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Crossover from bulk to few-electron limit in ultrasmall metallic grains
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We study the properties of ultrasmall metallic grains with sizes in the range 20—-400 electrons. Using a
particle-hole version of the density-matrix renormalization-grdDMRG) method we compute condensation
energies, spectroscopic gaps, pairing parameters, and particle-hole probabilities of the ground-state wave
function. The results presented in this paper confirm that the bulk superconducting (&gigeegraing and
the fluctuation dominated regingemall graing are qualitatively different, but show that the crossover between
them is very smooth with no signs of critical level spacings separating them. We compare our DMRG results
with the exact ones obtained with the Richardson solution finding complete agreement. We also propose a
simplified version of the DMRG wave function, called the particle-hole B®Satz which agrees qualitatively
with the DMRG solution and illustrates what is lacking in the projected BEBCS wave function in order
to describe correctly the crossover. Finally we present a recursive method to compute norms and expectation
values with the PBCS wave function.

[. INTRODUCTION numerical methods where no assumption is made on the na-
ture of the ground state. The authors of Ref. 12 have studied
A fundamental question posed in 1959 by Anderson issystems of up to 25 electrons with the Lanczos method
“at what size of particles and what degree of scattering willShowing the importance of the logarithmic corrections in the
superconductivity actually ceasé.Me argued that when the SuPerconducting gaps proposed in Ref. 19 using a perturba-
average level spacing is of the order of the BCS gap tive renormalization-group method. However, exact diago-

L : X 4 nalization techniques cannot handle large systems where the
supe.rconduptlwty must disappear. This old guestion Warossover between the few-electron and the bulk supercon-
considered in the past by several autfdrand has been

. . . ducting regime is taking place for the actual value of the
recently revived due to the experiments with ultrasmall Al g reg gp

_ , BCS coupling constant, which for the Al grains is given
4
grains performed by Ralph, Black, and ThinkhdRBT)."  on5royimately byx ~0.22411 Another alternative is to use

The experiments show the existence of a spectroscopic 93Re density-matrix renormalization-grodPMRG) method®
which can be driven to zero by application of magnetic\yhich allows us to study large systems with very high accu-
fields. RBT also found a parity effect meaning that the magyacy. This approach was initiated by the authors in Ref. 21,
nitude of the spectroscopic gap is larger for grains with arpptaining results which agree with those of the Lanczos
even number of electrons than for odd ones. method for small systems while improving the PBCS results
From a theoretical point of view Anderson’s question isfor larger grains. In this paper we shall present a systematic
challenging since it concerns the applicability of the standardtudy of the crossover region for grains with sizes in the
BCS theory at nanometer scafeBespite some theoretical range 20 up to 400, showing the importance of the fluctua-
works using the grand canonical BCS wave funcfioifit  tions, which cannot be handled appropriately by the BCS or
was soon realized that the description of ultrasmall metalli®PBCS approaches.
grains calls for a canonical formalism since the fluctuations The BCS pairing Hamiltonian that we shall study in this
in the electron number are strongly suppressed by chargingaper has been solved exactly a long time ago by Richardson
effects’*~**A canonical treatment of the BCS wave function in a series of papers between 1963 and 1977 in the frame-
has been known in nuclear physics for decatidsd (for a  work of nuclear physics(for a recent review, see Ref.
review, see Ref. 18 The nucleus have a fixed number of 34).22-2* These papers escaped the attention of the physics
fermions and the parity effects are clearly observable andommunity until the recent developments in the field of ul-
interpreted theoretically. The ground state of the nucleus catrasmall metallic grains. Thus we have the great opportunity
be described by a wave function which is the projection ofto compare the numerical results obtained with the DMRG
the BCSAnsatzto a fixed number of fermions. This is the method and the exact results obtained with the Richardson’s
so-called projected BCEBCS Ansatz The techniques for wave function. Upon this comparison we shall see that the
dealing with the PBCS wave function have been translated tdMRG method provides exact numerical results within a
the study of ultrasmall metallic graifThe trouble with the  certain accuracy which can be improved systematically by
BCS state and to a certain extent with the PB&%atzis  increasing the number of states kept.
that they are mean-field approximations which do not take The overall picture we get from our study is that the few-
care of the fluctuation effects that are supposed to be impoelectron and the bulk-limit regimes are qualitatively different
tant for very small grains. An alternative is to use unbiasedut the crossover is completely smooth. In this sense our

0163-1829/2000/618)/1230213)/$15.00 PRB 61 12 302 ©2000 The American Physical Society



PRB 61 CROSSOVER FROM BULK TO FEW-ELECTRON LIMI. .. 12 303

results clarify and overcome the shortcomings of previousee that the numerical results obtained with the DMRG and
grand-canonical BCS and canonical PBCS studies. In théhe Richardson’s solution are for practical purposes indistin-
BCS analysis superconductivity ceases to exist for levefuishable.

spacingd greater than a critical value which is different for ~ The organization of the paper is as follows. In Sec. Il we
even graingl?=3.56\ and for odd grainsli=d%/4.% In the  define the model that is used to study ultrasmall metallic
PBCS study of Braun and von Delft the latter breakdown ofgrains and summarize its essential features. In Sec. Il we
superconductivity does not occur but is replaced by a sharjitroduce the PBCS wave function. In Sec. IV we perform
crossover between the bulk regime and the fluctuation domithe p-h transformation, which is used to express the PBCS
nated regime which depends on the parity of the graitfs ( State in the p-h basis. We then propose the PHBCS state and
zO_%ldg‘zO_zEA)_jA The results presented in this paperfind the effe(_:tive Hamilton_ian that governs its dynamics. In
will show no sign of critical level spacings separating quali-S€C- V we discuss in detail the DMRG method and relate it
tatively different regimes. In fact, we have been able to paf© the PHBCSAnsatz In Sec. VI we present our numerical
rametrize in a simple manner the numerical results found fofesults for various quantities of interest obtained with the

several observables. These fitting formulas are a sort JPMRG, PHBCS, and PBCS methods. In Sec. VIl we state
finite-size scaling similar to those that appear in low dimen-OUr conclusions. Technical details and derivations have been

sional system& collected in two appendixes. In Appendix A we propose a
The main tool we employ in our study is the particle-hole "écursion method to compute norms and expectation values

DMRG (PHDMRG) method proposed in Ref. 21. This With the PBCS state. In Appendix B we derive the form of

method follows the general philosophy of the real-spacdh€ pairing BCS Hamiltonian in the p-h basis.

DMRG method® but exploits the existence of a Fermi sur-

face and Fhe fluctuations arou_nd it. To apply the F_’HDMRG Il. BCS PAIRING HAMILTONIAN

we have first to perform a particle-hole transformation where

the Fermi sea is the vacuum of the basic operators. The states The BCS pairing Hamiltonian used for small metallic

that appear in the DMRG are the particle-h@teh) excita-  grains is given by **

tions around the Fermi sea labeled by an intédkat counts

the number of particle pairs or holes pairs. Since we work at Q Q

half filling, i.e., the number of electrong equal to the number H= > (fj—M)CjT,,er,o—)\d,E C{+Ci1:7cj’—cj'+ ,

of doubly degenerate states, the numbisrcommon to both j=lo== =1

particle and hole excitations in the ground state of the sys- 2
tem. The DMRG algorithm selects the most probable p-h

states that contribute to the exact ground state of the systetyhere i,j=1,2,... Q) label single-particle energy levels
For every value ofl there are usually more than one p-h Whose energies are given for simplicity ly=jd, whered
state, which form a sort of multiplet with multiplicityn,. IS the average level spacing which is inversely proportional

The sum of all these multiplicities equals the total numier to the size of the graire; , are electron destruction operators
of states kept in the DMRG, i.em=3,m,. In our compu- Of time reserved states==. Finally, » is the chemical
tations we have used a valuermf=60 which is sufficient to ~ potential andx is the BCS coupling constant, whose appro-
study system sizes up to 400 energy levels with a relativ@riate value for the Al grains is 0.224 Given N, electrons
error of 10 * in condensation energies. An outcome of thethey can formn, Cooper pairs and unpaired states such
DMRG results is that for every value bthere is a single p-h  thatNe=2ny+b. The number of electroni¥, is equal to be
state which carries most of the probability. This fact suggest§umber of state$) appearing in Eq(2). The Hamiltonian
a simplified version of the DMRG based on Ansatzwith ~ (2) decouples the unpaired electrons and hemée a con-
only one p-h state pdr We call this state the particle-hole served quantity. Thé unpaired electrons only contribute to
BCS Ansatz(PHBCS. The reason for this terminology is the total ground-state energy with their kinetic energy. Of
that the PBCS state itself is a PHBCS state, though of garticular interest is the study of the parity effect which
special type. While the PHBC®&nsatzis a generic linear means that grains with an even number of electrons are more
superposition of p-h states labeled lpyhe PBCS state is a superconducting than odd grains. This phenomena, which
particular linear superposition of p-h states. We have thus accurs also in finite nuclei, can be characterized by the de-
hierarchy of canonical variation&nsaze pendence of different observables as functions. 8t
The Hamiltonian(2) has two regimes depending on the
ratio d/A=2 sinh(1k)/Q), between the level spacirgjand
PBCS-PHBCS-DMRGC exact, (D) the bulk superconducting gap.®~* In the weak-coupling
region d/A>1), which corresponds to small grains or small

where every one contains its predecessor and is expected €upling constant, the system is in a regime with strong pair-
give better results. From the PBCS to the PHB@Saze ing fluctuations above the Fermi sea which lead to logarith-
one gains the freedom to mix different p-h states while in themic renormalizations? In the strong-coupling regimed(A
DMRG Ansatz in addition to the latter freedom, there are <1), which corresponds to large grains or strong-coupling
multiple p-h states for each value &f We shall make a constant, the bulk-BCS wave function describes correctly the
comparative analysis of the numerical results which willground-statéGS) properties. Using the grand canonical BCS
clearly show the qualitative and quantitative importance ofwave function the crossover between the weak- and strong-
these ingredients. The last member in the cli@jrstands for  coupling regimes occurs at2/A=3.56 (even grains and

the exact Richardson’s solution of the BCS model. We shaltil/A~0.89 (odd grains.®
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Ill. PROJECTED BCS WAVE FUNCTION

, . h
Let us first consider the case where all the electrons form - X (12)

Cooper pairs which can occupy all the allowed states of the omsl 21 n g 2. Mgl
system, i.e.Q)=2ny andb=0.
The PBCS wave function is given by

whereng is the total number of Cooper pairs afidis the

1 QR unpaired spin lying on the Fermi level. Finally a system with
|PBCSb=0))= 7m(rn) lvag, (3 p=2 unpaired electrons will be represented as
Q P h
T _ A At _ In 1 nn
Fh=2, o0l S N
12
Zopo=(vadl Y2(T")*?|vag), ) 12

) In what follows we shall concentrate on the cdse0,
where|vag) is the Fock vacuum of the electron operators a”dieaving for the appendixes the cases with 0. The varia-
the variational parameters of the Ansajzare related to the tjgnal parameters; in the Ansaze (3) and (7) are found by

standard BCS parameteus andv; by the equation minimization of the mean value of the Hamiltonié). This
requires the computation of the norm of the PBCS states and
g:ﬁ U2+ p2=1. 6) the expectation value of E@2). This problem was consid-
oot P ered in nuclear physics where the projection of the BCS

wave function was needed in order to take into account the

The statg3) is the projection of the grand canonical BCS finjte-size effects of the nucled®!’*® The method devel-
state expl()|vac into the Hilbert space of)/2 Cooper pairs. oped in Refs. 17 leads to a set of@coupled equations

Let us consider now the case lofunpaired electrons. As which are solved in terms of a set of auxiliary quantities
explained in the previous section these electrons decoupleshtering the computation. In Appendix A we propose an al-
from the rest of the system occupying the closest states to thernative method based on recursion relations which can be
Fermi level, namelyi=ng+1,...no+b. The latter levels easily implemented for system siz€3<400. We have
are also called blocked states. The PBCS stateébfed is  checked that this method reproduces the same results ob-
given by tained by Braun and von Déffwho used the techniques of
Ref. 17. The recursion method is quite manageable and will

np+b
be used later on to study the PHB@®&satz
|PBCSb))= : lnIH ¢! (I}, )vag, (7)
2ng'="o
oo IV. PARTICLE-HOLE BCS STATE
S 2noth P In the weak-coupling limitd/A>1 the separation be-
F2n,= = +i:n g ) GiC G ®  tween energy levels is much greater than the bulk supercon-
0 . . . . . .
ducting gap. The physics of this regime is given by the fluc-
tuations around the Fermi state,
Zpg 20, = (vadI';) (I3 )"0lvag). 9
a2
While the PBCS stat€3) depends or) variational pa- |Fs)=H Pi"|vac>, (13
=1

rameteryy; , the PBCS stat€7) depends only onr2, param-
eters associated to the nonblocked levels. The unpaired sta
only contribute to the energy of the stdi® with the kinetic
energye; .

We can give a pictorial representation of the PBCS state
(3) and(7), which will be used later on in the discussion of
the DMRG. A system with nonblocked levels, i.e=0, can
be represented as

Fhere Pi=cl .c|_ (see Appendix A for notationsAn ap-
propriate choice of the chemical potentjalin Eq. (2) guar-
antees that particle and hole excitations around the Fermi sea
f13) have the same energy. This symmetry implies that the
PBCS parameterg; satisfy the following relation:

1
==, i=1,...0 14
» L Jo+1-i g, (14

Q/2 9/2-1 2
. . Y .

: K é c2> . 9/3—1 %2 which holds in particular for the BCS solution for the varia-
tional parameters); andv; in Eq. (6). Equation(14) is a
(100 consequence of the particle-hole symmetry of the Hamil-
tonian (2) that we shall show more explicitly below.

h
Whereg denotes thepth particle level,O denotes then'"
hole level andu is the chemical potential separating particles
and holes. A system with one blocked level at the Fermi In order to take full advantage of the symmetry condition
level is represented as (14) it is convenient to establish the relationship between the

A. PBCS state in the particle-hole basis
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PBCS statg3) and the Fermi seS). With this aim we Ca, 2 ,
shall write the pairing operatdf, given in Eq.(4) as |:m' IZO wi=1, (Xp=1). (22)
FQ:FA(X)+FB(§), (15 In the limit when() is large the distributiori22) becomes
a normal distribution centered &t/4 with quadratic devia-
a2 tion \/Q/2. This result is the basis of the DMRG method
CA(X)= >, XpPp applied in Ref. 21 to the pairing BCS Hamiltonian.
p=1 Incidentally, it is interesting to observe that the distribu-
o tion (22) is the same as the one found by Kaulke and Peschel
1 1 for the S*=0 ground state of the Heisenberg ferromadfet.
1ﬁB(; :h§=:l X_h h» The reason for this correspondence is based on the pseu-

dospin representation of the pairing Hamilton{@n(see Ap-
where p,h=1, ... (/2 label the particle and holes states pendix A).

starting from the levels closest to the Fermi sea, i.e., Equation(19) means that the PBCS state can be seen as

the superposition of p-h statél with amplitudesyTE¢S,
Po=Papip, Pr=Papii-n, (p,h=1,... 9/2)(16) pe'P P 9 P i

which both depend on the variational parametgys As ex-
plained in the introduction we can try to relax E49) and
and x,=xp(p=h) are theg; parameters for the particle considery, as variational parameters independent on the pa-

states. rametersx,. This will lead us to a more gener#insatz
which shares many common properties with the DMRG
Xp:gQ/2+pa pzl, B 1(2/2 (17) state.
In Eq. (15 we have used Eq14). Equation(16) gives the
transformation from the original pairing operatd®s to the B. Particle-hole BCS Ansatz

new operators®, and P,. While the vacuum statprac) is

annihilated byP, Vi, the Fermi statéFS) is annihilated by The previous study leads us to consider a general p-h state

of the form
P, and PE. Equation(16) is nothing but the p-h transforma-
tion used in BCS to go from the Fock vacuum to the Fermi Q2
sea. [PHBCS =2, will)acll)s, (23

The operatorI‘,K creates a pair of particles above the

Fermi sea while the operatdrg creates a pair of holes. Vép

Hence we can use these operators to expand a basis ere|l) and|l)g are the particle and hole pieces of the
. . . ate given in Eq(18) andy, are independent parameters not
particle-holes states above the Fermi sea. Let us define trb 9 18 i P P

. Onstrained to satisfy Eq20). Strictly speaking the p-h
normalized state states(23) belong to the Hilbert spacHpygcs expanded by
1 the p-h basig18) and their dynamics is governed by the
Y= c——[TL)]'[TsX)]'|FS (18)  projection of the pairing Hamiltonia(®).
Z1,012(X) In order to find this effective Hamiltonian acting in
which is simply the tensor product of the particle stdjg. ~ Hpugcs it iS convenient to express E@2) using the p-h
with | particles and the hole stafeg with | holes. One can operators16), together with the p-h number operators,
show that the PBCS stai®) can be expanded in the p-h

basis(18) as follows® N,=2P!P,, N,=2P,P]. (24)
QR . . .
|PBCS=E lplpBCS“), (19 A simple computation yields
=0 QR \d] 272 Q
where H=2> |d —+1—h>—,u——+2 [d —+p
h=1 2 2 p=1 2
PBCS [(Q/2)1]? Z) q/2(X) W)
lp| - > . (20) ~ ~
VZaraZapap(X) (1) M Np+h§=:1 —d| 5 +1-h|+u+rdIN,
As a simple application of the formul20) let us consider
the PBCS state characterized by the cheige 1,Vp, which —\d| > P;T)Pp’ +> Php;, +> (pFT)ph+ PP |.
corresponds to a fully superconducting state. The p-h ampli- p.p’ h,h’ p.h
tudes are given by (25)
U °x=1)=Cap, INCanan (21)

This Hamiltonian has a p-h symmetry provided we choose
where Cy y=N!/[M!(N—M)!]. This is an interesting re- the following chemical potential:

sult for it implies that the probability, = ¢? for finding the
p-h state|l) in ¢"BSis given by the hypergeometric series

d
distribution m= §(Q+1_M (26)
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which guarantees that the particle and hole excitations have (i) Make an initial guess for the parametegs. One can
the same energy. Using E@6) the Hamiltonian(25) adopts  use for example the BCS values.
the simple form (i) Construct the effective Hamiltoniai32) for this
choice of parameters using the recursion method given in
Z s Appendix A.
Hid=—| 5] +K+K (27) (iii) Find the lowest GS of the effective Hamiltoniéae).
(iv) Change slightly the parameters, and repeat the
—MATA+B'B+AB+ATB"), steps(ii) and(iii ), comparing the GS energy so obtained with
the one determined in the previous step. Stop the process
where until convergence is achieved.
Another important point is that in the PHBCS state de-
5 fined in Eq.(23) we can actually restrict the sum oveto
pr K°= E €nNnp, only a small number of values. For example we can include
the states from 0 up to sdy,,x and check the convergence in
1 the energy by changing,... In the rangeQ2<400 it is
;p:;h: p—=+=, (p=h), (28)  enough to choosky,,=11.
2 2 This method gives the values gf andy; of the PHBCS
state that minimizes the energy of the BCS pairing Hamil-
o2 . tonian. We shall present our results in Sec. VI.
A=p§1 P,, B=2 P[.
V. DMRG STATE

The term—d(€/2)? in Eq. (27) gives the energy of the
Fermi sea with the chemical potenti@6). We can subtract
that term and measure the energy in unitglof

The DMRG state represents the next step in our route to
go beyond the PBC@nsatz Let us denote b){|oz,I>A}Z"=l
an orthonormal set afn; many-body particle states contain-
2 ing | particles, i.e.,

+H/d. (29

Q
c_|%
o= 5

alala" 1) a= 6811164 ar- (33

The lowest energy oH® gives the ground-state condensa-
tion energy divided byd. In Appendix B we derive the
Hamiltonian in the p-h basis for a general valuebof

The p-h symmetry of the Hamiltoniai29) amounts to its
invariance under the following mappings:

KA<—>KB, A<—>B (30) |¢>:2| a/,,BE:l wa,ﬁ(|)|a’|>A®|:B!|>B (34)

Similarly we shall introduce a SG{t,B,DB}g':l of many-
body hole states with holes. With these notations a DMRG
state can be written &5

In the p-h basigl) the Hamiltonian(27) becomes a tridi- Comparing Eqs(23) and(34) we see that the PHBCS states
agonal matrix. This fact can be proved using the factorizalr€ a particular case of DMRG states where there is only one
tion of every state23) into its particle and hole contents. fepresentative particle or hole state penamely
The unique nonvanishing entries df are given b

| ’ gnenty YPHECSS yDVRG() (=1 ¥1). 35

ITHE) =2 A1 |(KA=NATA)| )4,
([HEIN=2011( DA A generic DMRG state involves higher multiplicities, i.e.,

m,=1, which is important for the numerical accuracy of the
method. Similar approximations to the DMRG in the context

of strongly correlated systems have been given in Refs. 26—
The state|l )5 has the same form as the PBCS state des gy 4 v given |

fined in Eq. (3) with the replacementsg);—x,,Q2—Q/2.
Hence we can compute the matrix elements appearing in Eq
(31) by using the auxiliary quantities introduced in Appendix In
A:

(3
(I=2H) == A1 - 1A

We shall next present the basic ideas of the DMRG
ethod and its application to the pairing BCS Hamiltorfian.
the DMRG one has to break the system under study into
two pieces called the system block and the environment
block B. In our case the blockd contains all the particle
(JHC|Y=21, prpé'p—)\l > (XpéLr —(I- 1)szﬁ_lp o), levels whileB contains the hole ones. If the system size, i.e.,
p p.p’ ' Q, is large enough one cannot keep all the particle or hole
(32) states and hence one has to look for an effective description
of them. This is done by keeping a setmfparticle (resp.

Z 0 o)’ hole states|a,l)a,a=1,... m,|B,1)g,8=1,...m, as
_ C — ’ | /A ’ LR ] 1 /By ’ A
(I=1H¥[1)= )\—Zl—m/z ED: Sp - in Eq. (34), with

The numerical procedure to find the PHBCS state with mzz m,. (36)

lowest energy is summarized in the following steps: [



PRB 61 CROSSOVER FROM BULK TO FEW-ELECTRON LIMI. .. 12 307

These two sets of states are chosen in such a way that the P24 (141, 1115)
. . . . a,a'\'212:1112

state constructed in E@34) gives the best possible approxi- '

mation to the exact GS of the whole system. The construc-

— ! ’
tion proceeds in successive steps starting from small grains. _;3|2| Yapllilalsla)Yar pl1,12,15,14).
We begin with a system witf =4 energy levels, which are e
chosen as the closest two particle and hole states near the (39

Fermi levelu. This system can be represented@®@® OO,
where we use the notation introduced in Eq€)—(12). For
larger systems, i.eQQ=2(n+1) with n>1, the whole sys-
tem is described by the superblo®A,8,0, where the
block A, (resp.5,) gives an effective description of the
particle (resp. hol¢ levels closer to the Fermi energy in
terms of them-dimensional basis introduced above. In the
notation of Eqs(10)—(12) we have

The density matriX39) has a block diagonal form where
each block is labeled by the total number of particles, i.e.,
I=1,+1,. Let us denote the corresponding density matrix
p?A. Itis easy to see that it is a square matrix with dimen-
sionm;+m;_;. One can also define a reduced density matrix
for the hole subsysteri,O by tracing over the particle sub-
system, however, the p-h symmetry implies the equality of

- the particle and hole density matrices. This is a sort of re-
A, B, flection symmetry that recalls the symmetry between left and
nt1 right blocks used in the infinite system DMRG algorithm
° (37) applied to one-dimensionallD) systems? In fact, the
particle-hole DMRG proposed above is an improved infinite
system algorithm, obtained with some modifications to be
explained below. Of course, we can also deal with cases

A generic state of the superblo@A4, 53,0, in the sector where tr_\e particle-hole symmetry QOes not hold. In this cases
with equal number of particles and holes, reads the particle and holes states kept in the DMRG will differ.

Given the density matrip®*, we diagonalize it and find
its eigenvalues.

= Vo p(11,12,13,14) wy (1)

a,B,l's

n41
[ ]

o3

1 2
O O .-

[ ]
o
®

o wa(l) T
X[1Dn+1®lalo)a ®[Bla)s ®lla)ns1, (38) pr =0 : Or.

Wi, +m, —1(| )
(40)

where O is an orthogonal matrix and/{(1)>w,(1)> . ...

Once we have found all the eigenvalues for all allowed val-
where|l,),. is the (W4 1)th particle state which is empty ues ofl we put them together and sort them in decreasing
for ;=0 and occupied fot;=1. The hole statél,),; is  order of magnitude. The DMRG truncatio®.4,— A/,
similarly defined. The dynamics of the wave functi@8) is  consist in choosing the firsh eigenvectors with highest ei-
governed by the superblock Hamiltonian which we shallgenvalue. The renormalized block/ ., will be described
construct below. The dimension of the Hilbert space of theyy 5 set ofm/ states such than=3,m/ [recall Eq.(36)].
superblock, dintsg, is smaller than #?, for the constraint  The change of basis from the old blo@A, to the new

l1+1,=I5+1, eliminates many states. difisg is usually — pjock Al is given by the firstm/ column vectors of the
much smaller than the exact dimension of the Hilbert Spac%rthogonal matrixO, . The error of the truncation is mea-
of states with() levels at half filling which is given by the sured by =P, (P I_Em W)

m m— “k=1 .

combinatorial numbeCy, ,. For example fo) =24 the : T .
latter number is 2 704 156, while the largest superblock mablotit:j rl]gové give the Hamiltoniafeaso Of the super
trix involved in the DMRG calculation witm=60 has di- e

mension 3066. Another example is given Qy=400 where Heaso=Ha+Hg+He+Ho+Hag+HeatHao+Hes
the dimension of the Hilbert space is of order*fp while

(I +1=15+1y),

the largest superblock dimension is also 3066. +Hpgot+Heo, (41)
The next step in the DMRG is to find the lowest eigen- A N

state of the superblock Hamiltonian using the Lanczos tech- Ha=Ky—AARA,,

nique. The corresponding eigenvalue gives the DMRG esti- .

mate of the GS energy for the system wih=2(n+1) He=¢€n+ NP, —\PP TPP)

energy levels. Since the DMRG is a variational method it

gives an upper bound of the exact result. Moreover the GS of Hag=—M(ABy+H.c), (42)

the superblock previously found can be used to construct the

new blocksA,,; and B, ; that give the effective descrip- Hea=—N(APP),"+H.c),

tion of the lowestn+1 particle and hole states. This is

achieved by first constructing the reduced density matrix of Hao=—A(APYY,T+H.c),

the subsysten® .4, by tracing over the hole subsystem ® o)
Bno, H.O:_)\(PanranJrl +H.C.),
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whereNP | P® and P(" are defined in Eqs(Al), (16), -40,4985
and (24). The superindices have been introduced to distin-
guish between the particle and hole operators. The operators
A,, B,, K4, andK, coincide with those defined in E(28) 40,4990 1
with /2 replaced byr. The termsHg, Ho, Heg, andHgo '
can be derived from those of E@L2) by the p-h transforma-
tion (30). The splitting(41) of the superblock Hamiltonian
Heago recalls the one used by Xiang in the momentum -40,4995 |- DMRG
space DMRG! and more recently by White and Martin in
their study of the water molecufé.However, there are im- o
portant differences between the latter approaches and ours. ‘f_\u
First of all Xiang’s method uses a finite system algorithm -40,5000 |
while ours is an infinite system one combined with a renor-
malization of the interaction to be explained below. Second
we exploit the p-h symmetry of the problem which is not the
case of Refs. 31land 32. -40,5005 |
The DMRG provides a many-body description of the Exact
blocks.A, and5,, which means that the operators acting on o000
these blocks are represented iy m matrices. In our case
the operators that we need to keep track[akg], [AlA,], -40,5010 F—t——tL——H

N ) i 40 60 80 100 120
and[N;]. The DMRG proposed above is an infinite system m

algorithm, which is sufficient to study moderate system sizes
(N=<400). A way to improve the numerical accuracy of the
infinite system method is to choose an effective value of th{
coupling constank,, at thenth DMRG step in such a way

that the value of the bulk gap is the one of the final system.” —40.5007557623.
This is guaranteed by the equation

FIG. 1. GS condensation energy fr=100 and\ =0.4 com-
uted with the DMRG method as a function of the number of states
ept (i.e., m). The exact result is given byE(exact)

the total energy, of the GS and the energy of the uncorre-

1 2(n+1) 1 lated Fermi sedFS). This energy has been computed for
sinh—= Tsinh—. (43) even and odd grains using the grand canonigat) BCS
An A wave functioff® and the canonical PBCS wave functith.

The g.c. studies suggest a breakdown of superconductivity

VI. NUMERICAL RESULTS for large values ofl while in the canonical case this break-
down is replaced by a sharp crossover between two different
regimes at a characteristic level spacidg~0.5A. For d

A system with{) =24 levels can be exactly diagonalized <dg the condensation energiroC is an extensive quantity
with the Lanczos techniques as done in Ref. 12. The DMRG
calculation withm=60 agrees with the exact Lanczos con- -2.0
densation energy in the first seven digits. For larger systems
the Lanczos method cannot be applied but as we said in the
Introduction one can use the exact Richardson’s solution. In 2.5
Fig. 1 we plot the exact GS condensation energy for a system
with =100 levels and\ =0.4, together with the DMRG
results as a function of the number of states Kgpt, m).

A. Comparison of the DMRG with exact results

-3.0

One can clearly see the exponential convergence af the <
DMRG towards the exact solution. Another comparison we ., 35
[N}

have made is for a system with =400 and\=0.224.
Keepingm=60 states we get for the GS condensation en-
ergy ES(DMRG)/d= —22.5168 with an estimated relative -4.0
error of 10, The exact result is given bEg(exact)U=
—22.5183141, which is within the estimated error. For
lower system sizes the relative error is smaller so for all
practical purposes the DMRG results cannot be distinguished
from the exact ones. In the Figs. 2—8 presented below the ol l o Lo bbb by 11y
curves labeled by DMRG also provide the exact results. 0 40 80 120 160 200 240 280 320 360 400

Q

) FIG. 2. Condensation energies of the 0 state as a function of
The crossover between the superconducting and fluctu@y obtained with the DMRG, PHBCS, and PBCS methods. The
tion dominated regimes can be neatly characterized by thenergies are normalized respect to the bulk superconducting gap
condensation energ&ﬁ defined as the difference between given by A=dQ/[2 sinh(1k)].

45

B. Condensation energy



PRB 61 CROSSOVER FROM BULK TO FEW-ELECTRON LIMI. .. 12 309
'1.5 ] I ] l ] I ] I 1 I 1 I‘I [ 1 l 1 I ¥ 8 ] I ) I ] | 1 I ] I ] I T I ] | 1 I ]
7k DMRG & |
- |---- PHBCS .
61— 7 _
— - — PBCS /4
i oy
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FIG. 5. Spectroscopic ga]:EbG measured in units ofl. The
subscriptse ando correspond to the casbs=0 andb=1, respec-
tively.

FIG. 3. Condensation energies of the-1 state obtained with
the DMRG, PHBCS, and PBCS methods.

(~1/) corresponding to a BCS-like behavior, while fdr

>dg the energyEg is an intensive quantitjalmost indepen-  fiected in a sudden change in the slop&fffor b=0 and 1
dent ofd).** as a function ofQ2, is completely absent in the DMRG and
In Figs. 2 and 3 we plot the DMRG, PBCS, and PHBCSthe PHBCS results.
results for the condensation energkS for even grains If *The dependence &j on () is rather smooth and can be
=0) with sizes ranging from 22 up to 400 and odd grainsparametrized by fitting the DMRG curves with the following
(b=1) for sizes between 21 and 401. In Fig. 4 we collect theformula (see Fig. &
DMRG results corresponding to=0, 1, 2, and 3.
In these figures we observe the following features:
*The DMRG method gives much lower condensation en-

ergies than those of the PBCS method, while the PHBCS liewhere the constanta,, B,, andy, are given in Table I.
in between(see Figs. 2 and)3 The fitting formula(44) is an improved version to the one

used in Ref. 21 and can be motivated from physical consid-
erations as will be discussed below.

*The sharp crossover of the PBCS results, which is re-

ES/A=— apQ— By+ 7, IN(Q)/Q, (44)

C
ES/ A

FIG. 4. Condensation energies of the=0, 1, 2, and 3 states
obtained with the DMRG method. The continuum lines are given
by the fit (44) with the numerical coefficients given in Table I.

-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0

-4.5

-5.0
0

40 80

120 160 200 240 280 320 360 400

Q

The fit (44) is specially good for thdo=0 DMRG data
but it is also quite performant for the other states0. The
first term in Eq.(44) represents the bulk correlation energy
given by E§= —A?/(2d),Vb. Using the relationd/A
=2 sinh(1k)/Q we deduce that the parametey should be
independent ob taking the following value:

=0.005757 forn=0.224. (45

T 4 sinH(1in)

1-2 1 I T I 1 I T I 1 I T
1.0
0.8

0.6

FIG. 6. Matveev-Larkin’s parameter obtained with the DMRG,
PHBCS, and PBCS methods.
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FIG. 7. DMRG, PHBCS, and PBCS results for the pairing pa- FIG. 8. DMRG, PHBCS and PBCS, results for the pairing pa-
rameterA as defined in Eq(50). rameterA; as defined in Eq(50)

We see from Table | thaty is close to the bulk value *The differenceES—ES for 0>Q, is smaller for the
(45), while ay,, for b>0, have not still reached that value. DMRG than the PBCS method, which means that the parity

The constant termB, depends smoothly om. This fact €effect is smoother in the former method.
agrees with the computation EE using second-order per-

turbation theory which yields D. Matveev-Larkin's parameter
, . Another characterization of the parity effect is in terms of
B=2In(2)\*sinh(1/\) = 3.0206. (46)  a gap parameter which measures the difference between the

GS energy of an odd grain and the mean energy of the neigh-

This value is close to those shown in Table I. The coefficienbor even grains obtained by adding and removing one
¥p Which controls the logarithmic term in E¢44) behaves  electront®
roughly asy,=c;+c,b, wherec;=3.9 andc,=1.4. This
type of behavior agrees qualitatively with second-order per-
turbation theory, though the values@fandc, are different.

In summary, Eq.44) combines the extensive behavior
(@, term), the intensive behaviord, term), and the logarith- In Fig. 6 we display our results. Comments:
mic corrections §;, term) in a simple manner, showing no «All the curves show a minimum id,, /A as a function
sign of sharp crossover in the condensation energy as a funof d/A. This latter feature was first conjectured by Matveev
tion of the grain’s size. This conclusion is supported by fur-and Larkit® and confirmed by Mastellone, Falci, and
ther evidences shown below. Fazid” using the Lanczos method and the PBCS method by
Braun and von Delft?

*The shape of the DMRG curve is rather smooth as com-
pared with the PBCS and the PHBCS methods. This can be

1
AMngl(Q)_5[50(Q+1)+50(Q_1)]- (48)

C. Spectroscopic gaps: Parity effect

The parity-dependent spectral gaps are defined as interpreted as a suppression of the even-odd parity effect in
agreement with the results found for the spectral gaps.
E§=€2—50, (even graing, (47 *The DMRG results of Fig. 6 can be fitted with the fol-

lowing formula, which can be derived from the fi44) of
ES=£,—&,, (odd graing. the condensation energies:
. TABLE I. Values of the parameters of formui{d4) that gives
In Fig. 5 we plot the DMRG, PHBCS, and PBCS results, 0Nyye pest square least fit of the DMRG data plotted in Fig. 4.
which we next comment.

*All the results share the same qualitative features ap By Yo
namely, ES>ES for Q<Q., while EF<ES for Q>0Q..
The value of(); depends slightly on the method used, i.e., 0 0.005 701 2.6678 3.9321
Q.~200. 1 0.004 586 2.2463 5.3275
*Quantitatively, however, the DMRG gives much greater 2 0.003439 2.1258 6.9290
spectroscopic gaps than the PBCS method, especially for the 3 0.002 747 2.0485 8.1536

odd grains.
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d A
Ay /A=0.4215+0.183 75 +0.096 83;

001606q| d 49
—0U. X nK. ( )

This equation shows that in the region €.8/A <3.5 the
logarithmic term is not very important. The logarithmic cor-
rections are contained in the renormalization of the coeffi-
cient of the ternd/A, whose bare value is/2=0.112. The
constant term equals the differen6g— 8, of the condensa- ’S\
tion energie§see Eq.(44) and Table ]. \E
—

E. Pairing parameter

The BCS superconducting order parameter is strictly zero
in the canonical ensemble. For that reason one has to find
another quantity to characterize the pair mixing across the
Fermi level that takes place in the ground state for a fixed
number of electrons. We shall choose the pairing parameter
proposed in Refs. 8 and 14:

— ) - 6 7 -
Ab_)\d; CJ’ (50) 12 ' 1 P I I I I N
0 40 80 120 160 200 240 280 320 360 400
2__ /AT T T T
Ci=(cj+Cj+Cj_Cj—) —(Cj, €. )(Cj_Cj-) Q

which measures the fluctuation in the occupation numbers. In FIG. 9. Plot of the particle-hole probabilities,=¢? for |
the g.c. BCS cas€;=u;v; andAy, coincides with the usual =0.1,....,7. The PHBCSresp. PBC$results are given by the

superconducting parametar. continnum(resp. discontinuupncurves.
In Figs. 7 and 8 we show our results far, and A4, ) ] )
respectively. Comments: of Sec. IV. In Fig. 9 we display our numerical results for

*Figure 7 shows that the sharp transition occurring in the?S @ function o). The reduced particle density matrix de-
PBCS Ansatz between the strong- and weak-coupling re-rfved from the DMRG state ha; sevgral eigenvectors for a
gimes is completely absent in the DMRG state. In the lattefixed number of particlesl, with eigenvaluesw,(l)(n
state the pairing parameter, when measured in unitd,of =1.-..)[see Eq.(40]. In Fig. 10 we plot our numerical
converges monotonically to its bulk limit from above. results forw,(l). Comments: _ o

«In the odd case the crossover predicted by the PBCS *The overall pattern of the _part|cle pro_bablll_tles is com-
method is more dramatic than in the even &h&he DMRG  Mon to all theAnsdze namely, (i) the Fermi sea is the most
and PHBCS results show that this is an artifact of the PBC$robable state for €€ <(,, where the value of}, de-
Ansatz The existence of a minimum far, and not forAgis ~ Pends on theAnsatz (i) in the interval ;< <Q, the
due to the blocking effect produced by the unoccupied singlén0st probable state has one particle, while the probability of
state at the Fermi level. the Fermi sea continue to decrease crossing over eventually

«The PHBCS curves in Figs. 7 and 8 agree qualitativelythe probability of a two particle statéiji) every curve asso-
with the DMRG curves, while they differ strongly from the ciated to a given number of particlésfirst increases for
PBCS curves. This shows the importance of letting the amsmall grains, then reaches a maximum, where it is the most

plitudes, to be independent from the BCS-like parametersProbable state, and then starts to decrease.
gi. *The probabilities of the PBCS states show the character-

istic sharp crossover in the region ¥600<220, in agree-
ment with similar behavior observed in the condensation en-
ergy ES (Fig. 1), spectroscopic gaRS (Fig. 4), and pairing
Another comparison between the DMRG, PHBCS, antharameter\, (Fig. 6).
PBCS states can be given in terms of the probability of find- «|n contrast to the latter behavior, the PHBCS and DMRG
ing a state withl particles or holes. Ify is the GS of the  probabilities evolve smoothly with the system size showing
whole system one has to construct the reduced density matrpo signs of discontinuities or abruptness, in clear agreement
for the particle or the hole subsystems and look for the corwith the observables computed above.
responding eigenvalues. As shown in Sec. IV the reduced «The PHBCS curves are in one to one correspondence
particle density matrix of the PBCS and PHBCS states conwjth the most probable DMRG states, while the next most
tains a unique eigenstate with probability per number of  probable DMRG states, with the same number of particles,
particlesl, given byw,= 7, wherey, is given by Eq.(20)  have much less probability. This justifies posteriori the
for the PBCS state while), for the PHBCS has to be ob- PHBCSAnsatzwhere multiple states with the same number
tained through the minimization process explained at the endf particles are not included.

F. Particle-hole probabilities
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0 L LA L LA LA LA L L B studies. The abrupt crossover obtained with the PBCS state
B 0 . is an artifact of that method. Our DMRG results agree with
1 ~——— - the exact solution with an accuracy of at least 1@r con-
1 densation energies in the region studied which ranges from
2 5 N 20 up to 400 electrons. Instead of a breaking or suppression

of superconductivity for ultrasmall grains we rather observe
that superconductivity and fluctuations cannot be genuinely
separated and that they gradually mix with the system size.

We have explained in more detail the particle-hole
DMRG proposed in Ref. 21 which can be applied not only to
the reduced BCS Hamiltonian with arbitrary energy levels
but also to Hamiltonians where the pairing coupling may be
level dependent, i.eN—X\; ;. In this sense we can in prin-
ciple study, using the particle-hole DMRG, the effect of level
statistics>3~*°*and more general pairing interactions where
no exact solution is available.

We have developed a recursive method to deal with the
PBCS wave function which is somewhat simpler than the
methods currently used.

We have proposed a wave function, the particle-hole BCS
state(PHBCS, which stands somehow in between the PBCS
and DMRG states and which can be studied using the recur-
sive method mentioned above. The PHBCS also shows a
smooth crossover between large and small grains correctly
0 40 80 120 160 200 240 280 320 360 400 describing the interplay between superconducting correla-

(@] tions and fluctuations.

_12 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1

FIG. 10. Plot of the particle-hole DMRG probabilitieg,(I),
which are defined as the eigenvalues of the reduced density matrix
with | particles or holes. The thick continuum lines correspond to  \We would like to thank F. Braun, G. G. Dussel, M. A.
n=1 andl=0.1,...,9, thediscontinuum lines correspond ®  Martin-Delgado, T. Nishino, I. Peschel, P. Schuck, and J.
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*For a fixed system size the DMRG and the PHBCS prob-
abilities decay roughly asv,~exp(—c|l—Ilg|). This type of
exponential decay has been observed also in DMRG studies
of spins chain and explains the accuracy of the DMRG
method since in that case a small number of states kept per In this appendix we shall present a method to compute
block is enough to faithfully reconstruct the exact groundnorms and expectation values of observables in the PBCS

APPENDIX A: PBCS STATES:
RECURSION RELATION METHOD

state. state(3). Let us first define the following operators:
*Finally we observe in Fig. 10 that the next most probable R

DMRG states reproduce essentially the same pattern as the P;(:CLCI_ , Pi=(PiT)T, Ni=c{+ci,++c?’_ci,_

most probable ones. The same is true for the next to next (A1)

most probable ones and so on. There seems to be a sort Rhich satisfy the commutation relations
self-similar structure whose origin would be interesting to '
understand. Fof) very large we expect that all these states [P, P_T]z 8i(1— N-) [N- P7]=25-- pt (A2)
will have a very small probability so that only the most prob- R v Pl nel

able ones would be necessary to describe the GS. In this case quations(A2) imply that the pairing creatio®; , the

the PBCS and PHBCS should coincide asymptotically. To airing destructiorP; and the electron numbéti operators

Iszrrgvevr ttu‘; ttk;:zszasptﬁz?es d ﬁetrﬂiv;a;oercon&der system SIZés)Sr;ltisfy anSU(2) algebra. This is the basis of the pseudospin

representation of the Hamiltonid®) which can be written as

Q

VIl. CONCLUSIONS @ A )
H=]§_:l(6j—,u,)Nj—)\dilzl PIP;. (A3)

The main conclusion we draw from the results presented
in the previous section is that the crossover between the fluc-
tuation dominated regime and the bulk limit is completely ~For the noanocAked levels we can make the replacements
smooth in the sense that there are no critical level spacing® —o; ,Pi—o; ,N;j—(o?+1) and transform Eq.(A3)
separating a superconducting phase and a fluctuation dominto a XY Hamiltonian with nonlocal interactions and a po-
nated phase. This result clarifies and overcomes the showition dependent magnetic field. The collective pair operator
comings of previous grand canonical and canonical BCS4) and condensat€8) can be written as
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INy=T{Nvac). (A4)

1=, o,

In order to find the norm and the energy of the PBCS state
(A4) we shall introduce the following auxiliary quantities:

ZN=(ryriN
SN=(IyPITH™h),
zh‘:<rg‘1pipfr},“‘1>, (A5)

TH=(T'y *PiP,T{
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N
ST =g, N(N-1)[1- (N-2)(g,§' ?+g,8"?)

+(N=2)(N=3)gig;T|| 2. (A16)

Taking into account thaEigiS|N=ZN, multiplying Eq.

(A15) by g; and summing over we get a relation for the
norm ratios

—NE 97—

N(N-1 ¢’8' . (A17)

ZN 1

Equations(A15)—(A17) together with the initial condi-

where all the expectation values are computed with respe&ons

to the vacuum state. Using the commutation relatioh®)

we derive the action of annihilation operators on the conden-

sate
Ni|NY=2Ng;P/|N—1), (A6)

PiIN)=Ng|N—-1)—N(N-1)g?P{IN—2). (A7)

The recurrence relations for the quantities defined in Eq.

(A5) are
ZN =g(N-1)S 1= g?(N-1)(N-2)T}", (A8)
ZN=zN"1-(N-1)g;s' ! (A9)
S'=Ngz""'=N(N-1)gfs' %, (A10)
TH=NgS' '=-N(N-1)gfz§"*.  (A1])

The matriceZ andT are symmetric and has null diag-

onal matrix elements. These properties are not explicitly

manifested in the recurrence relatidd8—A11). In order to
make these properties evident we insert E48) and(A10)
into Eq.(A11) obtaining

F=gigiN(N-D[ZN = (N-2)(giS" *+g;5" )

+(N=2)(N=3)gig; T 1. (A12)
We now define the hated quantities
sN TN
N +N_ 1]

in terms of which the energy of the normalized stédd)
reads

E=2N2 (ei—mgiSN—de; 9iS)
+AdN(N— 1)2 gl (A14)
Equations(A10) and(All) are transformed into
N ~
=Ng—N(N-1)g?§"" %, (A15)

ZN 1

z0=1, Zl:E giz, A1=g—l (A18)

can be used to find the values 8 and T} that determine
the energy(Al14) of the PHBCS state.

APPENDIX B: THE PAIRING BCS HAMILTONIAN
IN THE PARTICLE-HOLE BASIS

In Sec. IV we gave the expression of the Hamilton{an
in the p-h basis. We shall derive below the corresponding
expressions for arbitrary values of the blocked levels

Using the operator&l6) and(24) we can write the Hamil-
tonian(2) as

np+b

No A Mo
H= X (e-p)+22 ( Y AP R OL
i=ng+1 h=1
+Z (—en+ pm+Nd)N,—\d E PIPy+ > PP}
h,h’
+> (PIPR+ PP, (B1)
p,h

where the particle-hole energy levels aeg=d(ny+b
+p),e,=d(ng+1—h), with p,h=1,... n, The equality
between the particle and hole energies is achieved by choos-
ing the chemical potentigk as

p=d| ngt — (B2)

in which case the Hamiltonia(B1) adopts the simple form

b+1—)\)

b\
H/d=—ny(ng+b)+ — + KA+ KB

2
—MATA+B'B+AB+ATBY), (B3)
where
No No
KAZZEE ZPNP’ KB:: ;hNh,
p=1 h=1
- b—
p=€n=P+ ——— (p=h) (B4)
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Mo Mo
A= P,, B=2 PI.
p=1 h=1

The constant term in EqB3) gives the energy of the
Fermi sea with the chemical potenti@?2). The correlation
energyEy in units ofd is given by the lowest eigenvalue of
the HamiltonianH :

bx
2

The total energy,(€2) of a grain withQ) electrons and

HE=-+H/d+

Ng(ng+b)— (B5)

blocked levels can be obtained by adding the chemical po-

tential term to Eq(B3):

. 00 b(b
Eb(Q)ZEb(Q)‘f‘dE E‘f’l—)\ +§ §+)\

(B6)

J. DUKELSKY AND G. SIERRA
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From this equation we can easily relate the spectroscopic
gapsEE and the condensation energlég:

ES=Ep:2(Q)—E(Q) (B7)

=Ef, ,(Q)—ES(Q)+d(A+b+1).

Similarly, the Matveev-Larkin gap parameter defined in
Eq. (48) can be obtained as

1
AML:gl(Q)_5[50(9+1)+50(Q_1)] (B8)

7d+ EC.(Q)— %[ECO(QJF 1)+ES(Q—-1)].
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