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Crossover from bulk to few-electron limit in ultrasmall metallic grains
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Instituto de Estructura de la Materia, CSIC, Madrid, Spain
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~Received 14 June 1999; revised manuscript received 29 November 1999!

We study the properties of ultrasmall metallic grains with sizes in the range 20–400 electrons. Using a
particle-hole version of the density-matrix renormalization-group~DMRG! method we compute condensation
energies, spectroscopic gaps, pairing parameters, and particle-hole probabilities of the ground-state wave
function. The results presented in this paper confirm that the bulk superconducting regime~large grains! and
the fluctuation dominated regime~small grains! are qualitatively different, but show that the crossover between
them is very smooth with no signs of critical level spacings separating them. We compare our DMRG results
with the exact ones obtained with the Richardson solution finding complete agreement. We also propose a
simplified version of the DMRG wave function, called the particle-hole BCSAnsatz, which agrees qualitatively
with the DMRG solution and illustrates what is lacking in the projected BCS~PBCS! wave function in order
to describe correctly the crossover. Finally we present a recursive method to compute norms and expectation
values with the PBCS wave function.
i
il

e

a

A

g
tic
ag
a

is
ar
l

lli
n

gi
n

of
an
ca
o

e

d

k
po
e

na-
ied
od
he
rba-
o-
the
on-

he
n

cu-
21,
os
lts
atic
he
ua-

or

is
son
me-
f.
sics
ul-
ity
G

on’s
the
a
by

w-
nt
our
I. INTRODUCTION

A fundamental question posed in 1959 by Anderson
‘‘at what size of particles and what degree of scattering w
superconductivity actually cease.’’1 He argued that when th
average level spacingd is of the order of the BCS gapD
superconductivity must disappear. This old question w
considered in the past by several authors2,3 and has been
recently revived due to the experiments with ultrasmall
grains performed by Ralph, Black, and Thinkham~RBT!.4

The experiments show the existence of a spectroscopic
which can be driven to zero by application of magne
fields. RBT also found a parity effect meaning that the m
nitude of the spectroscopic gap is larger for grains with
even number of electrons than for odd ones.

From a theoretical point of view Anderson’s question
challenging since it concerns the applicability of the stand
BCS theory at nanometer scales.5 Despite some theoretica
works using the grand canonical BCS wave function,6–10 it
was soon realized that the description of ultrasmall meta
grains calls for a canonical formalism since the fluctuatio
in the electron number are strongly suppressed by char
effects.11–14A canonical treatment of the BCS wave functio
has been known in nuclear physics for decades15–17 ~for a
review, see Ref. 18!. The nucleus have a fixed number
fermions and the parity effects are clearly observable
interpreted theoretically. The ground state of the nucleus
be described by a wave function which is the projection
the BCSAnsatzto a fixed number of fermions. This is th
so-called projected BCS~PBCS! Ansatz. The techniques for
dealing with the PBCS wave function have been translate
the study of ultrasmall metallic grains.14 The trouble with the
BCS state and to a certain extent with the PBCSAnsatzis
that they are mean-field approximations which do not ta
care of the fluctuation effects that are supposed to be im
tant for very small grains. An alternative is to use unbias
PRB 610163-1829/2000/61~18!/12302~13!/$15.00
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numerical methods where no assumption is made on the
ture of the ground state. The authors of Ref. 12 have stud
systems of up to 25 electrons with the Lanczos meth
showing the importance of the logarithmic corrections in t
superconducting gaps proposed in Ref. 19 using a pertu
tive renormalization-group method. However, exact diag
nalization techniques cannot handle large systems where
crossover between the few-electron and the bulk superc
ducting regime is taking place for the actual value of t
BCS coupling constant, which for the Al grains is give
approximately byl;0.224.11 Another alternative is to use
the density-matrix renormalization-group~DMRG! method20

which allows us to study large systems with very high ac
racy. This approach was initiated by the authors in Ref.
obtaining results which agree with those of the Lancz
method for small systems while improving the PBCS resu
for larger grains. In this paper we shall present a system
study of the crossover region for grains with sizes in t
range 20 up to 400, showing the importance of the fluct
tions, which cannot be handled appropriately by the BCS
PBCS approaches.

The BCS pairing Hamiltonian that we shall study in th
paper has been solved exactly a long time ago by Richard
in a series of papers between 1963 and 1977 in the fra
work of nuclear physics~for a recent review, see Re
34!.22–24 These papers escaped the attention of the phy
community until the recent developments in the field of
trasmall metallic grains. Thus we have the great opportun
to compare the numerical results obtained with the DMR
method and the exact results obtained with the Richards
wave function. Upon this comparison we shall see that
DMRG method provides exact numerical results within
certain accuracy which can be improved systematically
increasing the number of states kept.

The overall picture we get from our study is that the fe
electron and the bulk-limit regimes are qualitatively differe
but the crossover is completely smooth. In this sense
12 302 ©2000 The American Physical Society
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results clarify and overcome the shortcomings of previo
grand-canonical BCS and canonical PBCS studies. In
BCS analysis superconductivity ceases to exist for le
spacingsd greater than a critical value which is different fo
even grainsdc

053.56D and for odd grainsdc
15dc

0/4.8 In the
PBCS study of Braun and von Delft the latter breakdown
superconductivity does not occur but is replaced by a sh
crossover between the bulk regime and the fluctuation do
nated regime which depends on the parity of the grainsdc

0

.0.5D,dc
1.0.25D).14 The results presented in this pap

will show no sign of critical level spacings separating qua
tatively different regimes. In fact, we have been able to
rametrize in a simple manner the numerical results found
several observables. These fitting formulas are a sor
finite-size scaling similar to those that appear in low dime
sional systems.33

The main tool we employ in our study is the particle-ho
DMRG ~PHDMRG! method proposed in Ref. 21. Th
method follows the general philosophy of the real-spa
DMRG method20 but exploits the existence of a Fermi su
face and the fluctuations around it. To apply the PHDMR
we have first to perform a particle-hole transformation wh
the Fermi sea is the vacuum of the basic operators. The s
that appear in the DMRG are the particle-hole~p-h! excita-
tions around the Fermi sea labeled by an integerl that counts
the number of particle pairs or holes pairs. Since we work
half filling, i.e., the number of electrons equal to the numb
of doubly degenerate states, the numberl is common to both
particle and hole excitations in the ground state of the s
tem. The DMRG algorithm selects the most probable
states that contribute to the exact ground state of the sys
For every value ofl there are usually more than one p
state, which form a sort of multiplet with multiplicityml .
The sum of all these multiplicities equals the total numbem
of states kept in the DMRG, i.e.,m5( lml . In our compu-
tations we have used a value ofm560 which is sufficient to
study system sizes up to 400 energy levels with a rela
error of 1024 in condensation energies. An outcome of t
DMRG results is that for every value ofl there is a single p-h
state which carries most of the probability. This fact sugge
a simplified version of the DMRG based on anAnsatzwith
only one p-h state perl. We call this state the particle-hol
BCS Ansatz~PHBCS!. The reason for this terminology i
that the PBCS state itself is a PHBCS state, though o
special type. While the PHBCSAnsatzis a generic linear
superposition of p-h states labeled byl, the PBCS state is a
particular linear superposition of p-h states. We have thu
hierarchy of canonical variationalAnsätze.

PBCS,PHBCS,DMRG,exact, ~1!

where every one contains its predecessor and is expect
give better results. From the PBCS to the PHBCSAnsätze
one gains the freedom to mix different p-h states while in
DMRG Ansatz, in addition to the latter freedom, there a
multiple p-h states for each value ofl. We shall make a
comparative analysis of the numerical results which w
clearly show the qualitative and quantitative importance
these ingredients. The last member in the chain~1! stands for
the exact Richardson’s solution of the BCS model. We sh
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see that the numerical results obtained with the DMRG a
the Richardson’s solution are for practical purposes indis
guishable.

The organization of the paper is as follows. In Sec. II w
define the model that is used to study ultrasmall meta
grains and summarize its essential features. In Sec. III
introduce the PBCS wave function. In Sec. IV we perfo
the p-h transformation, which is used to express the PB
state in the p-h basis. We then propose the PHBCS state
find the effective Hamiltonian that governs its dynamics.
Sec. V we discuss in detail the DMRG method and relat
to the PHBCSAnsatz. In Sec. VI we present our numerica
results for various quantities of interest obtained with t
DMRG, PHBCS, and PBCS methods. In Sec. VII we st
our conclusions. Technical details and derivations have b
collected in two appendixes. In Appendix A we propose
recursion method to compute norms and expectation va
with the PBCS state. In Appendix B we derive the form
the pairing BCS Hamiltonian in the p-h basis.

II. BCS PAIRING HAMILTONIAN

The BCS pairing Hamiltonian used for small metall
grains is given by6–14

H5 (
j 51,s56

V

~e j2m!cj ,s
† cj ,s2ld (

i , j 51

V

ci ,1
† ci ,2

† cj ,2cj ,1 ,

~2!

where i , j 51,2, . . . ,V label single-particle energy level
whose energies are given for simplicity bye j5 jd, whered
is the average level spacing which is inversely proportio
to the size of the grain.cj ,s are electron destruction operato
of time reserved statess56. Finally, m is the chemical
potential andl is the BCS coupling constant, whose appr
priate value for the Al grains is 0.224.11 Given Ne electrons
they can formn0 Cooper pairs andb unpaired states suc
thatNe52n01b. The number of electronsNe is equal to be
number of statesV appearing in Eq.~2!. The Hamiltonian
~2! decouples the unpaired electrons and henceb is a con-
served quantity. Theb unpaired electrons only contribute t
the total ground-state energyEb with their kinetic energy. Of
particular interest is the study of the parity effect whi
means that grains with an even number of electrons are m
superconducting than odd grains. This phenomena, wh
occurs also in finite nuclei, can be characterized by the
pendence of different observables as functions ofb.18

The Hamiltonian~2! has two regimes depending on th
ratio d/D52 sinh(1/l)/V, between the level spacingd and
the bulk superconducting gapD.6–14 In the weak-coupling
region (d/D@1), which corresponds to small grains or sm
coupling constant, the system is in a regime with strong p
ing fluctuations above the Fermi sea which lead to logar
mic renormalizations.19 In the strong-coupling regime (d/D
!1), which corresponds to large grains or strong-coupl
constant, the bulk-BCS wave function describes correctly
ground-state~GS! properties. Using the grand canonical BC
wave function the crossover between the weak- and stro
coupling regimes occurs atdc

0/D.3.56 ~even grains! and
dc

1/D;0.89 ~odd grains!.8
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12 304 PRB 61J. DUKELSKY AND G. SIERRA
III. PROJECTED BCS WAVE FUNCTION

Let us first consider the case where all the electrons fo
Cooper pairs which can occupy all the allowed states of
system, i.e.,V52n0 andb50.

The PBCS wave function is given by

uPBCS~b50!&5
1

AZV/2,V

~GV
† !V/2uvac&, ~3!

GV
† 5(

i 51

V

gici ,1
† ci ,2

† , ~4!

ZV/2,V5^vacuGV/2~G†!V/2uvac&, ~5!

whereuvac& is the Fock vacuum of the electron operators a
the variational parameters of the Ansatzgi are related to the
standard BCS parametersui andv i by the equation

gi5
v i

ui
, ui

21v i
251. ~6!

The state~3! is the projection of the grand canonical BC
state exp(G)uvac& into the Hilbert space ofV/2 Cooper pairs.

Let us consider now the case ofb unpaired electrons. As
explained in the previous section these electrons decou
from the rest of the system occupying the closest states to
Fermi level, namelyi 5n011, . . . ,n01b. The latter levels
are also called blocked states. The PBCS state forb.0 is
given by

uPBCS~b!&5
1

AZn0,2n0

)
i 5n011

n01b

ci ,1
† ~G2n0

† !n0uvac&, ~7!

G2n0

† 5S (
i 51

n0

1 (
i 5n01b11

2n01b D gici ,1
† ci ,2

† , ~8!

Zn0 ,2n0
5^vacuG2n0

n0 ~G2n0

† !n0uvac&. ~9!

While the PBCS state~3! depends onV variational pa-
rametersgi , the PBCS state~7! depends only on 2n0 param-
eters associated to the nonblocked levels. The unpaired s
only contribute to the energy of the state~7! with the kinetic
energye i .

We can give a pictorial representation of the PBCS sta
~3! and ~7!, which will be used later on in the discussion
the DMRG. A system with nonblocked levels, i.e.,b50, can
be represented as

~10!

whered
p

denotes thepth particle level,s
h

denotes thehth

hole level andm is the chemical potential separating particl
and holes. A system with one blocked level at the Fe
level is represented as
m
e

d

ed
he

tes

s

i

~11!

wheren0 is the total number of Cooper pairs and⇑ is the
unpaired spin lying on the Fermi level. Finally a system w
b52 unpaired electrons will be represented as

~12!

In what follows we shall concentrate on the caseb50,
leaving for the appendixes the cases withb.0. The varia-
tional parametersgi in the Ansätze ~3! and ~7! are found by
minimization of the mean value of the Hamiltonian~2!. This
requires the computation of the norm of the PBCS states
the expectation value of Eq.~2!. This problem was consid
ered in nuclear physics where the projection of the B
wave function was needed in order to take into account
finite-size effects of the nucleus.15,17,18 The method devel-
oped in Refs. 17 leads to a set of 2n0 coupled equations
which are solved in terms of a set of auxiliary quantiti
entering the computation. In Appendix A we propose an
ternative method based on recursion relations which can
easily implemented for system sizesV<400. We have
checked that this method reproduces the same results
tained by Braun and von Delf14 who used the techniques o
Ref. 17. The recursion method is quite manageable and
be used later on to study the PHBCSAnsatz.

IV. PARTICLE-HOLE BCS STATE

In the weak-coupling limitd/D@1 the separation be
tween energy levels is much greater than the bulk superc
ducting gap. The physics of this regime is given by the flu
tuations around the Fermi state,

uFS&5)
i 51

V/2

Pi
†uvac&, ~13!

wherePi5ci ,1
† ci ,2

† ~see Appendix A for notations!. An ap-
propriate choice of the chemical potentialm in Eq. ~2! guar-
antees that particle and hole excitations around the Ferm
~13! have the same energy. This symmetry implies that
PBCS parametersgi satisfy the following relation:

gV112 i5
1

gi
, i 51, . . . ,V ~14!

which holds in particular for the BCS solution for the vari
tional parametersui and v i in Eq. ~6!. Equation~14! is a
consequence of the particle-hole symmetry of the Ham
tonian ~2! that we shall show more explicitly below.

A. PBCS state in the particle-hole basis

In order to take full advantage of the symmetry conditi
~14! it is convenient to establish the relationship between
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PBCS state~3! and the Fermi seauFS&. With this aim we
shall write the pairing operatorGV given in Eq.~4! as

GV5GA~x!1GBS 1

xD , ~15!

GA~x!5 (
p51

V/2

xpPp ,

GBS 1

xD5 (
h51

V/2
1

xh
Ph ,

where p,h51, . . . ,V/2 label the particle and holes stat
starting from the levels closest to the Fermi sea, i.e.,

Pp[PV/21p , Ph[PV/2112h , ~p,h51, . . . ,V/2!
~16!

and xp5xh(p5h) are the gi parameters for the particl
states.

xp5gV/21p , p51, . . . ,V/2. ~17!

In Eq. ~15! we have used Eq.~14!. Equation~16! gives the
transformation from the original pairing operatorsPi to the
new operatorsPp and Ph . While the vacuum stateuvac& is
annihilated byPi ,; i , the Fermi stateuFS& is annihilated by
Pp andPh

† . Equation~16! is nothing but the p-h transforma
tion used in BCS to go from the Fock vacuum to the Fer
sea.

The operatorGA
† creates a pair of particles above th

Fermi sea while the operatorGB creates a pair of holes
Hence we can use these operators to expand a bas
particle-holes states above the Fermi sea. Let us define
normalized state

u l &5
1

Zl ,V/2~x!
@GA

†~x!# l@GB~x!# l uFS& ~18!

which is simply the tensor product of the particle stateu l &A
with l particles and the hole stateu l &B with l holes. One can
show that the PBCS state~3! can be expanded in the p-
basis~18! as follows:18

uPBCS&5(
l 50

V/2

c l
PBCSu l &, ~19!

where

c l
PBCS5

@~V/2!! #2

AZV/2,VZV/2,V/2~x!

Zl ,V/2~x!

~ l ! !2
. ~20!

As a simple application of the formula~20! let us consider
the PBCS state characterized by the choicexp51,;p, which
corresponds to a fully superconducting state. The p-h am
tudes are given by

c l
PBCS~xi51!5CV/2,l /ACV/2,V/2, ~21!

whereCN,M5N!/ @M !(N2M )! #. This is an interesting re
sult for it implies that the probabilitywl5c l

2 for finding the
p-h stateu l & in cPBCS is given by the hypergeometric serie
distribution
i

of
he

li-

wl5
CV/2,l

2

CV,V/2
, (

l 50

V/2

wl
251, ~xp51!. ~22!

In the limit whenV is large the distribution~22! becomes
a normal distribution centered atV/4 with quadratic devia-
tion AV/2. This result is the basis of the DMRG metho
applied in Ref. 21 to the pairing BCS Hamiltonian.

Incidentally, it is interesting to observe that the distrib
tion ~22! is the same as the one found by Kaulke and Pesc
for the Sz50 ground state of the Heisenberg ferromagne25

The reason for this correspondence is based on the p
dospin representation of the pairing Hamiltonian~2! ~see Ap-
pendix A!.

Equation~19! means that the PBCS state can be seen
the superposition of p-h statesu l & with amplitudesc l

PBCS,
which both depend on the variational parametersxp . As ex-
plained in the introduction we can try to relax Eq.~19! and
considerc l as variational parameters independent on the
rametersxp . This will lead us to a more generalAnsatz
which shares many common properties with the DMR
state.

B. Particle-hole BCS Ansatz

The previous study leads us to consider a general p-h s
of the form

uPHBCS&5(
l 50

V/2

c l u l &A^ u l &B , ~23!

where u l &A and u l &B are the particle and hole pieces of th
state given in Eq.~18! andc l are independent parameters n
constrained to satisfy Eq.~20!. Strictly speaking the p-h
states~23! belong to the Hilbert spaceHPHBCS expanded by
the p-h basis~18! and their dynamics is governed by th
projection of the pairing Hamiltonian~2!.

In order to find this effective Hamiltonian acting i
HPHBCS it is convenient to express Eq.~2! using the p-h
operators~16!, together with the p-h number operators,

N̂p52Pp
†Pp , N̂h52PhPh

† . ~24!

A simple computation yields

H52(
h51

V/2 FdS V

2
112hD2m2

ld

2 G1 (
p51

V/2 FdS V

2
1pD

2mGN̂p1 (
h51

V/2 F2dS V

2
112hD1m1ldGN̂h

2ldF (
p,p8

Pp
†Pp81 (

h,h8
PhPh8

†
1(

p,h
~Pp

†Ph1PpPh
†!G .

~25!

This Hamiltonian has a p-h symmetry provided we choo
the following chemical potential:

m5
d

2
~V112l! ~26!
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which guarantees that the particle and hole excitations h
the same energy. Using Eq.~26! the Hamiltonian~25! adopts
the simple form

H/d52S V

2 D 2

1KA1KB ~27!

2l~A†A1B†B1AB1A†B†!,

where

KA5 (
p51

V/2

ẽpN̂p , KB5 (
h51

V/2

ẽhN̂h ,

ẽp5 ẽh5p2
1

2
1

l

2
, ~p5h!, ~28!

A5 (
p51

V/2

Pp , B5 (
h51

V/2

Ph
† .

The term2d(V/2)2 in Eq. ~27! gives the energy of the
Fermi sea with the chemical potential~26!. We can subtract
that term and measure the energy in units ofd,

HC5S V

2 D 2

1H/d. ~29!

The lowest energy ofHC gives the ground-state condens
tion energy divided byd. In Appendix B we derive the
Hamiltonian in the p-h basis for a general value ofb.

The p-h symmetry of the Hamiltonian~29! amounts to its
invariance under the following mappings:

KA↔KB, A↔B. ~30!

In the p-h basisu l & the Hamiltonian~27! becomes a tridi-
agonal matrix. This fact can be proved using the factori
tion of every state~23! into its particle and hole contents
The unique nonvanishing entries ofHC are given by

^ l uHCu l &52 A^ l u~KA2lA†A!u l &A ,
~31!

^ l 21uHCu l &52l A^ l 21uAu l &A
2 .

The stateu l &A has the same form as the PBCS state
fined in Eq. ~3! with the replacementsgi→xp ,V→V/2.
Hence we can compute the matrix elements appearing in
~31! by using the auxiliary quantities introduced in Append
A:

^ l uHCu l &52l(
p

ẽpxpŜp
l 2l l (

p,p8
~xpŜp8

l
2~ l 21!xp

2T̂p,p8
l

!,

~32!

^ l 21uHCu l &52l
Zl ,V/2

Zl 21,V/2
S (

p
Ŝp

l D 2

.

The numerical procedure to find the PHBCS state w
lowest energy is summarized in the following steps:
ve

-

-

q.

h

~i! Make an initial guess for the parametersxp . One can
use for example the BCS values.

~ii ! Construct the effective Hamiltonian~32! for this
choice of parameters using the recursion method given
Appendix A.

~iii ! Find the lowest GS of the effective Hamiltonian~32!.
~iv! Change slightly the parametersxp and repeat the

steps~ii ! and~iii !, comparing the GS energy so obtained w
the one determined in the previous step. Stop the proc
until convergence is achieved.

Another important point is that in the PHBCS state d
fined in Eq.~23! we can actually restrict the sum overl to
only a small number of values. For example we can inclu
the states from 0 up to sayl max and check the convergence
the energy by changingl max. In the rangeV<400 it is
enough to choosel max511.

This method gives the values ofxp andc l of the PHBCS
state that minimizes the energy of the BCS pairing Ham
tonian. We shall present our results in Sec. VI.

V. DMRG STATE

The DMRG state represents the next step in our route
go beyond the PBCSAnsatz. Let us denote by$ua,l &A%a51

ml

an orthonormal set ofml many-body particle states contain
ing l particles, i.e.,

A^a,l ua8,l 8&A5d l ,l 8da,a8 . ~33!

Similarly we shall introduce a set$ub,l &B%b51
ml of many-

body hole states withl holes. With these notations a DMRG
state can be written as21

uc&5(
l

(
a,b51

ml

ca,b~ l !ua,l &A^ ub,l &B . ~34!

Comparing Eqs.~23! and~34! we see that the PHBCS state
are a particular case of DMRG states where there is only
representative particle or hole state perl, namely

c l
PHBCS5c1,1

DMRG~ l !, ~ml51,; l !. ~35!

A generic DMRG state involves higher multiplicities, i.e
ml>1, which is important for the numerical accuracy of th
method. Similar approximations to the DMRG in the conte
of strongly correlated systems have been given in Refs.
30.

We shall next present the basic ideas of the DMR
method and its application to the pairing BCS Hamiltonian21

In the DMRG one has to break the system under study
two pieces called the system blockA and the environmen
block B. In our case the blockA contains all the particle
levels whileB contains the hole ones. If the system size, i.
V, is large enough one cannot keep all the particle or h
states and hence one has to look for an effective descrip
of them. This is done by keeping a set ofm particle ~resp.
hole! statesua,l &A ,a51, . . . ,ml ,ub,l &B ,b51, . . . ,ml , as
in Eq. ~34!, with

m5(
l

ml . ~36!
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These two sets of states are chosen in such a way tha
state constructed in Eq.~34! gives the best possible approx
mation to the exact GS of the whole system. The constr
tion proceeds in successive steps starting from small gra
We begin with a system withV54 energy levels, which are
chosen as the closest two particle and hole states nea
Fermi levelm. This system can be represented asddss,
where we use the notation introduced in Eqs.~10!–~12!. For
larger systems, i.e.,V52(n11) with n.1, the whole sys-
tem is described by the superblockdAnBns, where the
block An ~resp.Bn) gives an effective description of then
particle ~resp. hole! levels closer to the Fermi energy i
terms of them-dimensional basis introduced above. In t
notation of Eqs.~10!–~12! we have

~37!

A generic state of the superblockdAnBns, in the sector
with equal number of particles and holes, reads

uc&5 (
a,b,l 8s

ca,b~ l 1 ,l 2 ,l 3 ,l 4!

3u l 1&n11^ ua,l 2&An
^ ub,l 3&Bn

^ u l 4&n11 , ~38!

~ l 11 l 25 l 31 l 4!,

whereu l 1&n11 is the (n11)th particle state which is empt
for l 150 and occupied forl 151. The hole stateu l 4&n11 is
similarly defined. The dynamics of the wave function~38! is
governed by the superblock Hamiltonian which we sh
construct below. The dimension of the Hilbert space of
superblock, dimHSB, is smaller than 4m2, for the constraint
l 11 l 25 l 31 l 4 eliminates many states. dimHSB is usually
much smaller than the exact dimension of the Hilbert sp
of states withV levels at half filling which is given by the
combinatorial numberCV,V/2 . For example forV524 the
latter number is 2 704 156, while the largest superblock m
trix involved in the DMRG calculation withm560 has di-
mension 3066. Another example is given byV5400 where
the dimension of the Hilbert space is of order 10119, while
the largest superblock dimension is also 3066.

The next step in the DMRG is to find the lowest eige
state of the superblock Hamiltonian using the Lanczos te
nique. The corresponding eigenvalue gives the DMRG e
mate of the GS energy for the system withV52(n11)
energy levels. Since the DMRG is a variational method
gives an upper bound of the exact result. Moreover the G
the superblock previously found can be used to construct
new blocksAn11 andBn11 that give the effective descrip
tion of the lowestn11 particle and hole states. This
achieved by first constructing the reduced density matrix
the subsystemdAn by tracing over the hole subsyste
Bns,
the

c-
s.

the

ll
e

e

-

-
h-
ti-

it
of
e

f

ra,a8
dA

~ l 1l 2 ,l 18l 28!

5 (
b,l 3 ,l 4

ca,b~ l 1 ,l 2,l 3 ,l 4!ca8,b~ l 18 ,l 28 ,l 3 ,l 4!.

~39!

The density matrix~39! has a block diagonal form wher
each block is labeled by the total number of particles, i
l 5 l 11 l 2. Let us denote the corresponding density mat
r l

dA . It is easy to see that it is a square matrix with dime
sionml1ml 21. One can also define a reduced density ma
for the hole subsystemBns by tracing over the particle sub
system, however, the p-h symmetry implies the equality
the particle and hole density matrices. This is a sort of
flection symmetry that recalls the symmetry between left a
right blocks used in the infinite system DMRG algorith
applied to one-dimensional~1D! systems.20 In fact, the
particle-hole DMRG proposed above is an improved infin
system algorithm, obtained with some modifications to
explained below. Of course, we can also deal with ca
where the particle-hole symmetry does not hold. In this ca
the particle and holes states kept in the DMRG will differ

Given the density matrixr l
dA , we diagonalize it and find

its eigenvalues.

r l
dA5OlS w1~ l !

w2~ l !

•

wml1ml 21
~ l !

D Ol
T ,

~40!

whereO is an orthogonal matrix andw1( l ).w2( l ). . . . .
Once we have found all the eigenvalues for all allowed v
ues of l we put them together and sort them in decreas
order of magnitude. The DMRG truncationdAn→A n118
consist in choosing the firstm eigenvectors with highest ei
genvalue. The renormalized blockA n118 will be described
by a set ofml8 states such thatm5( lml8 @recall Eq.~36!#.
The change of basis from the old blockdAn to the new
block A n118 is given by the firstml8 column vectors of the
orthogonal matrixOl . The error of the truncation is mea
sured by 12Pm (Pm5(k51

m wk).
Let us now give the HamiltonianHdABs of the super-

block dAnBns,

HdABs5HA1HB1Hd1Hs1HAB1HdA1HAs1HdB

1HBs1Hds , ~41!

HA5Kn
A2lAn

†An ,

Hd5 ẽn11N̂n11
(p) 2lPn11

(p) †Pn11
(p) ,

HAB52l~AnBn1H.c.!, ~42!

HdA52l~AnPn11
(p) †1H.c.!,

HAs52l~AnPn11
(h) †1H.c.!,

Hds52l~Pn11
(p) Pn11

(h) †1H.c.!,



tin
to

m
n

u
m
or
n

he

he
on

m
ze
he
th

m

d
R
n-
em

t
.
te

w

en
e

o
a
he
th

tu
th
n

e-
or

ivity
k-
rent

tes

f
he
gap

12 308 PRB 61J. DUKELSKY AND G. SIERRA
where N̂n
(p) , Pn

(p), and Pn
(h) are defined in Eqs.~A1!, ~16!,

and ~24!. The superindices have been introduced to dis
guish between the particle and hole operators. The opera
An , Bn , Kn

A , andKn coincide with those defined in Eq.~28!
with V/2 replaced byn. The termsHB , Hs , HdB , andHBs

can be derived from those of Eq.~42! by the p-h transforma-
tion ~30!. The splitting~41! of the superblock Hamiltonian
HdABs recalls the one used by Xiang in the momentu
space DMRG,31 and more recently by White and Martin i
their study of the water molecule.32 However, there are im-
portant differences between the latter approaches and o
First of all Xiang’s method uses a finite system algorith
while ours is an infinite system one combined with a ren
malization of the interaction to be explained below. Seco
we exploit the p-h symmetry of the problem which is not t
case of Refs. 31and 32.

The DMRG provides a many-body description of t
blocksAn andBn , which means that the operators acting
these blocks are represented bym3m matrices. In our case
the operators that we need to keep track are@An#, @An

†An#,

and @N̂j #. The DMRG proposed above is an infinite syste
algorithm, which is sufficient to study moderate system si
(N<400). A way to improve the numerical accuracy of t
infinite system method is to choose an effective value of
coupling constantln at thenth DMRG step in such a way
that the value of the bulk gap is the one of the final syste
This is guaranteed by the equation

sinh
1

ln
5

2~n11!

V
sinh

1

l
. ~43!

VI. NUMERICAL RESULTS

A. Comparison of the DMRG with exact results

A system withV524 levels can be exactly diagonalize
with the Lanczos techniques as done in Ref. 12. The DM
calculation withm560 agrees with the exact Lanczos co
densation energy in the first seven digits. For larger syst
the Lanczos method cannot be applied but as we said in
Introduction one can use the exact Richardson’s solution
Fig. 1 we plot the exact GS condensation energy for a sys
with V5100 levels andl50.4, together with the DMRG
results as a function of the number of states kept~i.e., m).
One can clearly see the exponential convergence inm of the
DMRG towards the exact solution. Another comparison
have made is for a system withV5400 and l50.224.
Keepingm560 states we get for the GS condensation
ergy E0

C(DMRG)/d5222.5168 with an estimated relativ
error of 1024. The exact result is given byE0

C(exact)/d5
222.518 314 1, which is within the estimated error. F
lower system sizes the relative error is smaller so for
practical purposes the DMRG results cannot be distinguis
from the exact ones. In the Figs. 2–8 presented below
curves labeled by DMRG also provide the exact results.

B. Condensation energy

The crossover between the superconducting and fluc
tion dominated regimes can be neatly characterized by
condensation energyEb

C defined as the difference betwee
-
rs

rs.
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the total energyEb of the GS and the energy of the uncorr
lated Fermi seauFS&. This energy has been computed f
even and odd grains using the grand canonical~g.c.! BCS
wave function8,10 and the canonical PBCS wave function.14

The g.c. studies suggest a breakdown of superconduct
for large values ofd while in the canonical case this brea
down is replaced by a sharp crossover between two diffe
regimes at a characteristic level spacingd0

C;0.5D. For d
,d0

C the condensation energyE0
C is an extensive quantity

FIG. 1. GS condensation energy forV5100 andl50.4 com-
puted with the DMRG method as a function of the number of sta
kept ~i.e., m). The exact result is given byE(exact)
5240.500 755 762 3.

FIG. 2. Condensation energies of theb50 state as a function o
V obtained with the DMRG, PHBCS, and PBCS methods. T
energies are normalized respect to the bulk superconducting
given byD5dV/@2 sinh(1/l)#.
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(;1/d) corresponding to a BCS-like behavior, while ford
.d0

C the energyE0
C is an intensive quantity~almost indepen-

dent ofd).14

In Figs. 2 and 3 we plot the DMRG, PBCS, and PHBC
results for the condensation energiesEb

C for even grains (b
50) with sizes ranging from 22 up to 400 and odd gra
(b51) for sizes between 21 and 401. In Fig. 4 we collect
DMRG results corresponding tob50, 1, 2, and 3.

In these figures we observe the following features:
•The DMRG method gives much lower condensation

ergies than those of the PBCS method, while the PHBCS
in between~see Figs. 2 and 3!.

FIG. 3. Condensation energies of theb51 state obtained with
the DMRG, PHBCS, and PBCS methods.

FIG. 4. Condensation energies of theb50, 1, 2, and 3 states
obtained with the DMRG method. The continuum lines are giv
by the fit ~44! with the numerical coefficients given in Table I.
s
e

-
s

•The sharp crossover of the PBCS results, which is
flected in a sudden change in the slope ofEb

C for b50 and 1
as a function ofV, is completely absent in the DMRG an
the PHBCS results.

•The dependence ofEb
C on V is rather smooth and can b

parametrized by fitting the DMRG curves with the followin
formula ~see Fig. 4!:

Eb
C/D52abV2bb1gb ln~V!/V, ~44!

where the constantsab , bb , and gb are given in Table I.
The fitting formula~44! is an improved version to the on
used in Ref. 21 and can be motivated from physical cons
erations as will be discussed below.

The fit ~44! is specially good for theb50 DMRG data
but it is also quite performant for the other statesb.0. The
first term in Eq.~44! represents the bulk correlation energ
given by Eb

C52D2/(2d),;b. Using the relation d/D
52 sinh(1/l)/V we deduce that the parameterab should be
independent ofb taking the following value:

a5
1

4 sinh~1/l!
50.005 757 for l50.224. ~45!

n

FIG. 5. Spectroscopic gapsEb
G measured in units ofd. The

subscriptse ando correspond to the casesb50 andb51, respec-
tively.

FIG. 6. Matveev-Larkin’s parameter obtained with the DMR
PHBCS, and PBCS methods.



e.

-

en

e

or

o
un
ur

on

re

e.

te
r t

rity

of
the

igh-
ne

ev
d
by

m-
be

t in

l-

a a-

12 310 PRB 61J. DUKELSKY AND G. SIERRA
We see from Table I thata0 is close to the bulk value
~45!, while ab , for b.0, have not still reached that valu
The constant termbb depends smoothly onb. This fact
agrees with the computation ofEb

C using second-order per
turbation theory which yields

b52 ln~2!l2 sinh~1/l!53.0206. ~46!

This value is close to those shown in Table I. The coeffici
gb which controls the logarithmic term in Eq.~44! behaves
roughly asgb5c11c2b, wherec153.9 andc251.4. This
type of behavior agrees qualitatively with second-order p
turbation theory, though the values ofc1 andc2 are different.

In summary, Eq.~44! combines the extensive behavi
(ab term!, the intensive behavior (bb term!, and the logarith-
mic corrections (gb term! in a simple manner, showing n
sign of sharp crossover in the condensation energy as a f
tion of the grain’s size. This conclusion is supported by f
ther evidences shown below.

C. Spectroscopic gaps: Parity effect

The parity-dependent spectral gaps are defined as

E0
G5E22E0 , ~even grains!, ~47!

E1
G5E32E1 , ~odd grains!.

In Fig. 5 we plot the DMRG, PHBCS, and PBCS results,
which we next comment.

•All the results share the same qualitative featu
namely,E1

G.E0
G for V,Vc , while E1

G,E0
G for V.Vc .

The value ofVc depends slightly on the method used, i.
Vc;200.

•Quantitatively, however, the DMRG gives much grea
spectroscopic gaps than the PBCS method, especially fo
odd grains.

FIG. 7. DMRG, PHBCS, and PBCS results for the pairing p
rameterD0 as defined in Eq.~50!.
t

r-

c-
-

s

,

r
he

•The differenceE0
G2E1

G for V.Vc is smaller for the
DMRG than the PBCS method, which means that the pa
effect is smoother in the former method.

D. Matveev-Larkin’s parameter

Another characterization of the parity effect is in terms
a gap parameter which measures the difference between
GS energy of an odd grain and the mean energy of the ne
bor even grains obtained by adding and removing o
electron,19

DML5E1~V!2
1

2
@E0~V11!1E0~V21!#. ~48!

In Fig. 6 we display our results. Comments:
•All the curves show a minimum inDML /D as a function

of d/D. This latter feature was first conjectured by Matve
and Larkin19 and confirmed by Mastellone, Falci, an
Fazio12 using the Lanczos method and the PBCS method
Braun and von Delft.14

•The shape of the DMRG curve is rather smooth as co
pared with the PBCS and the PHBCS methods. This can
interpreted as a suppression of the even-odd parity effec
agreement with the results found for the spectral gaps.

•The DMRG results of Fig. 6 can be fitted with the fo
lowing formula, which can be derived from the fits~44! of
the condensation energies:

TABLE I. Values of the parameters of formula~44! that gives
the best square least fit of the DMRG data plotted in Fig. 4.

b ab bb gb

0 0.005 701 2.6678 3.9321
1 0.004 586 2.2463 5.3275
2 0.003 439 2.1258 6.9290
3 0.002 747 2.0485 8.1536

- FIG. 8. DMRG, PHBCS and PBCS, results for the pairing p
rameterD1 as defined in Eq.~50!
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DML /D50.421510.183 75
d

D
10.096 83

D

d

20.016 06
d

D
ln

d

D
. ~49!

This equation shows that in the region 0.3,d/D,3.5 the
logarithmic term is not very important. The logarithmic co
rections are contained in the renormalization of the coe
cient of the termd/D, whose bare value isl/250.112. The
constant term equals the differenceb02b1 of the condensa-
tion energies@see Eq.~44! and Table I#.

E. Pairing parameter

The BCS superconducting order parameter is strictly z
in the canonical ensemble. For that reason one has to
another quantity to characterize the pair mixing across
Fermi level that takes place in the ground state for a fix
number of electrons. We shall choose the pairing param
proposed in Refs. 8 and 14:

Db5ld(
j

Cj , ~50!

Cj
25^cj 1

† cj 1cj 2
† cj 2&2^cj 1

† cj 1&^cj 2
† cj 2&

which measures the fluctuation in the occupation numbers
the g.c. BCS caseCj5ujv j andDb coincides with the usua
superconducting parameterD.

In Figs. 7 and 8 we show our results forD0 and D1,
respectively. Comments:

•Figure 7 shows that the sharp transition occurring in
PBCS Ansatzbetween the strong- and weak-coupling r
gimes is completely absent in the DMRG state. In the la
state the pairing parameter, when measured in units ofD,
converges monotonically to its bulk limit from above.

•In the odd case the crossover predicted by the PB
method is more dramatic than in the even one.14 The DMRG
and PHBCS results show that this is an artifact of the PB
Ansatz. The existence of a minimum forD1 and not forD0 is
due to the blocking effect produced by the unoccupied sin
state at the Fermi level.

•The PHBCS curves in Figs. 7 and 8 agree qualitativ
with the DMRG curves, while they differ strongly from th
PBCS curves. This shows the importance of letting the a
plitudesc l to be independent from the BCS-like paramet
gi .

F. Particle-hole probabilities

Another comparison between the DMRG, PHBCS, a
PBCS states can be given in terms of the probability of fi
ing a state withl particles or holes. Ifc is the GS of the
whole system one has to construct the reduced density m
for the particle or the hole subsystems and look for the c
responding eigenvalues. As shown in Sec. IV the redu
particle density matrix of the PBCS and PHBCS states c
tains a unique eigenstate with probabilitywl per number of
particlesl, given bywl5c l

2 , wherec l is given by Eq.~20!
for the PBCS state whilec l for the PHBCS has to be ob
tained through the minimization process explained at the
-
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of Sec. IV. In Fig. 9 we display our numerical results forwl
as a function ofV. The reduced particle density matrix de
rived from the DMRG state has several eigenvectors fo
fixed number of particlesl, with eigenvalueswn( l )(n
51, . . . ) @see Eq.~40!#. In Fig. 10 we plot our numerica
results forwn( l ). Comments:

•The overall pattern of the particle probabilities is com
mon to all theAnsätzenamely,~i! the Fermi sea is the mos
probable state for 0,V,V1, where the value ofV1 de-
pends on theAnsatz, ~ii ! in the interval V1,V,V2 the
most probable state has one particle, while the probability
the Fermi sea continue to decrease crossing over event
the probability of a two particle state,~iii ! every curve asso-
ciated to a given number of particlesl, first increases for
small grains, then reaches a maximum, where it is the m
probable state, and then starts to decrease.

•The probabilities of the PBCS states show the charac
istic sharp crossover in the region 160,V,220, in agree-
ment with similar behavior observed in the condensation
ergy E0

C ~Fig. 1!, spectroscopic gapE0
G ~Fig. 4!, and pairing

parameterD0 ~Fig. 6!.
•In contrast to the latter behavior, the PHBCS and DMR

probabilities evolve smoothly with the system size show
no signs of discontinuities or abruptness, in clear agreem
with the observables computed above.

•The PHBCS curves are in one to one corresponde
with the most probable DMRG states, while the next m
probable DMRG states, with the same number of partic
have much less probability. This justifiesa posteriori the
PHBCSAnsatzwhere multiple states with the same numb
of particles are not included.

FIG. 9. Plot of the particle-hole probabilitieswl5c l
2 for l

50,1, . . . ,7. The PHBCS~resp. PBCS! results are given by the
continnum~resp. discontinuum! curves.



ob

di
G

t p
nd

bl

e
rt
to
es
b-
ca
T
iz

te
flu
ly

in
om
o

C

tate
ith

rom
sion
rve
ely
ze.
le
to

els
be
-
el
re

the
the

CS
S

cur-
s a
ctly

ela-

.
J.

he

ute
CS

pin

ents

o-
tor

at
t

o
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•For a fixed system size the DMRG and the PHBCS pr
abilities decay roughly aswl;exp(2cul2l0u). This type of
exponential decay has been observed also in DMRG stu
of spins chain and explains the accuracy of the DMR
method since in that case a small number of states kep
block is enough to faithfully reconstruct the exact grou
state.

•Finally we observe in Fig. 10 that the next most proba
DMRG states reproduce essentially the same pattern as
most probable ones. The same is true for the next to n
most probable ones and so on. There seems to be a so
self-similar structure whose origin would be interesting
understand. ForV very large we expect that all these stat
will have a very small probability so that only the most pro
able ones would be necessary to describe the GS. In this
the PBCS and PHBCS should coincide asymptotically.
show that this happens we have to consider system s
larger than those studied in this paper.

VII. CONCLUSIONS

The main conclusion we draw from the results presen
in the previous section is that the crossover between the
tuation dominated regime and the bulk limit is complete
smooth in the sense that there are no critical level spac
separating a superconducting phase and a fluctuation d
nated phase. This result clarifies and overcomes the sh
comings of previous grand canonical and canonical B

FIG. 10. Plot of the particle-hole DMRG probabilitieswn( l ),
which are defined as the eigenvalues of the reduced density m
with l particles or holes. The thick continuum lines correspond
n51 and l 50,1, . . . ,9, thediscontinuum lines correspond ton
52 and l 51,2, . . . ,7 and thethin continuum lines correspond t
n53 andl 51,2, . . . ,5.
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studies. The abrupt crossover obtained with the PBCS s
is an artifact of that method. Our DMRG results agree w
the exact solution with an accuracy of at least 1024 for con-
densation energies in the region studied which ranges f
20 up to 400 electrons. Instead of a breaking or suppres
of superconductivity for ultrasmall grains we rather obse
that superconductivity and fluctuations cannot be genuin
separated and that they gradually mix with the system si

We have explained in more detail the particle-ho
DMRG proposed in Ref. 21 which can be applied not only
the reduced BCS Hamiltonian with arbitrary energy lev
but also to Hamiltonians where the pairing coupling may
level dependent, i.e.,l→l i , j . In this sense we can in prin
ciple study, using the particle-hole DMRG, the effect of lev
statistics,9,33–35and more general pairing interactions whe
no exact solution is available.

We have developed a recursive method to deal with
PBCS wave function which is somewhat simpler than
methods currently used.

We have proposed a wave function, the particle-hole B
state~PHBCS!, which stands somehow in between the PBC
and DMRG states and which can be studied using the re
sive method mentioned above. The PHBCS also show
smooth crossover between large and small grains corre
describing the interplay between superconducting corr
tions and fluctuations.
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APPENDIX A: PBCS STATES:
RECURSION RELATION METHOD

In this appendix we shall present a method to comp
norms and expectation values of observables in the PB
state~3!. Let us first define the following operators:

Pi
†5ci ,1

† ci ,2
† , Pi5~Pi

†!†, N̂i5ci ,1
† ci ,11ci ,2

† ci ,2
~A1!

which satisfy the commutation relations,

@Pi ,Pj
†#5d i j ~12N̂i !, @N̂i ,Pj

†#52d i j Pj
† . ~A2!

Equations~A2! imply that the pairing creationPi
† , the

pairing destructionPi and the electron numberN̂i operators
satisfy anSU(2) algebra. This is the basis of the pseudos
representation of the Hamiltonian~2! which can be written as

H5(
j 51

V

~e j2m!N̂j2ld (
i , j 51

V

Pi
†Pj . ~A3!

For the nonblocked levels we can make the replacem
Pi

†→s i
1 ,Pi→s i

2 ,N̂i→(s i
z11) and transform Eq.~A3!

into a XY Hamiltonian with nonlocal interactions and a p
sition dependent magnetic field. The collective pair opera
~4! and condensate~3! can be written as

rix
o
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GV
† 5(

i 51

V

gi Pi
† , uN&5GV

†Nuvac&. ~A4!

In order to find the norm and the energy of the PBCS s
~A4! we shall introduce the following auxiliary quantities:

ZN5^GV
NGV

†N&,

Si
N5^GV

N Pi
†GV

†N21&,

Zi j
N5^GV

N21Pi Pj
†GV

†N21&, ~A5!

Ti j
N5^GV

N22Pi PjGV
†N&,

where all the expectation values are computed with res
to the vacuum state. Using the commutation relations~A2!
we derive the action of annihilation operators on the cond
sate

N̂i uN&52Ngi Pi
†uN21&, ~A6!

Pi uN&5Ngi uN21&2N~N21!gi
2Pi

†uN22&. ~A7!

The recurrence relations for the quantities defined in
~A5! are

ZiÞ j
N 5gi~N21!Sj

N212gi
2~N21!~N22!Ti j

N21 , ~A8!

Zii
N5ZN212~N21!giSi

N21 ~A9!

Si
N5NgiZ

N212N~N21!gi
2Si

N21 , ~A10!

Ti j
N5NgjSi

N212N~N21!gj
2Zi j

N21 . ~A11!

The matricesZ andT are symmetric andT has null diag-
onal matrix elements. These properties are not explic
manifested in the recurrence relations~A8–A11!. In order to
make these properties evident we insert Eqs.~A8! and~A10!
into Eq. ~A11! obtaining

Ti j
N5gigjN~N21!@ZN222~N22!~giSi

N221gjSj
N22!

1~N22!~N23!gigjTi j
N22#. ~A12!

We now define the hated quantities

Ŝi
N5

Si
N

ZN
, T̂i j

N5
Ti j

N

ZN
~A13!

in terms of which the energy of the normalized state~A4!
reads

E52N(
i

~e i2m!giŜi
N2ldN(

i j
gi Ŝj

N

1ldN~N21!(
i j

gi
2T̂i j

N . ~A14!

Equations~A10! and ~A11! are transformed into

ZN

ZN21
Ŝi

N5Ngi2N~N21!gi
2Ŝi

N21 , ~A15!
te

ct

n-

.

y

ZN

ZN22
T̂i j

N5gigjN~N21!@12~N22!~giŜi
N221gjŜj

N22!

1~N22!~N23!gigj T̂i j
N22#. ~A16!

Taking into account that( igiSi
N5ZN, multiplying Eq.

~A15! by gi and summing overi we get a relation for the
norm ratios

ZN

ZN21
5N(

i
gi

22N~N21!(
i

gi
3Ŝi

N21 . ~A17!

Equations~A15!–~A17! together with the initial condi-
tions

Z051, Z15(
i

gi
2 , Ŝi

15
gi

Z1
~A18!

can be used to find the values ofŜi
N and T̂i j

N that determine
the energy~A14! of the PHBCS state.

APPENDIX B: THE PAIRING BCS HAMILTONIAN
IN THE PARTICLE-HOLE BASIS

In Sec. IV we gave the expression of the Hamiltonian~2!
in the p-h basis. We shall derive below the correspond
expressions for arbitrary values of the blocked levelsb.

Using the operators~16! and~24! we can write the Hamil-
tonian ~2! as

H5 (
i 5n011

n01b

~e i2m!12(
h51

n0 S eh2m2
ld

2 D1 (
p51

n0

~ep2m!N̂p

1 (
h51

n0

~2eh1m1ld!N̂h2ldF (
p,p8

Pp
†Pp81 (

h,h8
PhPh8

†

1(
p,h

~Pp
†Ph1PpPh

†!G , ~B1!

where the particle-hole energy levels areep5d(n01b
1p),eh5d(n0112h), with p,h51, . . . ,n0. The equality
between the particle and hole energies is achieved by ch
ing the chemical potentialm as

m5dS n01
b112l

2 D ~B2!

in which case the Hamiltonian~B1! adopts the simple form

H/d52n0~n01b!1
bl

2
1KA1KB

2l~A†A1B†B1AB1A†B†!, ~B3!

where

KA5 (
p51

n0

ẽpN̂p , KB5 (
h51

n0

ẽhN̂h ,

ẽp5 ẽh5p1
b211l

2
, ~p5h!, ~B4!
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A5 (
p51

n0

Pp , B5 (
h51

n0

Ph
† .

The constant term in Eq.~B3! gives the energy of the
Fermi sea with the chemical potential~B2!. The correlation
energyEb

C in units of d is given by the lowest eigenvalue o
the HamiltonianHb

C :

Hb
C51H/d1S n0~n01b!2

bl

2 D . ~B5!

The total energyEb(V) of a grain withV electrons andb
blocked levels can be obtained by adding the chemical
tential term to Eq.~B3!:

Eb~V!5Eb
C~V!1dFV2 S V

2
112l D1

b

2 S b

2
1l D G .

~B6!
ow

s.

ev

v

o-

From this equation we can easily relate the spectrosco
gapsEb

G and the condensation energiesEb
C :

Eb
G5Eb12~V!2Eb~V! ~B7!

5Eb12
C ~V!2Eb

C~V!1d~l1b11!.

Similarly, the Matveev-Larkin gap parameter defined
Eq. ~48! can be obtained as

DML5E1~V!2
1

2
@E0~V11!1E0~V21!# ~B8!

5
ld

2
1EC

1~V!2
1

2
@EC

0~V11!1EC
0~V21!#.
nd

ll-
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