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Abstract In this chapter, a multi-layer decentralized model predictive control (ML-
DMPC) approach is proposed and designed for its application to large-scale net-
worked systems (LSNS). This approach is based on the periodic nature of the sys-
tem disturbance and the availability of both static and dynamic models of the LSNS.
Hence, the topology of the controller is structured in two layers. First, an upper
layer is in charge of achieving the global objectives from a set O of control objec-
tives given for the LSNS. This layer works with a sampling time ∆t1, correspond-
ing to the disturbances period. Second, a lower layer, with a sampling time ∆t2,
∆t1 >∆t2, is in charge of computing the references for the system actuators in or-
der to satisfy the local objectives from the set of control objectives O. A system
partitioning allows to establish a hierarchical flow of information between a set C
of controllers designed based on model predictive control (MPC). Therefore, the
whole proposed ML-DMPC strategy results in a centralized optimization problem
for considering the global control objectives, followed of a decentralized scheme
for reaching the local control objectives. The proposed approach is applied to a real
case study: the water transport network of Barcelona (Spain). Results obtained with
selected simulation scenarios show the effectiveness of the proposed ML-DMPC
strategy in terms of system modularity, reduced computational burden and, at the
same time, the admissible loss of performance with respect to a centralized MPC
(CMPC) strategy.
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30.1 Introduction

Large-scale networked systems (LSNS) are very common in the modern societies to
transport for example, water, electricity, gas, oil, among others. Thus, their optimal
management is a subject of increasing interest that due to its social, economic and
environmental impact. The leading control technique for the management of LSNS
is model predictive control (MPC) [1, 11]. The main reason for its success is due
to after obtaining the network dynamical model, the MPC design just consists in
expressing the performance specifications through different control objectives and
constraints on system variables (e.g., minima/maxima of selected process variables
and/or their rates of change), which are necessary to ensure process safety and asset
health. The rest of the MPC design is automatic and follows multiple approaches
reported in the literature; see, e.g., [2, 6], among many others.

Traditional MPC procedures assume that all available information is centralized.
In fact, a global dynamical model of the system must be available for control de-
sign. Moreover, all measurements must be collected in one location to estimate all
states and to compute all control actions. However, when considering LSNS, these
assumptions usually fail to hold, either because gathering all measurements in one
location is not feasible, or because the computational needs of a centralized strat-
egy are too demanding for a real-time implementation. This fact might lead to a
lack of scalability. Subsequently, a model change would require the re-tuning of the
centralized controller. Thus, the cost of setting up and maintaining the monolithic
solution of the control problem is prohibitive. A way of circumventing these issues
might be by looking into either decentralized or distributedMPC techniques, where
networked local MPC controllers are in charge of the control of part of the entire
system. Those techniques have became one of the hottest topics in control during
the early 21st century, opening the door to the research towards solving new open
issues and related problems of the strategy. Many works have been published in this
area; see, e.g., [4, 14, 15, 17], among others.

In order to apply either decentralized or distributed MPC approaches to LSNS,
there is a prior problem to be solved: the system decomposition into subsystems.
The importance of this issue has already been noticed in classic control books ad-
dressing the decentralized control of large-scale systems, see, e.g., [16] or [5]. The
decomposition of the system in subsystems could be carried out during the model-
ing of the process by identifying subsystems as parts of the system on the basis of
physical insight, intuition or experience. But, when a large-scale complex system
with many states, inputs and outputs is considered, it may be difficult, even impos-
sible, to obtain partitions by physical reasoning. A more appealing alternative is
to develop systematic methods, which can be used to decompose a given system by
extracting information from its structure, which is represented as a graph. Then, this
structural information can be analyzed by using methods coming from graph the-
ory. Consequently, the problem of system decomposition into subsystems leads to
the problem of graph partitioning, i.e., the decomposition of graph into subgraphs.
However, the development of graph partitioning algorithms within the framework
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of decentralized or distributed MPC is still very incipient and available methods are
currently quite limited.

In this chapter, a multi-layer decentralized MPC (ML-DMPC) approach is pro-
posed and designed for its application to LSNS. This approach is based on the as-
sumption that the disturbances affecting the system have a periodic behavior. More-
over, the approach is also based on the the availability of both static and dynamic
models of the LSNS. Hence, the optimization problem behind the controller is de-
fined to have two layers: the former or upper layer, working with a sampling time
∆t1 related to the period of the system disturbances, is in charge of achieving the
global objectives from a set O of control objectives to be fulfilled by the networked
system. The latter layer, also named the lower layer, with a sampling time ∆t2,
∆t1 > ∆t2, is in charge of computing the references for the system actuators in
order to satisfy the local objectives from the set of control objectives O. The sys-
tem partitioning allows to establish a hierarchical flow of information between the
set C of local MPC controllers. Therefore, the whole proposed ML-DMPC strat-
egy results in a centralized optimization problem for considering the global control
objectives, followed by a decentralized scheme for reaching the local control objec-
tives. The advantage of this hierarchical-like DMPC approach is the simplicity of its
implementation given the absence of negotiations among controllers. To apply the
proposed DMPC approach, the network is decomposed into subsystems by using a
novel automatic decomposition algorithm reported in [8], which is based on graph
partitioning. The proposed ML-DMPC approach is applied to a real case study: the
water transport network of Barcelona (Spain). Results obtained with selected simu-
lation scenarios show the effectiveness of the proposedML-DMPC strategy in terms
of system modularity, reduced computational burden and, at the same time, the ad-
missible loss of performance with respect to a centralized MPC (CMPC) strategy.

This chapter is structured as follows: Section 30.2 describes boundary conditions
on considered system, control objectives, and constraints. Section 30.3 describes
the ML-DMPC approach. Section 30.4 illustrates the proposed approach in the
aforementioned case study. Finally, conclusions and some directions for further
research are reported in Section 30.5.

30.2 Boundary Conditions

30.2.1 Control-oriented Modeling Framework

Before establishing the fundamentals of the control-oriented modeling framework
proposed in this chapter, the statement of the general framework for controlling a
LSNS is discussed. The control system architecture of a LSNS may be defined in
two levels as shown in Figure 30.1. The upper level consists in a supervisory con-
troller that is in charge of the global control of the networked system, establishing
references for regulatory controllers (of PID type) at the lower level. Regulatory
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Figure 30.1: Control architecture for a LSNS

controllers hide the non-linear behavior of the system to the supervisory controller.
This fact may allow the supervisory level to use a control-oriented model.

In a general way, a proper control-oriented model of a given system is defined
such that it captures its main behaviors, being as simple as possible in order to
save computational burden when such model is used for control design purposes.
This chapter considers the use of the control-oriented model with a model-based
optimization-based control strategy with constraints. This latter implies not only
dynamic and static equations in the mathematical expression of the behavior of the
system, but also inequality constraints may be added. In general, these inequalities
are associated to bounds in the operational ranges of the physical variables of the
system (inputs, states, and outputs). However, some of those inequality constraints
may also relate system variables between them together with system disturbances.

The framework of control-oriented modeling of LSNS that is proposed in this
chapter relies on the concept of flow between or through the constitutive elements
of the system. In this framework, the flow is understood in the sense of movement
of the raw material related to the use or function of the networked system. In order
to have a model structure where the flow concept has sense, it is necessary to define
a set of basic elements to be associated with the physical LSNS.

Storage Element: As its name indicates, this element represents the fact of stor-
ing the material/data flow, what implies a volume given in discrete time by the
difference equation

x(k+1) = x(k)+∆t (qin(k)−qout(k)), (30.1)

where x denotes the stored flow volume, qin and qout denote the net inflow and
outflow, respectively; ∆t is the considered sampling time and index k ∈ Z≥0

represents the discrete time instant. Notice that (30.1) adds the dynamic nature
to the control-oriented model of the whole LSNS. Moreover, this element is not
defined to store infinity quantity of flow, what implies a working regime bounded
by the storing constraints

xmin ≤ x(k)≤ xmax, ∀k, (30.2)
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where xmin and xmax are the minimum and maximum volume that the element is
able to store, respectively.

Node Element: This element, also called junction, corresponds to a point where
flows are either propagated or merged. Propagation means that the node has one
inflow and some outflows. Merging means that two or more inflows are merged
into a larger outflow. Thus, two types of nodes may be considered:

• Nodes with one inflow and multiple outputs (splitting nodes), i.e.,

qin(k) =
∑

i

qout,i(k). (30.3)

• Nodes with multiple inputs and one output (merging nodes), i.e.,

∑

j

qin, j(k) = qout(k). (30.4)

Mixed nodes can be described from the basic ones described above, i.e., com-
plex nodes with several inflows and outflows may be defined. Notice that this
element would add static relations to the control-oriented model of the whole
LSNS. However, some LSNS do not show the behavior modeled by nodes, hence
static relations are not always present in the control-oriented model.

Flow source: This element provides the raw material that flows through the net-
work. It may be considered either:

• as an exogenous inflow to the networked system. In that case, constraints such
as

qmin,Λi
≤ qΛi

(k)≤ qmax,Λi
(30.5)

might be considered, where qΛi
denotes the inflow from the i-th source;

qmin,Λi
and qmax,Λi

correspond to minimum and maximum inflow, respec-
tively. For simplicity and compactness of the control-oriented model, con-
straints in (30.5) are associated to flow handling elements (described below)
directly connected to sources;

• or as an external storage element, what implies an expression for its volume
xΛ(k) such as in (30.1), with the associated constraint such as in (30.2).

Sink: In this framework, a sink is the element where the flow goes to. From a
general point of view, sinks are related to the measured disturbances of the system
since they ask for flow according to a given profile. The networked system should
be managed in such a way that those elements receive the flow they request.

Link: This element, also called arc, represents the general way of connecting two
elements which share a flow, e.g., a source with a node, an storage element with
a sink, etc. The flow through these elements can be constrained by the range

qmin ≤ q(k)≤ qmax, ∀k, (30.6)
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where qmin and qmax are the minimum and maximum flow through a link, respec-
tively.

Flow Handling Element: In this framework, this element manipulates flow ei-
ther between storage elements or between a storage element and a node, and
viceversa. Hence, flow handling elements are links where the flow is manipu-
lated. Handling elements between storage elements and sinks as well as between
nodes and sinks are not considered since the flow handled has to be equal to the
flow requested from the sink and, therefore, there is no place for different op-
tions. Notice that the flow through these elements is also constrained following
(30.6).

Remark 30.1. Regarding storage elements, when their outflow is not manipulated,
its expression corresponds with

qout(k) = h(x(k)), (30.7)

where h should be determined according to the nature of the particular case study.
Notice that this relation can be made more accurate (but also more complex) if h
is considered to be nonlinear, thus yielding nonlinear constrained control-oriented
model. This latter can be seen considering (30.7) and rewriting the right-hand side
of (30.6) as

q(k)≤min{qmax,h(x(k))}, ∀k. (30.8)

Moreover, in the scenario where xmin 6= 0 and the outflow of the storage element is
manipulated, the left-hand side of (30.6) should be rewritten as

min{qmin,h(x(k))} ≤ q(k), ∀k, (30.9)

which also implies a non-convex constraint within the control-orientedmodel of the
LSNS. ♦

Consider a given LSNS being represented as the interconnection of nx storage
elements, nu flow handling elements, nd sinks and nq intersection nodes. The nα
sources are considered as inflows. Stating the volume in storage elements as the
state variable and the flow through handling elements as the manipulated inputs,
an LSNS may be generally described in state-space form by the following linear
discrete-time dynamic model:

x(k+1) = Ax(k)+ΓΓΓυυυ(k), (30.10a)

0 = Exx(k)+Eυυυυ(k), (30.10b)

where x ∈ R
nx corresponds to the state vector (stored volumes),ΓΓΓ , [B Bp], and

υυυ(k) := [u(k)T d(k)T]T. In turn, u ∈ R
nu is the vector of control inputs (manipu-

lated flows), and d ∈R
nd corresponds to the vector of measured disturbances (flows

to sinks). Moreover, A ∈ R
nx×nx , B ∈ R

nx×nu , Bp ∈ R
nx×nd , are state-space system

matrices for mass flow balances in storage elements (30.10a), and Ex ∈ R
nq×nx and

Eυ ∈R
nq×(nu+nd) are matrices for static flow balances in nodes (30.10b). All vectors
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and matrices are dictated by the network topology. Notice that Ex = 0 when out-
flows from storage elements are manipulated. In general, states and control inputs
are subject to constraints of the form

xmin ≤ x(k)≤ xmax, ∀k, (30.11a)

umin ≤ u(k)≤ umax, ∀k, (30.11b)

where xmin ∈R
nx and xmax ∈R

nx denote the vectors of minimum and maximum vol-
umes, respectively, while umin ∈R

nu and umax ∈R
nu denote the vectors of minimum

and maximum flows through flow handling elements, respectively.

Remark 30.2. Notice that manipulated flows may be defined as bidirectional flows.
This means that minimum flows of these manipulated links may be negative. In
order to cope with this situation, a bidirectional link can be replaced with two sepa-
rate unidirectional links with null minimum flow, associated with each direction of
the original link. Although this approach simplifies the control setup, it might add
complexity to the optimization problem related to the optimization-based controller
since the number of optimization variables gets higher. ♦

30.2.2 Model Decomposition

Once the control-oriented model is stated, it is important to determine the objective
of performing the partition of the networked system no matter what control strategy
is followed. In this aspect, the availability of centralized information is fundamen-
tal. When all the information about the whole set of system variables is available,
the partitioning gains sense from the point of view of modularity of the control ar-
chitecture and the reduction of computational burden. However, when this global
information is not fully available, a control topology based on the partition of the
system should be designed given the physical dispersion the LSNS might show.

Consider again an LSNS formed by the interconnection of several elements from
those proposed beforehand. The way they are interconnected is a key factor for
performing the partitioning since it determines the type of variables the resultant
subsystems would share. Thus, if for instance the outflow for an storage element
from a subsystem Sa is not manipulated and the corresponding flow is just the inflow
of a subsystem Sb, then the shared variable corresponds to a system state. Otherwise,
it would be a control input.

This chapter considers the partitioning algorithm proposed in [8]. This algo-
rithm, based on graph partitioning, aims at decomposing (30.10) into subsystems.
In order to do so, the graph representation of (30.10) is determined by using the
system topology, what yields its incidence matrix IM. This matrix describes the
connections (edges) between the graph vertices (here represented by storage ele-
ments, sources, sinks, and nodes). Once IM is obtained from the system digraph,
the problem of the decomposition into subsystems is formulated in terms of parti-
tioning the corresponding graph into subgraphs such that all subgraphs have nearly
the same number of vertices and there exist few connections between subgraphs.
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These features, motivated by the posterior design of a decentralized/distributed con-
trol strategy, guarantee that the obtained subgraphs have a similar size, fact that
balances computations between the controllers and allows minimizing communica-
tions/interactions between them.

Thus, the overall system (30.10) is assumed to be decomposed in M , |N | sub-
systems collected in the set N , which are not overlapped, output decentralized and
input coupled (therefore, Ex = 0). The model of the i-th subsystem is stated below
for i ∈ {1, . . . ,M} as

xi(k+1) = Aixi(k)+ΓΓΓiυυυi(k)+Bsh,iµµµi(k), (30.12a)

0 = Eυ,iυυυi(k)+Esh,iµµµi(k), (30.12b)

where xi ∈ R
nxi and υυυi ∈ R

nui+ndi are the local states and inputs of the subsystem
Si, respectively, and µµµi ∈ R

nµi is the vector of shared inputs between Si and other
subsystems. Moreover,Bsh,i and Esh,i are matrices whose dimensions depend on the
number of shared inputs of Si. The decomposition should assure that

∑

i nxi = nx,
∑

i nui = nu,
∑

i ndi = nd and
∑

i nqi = nq. Matrices Ai, ΓΓΓi, Eυ,i, are dictated by each
subsystem topology. In the same way, the previously defined overall constraints
(30.11) are partitioned for each i-th subsystem as

xmin,i ≤ xi(k)≤ xmax,i, ∀k, (30.13a)

umin,i ≤ ui(k)≤ umax,i, ∀k. (30.13b)

Moreover, it may occur that the nα flow sources of the LSNS determine the
amount of M since the sinks (and therefore storage elements and nodes) related to
each subsystem S j, j ∈ {1, . . . ,nα} are only supplied by a unique source. Therefore,
this topological dependency determines subsystems around a flow source, resulting
to be a natural criterion for performing system decomposition. Thus, as seen in
Figure 30.2, the initial LSNS might be decomposed in two stages. In the first stage,
subsystems tied with flow sources are determined. From now on, these subsystems
are called anchored subsystems (AS). It can be seen that there will be as many
anchored subsystems as number of sources in the network. Remaining elements
are associated in a resultant subsystem namely S̃, where storage elements might
be fed from two or more flow sources. In the second stage, subsystems S̃ is now
decomposed by following the algorithm proposed in [8]. Notice that, at this point,
the shared connections of S̃ that correspond to inflows, my be considered as pseudo-
sources of S̃. Therefore, depending on the management/control objectives related
to the LSNS, it is possible to add some additional criteria to each AS outflow (or S̃
inflow). These criteria can be associated to a weighting factor ω, which is related to
each pseudo-source of S̃ and would be determined within the design of the control
strategy for the LSNS (see Section 30.3 below). Notice that a second set of pesudo-
sources would appear after performing the decomposition of S̃, but their treatment
can follow the same procedure considered for the first set of pseudo-sources.
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Figure 30.2: Scheme of LSBS partitioning (nα = 3)

30.2.3 MPC Problem Formulation

From the LSNSmodel in (30.10), let u(k : k+Np−1) be the sequence of control input
over a fixed-time prediction horizon Np. Hence, the following problem is proposed.

Problem 30.1. An MPC controller design is based on the solution of the open-loop
multi-objective optimization problem (OOP)

min
u∗(k:k+Np−1)

J(k),
|O|
∑

m=1

γmJm(u(k : k+Np −1),x(k+1 : k+Np)), (30.14a)

subject to system model (30.10), system constraints (30.11) over Np, and a set of
nc operative constraints given by management policies of the system and condensed
on the form

G1x(k+1 : k+Np)+G2υυυ(k : k+Np −1)≤ g, (30.14b)

where J(·) : Rnu(Np−1)×nxNp 7→ R in (30.14a) is the cost function collecting all con-
trol objectives of the set O and γm are positive scalar weights to prioritize the m-th
control objectiveOm ∈O, particularly represented by Jm within the whole cost func-
tion. Moreover,G1 ∈ R

nc×nxNp , G2 , [G2,u G2,d] ∈ R
nc×{nu(Np−1)+nd(Np−1)}, and

g ∈ R
ncNp . �

Assuming that Problem 30.1 is feasible, i.e., there is an optimal solution given by
the sequence of control inputs u∗(k : k +Np − 1) 6= ∅, and then the receding horizon
philosophy sets

uMPC(x(k)), u∗(k), (30.15)

and disregards the computed inputs from k+1 to k+Np −1, with the whole process
repeated at the next time instant k ∈ Z≥0. Expression (30.15) is known in the MPC
literature as the MPC law [6].

Besides, the decomposition of the original problem leads to design an MPC con-
troller Ci ∈ C, with i = {1, . . . ,M}, for each of the M subsystems. This fact also
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leads to split the cost function (30.14a). Therefore, each subsystem considers the
local cost function

Ji(k) =
|O|
∑

m=1

γm,iJm,i(ui(k : k+Np −1),xi(k+1 : k+Np)), (30.16)

where m = {1, . . . , |O|}, and γm,i are scalar weights that prioritize local objectives
within each subsystem. In the same way, operational constraints may be properly
split along the subsystems and expressed as

G1,ixi(k+1 : k+Np)+G2,iυυυi(k : k+Np −1)≤ gi. (30.17)

30.3 Description of the Approach

30.3.1 Preliminary Assumptions

Once the control-oriented model is obtained and decomposed into subsystems, the
natural step forward consists in designing the decentralized control strategy consid-
ering the given management policies and constraints. Before getting through the
proposed methodology for designing such controllers based on predictive control,
the following assumptions regarding the LSNS and its management are stated.

Assumption 30.1 All sinks can be supplied by at least one flow source through at

least one flow path1.

Assumption 30.2 All sinks show a periodic flow request, whose period is T =∆t1.

Assumption 30.3 The set O of control objectives is defined as

O =Ol ∪Og, (30.18)

where Ol corresponds with the set of local control objectives andOg with the set of

global control objectives. Moreover, ml , |Ol |, mg , |Og|, and hence ml +mg = |O|.

Assumption 30.3 introduces the diversity on the nature of the control objectives
of the LSNS. This fact determines the way the decentralized controller is designed
since the fulfillment of a global objective from a local point of view should imply
information from all the LSNS, fact that is avoided when the system partitioning is
performed. Therefore, it is necessary to figure out how to transform the formulation
of a global objective in a centralized control scheme towards the statement of a set of
decentralized controllers C considering all the control objectives in O in a suitable
way.

1 A flow path is formed by a finite set of links, which may connect sources, nodes, sinks, and
storage elements.
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First of all, in order to develop this idea, the cost function related to the central-
ized MPC (CMPC) in Problem 30.1 can be rewritten as

J(k) =

mg
∑

j=1

γ jJ j(u(k : k+Np −1),x(k+1 : k+Np))

+

ml
∑

m=1

γmJm(u(k : k+Np −1),x(k+1 : k+Np)). (30.19)

The approach proposed in this chapter consists in designing a decentralized MPC
scheme, where each controller Ci ⊂ C considers a newer version of (30.16) taking
into account the structure of (30.19). Hence, the cost function related to each Ci is
written as

Ji(k) =

mg
∑

j=1

γ̂ j,iĴ j,i(ui(k : k+Np −1),xi(k+1 : k+Np))

+

ml
∑

m=1

γm,iJm,i(ui(k : k+Np −1),xi(k+1 : k+Np)), (30.20)

where Ĵ j,i(·) corresponds to the j-th global control objective properly expressed in
order to reflect its influence in the local controller. Moreover, γ̂ j,i is a weight that
prioritizes the global objectives that must be filled within the optimization problem.

Thus, the design of the entire control topology gives rise to a twofold optimiza-
tion problem behind the general MPC topology. This twofold problem consists of
two layers operating at different time scales: an upper layer works with a sampling
time∆t1, corresponding to the disturbance period. This layer is in charge of achiev-
ing the global objectives from a set O of control objectives given for the networked
system. On the other hand, a lower layer, with a sampling time ∆t2, ∆t1 >∆t2, is
in charge of computing the references for the system actuators in order to satisfy the
local objectives from the set of control objectivesO.

30.3.2 Upper Optimization Layer

This layer is designed to take into account the global control objectives in a proper
way, i.e., considering information of the entire system in order to fulfill them. This
layer is in charge of computingweights ω related to pseudo-sources and discussed in
Section 30.2.2 (see Figure 30.2). These weights ω will determine the prioritization
weights γ̂ j,i in (30.20) for the controller design at each subsystem Si. Therefore,
to compute the set of ω, a CMPC problem is stated by considering: (i) a static
model of the whole LSNS, and (ii) a cost function that only takes into account
the global control objectives associated to the system. Regarding the system static
model, the upper optimization layer works with a sampling time∆t1, corresponding
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to the periodicity in the flow requested by sinks. Thus, when looking at the volume
evolution of storage elements, they show the parallel behavior as the flow to the
sinks, i.e., volumes also show a periodic behavior with period∆t1. For this reason,
whenmodeling the network at sampling time∆t1, it can be assumed that volumes do
not change, i.e., the dynamics of storage elements (30.1) are modified considering
x(k+1) = x(k). Hence, storage elements behave as nodes and the network dynamic
model (30.1) becomes a static model (set of algebraic equations). Having this model
and the functional

Jup(k) =

mg
∑

j=1

γ jJ j(u(k : k+Np −1),x(k+1 : k+Np)), (30.21)

Problem 30.1 is properly formulated in order to obtain the desired weights ω and,
indeed, any weight for any arc of any path within the LSNS. To mathematically
and systematically find all flow paths in an LSNS, its structure is used by means of
node-arc incidence matrices, which represent both the flow balances and the graph
structure [3].

30.3.3 Lower Optimization Layer

Having a decentralized predictive controllerCi ∈ C for each subsystem Si ∈ N with
a cost function as in (30.20), the shared inputs for all subsystems in N are writ-
ten as µµµi j, whose directionality is defined from Si to S j, i 6= j. Additionally, µµµi j

not only contain values of each component at time step k but also all values over
Np

2. The fact of having available this complementary information of the shared
variables allows to use predicted values of manipulated flows instead of starting a
negotiation procedure between subsystems in order to find their value (following
the distributed control philosophy). Besides, the implementation of the hierarchical
DMPC approach requires that subsystem models are modified to coordinate with
other subsystems. To introduce such modification, the following concept is intro-
duced.

Definition 30.1 (Virtual sink). Consider two subsystems S1 and S2, which share a
set of manipulated flows µµµ12. According to the notation employed here, those flows
go from S1 to S2. If the solution sequence of optimization subproblems — defined
by the pre-established hierarchical order — determines that µµµ12 is computed byC1,
then flows in µµµ12 are considered as virtual sinks in C2 since their values are now
imposed in the same way as the flow to sinks. �

The pure hierarchical control scheme determines a sequence of information prop-
agation among the subsystems, where top-down communication is available from
upper to lower level of the hierarchy (see [16]). Note that, despite the subsystem

2 This chapter considers Nu = Np, where Nu denotes the control horizon. In the case that Nu < Np,
it is still necessary to know the values for shared variables from Nu until Np, no matter the way
they are considered (e.g., keeping constant their value at time instant Nu, make them null, etc.).
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Algorithm 30.1ML-DMPC Approach

1: k=0
2: loop
3: set x(k)
4: (ω, γ̃) ⇐ solve Problem 1 with (30.21)
5: while k

∆t1
/∈ Z

6: uMPC,i ⇐ solve Problem 1 with (30.20) and using ω, γ̃
7: end loop

8: end loop

coupling (given by the shared links), the main feature of the pure hierarchical con-
trol approach relies on the unidirectionality of the information flow between con-
trollers. However, it may happen that some shared links have defined their flow
direction such as bottom-up communications within the hierarchy, which breaks the
mentioned unidirectional flow between DMPC controllers. This fact implies that
the standard hierarchical control scheme for partitioned LSNS cannot be straight
applied. To solve this situation and to design a DMPC strategy, a hierarchical-like
DMPC approach, proposed by [7], has been considered and conveniently imple-
mented over the partitioned system. This strategy follows the hierarchical control
philosophy and the sequential way of solving the optimization subproblems of the
correspondingMPC controllers but also considering the appearance of bidirectional
information flows.

The hierarchy defined by the approach of [7] implies that the controller Ci will
be allocated in a different level according to the flow request of its corresponding
subsystem Si. Considering the simple topology in Figure 30.2, this fact means that
the controllerCS̃ will be at the top of the hierarchy, while controllersCa,Cb, andCc

will share the bottom level. All controllers work with a sampling time ∆t2 and the
computational time spend by the scheme corresponds with the sum of maximum
times of each hierarchical level of controllers (e.g., τtotal = τC

S̃
+max(τCa , τCb

, τCc )
for the scheme in Figure 30.2, where τ denotes the computational time). Special
considerations should be done for the treatment of bidirectional shared flows [7, 9].

30.3.4 Interaction of Layers

The sharing of information between layers depends on the nature and features of
each application. In general, the computational time that the upper layer spends
is quite low with respect to the computational time of the lower layer. This fact
is due to the difference in the nature of the models handled by each layer and the
interactions given by the DMPC controllers as well as their amount and disposition
within the defined hierarchy. Once the optimization problem related to the upper
layer is solved, the resultant parameters are properly updated for each optimization
problem behind each Ci ∈ C. This updating is performed with a periodicity ∆t1.
Algorithm 30.1 collects the main steps of the proposed ML-DMPC approach.
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30.4 Application Results

30.4.1 Case-study Description

The approach presented in this work is assessed with a case study of a real large-
scale system, specifically the Barcelona drinking water network (DWN). This net-
work supplies potable water to the Metropolitan Area of Barcelona (Catalunya,
Spain). In general the water network operates as a pull interconnected system driven
by endogenous and exogenous flow demands; different hydraulic elements are used
to collect, store, distribute and serve drinking water to the associated population.
For further details about this network, the reader is refered to [10].

30.4.1.1 System Management Criteria

The operational goals in the management of the Barcelona DWN have been pro-
vided by AGBAR due their knowledge of the system. These policies are of three
kinds: economic, safety, smoothness, and are respectively stated as follows:

1. To provide a reliable water supply in the most economic way, minimizing water
production and transport costs,

2. To guarantee the availability of enough water in each reservoir to satisfy its un-
derlying demand, keeping a safety stock to face uncertainties and avoid stock-
outs.

3. To operate the transport network under smooth control actions.

These objectives are assessed by minimizing the following performance indices 3:

JE (k), |(ααα1 +ααα2(k))
Tu(k)|, (30.22a)

JS(k), ‖xixixi(k)‖2, (30.22b)

JU (k), ‖∆u(k)‖2, (30.22c)

where JE ∈ R≥0 represents the economic cost of network operation taking into ac-
count water production cost ααα1 ∈ R

nu and water pumping cost ααα2 ∈ R
nu which

change every time instant k according to the variable electric tariff; JS ∈ R≥0 is a
performance index which penalizes the amount of volume xixixi ,min{0,x−xs} ∈R

nx

that goes down from xs, a predefined safety volume threshold; JU ∈ R≥0 repre-
sents the penalization of control signal variations∆u(k) , u(k)−u(k −1) to extend
actuator life and assure a smooth operation; and ‖ · ‖ is the Euclidean norm, i.e.,
‖z‖ =

√
zTz. More details about the management criteria of this case study can be

found in [10].

3 The performance indices considered in this work may vary or generalized with the corresponding
manipulation to include other control objectives.
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30.4.1.2 Control-orientedModelling

Consider a DWN being represented as the interconnection of nx tanks, nu actua-
tors (pumps and valves), nd sectored demands and nq intersection nodes; according
to Section 30.2.1, this system can be generally described in state-space form by
(30.10), where x ∈ R

nx is the state vector of water stock volumes in m3, u ∈ R
nu

is the vector of manipulated flows in m3/s, and d ∈ R
nd corresponds to the vec-

tor of disturbances (sectored water demands) in m3/s. In the particular case of the
Barcelona DWN, the outflows from storage elements are manipulated, hence, Ex = 0
in (30.10b).

The states and control inputs are subject to (30.11); this polytopic hard con-
straints are due to the physical limits in tanks (minimum and maximum volume
capacities) and the operational limits in actuators (minimum and maximum flow ca-
pacities). For safety and service reliability, in the Barcelona DWN states are also
subject to soft constraints

x(k)≥ xs(k)−xixixi(k)≥ 0, ∀k, (30.23)

where xs ∈R
nx is a vector of safety volume thresholds in m3, estimated empirically,

above which is desired to keep the reservoirs to avoid stock-outs, and xixixi ∈R
nx repre-

sents the amount of volume in m3 that goes down from the desired safety thresholds.
The Barcelona DWNmodel contains a total amount of 63 tanks and 114 manipu-

lated actuators. Moreover, the network has 88 demand sectors and 17 pipes intersec-
tion nodes. Both the demand episodes and the network calibration/simulation set-up
are provided by AGBAR. See the aforementioned references for further details of
DWN modeling and specific insights related to this case study.

30.4.2 ML-DMPC Setup

This section presents the results of applying the proposed ML-DMPC approach to
the partitioned model of the Barcelona DWN developed in [9]. Thus, the overall
system is assumed to be composed of six subsystems which are non-overlapped,
output-decentralized and input-coupled (see Figure 30.3). The model of each sub-
system is obtained for i ∈ {1, . . . ,6} following Section 30.2.2 and expressed by
(30.12). In the same way, the hard constraints of the overall DWN are partitioned
and expressed by (30.13), while for each i-th subsystem the safety constraints are
expressed by

xi(k)≥ xs,i(k)−xixixii(k)≥ 0, ∀k. (30.24)

The decomposition of the original problem also leads to split the cost function.
Therefore, each subsystem will be solving, at each time step, the following local
multi-objective optimization problem:

J∗i (k), min
u∗
i
(k:k+Np−1)

ρi
(

γ1JE,i +γ2JS,i +γ3JU,i

)

, (30.25)
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Figure 30.3: Partition of the Barcelona DWN

where JE,i ,
∑Nc−1

l=0 (ααα1,i +ααα2,i(k + l))ui(k + l) is the economic objective, JS,i ,
∑Np

l=1 ‖xixixii(k + l)‖2 is the safety objective, JU,i ,
∑Nc−1

l=0 ‖∆ui(k + l)‖2 is the smooth-
ness objective, Np, Nc ∈ Z≥0 are the prediction and control horizon respectively, ρi
is a positive scalar weight to prioritize subsystems, γ1, γ2, and γ3 are positive scalar
weights to prioritize each objective in the aggregate local cost function, l is the time
step within the receding horizon, and ui, xixixii and ∆ui are the i-th subsystem local
variables previously defined. It can be noticed in Figure 30.4, in a more compact
way, the resulting subsystems and the important couplings between them including
their direction. Instead of neglecting the effect of this shared links as classic pure de-
centralized control schemes do, the multi-layer hierarchical coordination described
in Section 30.3 is applied here.

The results obtained by applying the ML-DMPC are contrasted with those of
applying a CMPC approach and a non multi-layer DMPC strategy proposed in [9].
For this case study, the optimization scheme follows Section 30.3, resulting in a
bi-layer problem which is set up as follows:

• First, the upper layerworks with a daily time scale and it is in charge of achieving
the optimal water source selection. This layer, named Daily Centralized Control
is a centralized optimization problem with time step∆t = 24h, which minimizes
the cost function (30.22a) subject to a daily model of the DWN represented by
x(k + 1) = x(k), due to the periodic behavior of states at this time layer, and to
constraints (30.11) and (30.23). The objective of this upper layer is to determine
and fix in an appropriate way the unitary costs of the critical shared variables that
act as sources in the partitioned model, in order to enforce the global economic
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Figure 30.4: Network subsystems Si and their sets of shared connections µµµi j

objective by sequentially coordinating subsystems, allowing them to solve their
own problems and achieving the solution of the original system.

• Second, the lower layer works with an hourly time scale to cope with the DMPC
of the original problem. This layer, named Hourly Decentralized MPC Con-

trol follows the hierarchical coordination scheme proposed in Section 30.3 to
perform the minimization of the local cost functions (30.25) subject to (30.12),
(30.13), and (30.24), in order to obtain the control policies to operate the DWN
and achieve the desired performance. In this hourly layer, following the crite-
rion of the DWN management company, each local MPC controller works with
common prediction and control horizons Np = Nc = 24h. The weights of the cost
function (30.25) are ρ1:6 = 1, γ1 = 100, γ2 = 10 and γ3 = 0.005. See [9] for details
on the hierarchical DMPC solution sequence.

The results are obtained for 72 hours (July 24-26, 2007). Simulations have been
carried out using Matlab R© 7.1 (R14SP3). The computer used to run the simula-
tions is a PC Intel R© Core

TM
2 running at 2.4GHz with 4GB of RAM. The tuning

of design parameters has been done in a way that the highest priority objective is
the economic cost, which should be minimized while maintaining adequate layers
of safety volume and control action smoothness. In order to implement the ML-
DMPC approach, the demand forecasting algorithms presented in [10, 13] are used
to calculate the disturbance vector involved in each control problem. For more de-
tails about the twofold-layer optimization problem applied to the Barcelona DWN,
the reader is referred to [12].

30.4.3 Main Results

The results of the CMPC, DMPC andML-DMPC strategies applied to the Barcelona
DWN are summarized in Table 30.1 in terms of computational burden and of eco-
nomic cost as a globalmanagement performance indicator. For eachMPC approach,
the computation time (in seconds) and the water, electric and total cost in economic
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Table 30.1: Performance comparisons

INDEX CMPC DMPC ML-DMPC

Water Cost 93.01 205.55 97.11

Electric Cost 90.31 34.58 87.53

Total Cost 183.33 240.13 184.65

CPU time 1143 537 540

units (e.u.), is detailed. It can be noticed that an increment of nearly 30% of the
total costs of operation occurs when using the non multi-layer hierarchical DMPC
strategy with respect to the CMPC baseline. Despite the lower electric costs, the
loss of performance in the overall cost is due to the specialized behavior of local
MPC controllers to solve their own optimization problems without knowing the real
water supply cost of using shared resources with the neighbors. In contrast, the ML-
DMPC outperforms the DMPC results by including the bi-layer optimization which
allows to propagate the water cost of sources related with neighbor subsystems to
the shared links thanks to the daily centralized control layer. With this ML-DMPC
approach the level of sub-optimality is very low comparing with the CMPC strat-
egy, i.e., total costs are very similar, but the computational burden is reduced. For
this particular application, the computation time of the three approaches is able to
satisfy the real-time constraint since the control sampling time is 1h. Thus, the
main motivation for using ML-DMPC is the scalability and easy adaptability of the
sub-models if network changes, as well as the modularity of the control policy that
leads to face some malfunction/fault without stopping the overall supervisory MPC
strategy.

Due the difference of price between water sources and the impact of electric costs
on the overall economic performance, the CMPC and ML-DMPC strategies decide
to use more water from the Llobregat source despite the consequent pumping of
more water through the network (see Figures 30.6), but achieving a lower total cost,
while the hierarchical DMPC decides to exploit in each subsystem their own water
source (which could be expensive) and minimize the pumping operation cost. Fig-
ure 30.5 shows in detail the evolution of water cost and electric cost, respectively.
These results confirm the improvement obtained by including an upper layer opti-
mization to coordinate the local MPCs and face the lack of communication when
solving their problems in a tractable way.

30.5 Conclusions and Future Research

This paper has proposed a multi-layer DMPC approach for large-scale networked
systems. The upper layer, working with a larger time scale, is in charge of achiev-
ing the global control (in general related to an optimal economic cost). On the other
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Figure 30.5: Economic costs of the three MPC strategies
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Figure 30.6: Total flow per water source in the Barcelona DWN

hand, the lower layer is in charge of determining the set-point of the actuators to sat-
isfy the local management/control objectives. The system decomposition is based
on graph partitioning theory. Results obtained on selected simulation scenarios has
shown the effectiveness of the control strategy in terms of system modularity, re-
duced computational burden and, at the same time, the reduced loss of performance
in contrast to a CMPC strategy and a hierarchical-like DMPC strategy previously
presented by the authors. Future work is focused on the formalization of the pro-
posed approach in terms of feasibility, robustness and stability.
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