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Abstract

Time-dependent density functional theory (TDDFT) is an efficient method to evaluate excited-

state properties of electron systems. However, it is not so well known that it also provides a very

accurate prescription to obtain correlation energies by using the so-called adiabatic connection

fluctuation dissipation theorem (ACFDT). In this paper we present a detailed study of the ACFDT

performance in bulk solids and jellium clusters. These results confirm the reliability of the ACFDT

scheme and pave the way to future applications where standard implementations of the Kohn-Sham

density functional theory dramatically fail, in particular to weakly bound systems and van der

Waals complexes.
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1. INTRODUCTION

The Kohn-Sham (KS) implementation1 of density-functional theory (DFT)2 is one of the

most powerful and used methods for electronic structure calculations in material science and

quantum chemistry. In this scheme, the exact ground-state energy and electron density can

be obtained self-consistently if the so-called exchange-correlation (XC) energy functional

EXC [n] was known. Since EXC [n] contains information about the quantum many-body

effects in the electron interaction, its actual (and unknown) expression is very complicated.

However, and this is one of the main reasons of the popularity of KS-DFT, rather crude

approximations to EXC [n] depending explicitly on the electron density n (r) often provide

very accurate results at a moderate computational cost. Examples of such prescriptions

are the local-density approximation (LDA)1 and the generalized gradient approximation

(GGA)3,4 which, presently, constitute the methods of choice for practical applications of

KS-DFT. However, this family of approaches may be reaching a limit of accuracy and a next

generation of hybrid orbital functionals (see below) are taking more relevance nowadays.

The limitations of the LDA and GGA are obviously due to their local or semi-local

nature which implies that they are extremely short-ranged. Thus they cannot describe

at all the very nonlocal nature of electron-electron correlations and, for instance, van der

Waals dispersion forces are completely out of the scope of the LDA and GGA. Another

concomitant consequence of their simplicity is the appearance of self-interaction errors which,

for instance, compromises their accuracy when dealing systems with localized electrons.

More complicated XC nonlocal functionals, like the so-called averaged and weighted density

approximations,5—9 do not provide systematic improvements upon LDA and GGA while

being computationally much more demanding.

Orbital-dependent (OD) XC functionals, that is, functionals that depend implicitly on

the electron density through the Kohn-Sham orbitals, are the natural next step towards

the formulation of DFT prescriptions with chemical accuracy. The obvious advantage is

that they provide a description of the electron-electron interaction at a much deeper level

than conventional density-based functionals. The main drawback is the increasing numerical

cost. However, this next generation of XC functionals can be very competitive if compared

with exact methods like quantum Monte Carlo or full configuration interaction. Under this

perspective, OD functionals may be seen as a more flexible alternative to quantum chemistry
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techniques like Møller-Pleset perturbation theory and coupled cluster methods. The novel

meta-GGA functionals proposed by Perdew and coworkers10—12 are the simplest examples

of OD functionals. In this paper, however, we will focus on more sophisticated approaches

that incorporates exactly the exchange energy functional. Namely,

EXC [n] ' EEXXX [n] + EC [n] , (1)

where EC [n] is an approximation to the correlation energy functional and E
EXX
X [n] is the

exact exchange (EXX) energy functional given in terms of the occupied KS orbitals φn (r):

EEXXX [n] = −2× 1
2

occX
nm

Z
d3r d3r0

cnm (r) cmn (r
0)

|r− r0| . (2)

where cnm (r) = φ∗n (r)φm (r). The factor 2 appears as a result of the sum over spin-degrees

of freedom (we will restricted ourselves to spin-unpolarized systems and use Hartree atomic

units throughout the paper unless otherwise specified). Note that (2) has the same form that

the well-known Hartree-Fock (HF) exchange, except that the KS orbitals are used instead of

the HF ones. Therefore, the correlation energy is the only term that must be approximated

in this EXX-based KS prescription. Nonetheless, the XC functionals given by (1) misses

one of the reasons of the success of LDA (and to a lesser extent of GGA): the systematic

cancellation of errors between the exchange and correlation counterparts. As a consequence,

implementations of (1) with full predictive power require very accurate approximations to

the correlation energy.

An interesting route is the use of many-body theory which defines a perturbative formu-

lation of the correlation energy in terms of the KS orbitals and eigenenergies,13—15 much akin

to the standard Møller-Pleset expansion. Another option is the use of the following exact

expression for the correlation energy functional:

EC [n] = −
Z ∞
0

du

2π

Z 1

0
dλ
Z
d3r d3r0

1

|r− r0| (3)

× [χλ (r, r
0; iu)− χ0 (r, r

0; iu)]

known as adiabatic connection fluctuation-dissipation theorem (ACFDT).16,17 Here,

χλ (r, r
0; iu) is the imaginary-frequency density response of a fictitious system of electrons

interacting through a scaled Coulomb potential λ/r12 and whose ground-state density equals

the actual one. Then, χ0 (r, r
0; iu) is the response function of the fictitious non-interacting

KS system:

χ0 (r, r
0; iu) = 2×X

nm

(fn − fm) cnm (r) cmn (r0)
iu+ (εn − εm)

(4)
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where fn (0 or 1) are Fermi occupation numbers and εn the KS eigenenergies. The interacting

response χλ can be evaluated in the framework of time-dependent density functional theory

(TDDFT)18—20 by solving the Dyson-like equation

bχ0 (iu) = ³b1− bχ0 (iu) hλ bw + bfXC,λ (iu)i´ bχλ (iu) (5)

where the usual matrix operations are implied. bw is the bare Coulomb interaction andbfXC,λ (iu) is the dynamical XC kernel of the fictitious system with the scaled interaction

λ bw. Thus, the evaluation of the correlation energy only relies on the approximations made
to bfXC,λ. Also note that under this formulation the ground-state energy and the optical
properties of the electron system (related to the neutral excitations in the system) are treated

under the same framework, which incorporates higher order electron interactions whose

treatment has shown to be mandatory in ab-initio calculations of spectroscopic properties

of extended systems.19,20

As anticipated, the implementation of this ACFDT scheme is much more computation-

ally demanding than usual KS methods. However it is a promising ab-initio total-energy

method due to a number of reasons. First, exchange and correlation are treated at the

same level. Second, ACFDT accounts for van der Waals forces,21—23 thus being a suitable

approach for an unified treatment of electron-electron interactions with different spacial

ranges, a situation that appears in bundled nanotubes, polymer crystals and, in general,

sparse systems. Third, by construction there are not self-interaction errors in the exchange

part whereas they do not seem to be very serious in the correlation term and might be

systematically reduced by choosing a proper kernel. Finally, it serves as the starting point

of further simplifications aimed for implementation in very complex systems24,25 at an af-

fordable computational cost. On the other hand, a first evident problem of the ACFDT is

the dependence of the results on the choice of the XC kernel, which is especially relevant

when considering total correlation energies.26 However, there are some evidences that such

a choice is not so critical for the evaluation of structural properties, which are related to en-

ergy differences in isoelectronic systems.27,28 Nonetheless, this point is still an open issue,29

and some interesting attempts directed to find an optimal XC kernel for correlation energy

calculations have been already presented.30—32 Secondly, the evaluation of the ACFDT corre-

lation potential vC (r) is a formidable task,
33—35 much more demanding that the calculation of

the EXX potential vX (r),
36,37 which is presently carried out routinely in both molecular38,39
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and extended systems.40,41 In fact, the self-consistent evaluation of the ACFDT vC (r) has

been only implemented for model electron systems,42,43 atoms,44 and simple bulk crystalline

solids.45 Thus, almost all the applications of the ACFDT scheme made so far29—32,46—53 have

neglected any attempt of self-consistency, and the correlation energy is evaluated using LDA,

GGA or EXX Kohn-Sham wavefunctions and eigenenergies as an input, as commonly done

in excited-state ab-initio calculations.20 This prescription will be followed in this paper as

well, where we will present detailed ACFDT results for two rather simple, but very different,

systems: compact bulk structures (silicon and sodium chloride) and jellium metal clusters.

For simple bulk systems, LDA already shows a very good performance. Hence, it is

not expected that the sophisticated EXX/ACFDT XC functional will lead to significant

differences with respect to the LDA results. However, it is important to show that this good

performance is not compromised by the more developed ACFDT functional. Then, our

main goal will be the detailed discussion of the implementation of the ACFDT to extended

crystalline systems. Since many-body effects in the correlation energy are not going to

be critical, we will use the simplest ACFDT prescription and neglect the XC kernel in

the evaluation of the interacting density response (i.e. χ is obtained in a Random Phase

Approximation [RPA] fashion). As it is known, RPA accounts for long-range correlation

effects but the description of short-range ones is very poor. Thus, RPA gives too deep

correlation holes and too large (in absolute value) correlation energies. Fortunately, these

short-range effects can be effectively modelled by an LDA or GGA correction term27,28:

EC [n] ' ERPAC [n] +∆EC [n] (6)

= ERPAC [n] +
Z
d3rn (r) εcor (n (r) ,∇n (r)) ,

where εcor is a function of the local density and its gradient.
27,28As we will see this hybrid

scheme, often called RPA+, suffices to obtain very accurate correlation energies.

On the contrary, jellium metal cluster are examples of small localized systems where

the elimination of self-interaction errors is required to obtain reliable results. Furthermore,

by increasing the size of the cluster we approach the homogeneous electron gas limit and

hence, in spite of the simplicity of these systems, different correlation regimes appear. The

existence of accurate benchmark quantum Monte Carlo calculations54 allows us to assess not

only the performance of the RPA+ correlation functional, but also the one corresponding

to the evaluation of the response function using different approaches to the XC kernel.
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The outline of this article is as follows. In section 2 we will present a detailed description

of our implementation of the ACFDT scheme for crystal solids, applied recently53 to the

problem of layer-layer interactions in laminar systems. Section 3 contains the results and

discussion for bulk Si and NaCl, whereas section 4 is devoted to the ACFDT results for

metal clusters, covering different ranges of densities and electron number. The corresponding

conclusions and perspectives will close this paper.

2. THE ACFDT SCHEME FOR SOLIDS

Our implementation of the ACFDT correlation functional for crystalline solids is built

on the long-standing experience gained in the last years in ab-initio TDDFT calculations20

as reflected by the existence of a number of efficient computational tools. Specifically, KS

wavefunctions and operators are represented in a planewave basis set and core electrons

are approximately described using standard non-local pseudopotentials.55 Hence, KS wave-

functions and energies are labelled by a band index n and a vector k belonging to the first

Brillouin zone (BZ). Due to the periodicity of the system, the reciprocal space representation

of the response functions takes the form χλ (k+G1,k +G2; iu), where G is a vector of the

reciprocal lattice. The ACFDT correlation energy per volume unit is then given by

EC
V
= −

Z 1

0
dλ

Z +∞

0

du

2π

Z
BZ
d3k

X
G

eC (k,G,u,λ) (7)

with

eC (k,G,u,λ) =
4π

|k+G|2 ∆χλ (k+G,k+G; iu) (8)

and ∆χλ = χλ − χ0. The KS response χ0 is calculated from well-converged KS wavefunc-

tions and energies evaluated using the abinit package.56 The interacting responses χλ are

then obtained for each vector k in the Brillouin zone, imaginary frequency u, and coupling

parameter λ solving (5) using the self code,57 where the expressions (7-8) are implemented

as well.

At a first glance, this implementation seems to be straightforward, but there are some

technical issues that must be solved in order to have a stable and easy to converge numerical

procedure. First, the dependences of the function eC (k,G,u,λ) defined in (8) on the coupling

constant λ and the imaginary frequency u are very smooth. Thus, both integrals can be

carried out in a very efficient way using Gauss-Legendre (GL) samplings. For λ, a six-point
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GL grid is enough for our purposes, whereas the frequency integral is done using two GL

grids, each typically comprising 18-24 points. The first one lies in the range [0, u1], where

u1 is of the order of the plasmon frequency associated to the mean density of the system,

and the second one lies in the interval [u1, umax], where umax is a frequency cutoff. This

procedure allows an accurate evaluation of the contributions from both small and large

imaginary frequencies. The convergence with respect the critical parameter umax is carefully

checked, but it does not pose any major problem.

Much more delicate is the convergence versus: i) the sampling of the BZ (determined by

the number of special k vectors, Nk, in the irreducible wedge of the BZ), ii) the number of

reciprocal lattice vectors NG (i.e. the energy cutoff in reciprocal space), and iii) the number

of bands Nb used to evaluate the KS response function (remember that χ0 contains con-

tributions from occupied and unoccupied states). Unfortunately, the common practice in

electronic structure calculations that fixes the energy cutoff for all geometries (and, hence,

defines a different NG for each geometry) does not work in the present case. The convergence

of EC versus the number of bands is very slow and, what is more important, the conver-

gence rate depends very sensitively on the considered geometry. Furthermore, the required

numerical effort increases dramatically with the number of k-points. All this prevents us

from having reasonably converged energy differences and, as a consequence, the evaluation

of structural properties is completely impossible in this way.

These problems can be circumvented since, for a fixed sampling of the BZ, the planewave

representation allows a systematic simultaneous convergence with respect to NG and Nb.

Namely, regardless the energy cutoff, the number of bands used in the evaluation of the KS

response function is imposed by the expression Nb = (NG − 1) /α, where α is an integer

(typically equal to two, although we have checked that the same final results are obtained

using α = 3 and 4). As we may see in Figure 1, the convergence with respect NG is very well

defined, and it is easy to obtain the infinite NG and Nb limit of the correlation energy as long

as the number of k points is small. However, this procedure is not feasible for finer samplings

of the BZ. Fortunately, the differences induced in the correlation energy by increasing Nk

are very insensitive to the number of G vectors used in the calculation (see the inset in

Figure 1). This suggests a well-defined procedure. First, using a coarse BZ sampling, the

correlation energy is converged by increasing simultaneously NG and Nb. Second, using the

results corresponding to the largest NGs, the infinite limit result is obtained by extrapolation
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Figure 1. Analysis of the convergence of the RPA correlation energy for bulk silicon

(lattice parameter a = 10.2 a.u.). For a coarse sampling of the Brillouin zone with just two

special points (hollow and solid circles), the limit corresponding to an infinite number of

bands and G vectors can be easily extrapolated from the values indicated with solid

symbols. The reliability of the fitting curve (dashed line) is evident since it fits other

values not used in the extrapolation. For a finer BZ sampling with 10 special points

(squares), the change on the correlation energy with respect to the previous one converges

very quickly with the number of G vectors, as represented in the inset. Finally, it can be

seen that Nk = 10 provides full convergence since the inclusion of more k vectors

(rhombuses) does not lead to appreciable variations in the correlation energy. Note that

the numerical error in the final result (−57.8± 0.2 mHa/e) is mostly due to the
uncertainties in the extrapolation procedure.The number of G vectors used in the

calculations are displayed in the figure.

ensuring that the extrapolating curve also fits the rest of the values. Finally, the error due

to the coarse BZ sampling is determined by comparing the correlation energy obtained using

more k points, but evaluated with a relatively small number of reciprocal lattice vectors. By

doing this we are fully confident that the absolute correlation energy for a given geometry is

converged within a numerical error less than 0.2 mHa per electron, whereas for correlation

energy differences, such an error turns out to be of the order of 0.05 mHa per electron.

Finally, is worth mentioning a few words about exact exchange. When calculating the
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EXX energy, the only critical parameter is Nk, because only occupied wave functions enters

into the evaluation and the NG-convergence is quite fast. In fact, E
EXX
X converges rather

slowly with respect to the BZ sampling, and a relatively large number of special k points

is required. Nevertheless, this part of the calculation is inexpensive compared with the

ACFDT one and, furthermore, the convergence can be sped up using random integration

techniques over the BZ zone.58 The absolute numerical errors in the EXX energies are of

the same order of magnitude than the ACFDT correlation ones, although we have to bear

in mind that the exchange energy is often several times larger than the correlation one.

3. RESULTS FOR BULK STRUCTURES

The methodology described in the previous section allows us to calculate the exchange-

correlation energy for crystalline solids at different geometries, thus giving us access to a fully

microscopic evaluation of structural properties, including selected lattice dynamics using a

frozen-phonon approximation . As mentioned before, this scheme has been already applied

to the calculation of equilibrium structural properties of a layered material (hexagonal boron-

nitride).53 This is a system where long-range van der Waals forces coexist with short-ranged

covalent ones, thus being a perfect scenario where the ACFDT, under the RPA+ approach,

shows its full capacity. In this section we will describe the results for bulk silicon (the

paradigmatic example of sp insulator) and, very briefly, for NaCl (an example of ionic

solid). We can anticipate that there will be marginal differences between the LDA and the

EXX/RPA+ results. Those differences are going to be less important than, for instance,

the choice of the pseudopotential used in the calculations. Nevertheless, these calculations

illustrate very well the known cancellation of errors between exchange and correlation in the

LDA prescription and the robustness of the EXX/RPA+ approximation.

The EXX and the RPA+ correlation energies per unit cell for bulk silicon at different

lattice constants are presented and compared with the LDA counterparts in Figure 2. The

most noticeable features are the discrepancies between exchange and correlation energies

if considered separately, which reflects the well known LDA underestimation (overestima-

tion) of the absolute value of the exchange (correlation) energy. However, both LDA errors

compensate each other and the total LDA and EXX/RPA+ XC energies are practically the

same. A similar cancellation appears if we consider the lattice parameter dependence of
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Figure 2. Exchange and correlation energies per unit cell for bulk silicon as functions of

the lattice parameter a using EXX/RPA+ (solid lines with circles) and LDA (solid line).

Note that the energy scale for the correlation is much smaller than the one corresponding

to exchange and exchange-correlation. The LDA greatly overestimates both the absolute

value of the correlation energy and its variation with the lattice constant. The behavior of

the LDA exchange is the opposite if compared with the EXX results.

the XC energy, although it is worth emphasizing the very different behavior exhibited by

the LDA correlation energy if compared with the RPA+ one. However, exchange domi-

nates upon correlation in bulk Si and this discrepancy will not affect too much to the final

structural properties. We must mention the LDA correction term ∆EC [n] has an almost

negligible dependence on the lattice parameter. In other words, the RPA and RPA+ corre-

lation curves are practically parallel and, as a consequence, the inclusion of ∆EC [n] simply

shifts rigidly the total energy, without affecting the rest of the equilibrium properties of bulk

Si, but providing total energies as accurate as LDA.

The variation of the total energy per unit cell with respect the lattice constant a is repre-

sented in Figure 3. We may see that the inclusion of many-body effects via the EXX/RPA+

leads to a marginal reduction (less than 0.5%) of the equilibrium lattice constant if compared

with the LDA one (10.17 a.u.). Similarly, the bulk modulus is unaffected within the unavoid-

able numerical error bars. At a first glance, this small correction goes in the wrong direction,

since the experimental lattice constant (aexp = 10.26 a.u.) is roughly a 1% larger than the

LDA one. Nevertheless, we must point out that: i) our EXX/RPA+ implementation is

not self-consistent, but evaluated using LDA wavefunctions, ii) the RPA+ approximation

to the exact correlation functional is the simplest one within the ACFDT scheme, iii) we
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Figure 3. Total energy per unit cell for bulk silicon as a function of the lattice

parameter a obtained from EXX/RPA+ (solid line with circles), LDA (solid line), and

EXX/LDA (dashed line). In the EXX/LDA, the exchange energy is calculated exactly and

the correlation approximated using the LDA. All the calculations have been performed

using the same pseudopotential. Note that the EXX/LDA lacks the typical LDA

cancellation of errors. The corresponding equilibrium lattice constants are included within

the figure. The experimental value, aexp is indicated as a reference.

are working under a pseudopotential approximation. Very likely, the first point is going to

be the least important. It is known for a long time59,60 that for bulk sp semiconductors,

the shape of the LDA XC potential is very similar than the one corresponding to the local

XC potential obtained from the linearized form of the Sham-Schlüter equation,61,62 which

formally corresponds to the EXX/RPA potential.33,34,63 This overall coincidence has been

recently confirmed by state-of-the-art calculations.45 The second point should deserve fur-

ther attention, but it is very likely that for this simple compact sp structure the inclusion of

effects beyond the RPA via appropriate XC kernels is going to have a marginal influence on

the final results. Thus, we can conclude that the pseudopotential approximation itself is the

most important source of error in our calculation. At this point, we have to mention that

Miyake et al 52 presented a few years ago a prospective study of the RPA correlation energy

for bulk systems in an all-electron picture. As can be easily inferred by the discussion in

section 2 (restricted to the much simpler pseudopotential picture), the numerical difficulties

that these authors had to face were formidable. Hence, their quantitative results must be

taken with caution, although their main qualitative conclusions agrees very well with the

11



9.5 10.0 10.5 11.0 11.5 12.0
-3.15

-3.05 XC

a (a.u.)

-0.42

-0.41

  
E

 L
D
A

(a
) 

(H
a)

Correlation

 -2.75

-2.65 Exchange

 

 9.5 10.0 10.5 11.0 11.5 12.0

0

5

10

15

20
a
eq
 (a.u.)

10.46

10.40

10.40

Method

LDA

EXX/RPA+

EXX/LDA

a
exp
  = 10.57

 

E
t
o
t(
a
) 
- 
E
t
o
t(
a
e
x
p
 )
 (
m
H
a
)

-2.95

-2.85

-0.26

-0.25
   E

 E
X
X
/R
P
A
+(a

) (H
a)

-3.20

-3.10

Figure 4. Upper panel: same as Figure 3 for bulk NaCl. Lower panels: same as Figure 2

for bulk NaCl. The many-body effects included in the RPA+ correlation can be only

appreciated far from the equilibrium geometry, which explains why the EXX/LDA and

EXX/RPA+ lattice constants are the same.

ones obtained from our well converged pseudopotential-based results.

Finally, the EXX/RPA+ description of the XC effects in NaCl leads to similar conclu-

sions. As can be seen in the upper panel of Figure 4, the LDA and EXX/RPA+ equilibrium

properties are practically the same. Moreover, the discrepancies in the exchange and corre-

lation energy curves are even smaller than in the case of bulk Si. In fact, the substitution of

the LDA correlation by the RPA+ one does not change the equilibrium lattice constant and

the mentioned small discrepancies are mainly due to the different treatment of exchange.

4. APPLICATION TO JELLIUM CLUSTERS

Jellium clusters, where the positive ions are modelled by an uniform spherical positive

background of density nB, have been used extensively in the past to study the experimental

properties of alkali metal clusters.64,65 This approach is presently superseded by modern

electronic structure calculations, although jellium clusters are still useful to assess advanced

ab-initio theories. In this model, the cluster is fully characterized by the number of electrons
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N and the mean background density nB. Since the system is neutral, the radius of the jellium

sphere is RB = N
1/3rs, rs = [3/ (4πn)]

1/3 being the so-called Wigner radius. Hence, the N

electrons move under the action of an electrostatic potential which is harmonic if r ≤ RB
and Coulombic if r ≥ RB.
As commented in the Introduction, there are accurate quantum Monte Carlo results for

closed-shell jellium clusters,54 which correspond to N = 2, 8, 18, 20, 34, 40, 58, ... at least in

the range of metallic densities. Because of the closed-shell configuration, the electronic

ground-state is nondegenerate and exhibits spherical symmetry. This enormously simplifies

not only the implementation of the KS equations, but also the evaluation of the EXX and

ACFDT correlation energies which can be carried out at a low computational cost. There-

fore, this simple model is very suited to assess the performance of different implementations

of the ACFDT scheme. Note that the problems that plague its application to real extended

materials (as we have seen in section 2) and localized molecular systems29 are now completely

absent since we can easily reach full numerical convergence.

Because of the spherical symmetry, the KS wave functions take the familiar form φ (~r) =

Rn` (r)Ym` (Ω), Rn` being the radial wavefunction and Ym` (Ω) an spherical harmonic. The
density response χλ (and, in general, any involved operator) can be written as a Legendre

expansion:

χλ (r, r
0; iu) =

∞X
L=0

χ
(L)
λ (r, r0; iu)PL (cos γ) (9)

where PL is the L-th order Legendre polynomial and γ the angle formed by r and r0.

χ
(L)
0 (r, r0; iu) can be readily expressed as a function of products of occupied (n`) and unoc-

cupied (n0`0) radial wavefunctions, KS eigenergies, and Clebsch-Gordan coefficients in such a

way that only the wavefunction products with |`− ` 0| ≤ L ≤ |`+ ` 0| enter into the evaluation
of χ

(L)
0 . Unbounded unoccupied states are discretized by imposing infinite wall boundary

conditions at a rmax À RB. In our calculations, rmax ∼ 10RB suffices. Dyson’s equation
(5) is solved for each L-component separately, and the solution can be done either in real

space or in a matrix representation. As we can see, the simplicity of the system reflects

on the fact that the original three-dimensional problem can be effectively separated in L

decoupled one-dimensional ones. Finally, the integrations over the coupling constant λ and

the imaginary frequency are performed following the method already described in section 2.

We have to mention that the whole procedure could be made even simpler by following the
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implementation proposed by Furche.29,48 Moreover, the sum over unoccupied states could

be circumvented by solving the Schrödinger-like equation obeyed by the one-electron KS

Green’s function, whose knowledge allows to obtain the KS density response.

Our first aim is the critical discussion of the performance of the RPA+ correlation func-

tional for localized systems. We will also pay attention to more elaborated ACFDT pre-

scriptions based on the evaluation of the density response including local field effects (i.e.,

corrections beyond RPA) using suitable XC nonlocal kernels. We will restrict ourselves to

the well-known Petersilka-Gossman-Gross (PGG) kernel66 and to a recent energy-optimized

nonlocal Hubbard-like kernel (OHU) proposed by Jung et al .32 The PGG kernel

fPGGXC,λ (r, r
0;ω) = − 2λ

|r− r0|
|Pocc

n φn (r)φ
∗
n (r

0)|2
n (r)n (r)

(10)

is a static model which has the advantage of being the exact exchange-only kernel for a

system with two electrons (and the exact XC kernel for a single electron system). Therefore,

and that is the reason of this choice, it is in principle suitable to deal in an approximate

manner the spurious self-interaction that appears in the response function for few electron

systems. On the contrary, the OHU nonlocal kernel has a completely different physical

motivation. It has the form

fOHUXC,λ (r, r
0;ω) = λ2F homXC (λrs (r, r

0) ,λ |r− r0|) (11)

where rs (r, r
0) = [3/(4π

q
n (r)n (r0))]1/3 is an effective Wigner radius and F homXC (rs, r) is a

static nonlocal approximation to the XC kernel of the homogenous electron gas (HEG). Such

a kernel is given by

F homXC (rs, r) =
κ (rs) β

2 (rs)

4π

exp (−β (rs) r)
r

(12)

where κ (rs) = d2 (nεC) /dn
2 (n and εC being the HEG electron density and correlation

energy per particle, respectively) and

β (rs) =
µ
9π

4

¶1/3s 100 + 5rs
8.26r2s + r

3
s

(13)

is a parametrized function that guarantees that the ACFDT under this OHU kernel re-

produces exactly the HEG correlation energy. Note that despite the differences between

these two approximations, for two electron systems both kernels are rather similar. Hence-

forth, the OHU energy-optimized nonlocal kernel also takes into account the correction to

self-interaction errors at least at the same level than the PGG kernel.
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TABLE I: ACFDT Correlation Energies per Electron (mHa) for Closed-shell

Jellium Clusters Compared with DMQC (ref 54), LDA, and GGA

N DQMC RPA+ OHU PGG KS-LDA KS-GGA

rs = 2

2 -16.9 -19.2 -17.6 -19.6 -35.7 -21.0

8 -26.1 -26.7 -26.6 -23.2 -39.1 -29.7

20 -30.5 -31.5 -31.3 -27.3 -40.6 -33.8

34 -33.1 -33.6 -33.4 -29.8 -41.5 -35.6

58 -34.7 -35.2 -35.0 -31.5 -42.1 -37.2

rs = 3.25

2 -15.3 -17.4 -16.5 -18.9 -30.2 -19.2

8 -22.4 -23.3 -23.0 -21.1 -32.1 -25.3

20 -26.0 -26.7 -26.4 -24.2 -32.9 -28.1

34 -27.5 -28.0 -27.7 -25.7 -33.5 -29.3

58 -28.5 -29.0 -28.7 -26.5 -33.8 -30.4

rs = 4

2 -14.6 -16.5 -15.8 -18.5 -27.8 -18.3

8 -20.8 -21.7 -21.4 -20.2 -29.2 -23.4

20 -24.1 -24.7 -24.4 -22.9 -29.8 -25.7

34 -25.1 -25.8 -25.4 -24.1 -30.3 -26.7

58 -26.2 -26.8 -26.6 -25.1 -30.6 -27.6

rs = 5.62

2 -13.1 -15.3 -14.6 -17.6 -24.0 -16.5

8 -18.1 -19.2 -18.9 -18.7 -24.8 -20.1

20 -20.6 -21.5 -21.1 -20.9 -25.1 -21.8

34 -21.7 -22.2 -21.9 -21.6 -25.4 -22.6

58 -22.2 -22.7 -22.4 -22.4 -25.6 -23.2
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In Table I, the obtained jellium clusters ACFDT correlation energies (RPA+, OHU,

and PGG) are compared with the quasi-exact fixed-node diffusion quantum Monte Carlo

(DQMC) results by Sottile and Ballone.54 For completeness and despite their low quality,

the KS-LDA and KS-GGA correlation energies are included as well.67 The very good perfor-

mance of the RPA+ for all densities and electron numbers is evident, since the absolute errors

are merely of the order of 1 mHa per electron, except in the limit of N = 2, where this error

is slightly greater (2-3 mHa/e). In general, the more the number of electrons the smaller the

relative errors committed by the RPA+, since the LDA/GGA correction term ∆EC in (6)

guarantees the exact reproduction of the HEG correlation energy. However, bearing in mind

the simplicity of the RPA+ scheme, the good results for small and medium size clusters

(N = 8, 20) is rather streaking since these clusters are far from the homogeneous limit. The

PGG does not provide any systematic improvement upon the RPA+ results and, in fact, the

correlation energies are worse for two electron clusters. For large and medium size clusters,

the slightly poor overall performance of the PGG-ACFDT with respect to the RPA+ is

not a surprise, since the PGG-ACFDT energies are not exact in the homogeneous limit.26

However, the bad performance of the PGG-ACFDT for two electron systems (3-5 mHa/e

deviations from the DQMC energies) is somehow disappointing, showing that the use of the

exact exchange-only kernel is not enough to obtain accurate correlation energies. Finally,

the use of the nonlocal OHU kernel, where both exchange and correlation contributions to

the kernel are incorporated in an approximate manner, provides remarkably good results

for all densities and electron numbers, including the problematic N = 2 clusters. Although

numerically a bit more involved than RPA+, the OHU prescription truly corresponds to an

implementation of the TDDFT to evaluate interacting density responses. Furthermore, the

correlation energies are quite robust with respect to the details of the optimized kernel.32

These results confirm the superiority of schemes based on nonlocal approximations to the

XC kernel for ACFDT correlation energy calculations.68

The above correlation energies have been evaluated using LDA Kohn-Sham wave func-

tions. In principle this would be a bad choice since, as it is well known, the KS effective

potential behaves as −1/r for r À 0 in localized systems. Therefore, all the series of Rydberg

unoccupied orbitals are missed in the KS-LDA and, moreover, the LDA orbital eigenenergies

themselves are not very accurate. This explains why the inclusion of EXX effects in the KS

equations is mandatory to obtain realistic optical properties through the TDDFT. However,
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we have checked the choice of the reference KS systems is not critical when calculating

ACFDT correlation energies, since they arise after a sum over all unoccupied states matrix

elements and after integrations over all imaginary frequencies. In fact, if the EXX/LDA

wavefunctions are used (i.e. the wavefunctions are evaluated selfconsistently using the EXX

functional and a LDA prescription for the correlation), the ACFDT correlation energies

only suffer changes always less than 0.2 mHa/e.69 We can conclude that, contrary as occurs

in the evaluation of optical properties of low-dimensional systems, the ACFDT results are

extremely robust with respect to the choice of KS functions and energies. In other words,

spectral details that are crucial in the obtention of TDDFT optical properties are not so

important in the evaluation of integrated quantities like EC.

5. CONCLUSIONS

In this paper we have presented extensive results for the correlation energy of many-

electron systems using a sophisticated approach (ACFDT) based on the knowledge of the

interacting response function. This ACFDT prescription accounts for many-body effects

that are absent in standard implementations of the Kohn-Sham density functional theory.

This methodology is much more expensive than LDA/GGA, but physically well motivated

approximations within the ACFDT scheme provides correlation energies very close to the

exact (up to numerical convergence) configuration interaction or quantum Monte Carlo

results at a lower numerical cost.

For extended systems, we have explained in detail the numerical implementation of the

ACFDT scheme thus paving the way to further studies specially aimed for situations where

the standard LDA-GGA lacks predictive accuracy. On the other hand, several ACFDT

approximations have been carefully assessed in a family of model systems (jellium clusters).

Superior results are obtained if the XC kernel that enters into the evaluation of the response

function is modelled in a nonlocal fashion. We have also checked that the ACFDT results are

rather insensitive to the KS wavefunctions used to obtain the response function. Henceforth,

for extended systems it is safe to evaluate the ACFDT correlation energies using LDA or

GGA wavefunctions. For localized systems the method of choice should be EXX/LDA, but

due to the accuracy required in the exact exchange energy since the ACFDT correlations

are practically the same if we use LDA wavefunctions instead.
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Some issues need to be addressed in the future. First it is still not clear what is the op-

timal pseudopotential for EXX/ACFDT calculations. Certainly, a full EXX/ACFDT-based

construction of the pseudopotential should be the proper way, and calculations along this

line are in the horizon. Second, more efficient numerical implementations are required. For

instance, much of the computational effort is employed to calculate contributions from high-

energy unoccupied states that could be effective modelled by free-electron planewaves. Work

in this direction is presently in progress as well. Finally, ongoing selfconsistent implementa-

tions of the EXX/ACFDT scheme will have a clear impact in the evaluation of many other

properties besides structural ones. Highly accurate KS wavefunctions and eigenergies are re-

quired for reliable predictions regarding optical properties, phonons, etc. in low-dimensional

systems (for instance, conjugate polymers).70
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44 Hellgren, M.; von Barth, U. cond-mat/0703819 2007.
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