Effect of Next Enhance® 150 and Previda® on growth performance and the intestinal transcriptome of gilthead sea bream (Sparus aurata)

Jaume Pérez-Sánchez¹, Azucena Bermejo-Nogales¹, Laura Benedito-Palos¹, Itziar Estensoro¹, Yiannis Petropoulos², Oswaldo Palenzuela¹, Craig L. Browdy³, Ariadna Sitjà-Bobadilla¹

CSIC¹Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain

AndromedaGroup ²Andromeda S.A., Rion Achaias, Greece

³Novus International, St. Charles, MO, USA

YOUR NEARBY SEA FISHERMAN

Carvacrol and thymol are **essential oils** from oregano and thyme extracts that can improve fish performance, enhance populations of beneficial gut bacteria, inhibit the growth of some pathogens and improve gut barrier structure and function. In this study we tested the effect of Next Enhance® (NE) 150, a patented combination of carvacrol and thymol, as a feed additive for gilthead sea bream. In a first trial, the best dose of NE 150 was established after measuring growth performance, plasma biochemistry, total antioxidant capacity, respiratory burst (RB) and haematology. In a second trial, the effect of NE 150-100 ppm alone or combined with a prebiotic (Previda®) was further studied analysing the

	INT. SECTION	ANTERIOR		POSTERIOR	
	DIET	T1	T2	T1	T2
- uo	BMPR1a	1.08	0.96	0.85	0.75**
erati	IHH	0.91	0.97	0.58	0.37**
olife	SHHA	0.89	0.92	0.68	0.76*
g pi	GLI1	0.90	0.81	0.73**	0.82
tion	WLs	0.80	0.93	0.65**	0.86
ntia	Myc	0.92	0.92	0.64*	0.78
ifere	CTNNB1	0.84	0.78**	0.82	0.87
ell d	Tcf4	0.77**	0.79	0.57**	0.72**
U	GFI-1	1.44**	1.22	0.89	0.97
tion	ITGB1BP1	0.85	0.74*	0.90	0.98
Inica	CLDN12	0.91	0.80	0.76*	0.75**
ามน	CLDN15	0.90	0.98	0.78	0.73*
	TJP1	0.84	0.85	0.68*	0.69**
o ce	DSP	0.82**	0.76**	0.92	0.92
Cell t	GJB4	0.87	0.86	0.65**	0.71**

		INT. SECTION		ANTERIOR		POSTERIOR	
			DIET	T1	T2	T1	T2
	Interleukins & Cytokines		Γ IL-1β	0.47*	0.64	0.64	0.68
IMMUNOSURVEILLANCE			IL-6	0.23**	0.39*	0.12**	0.25**
		kins	IL-8	0.74	0.38**	0.95	0.67
		kines 🗌	IL-10RA	0.66	0.63*	0.84	1.22
			TNFα	0.92	0.81	0.76	0.64**
			CD276	0.91	0.93	0.76	0.78**
	Pathogen Recognition Receptors		TLR1	0.69	0.71	0.72*	0.95
			TLR2	0.90	0.92	0.78*	0.94
			TLR5	0.53	0.67	0.55**	0.60**
		en tion	TLR9	1.14	0.80**	0.57**	0.91
		ors	CLEC10A	0.68*	0.79	0.53**	0.60**
			LGALS1	0.94	1.14	0.69**	0.93
			CSL2	0.5	0.24*	0.49	0.5
			FCL	18.02**	6.34	3.26	1.83
			VIM	0.89	0.99	0.65**	0.62**
DAMAGE & ACTIVIT	Enterocyte Markers	cuto	ALPI	1.09	0.76**	0.91	0.72
		ers	FABP2	1.36	3.33**	1.10	0.71
		FABP6	0.3	0.09*	1.52	2.45*	
	ER Chaperone CANX		1.02	0.74	0.85	0.77**	
	Mitochondria Activity		mtHsp10	1.37*	1.12	1.13	1.28
		ondrial	ECH	1.98**	1.55**	1.21	1.28
		Ίτγ	HADH	1.51*	1.16	1.30*	1.01
			L Tim44	0.96	0.71**	0.73	0.68*

For each intestinal segment, gene and experimental diet, the fold change is referred to the control diet. Red tones correspond to up-regulation and green tones correspond to down-regulation. The intensity of the colour stands for the degree of the change. ** stands for statistically significant changes at P < 0.05 and * at P< 0.1 with Student-t test.

CONCLUSIONS

ARCHITECTURE

INTESTINAL

000

SIGNALING

CEL

At 50 ppm fish grew well with improved FGR and slightly reduced RB. The threshold dose of NE150 was established at 100 ppm, as higher doses may induce low growth performance profiles due to the lower feed intake and a very high inflammatory status (high RB). When using the 100 ppm dose alone (T1) or combined with previda (T2), the decrease in feed intake was confirmed and FGR was equally improved. No significant changes in haematology and plasma antioxidant capacity were detected. The intensity of the changes and the number of genes that were significantly regulated were higher in PI than in AI. At PI, both treatments invoked a clear down-regulation of genes involved in cell differentiation and proliferation, some involved in cell to cell communication, interleukin IL-6, and several PRR. By contrast, up-regulation was mostly found for genes related to enterocyte mass, cell epithelial damage and mitochondrial activity at AI. The changes were of the same order for T1 and T2, except for fatty acid-binding proteins 2 and 6 (FABP2, FABP6) and the PRR fucolectin. Thus, the combination of NE150 and Previda induces an anti-inflammatory status and changes in the absorptive capacity of the intestine. ARRAINA Acknowledgments: The research leading to these results has received funding from the EU 7 FP (FP7/2007-2013) under grant agreements no 262336 (AQUAEXCEL) and KBBE-2011-288925 (ARRAINA). Additional funding was obtained from the Generalitat Valenciana (PROMETEO 2010/006).