xW ,yW ;t !5
1

4pt
exp2

uxW2yW u2

4t
, ~18!

so the specific energy is

U~r !

A
5

1

2E0

` dt

4pt
e2rt , ~19!

with A5*d2x the total area. To avoid the logarithmic U
divergence att50 we may take a further derivative,

U8~r !

A
52

1

8pE0

`

dte2rt52
1

8pr
. ~20!

After integrating twice overr,

W~r !

A
52

1

8p
~r ln r 1C1r 1C2!, ~21!

whereC1 and C2 are two integration constants that are a
tually infinite due to UV divergences. Of course, this expr
sion agrees with the one derived in@2# using UV regulariza-
tion in momentum space.

In a general curved surface TrxW ,yW K(xW ,yW ;t)
5*d2xK(xW ,xW ;t) ~the integrated heat kernel for coincide
points!. Note thatK(xW ,xW ;t) explicitly depends on the pointxW .
However, for homogeneous surfaces it becomes indepen
of it. According to Eq.~16!,

U~r !

A
5

1

2E0

`

dte2rtK~ t !, ~22!

where K(t) is the heat kernel for coincident points. If th
eigenvalues of the Laplacian are available,Dfn5gnfn , the
heat kernel is just

K~ t !5 (
n50

`

egnt. ~23!

The first eigenvalue isg0[0, corresponding to the consta
solution; the others are negative and ordered by their a
lute value~in fact, g1,21/4 @4#!. Substituting forK(t) in
the integral representation~22! we recover the expression fo
the energy used before,

U~r !

A
5

1

2 (
n50

`
1

2gn1r
. ~24!
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For example, we consider the torus,gn52(2p)2uku2,
wherekPV* , the lattice dual toV, the one defining period-
icity on the torus. Then we can use the Jacobi identity
write

K~ t !5 (
kPV*

exp@2~2p!2uku2t#5
A

4pt (
vPV

expF2
uvu2

4t G .
~25!

The latter sum is 11O@exp(21/t)#, reproducing the resul
for U in the plane plus the corrections vanishing expon
tially when r→`.

Generically, the heat kernelK(t) admits an asymptotic
power series expansion att50 @18#,

K~ t !'
1

4pt S 11 (
n51

`

antnD , ~26!

in terms of some numerical coefficients determined by
Riemann curvature. This expansion, upon integration ovet,
leads to asymptotic expansions of thermodynamic quant
for large r. For the hyperbolic plane, it can be calculat
from the integral of exp2n2t times the density of states o
frequencyn @19,20#:

K~ t !5
e2t/4

2p E
0

`

dnn tanh~pn!e2n2t. ~27!

It yields

K~ t !5
e2t/4

4pt H 12 (
n51

`
122122n

n!
B2ntnJ , ~28!

whereB2n are the Bernoulli numbers. The expansion for t
sphere is related to it by analytic continuation from the h
perbolic to the elliptic geometry; it has an addition
(21)n in the sum, andet/4 instead ofe2t/4.

From the expression~22! for the energy we can derive th
heat-kernel integral for the specific relative entropy,

S~r !

A
5

1

2E0

` dt

t
@12~11rt !e2rt #K~ t !, ~29!

which can be easily shown to be convergent att50, taking
into account the behavior of the heat kernel for smallt ~26!.
For a compact surface, it also converges ast→` if we re-
move the zero mode, since thenK(t) decays exponentially
according to Eq.~23!. To obtain the asymptoticr→` expan-
sion we could be tempted to just substitute the aympto
expansion~26! into this integral. However, we would find
that the coefficients are given by divergent integrals at
→`. The problem is that we cannot prolong the aympto
expansion~26! to t5`. However, the aymptotic expansio
~26! can be substituted into the integral forS8(r ),

S8~r !

A
52r

U8~r !

A
5

r

2E0

`

dte2rt tK~ t !, ~30!
1-5
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J. GAITE PHYSICAL REVIEW D 61 084001
to provide its asymptotic expansionr→`, owing to Wat-
son’s lemma@21#. This expansion can in turn be subjected
indefinite integration to yieldS(r ), of course, up to a con
stant:

S~r !

A
'2

1

8pS 2r 2a1 ln r 1 (
n51

`

an11

~n11!!

n
r 2nD .

~31!

We can obtain the whole asymptotic series ofS(r ) for the
sphere by just taking the coefficients from the correspond
asymptotic series ofK(t), given by Eq.~28! with (21)n

inserted. The coefficients of its succesive terms coincide w
the ones in the previous expression~6! except for the one of
the logarithmic term. This term, which was already remark
upon, is particularly interesting and we will now discuss it
more detail.

The logarithmic term in the asymptotic expansion ofS„r … and
the conformal anomaly

The logarithmic term in the asymptotic expansion ofS(r )
comes from the constant term in the asymptotic power se
of K(t) @see Eq.~26!#, namely,a1 /(4p). In particular, for-
mula ~28! yields a1561/3 for the sphere and hyperbol
plane, respectively. If we substitute this constant forK(t) in
Eq. ~30! we obtain

S8~r !

A
52r

U8~r !

A
5

r

2E0

`

dte2rt t
a1

4p
5

a1

8pr
. ~32!

~Notice the slight abuse of notation, for we deal here w
truncated quantities.! For a curved compact homogeneo
surface the Gauss-Bonnet theorem implies thatA52puxu
54pug21u, wherex is the Euler-Poincare´ number. Then
the coefficient of the logarithmic term of the total value
S(r ) is

a1A

8p
5

x

12
5

12g

6
,

only related to the topology of the Riemann surface. T
result also holds for compact surfaces of variable curvat

We can obtain as well the coefficient of the logarithm
term of W. Upon integratingU8(r ) twice over r, we con-
clude that

W~r !

A
5

a1

8p
ln r 1C1r 1C2 . ~33!

Hence we can try to connect with the critical value stated
Eq. ~7! as follows. Let us return to the heat-kernel repres
tation and perform the divergent integral forW(r ), from Eq.
~17!, with a lower cutoff. We find that

W~r !

A
52

a1

8pEe

` dt

t
e2m2t52

a1

8p
G~0,m2e!

52
a1

8p
@2 ln~m2e!2g1O~m2e!#, ~34!
08400
g

th

d

es

s
e.

n
-

whereG(0,x) is the incomplete gamma function. This agre
with the previous result. We can interpret the cutoff int as an
UV cutoff, e;L22. By reinstating the radius of curvatur
we can then splitm2e so that

ln~m2e!5 ln r 2 ln~L2R2!.

The second term agrees with the critical value in Eq.~7!, but
the first term diverges asr→0. In fact, this limit is not mean-
ingful since the logarithmic term arises in the asympto
expansion for larger. Neither is it meaningful to utilize the
asymptotic expansion ofK(t) @see Eq.~26!#, to obtain the
small-r behavior; forr 50 the integrals for thermodynami
quantities are determined by the entire range oft and not just
by its asymptotic behavior, whether it is for small or larget.
Nevertheless, Eq.~26! can still be utilized to determine th
form of the UV divergence ofW(0). Indeed,

W@0,L#52
A

2EL22

` dt

t
K~ t ! ~35!

implies that

L
]W@0,L#

]L
52AK~L22!52

A

4p
@L21a11O~L22!#.

~36!

In the infinite-cutoff limit,LR@1, we can discard the nega
tive powers ofL and this equation is none other than t
conformal anomaly equation for a rigid scale transformat
~recall thata1 is just the Riemann curvature divided by 3!.
Integration overL yields the desired term,

2
Aa1

4p
ln~LR!52

x

6
ln~LR!,

on a compact surface.
Notice however thatW(0) can also be calculated wit

zeta-function regularization and that it yields a finite res
@6#. This may seem puzzling, for we have then lost track
the conformal anomaly. In any event,W(0) is a pure number
and its value is to some extent irrelevant. Nevertheless, in
massive case, zeta-function regularization also yields a fi
W(r ), as we remark in the next section. But then the conf
mal anomaly can be extracted from the asymptotics ofW(r )
for large r. Moreover, with any type of regularization, th
asymptotics ofS(r ) for large r provides the conforma
anomaly. This conclusion is not particularly interesting f
the massive bosonic field theory, the only one conside
here, but it may be very interesting for interacting theorie

We have concluded that the coefficient of the logarithm
term in the entropy must be the opposite of the conform
anomaly, that is,x/12. While we had obtained21/3 in Eq.
~6! now we obtainx/1251/6. This discrepancy stems from
having suppressed the zero mode in the calculation ofU(r )
for the sphere. This contributes 1/2 in any compact surf
and 1/221/351/6. We may make a little disgression he
and recall that the calculation of the small-t behavior of ten-
sor Laplacians on compact Riemann surfaces provide
1-6
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proof of the Riemann-Roch theorem@5,22#. In the case of the
scalar Laplacian,D5 ]̄†]̄, this theorem states that

I~ ]̄ !5dim Ker ]̄2dim Ker ]̄†512g, ~37!

where the adjoint]̄†5¹z
1 is the covariant derivative on

forms. Then Ker¹z
1 is the space of Abelian differentials

with dimensiong, and Ker]̄ is the space of globally holo
morphic functions~that is, constants!, with dimension 1~cor-
responding to the Laplacian zero mode!. Their difference is
12g5x/2. According to our discussion on the presence
logarithmic terms inr, we can interpret the zero mode as t
logarithmic term for r→0 whereas the logarithmic term
found in the asymptoticsr→` are related to the existence o
nontrivial boundary conditions and hence to the existence
Abelian differentials. They subtract the right numberg from
1 such that the difference is proportional to the Eul
Poincare´ number. Indeed, we observe that, e.g., for the to
the zero-mode term ln@12e2Lm#'ln(mL) as m→0, while it
vanishes exponentially in the opposite limit,m→`. This is
in accord with the torus being flat, so thatx50.

V. THERMODYNAMIC QUANTITIES FOR COMPACT
RIEMANN SURFACES OF HIGHER GENUS

A compact Riemann surface ofg.1 can be characterize
by its fundamental group. When this surface is represente
its covering space, the hyperbolic plane, this surface g
rise to a tesselation of the hyperbolic plane, in which the t
are identified by a discrete group of motions isomorphic
the fundamental group. Since the total group of motions
the hyperbolic plane isSL(2,R), that group is one of its
discrete noncommutative subgroups, which are called Fu
sian groups. This construction becomes analogous to
construction of the torus by factoring the plane by a latt
V, where the fundamental group isZ3Z. We have seen tha
there is an expression for the heat kernel of the torus as
kernel in the plane plus a series of powers of exp(21/t) @Eq.
~25!#. There is a noncommutative analogue forg.1:
namely, the Selberg trace formula@4#

K~ t !5
e2t/4

2p E
0

`

dnn tanh~pn!e2n2t

1
1

2A (
n51

`

(
$g%

l g

sinh~nlg/2!

e2t/4

~4pt !1/2
expS 2

~nlg!2

4t D .

~38!

In this formula$g% are the primitive conjugacy classes of th
Fuchsian group andl g is the length of the shortest geodes
along the corresponding noncontractible loop. The first te
is just the integral representation of the heat kernel in
hyperbolic planeH @see Eq.~27!#. It admits a different rep-
resentation, more useful for computations, derived from
form of the corresponding Green function@4–6#,
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KH~ t !5
e2t/4

~4pt !3/2E
0

`

db
be2b2/(4t)

sinh~b/2!
.

Although the Selberg trace formula is a much more co
plicated formula than the Abelian one~25!, it has the same
structure; namely, it is a sum of the part corresponding
the infinite surface, now the hyperbolic plane, pl
O@exp(21/t)# corrections due to the boundary condition
As well as for the torus, these corrections give rise to ex
nentially vanishing terms which do not appear in t
asymptotic expansion of the entropy aroundr 5`. There-
fore, all the higher genus Riemann surfaces share the s
asymptotic expansion inr.

Formula~38! has been widely used to establish the mod
lar dependence of partition functions in string theory@6,22#.
The partition functions in string theory are those of critic
theories, and Selberg’s formula results in generalizations
the Dedekind function of the torus tog.1; they are called
Selberg’s zeta functions@4#. Although we are interested her
in the massive case, the procedure to calculate the criticaW
@4,6# actually applies to the noncritical one as well. It co
sists of a part corresponding to the hyperbolic plane, wh
is common for any homogeneous surface withg.1, and a
part in terms of Selberg’s zeta function, which accounts
the topology of the surface; namely,

W~r !52
1

2
z r8~0!2~4r 11!21/4 ln ZSSAr 1

1

4
1

1

2D .

~39!

The zeta function of the hyperbolic plane is

z r~x!5
A

G~x!
E

0

` dt

t
tx

e2(r 11/4)t

~4pt !3/2 E0

`

db
be2b2/(4t)

sinh~b/2!
~40!

5
A

4p3/2G~x!
~114r !3/42x/2

3E
0

`

db
bx21/2

sinh~b/2!
K3/22xS bAr 1

1

4D . ~41!

Notice that it is a meromorphic function ofx with one single
pole at x51, as long asur u,1/4. In the critical case the
common part can be calculated exactly to yield

z08~0!52~g21!F2 ln~2p!1
1

2
24z8~21!G . ~42!

Selberg’s zeta function is defined as

ZS~x!5)
g

)
p50

`

~12e2(x1p) l g!. ~43!

The functionz r(x), as a regularization ofW on the hyper-
bolic plane, must lead to the asymptotic expansion of
relative entropy provided by Eqs.~28! and~29!. The Selberg
zeta function leads to the asymptotically vanishing corr
tions.
1-7
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VI. CONCLUSIONS

We have seen that the general structure of the entrop
the free massive bosonic field theory on compact homo
neous Riemann surfaces consists of a part correspondin
the maximally symmetric surface, namely, to the sphere,
plane, or the hyperbolic plane, and a part due to the boun
conditions. The first part can be expressed as a complic
function, analytic in r P@0,̀ ). Furthermore, it has an
asymptotic expansion aroundr 5`, which is fully comput-
able. The second part embodies the topology and is m
delicate to treat, but it vanishes exponentially asr grows and
therefore does not appear in the asymptotic expansion.
behavior of the entropy for smallr—the critical limit—is
also calculable, in terms of a convergent series. It is stron
dependent on the global parameters defining the topolog
nature of the surface. Indeed, one can observe, for exam
that the series for the sphere~8! has nothing to do with the
one for the cylinder, obtained in Ref.@2#. Thekth term of the
small-r expansion is easily seen to be proportional
(n(2gn)2k, beginning withk52. But for g.1 these sums
cannot be computed analytically, because the Laplacian
genvalues are not available.

The monotonic character of the entropy can be checke
our calculations. For largem the entropy tends tom2/(8p),
independently of the topology of the surface, which is t
value for the plane. However, the topology lets itself be f
in the subleading term, proportional to lnm, which is actually
related to the conformal anomaly. These two terms are
only ones divergent asm→`. There is also a constant term
in the asymptotic expansion, which cannot be determi
exactly, however. The three terms together already provid
good approximation down tomL;1. As we decreasem we
approach criticality and the entropy becomes very sensi
08400
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e-
to
e
ry
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re
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al
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to large scale peculiarities of the surface, as already
marked, but one can check that it always remains monoto

We may wonder how much of the above can be gene
ized to higher dimensions or to interacting field theories. T
spectrum of the Laplacian and the heat kernel for homo
neous spaces are well known@20#. In fact, the heat kernel is
simpler in odd-dimensional homogeneous spaces than
even-dimensional ones, so the formulas for the thr
dimensional sphere or hyperbolic space turn out to be s
pler as well. As regards massive interacting theories,
asymptotic expansion for largem must exist in general and
moreover, the leading and subleading terms can also be s
ied. The leading term is always proportional tom2 for di-
mensional reasons, and its coefficient positive. To determ
this coefficient one can use thethermodynamic-Bethe-ansa
computation of theuniversal bulk termof the free energy, as
discussed before@2#. The subleading term is likely to be
related to the conformal anomaly,c(x/6)lnm, wherec is the
central charge of the conformal field theory form50. This
may provide a new way to find the central charge of a mod
The small-m behavior can be studied with conformal pertu
bation theory, see Ref.@2#. However, it shall crucially de-
pend on the nature of the surface, as well as on the partic
field theory. This perturbation theory is presumably conv
gent forstrongly relevantperturbations, like that of the free
bosonic field theory.
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APPENDIX

1. Subtracted energy for the sphere

We here perform the computation of the substracted energy for the sphere.

U~r !52
r

2 F(
l 51

`
1

@ l ~ l 11!1r #~ l 11!
1(

l 51

`
1

@ l ~ l 11!1r # l G ; ~A1!

taking into account that

(
l 51

`
1

@ l ~ l 11!1r # l
5

1

2r F2g1S 11
1

A124r
D cS 32A124r

2 D 1S 12
1

A124r
D cS 31A124r

2 D G , ~A2!

(
l 51

`
1

@ l ~ l 11!1r #~ l 11!
5

2~~12g!~124r 2A124r !!2~A124r 12r 21!cS 12A124r

2 D 22rcS 11A124r

2 D
~211A124r !A124rr

,

~A3!

we have that
1-8
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U~r !5
1

4
H 22g2S 11

1

A124r
D cS 32A124r

2 D 2S 12
1

A124r
D cS 31A124r

2 D

1

2S ~12g!~124r 2A124r !1~A124r 12r 21!cS 12A124r

2 D 12rcS 11A124r

2 D D
~211A124r !A124r

J . ~A4!

The apparent pole atr 50 must cancel and a careful analysis shows that it does; the pole atr 51/4 cancels as well. Notice tha
when r .1/4 the argument of the digamma functions becomes complex. Nevertheless,U(r ) remains real and is an analyti
function of r at r 51/4.
al

e
ac

,
n

to

ro-
n-

t.
the
2. W„r … for the torus

We will let L andM denote the periods in the horizont
and vertical directions, respectively. Then

W@m#[2 ln Z@m#5
1

2 (
l ,n52`

`

lnF S 2p l

L D 2

1S 2pn

M D 2

1m2G ,
~A5!

and

U~r !ª
dW

dr
5

1

2 (
l ,n52`

`
1

~ l /L !21~n/M !21r
, ~A6!

where rª(m/2p)2. To work out this sum we can use th
known expansion of the hyperbolic cotangent in simple fr
tions @23#,

coth~px!5
x

p (
n52`

`
1

n21x2
. ~A7!

Hence,

U~r !5
1

2 (
l 52`

`
pM

A~ l /L !21r
coth@pMA~ l /L !21r #.

~A8!

Now we can obtainW(r ) by integration. Notice, however
that the series~A8! is divergent, so term by term integratio
is not warranted. However, the series forU(r )2U(0) is
So

08400
-

convergent and one can apply term by term integration
that series. The ensuing series representsW(r )2U(0)r mi-
nus a UV quadratically divergent constant. Of course,U(0)r
is the UV logarithmic divergence ofW(r ). Since the UV
divergences ofW(r ) can be easily segregated, we can p
ceed with the integration term by term without further co
cern;

M

2 E pdr

A~ l /L !21r
coth@pMA~ l /L !21r #

5
M

2 E de cothS M

2
e D

5 ln sinhS M

2
e D ,

where we have introduced the one-boson energiese( l )
5A(2p l /L)21m2. Finally,

W~r !5 (
l 52`

`

ln sinhS M

2
e~ l ! D5

M

2 (
l 52`

`

e~ l !

1 (
l 52`

`

ln@12e2Me( l )#1C, ~A9!

whereC52(ln 2)(l52`
` 1 is an irrelevant divergent constan

The other divergences appear in the first term and are of
form C11C2r , as already remarked.
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