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The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with
different substrate specificities
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Abstract: Four laccase isozymes (LCCI1, LCC2,
LCC3 and LCC4) synthesized by Pleurotus ostreatus
strain V-184 were purified and characterized. LCC1
and LCC2 have molecular masses of about 60 and 65
kDa and exhibited the same plI value (3.0). Their N
termini were sequenced, revealing the same amino
acid sequence and homology with laccases from oth-
er microorganisms. Laccases LCC3 and LCC4 were
characterized by SDS-PAGE, estimating their molec-
ular masses around 80 and 82 kDa, respectively. By
native isoelectrofocusing, their pI values were 4.7 and
4.5, respectively. When staining with ABTS and guai-
acol in native polyacrilamide gels, different specific-
ities were observed for LCC1/LCC2 and LCC3/
LCC4 isozymes.
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INTRODUCTION

White-rot basidiomycetes are microorganisms able to
degrade lignin efficiently. However, the degree of lig-
nin degradation with respect to other wood compo-
nents largely depends on the environmental condi-
tions and the fungal species involved. Studies aimed
at understanding the mechanisms of lignin degra-
dation by fungi have revealed the complexity of the
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enzymatic systems because there is more than one
path to lignin degradation and the enzymatic ma-
chinery of the various microorganisms is different
(Hatakka 1994).

Two classes of oxidative enzymes, namely laccases
(phenoloxidases) (Thurston 1994, Leonowicz et al
2001) and peroxidases (lignin and manganese per-
oxidase) (Farrell et al 1989, Datta et al 1991, Reddy
1993, Reddy and D’Souza 1994, Cullen 1997) have
received the greatest attention. The role of laccases
recently has been reevaluated because new informa-
tion on their biodegradative mechanisms has been
obtained in several fungal species (Bourbonnais and
Paice 1990, 1992, Archibald and Roy 1992, Leonow-
icz et al 2001). Moreover, some genera of basidio-
mycetes, such as Pleurotus spp., were found to lack
lignin peroxidases (Fukushima and Kirk 1995, Galli-
ano et al 1988, 1991), indicating that different en-
zymes are probably involved in lignin biodegradation
and that, among these enzymes, laccases could play
a key role. Studies on the enzymes secreted by the
basidiomycete fungus Pleurotus ostreatus have shown
that the concerted action of laccase and aryl-alcohol
oxidase, produces significant reduction in the molec-
ular mass of soluble lignosulphonates (Marzullo et al
1995).

The preferential degradation of lignin by P. ostrea-
tus strain V-184 has been demonstrated in our labo-
ratory, and the fungus has been shown to degrade
wood and lignocellulosics efficiently (Delgado et al
1992, Ginterova et al 1992, Klibansky et al 1993). In
the present work, we describe the identification and
characterization of four laccase activities secreted by
strain V-184 and report on differences in the reactiv-
ity toward specific substrates for laccase determina-
tions among this family of isolated laccase isozymes.

MATERIALS AND METHODS

Microorganisms and culture media.—P. ostreatus strain V-184
was kindly supplied by Dr. A. Ginterova from the Feedstuff
Institute in Bratislava, Slovakia; it was propagated on 2%
malt-extract agar in our fungal collection.

Two liquid culture media were used: a complete medium
described by Mansur et al (1997) and a synthetic medium,
previously used to grow Phanerochaete chrysosporium (Kirk
et al 1986). The pH of the synthetic medium was adjusted
to 4.5 or 6.5 with 20 mM sodium-2,2-dimethylsuccinate and
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50 mM MES buffers, respectively. Cultures were incubated
at 28 C in 500 mL Erlenmeyer flasks containing 150 mL of
culture medium and agitated at 100 rpm for 14-16 days.

Protein, biomass and enzyme activity determinations—The
protein concentration was determined using the BioRad
protein assay kit (BioRad, Hercules, California), following
the manufacturer’s instructions, with bovine serum albumin
as standard. Biomass was estimated gravimetrically. Spectro-
photometric assays of laccase activity were carried out with
1 mM guaiacol or 10 mM 2,2'-azino-bis-(3-ethylbenzthiazo-
linesulphonate) (ABTS) as substrates, in 100 mM sodium
acetate buffer (pH 5.0). When guaiacol was used, the ab-
sorbance was monitored at 465 nm (¢ = 12 000 M~! cm™!);
when ABTS was the substrate, the absorbance was moni-
tored at 436 nm (e = 29 300 M~! cm™!). Aryl-alcohol oxi-
dase activity (AAO) also was assayed spectrophotometrically,
as the oxidation of veratryl (3,4-dimethoxybenzyl) alcohol
to veratraldehyde, monitored at 465 nm (¢ = 9300 M™!
cm!). The reaction mixtures contained 10 mM veratryl al-
cohol in 100 mM sodium phosphate, pH 6.0. One U of
enzyme activity is defined as the amount of enzyme releas-
ing 1 wmol.-min~! oxidized product at 25 C in both enzy-
matic determinations. The lignin and manganese peroxi-
dase activities were measured by the methods described in
Mansur et al (1997). Colorimetric determinations were per-
formed on a Shimadzu recording spectrophotometer (Mod-
el UV 160, Shimadzu, Kyoto, Japan). Each assay was done
in triplicate.

Glucose concentration determination.—The glucose concen-
trations were determined by the glucose oxidase method
(Lloyd and Whelan 1969).

Electrophoresis and isoelectric focusing.—SDS-PAGE was per-
formed by the method of Laemmli (1970), using 12% poly-
acrylamide gels. Myosin (202 kDa), B-galactosidase (116.3
kDa), phosphorylase b (97.4 kDa), bovine serum albumine
(66.0 kDa) and ovalbumin (45 kDa) (BioRad, Milan, Italy)
were used as standards. Gel staining was performed with
either a silver staining kit (BioRad, Milan, Italy), or using
first guaiacol and then ABTS at 1 mM and 10 mM respec-
tively, in 100 mM sodium acetate buffer (pH 5.0) (Niku-
Paavola et al 1990).

Analytical isoelectric focusing polyacrylamide gel electro-
phoresis (IEF) (Gorg et al 1980) was performed with a
mini-isoelectric focusing cell (Model 111, BioRad, Milan,
Italy) by loading 0.2 pg of protein in 5% polyacrylamide
gels containing 20% ampholytes (range 2.5-9.0) (BioRad,
Milan, Italy). The anode and cathode solutions were 0.04
M aspartic acid and 0.1 M NaOH, respectively. The laccase
isozymes were visualized by staining with 2 mM guaiacol in
0.1 M sodium acetate buffer (pH 5.0).

Purification of the extracellular activity of P. ostreatus strain
V-184—Supernatant (2 liters) from a 14-day-old culture
was clarified by filtration through 45 pum filters (Millipore
Corporation, Bedford, Massachusetts) and concentrated 10-
fold by ultrafiltration in a BIO 2000 hollow fiber cartridge
(BioFlow, Glasgow, United Kingdom) with a 10 kDa cut-off
membrane. Proteins in the samples were precipitated with
85% ammonium sulfate, dissolved in 5 mL of 10 mM ace-

400

200

Laccase Activity
AAO Activity

0 2 4 6 810121416
Time (days)

—O— Laccase (mU/mL)
—&— AAO (mU/mL)
—e—pH

FiG. 1. Laccase and aryl-alcohol oxidase (AAO) activities
produced by Pleurotus ostreatus strain V-184 in complete me-
dium. Laccase activity was measured using ABTS as sub-
strate. Note that enzymatic activities determinations were
calculated in mU/mL.

tate buffer (pH 5.0), and dialyzed for 12 h against the same
buffer (5 L). Crude enzyme samples (2 mL) were loaded
onto a column of DEAE-Biogel (BioRad, Milan, Italy), equil-
ibrated with 10 mM sodium acetate, pH 4.5. Proteins were
eluted with a linear gradient of 0-1 M NaCl in the same
buffer. The eluate was monitored for absorbance at 280 nm
and laccase activity. The fractions with enzymatic activity
were pooled, dialyzed against 10 mM sodium acetate, pH
4.5, and stored at —70 C.

Amino acid composition and sequence analysis—Amino acid
composition was determined with a Biotronik Photometer
autoanalyzer (Model BT 7025, Cambridge, United King-
dom), after hydrolysis of 10 g protein in 6 M HCI. The N-
terminal sequences of laccases LCC1 and LCC2 were deter-
mined by automated Edman degradation in an Applied Bio-
systems 477A (Foster City, California) pulsed-liquid protein
sequencer with 120A online phenylthiohydantoin analysis.

Statistics.—All experiments were performed two or more
times, and the measurements were highly reproducible.
The standard deviation in all the analytical assays was always
less than 10%.

RESULTS

Ligninolytic activities—Phenoloxidase and aryl-alco-
hol oxidase were the ligninolytic activities detected in
the supernatants when P. ostreatus strain V-184 was
grown in aerated cultures. Other ligninolytic activi-
ties, such as lignin and manganese peroxidases, were
not detected under these experimental conditions
(data not shown).

Aryl-alcohol oxidase activity was detected only
when the strain V-184 was grown in complete medi-
um under aeration. Maximal activity (100 mU/mL)
was reached after 12 d of growth (Fic. 1). Laccase
activity peaked on Day 5, reaching 310 mU/mL when
the fungus was grown in complete medium. This lev-
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Fic. 2. Different parameters monitored during a 15 d
growth of P. ostreatus strain V-184 in synthetic medium (pH
6.5).

A. Biomass estimated gravimetrically, and Laccase activity
(U/mL) measured using ABTS and Guaiacol as substrates.

B. Extracellular Proteins, Glucose and Biomass measured
during the experiment.

C. ABTS and Guaiacol Specific Activities (U/mg of total
protein).

el of enzyme activity fits with a pH value around 6
(F1G. 1). After 5 d of growth, a decrease in pH was
observed (from 6 at the beginning to 4 at the end of
the growth), which was paralleled by a 10-fold de-
crease in the laccase activity level (from 310 mU/mL
to 30 mU/mL; Fi1G. 1). This could indicate that lac-
case activity was related to the pH value of the culture
medium. To confirm this, we performed experiments
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F1G. 3. Native 12% polyacrilamide gel electrophoresis,
from samples of different days of growth using synthetic
medium. The same amount of total extracellular protein
was loaded in each lane. Staining was performed with 1 mM
Guaiacol in 100 mM sodium acetate buffer (pH 5.0).

in synthetic medium at two different pH, 4.5 and 6.5.
Laccase activity at pH 4.5 was low (data not shown).
However, at pH 6.5, laccase activity was higher than
those observed at pH 4.5, reaching 2.4 U/mL and
0.8 U/mL at the end of the experiments measured
with guaiacol and ABTS as substrates, respectively
(F1G. 2A).

Synthesis of laccases appeared to be constitutive
(Scheel et al 2000) because total activity increased
proportionally with the biomass production, mea-
sured as mycelial dry weight (FIG. 2A). The exponen-
tial growth extended from Day 2 to Day 14, which
was accompanied with increased laccase production
(F1G. 2A).

The extracellular protein concentration increased
in the same way as the laccase activity during growth,
mainly due to laccase production (FIG. 2B). This was
confirmed when specific activities were calculated,
reaching up to 180 and 300 U/mg of protein, with
ABTS and guaiacol, respectively (Fic. 2C). Glucose,
the only carbon source available to the culture, was
consumed during the exponential growth, from a
starting concentration of 10 mg/mL to 0.4-0.6 mg/
mL at the end of the incubation period (FIG. 2B).

Proteins in supernatants from different days were
analyzed by PAGE in native gels, which were stained
either with guaiacol or ABTS. Curiously, only when
the staining of the zymogram was performed with
guaiacol, could we detect two well-differentiated
bands, corresponding to two laccase isoforms. They
were called laccase 1 (LCC1), the band with higher
electrophoretic mobility, and laccase 2 (LCC2). The
same pattern of enzyme bands was detected during
the entire period of growth using synthetic medium,
although the intensity of the bands increased at the
end of the experiment (FIG. 3).
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F1G. 4. Laccase activity (U/mL) measured with ABTS
and Guaiacol from the two peaks detected when a linear
gradient 0-1 M of NaCl was applied to DEAE-Biogel col-
umn. Fractions (2 mL) were collected.

Purification and characterization of the laccases—
When the supernatant from a 14-day-old culture was
concentrated by ultrafiltration, followed by ammoni-
um sulphate precipitation, two bands corresponding
to new laccase isoforms were visible on a native elec-
trophoresis gel. These two new bands were detected
only when ABTS was used for the gel staining and
were named laccase 3 (LCC3), and laccase 4 (LCC4)
(F1G. 5A). When the total proteins were loaded on a
DEAE column, two peaks showing laccase activity
were eluted at 0.3 M and 0.6 M NaCl linear gradient
in a DEAE column (FiGc. 4). The fractions corre-
sponding to each peak, were analyzed spectropho-
tometrically either with ABTS or guaiacol. It is of in-
terest to note that the activity that eluted at 0.3 M
NaCl showed much higher reactivity for ABTS than
for guaiacol, whereas the second activity (eluted at
0.6 M NaCl) showed higher reactivity for guaiacol
than for ABTS (F1G. 4). These results were in agree-
ment with the enzymatic affinities observed when

samples corresponding to each peak were analyzed
in PAGE native gels (FIG. 5A).

Due to the strong binding of the laccase isoforms
to the DEAE bed matrix, only one chromatographic
step was necessary to purify each pair of enzymes to
near homogeneity. The laccases were purified ac-
cording to the procedure summarized in TABLE I. An
11.8-fold purification was achieved, with a final yield
of 20.4%. Analytical IEF native gels were performed
to further characterize the laccases present in the two
peaks eluted from the DEAE column (FIG. 5B).
When proteins were stained with guaiacol, two bands
corresponded to LCC3 and LCC4, with a plI value of
4.7 and 4.3, respectively (FIG. 5B, lane 2). In the case
of LCC1 and LCC2 (FI1G. 5B, lane 3), there was only
one very intense band with a pI of 3.0.

To estimate the monomeric molecular weight of
the four laccase isoforms, each band was eluted and
subjected to SDS-PAGE, the molecular weight of
LCC1 and LCC2 were estimated at 60 and 65 kDa
respectively (FIG. 5C), and 80 and 82 kDa for LCC3
and LCC4 (data not shown). Consequently, we con-
clude that, in our culture conditions using the syn-
thetic medium at pH 6.5, we could identify up to four
laccase isozymes with different mobility patterns in
native gel electrophoresis, due to their different pl
and molecular weights.

Finally, the purification procedure let us deter-
mine the N-terminal sequence of both LCC1 and
LCC2. Each isoenzyme showed the same amino acid
sequence, which when compared to other fungal lac-
cases exhibited a number of highly conserved amino
acids (TABLE II).

DISCUSSION

Laccase and other ligninolytic activities previously
have been reported to be related to the stationary
phase of growth in different fungi and that ligninol-
ytic activities often are triggered due to nutrient lim-

TABLE I. Purification of laccases from Pleurotus ostreatus strain V-184

Total Total Specific
extracellular laccase activity Purification
Purification step protein (mg) activity® (U) (U/mg) Yield (%) (fold)

Culture supernatant 34.3 5355 156.1 100 1
Ultrafiltration (10-kDa filter) 14.0 6730 480.7 125
(NH,),SO, precipitation 4.0 3035 758.8 57 5
DEAE-Biogel eluate

Ist peak 0.2 840 4200 15

2nd peak 0.4 290 725 54

Total 0.6 1130 1883 20.4 11.8

* Laccase activity was measured using ABTS as substrate.
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TABLE II.  Comparison of N-terminal amino acid sequences of the two laccase isoenzymes LCC1 and LCC2 from P. ostreatus

with those of other fungal laccases

Microorganism

N-terminal amino acid sequence

Pleurotus ostreatus LCC1 and LCC2
Pleurotus ostreatus laccase 1
Pleurotus ostreatus laccase 11
Pleurotus eryngii laccase 1
Pleurotus eryngii laccase 11
Agaricus bisporus laccase 1
Agaricus bisporus laccase 11
Schyzophyllum commune
Basidiomycete PM1 laccase
Phlebia radiata laccase
Coriolopsis gallica laccase
Trametes villosa laccase 1
Trametes villosa laccase 11
Trametes villosa lcc3

Trametes villosa lcc4

Trametes villosa lcc5

Trametes versicolor laccase I
Trametes versicolor laccase 11
Trametes versicolor lacclllc
Trametes sp. Lccll

Trametes sp. Laccase 11
Trametes sp. Laccase 11T
Trametes trogii

Ceriporiopsis subvermispora laccase
Pycnoporus cinnabarinus
Pycnoporus cinnabarinus lcc3-2

1 5 10 15
ATYXLLNVLI XLN- -
Al GPTGDMYI VNEDYV
Al GPAGNMYI VNEDYV
AXKKL-DFHI I NN- -
ATKKL-DFHI I NN- -
KTR- TFDFDLVNT- -
DTK- TFNFDLVNT- -
ALGPVGNLPI VNKEI
SI GPVADLTI SNGAYV
SI GPVTDFHI VNAAYV
SI GPVA- LTI SN- V-
GI GPVADLTI TNAAYV
Al GPVASLVVANAPYV
SI GPVTELDI VNKVI
Al GPVTDLTI SNGDYV
Al GPVTDLTI SNADYV
Al GPVASLVVANAPYV
GI GPVADLTI TNAAYV
GI GPVADLTI TNAEV
AVG- EADLTI TNAVYV
SI GPVADMTI SNAEV
AVGPVTDLTI SNANYV
Al GPVADLVI SNGAYV
Al GPVTDLEI TDAFYV
Al GPVADLTLTNAAYV
Al GPKADLVI SDAVYV

The data for P, ostreatus, P. eryngii, A. bisporus, S. commune, basidiomycete PM1, P. radiata, C. gallica, T villosa, T. versicolor,
Trametes sp., T. trogii, C. subvermispora, and P. cinnabarinus were obtained from Giardina et al. 1995, 1996; Munoz et al.
1997; Perry et al. 1993; Hatamoto et al. 1999; Coll et al. 1993; Saloheimo et al. 1991; Calvo et al. 1998; Yaver et al. 1996;
Yaver and Golightly 1996; Bourbonnais et al. 1995; Iimura et al. 1992; Mansur et al. 1997; Garzillo et al. 1998; Fukushima
and Kirk, 1995; Eggert et al. 1996; Temp et al. 1999, respectively. The X corresponds to indeterminations. Dashes indicate

gaps introduced to maximize alignment.

itation (Kirk and Farrell 1987, Higuchi 1990, Cullen
1997). Our results indicate that another mechanism
might govern the production of laccase activity dur-
ing the exponential growth phase, especially when
this activity appears to be closely correlated with bio-
mass production. The time course of laccase produc-
tion in synthetic medium at pH 6.5, showed signifi-
cant differences with respect to other laccases from
P. ostreatus (Palmieri et al 1997). The maximum lac-
case activity was reached later during the fungal
growth (FIG. 2A, Day 14) with respect to that of Pleu-
rotus ostreatus laccases (Palmieri et al 1997). This be-
havior suggests a different physiological role for these
enzymes in the two different Pleurotus species. It is
known that a low pH is preferable for ligninolytic
enzymes production (Kirk and Farrell 1987, Higuchi
1990, Cullen 1997). However, our results showed that
a low pH is detrimental for the production of active

laccase, perhaps due to their susceptibility to acidic
proteases.

In addition to laccases, P. ostreatus strain V-184 also
produces AAO activity (FIG. 1) in agreement with the
results obtained from P. eryngii (Guillén et al 1992).
In Pleurotus species, AAO appears to be constitutive
because it is produced in different growth phases and
culture conditions (Guillén et al 1992). The relation-
ship between AAO and laccase activities in strain V-
184 is still unknown. It is possible that other enzymes,
not detected in this assay, could act synergically with
AAO and laccase in the degradation of lignin.

Differences in the reactivity of laccases from either
the same or different species toward various sub-
strates have been observed (de Vries et al 1986, Ster-
jiades et al 1993) despite the highly conserved cata-
Iytic copper sites found in all known laccase sequenc-
es (Thurston 1994). This has been demonstrated
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F1G. 5. Biochemical characterization of different laccas-
es produced by a 15-day-old culture of P. ostreatus strain V-
184 in synthetic medium at pH 6.5.

here for laccases LCC1-LCC2 and LCC3-LLCC4, which
clearly show different substrate affinities (FiGs. 4,
5B). Determination of more laccase amino acid se-
quences will help to develop a better understanding
of the structure-function relationships that govern
substrate specificities and functions of laccases in dif-
ferent biological systems. The recent reports of two
new classes of laccases, named “white” (Palmieri et
al 1997) and “yellow” (Leontievsky et al 1997a, b),
let us say that much more complex mechanisms of
action may exist within the same laccase family of
enzymes, assuming that yellow laccase is formed as a
result of blue laccase modification by products of lig-
nin degradation.

Laccases from P. ostreatus strain V-184 were sepa-
rated into four isoforms, which show different elu-
tion properties and mobilities in SDS-PAGE, native
PAGE and native IEF. The four laccases exhibit sim-
ilar characteristics to those of known laccases from
other fungi. In fact, molecular mass, pI and N ter-
minus sequence lie well within the range determined
for other laccases (Thurston 1994). Because the N
terminus sequence from LCCI and LCC2 are iden-
tical and the molecular mass of LCC1 (60 kDa) is
smaller than that of LCC2 (65 kDa), they may differ
only in their glycosidation pattern. The identical se-
quences of the N termini let us also suggest that both
can be encoded by the same gene. However, the N
termini from LCCl and LCC2 differ greatly from
those of other fungal laccases (TABLE II). It is worth

—

A. Native 12% polyacrilamide gel electrophoresis of samples
from different purification steps.

1. Culture supernatant. 2. Concentrated ultrafiltrate. 3.
(NH,),SO, precipitate. 4. First peak eluted at 0.3 M NaCl
from the DEAE-Biogel (laccases LCC3 and LCC4). 5. Sec-
ond peak eluted at 0.6 M NaCl from the DEAE-Biogel, (lac-
cases LCCI and LCC2). The same amount of total extra-
cellular protein was loaded in each lane. The gel was
stained first with Guaiacol and then with ABTS (10 mM and
1 mM in 100 mM sodium acetate buffer pH 5.0, respective-
ly).

B. Native IEF from samples of the two peaks with laccase
activity eluted from the DEAE-Biogel column. 1. IEF stan-
dards. 2. Sample from the first eluted peak. 3. Sample from
the second eluted peak. The gel was stained only with guai-
acol (10 mM in 100 mM sodium acetate buffer pH 5.0).

C. Silver stained 12% polyacrilamide gel of laccases LCC1
and LCC2. LCCI and LCC2 eluted from polyacrilamide na-
tive gel, were loaded in lanes 1 and 2, respectively. Myosin
(202 kDa), B-galactosidase (116.3 kDa), phosphorylase b
(97.4 kDa), bovine serum albumine (66.0 kDa) and oval-
bumin (45 kDa) were used as standards.
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noting that the laccase isozymes among strains from
the same species (P. ostreatus) and P. eryngii, have
only three amino acids in common. Nevertheless, it
is interesting to point out the highly conserved hy-
drophobic amino acids in position 10 and the con-
served Asn in position 12 (TABLE II).

The characteristics of LCC1 and LCC2 of P. ostreatus
strain V-184 are typical among fungal laccases. Most of
them are monomeric proteins with molecular masses
between 50 and 80 kDa (Bollag and Leonowicz 1984,
Thurston 1994, Yaropolov et al 1994, Mayer and Sta-
ples 2002). Some exceptions include the laccases from
Agaricus bisporus (Wood 1980) and Trametes villosa
(Yaver and Golightly 1996), which present two sub-
units, and laccase I from Podospora anserina (Durrens
1981), which is composed of four subunits.

The results presented here for P. ostreatus strain V-
184 laccases are consistent with the hypothesis that
these phenoloxidases also have a wide range of sub-
strate specificity in vivo. Hydroxylation of lignin sub-
structures may represent a strategy to assist laccases
in the biodegradation of lignin in vivo. Moreover, the
possibility of converting recalcitrant molecules in ef-
ficiently degraded substrates could assist in optimiz-
ing the potential biotechnological applications of this
class of enzymes.
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