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Abstract  

 

A series of activated carbons was used to investigate the photochemical behaviour of carbons 

under UV light as catalysts in the photo-oxidation of phenol in the absence of semiconductor 

additives. Conventional photocatalytic tests showed an improved photo-oxidation in the 

presence of activated carbons, beyond the so-called synergistic effect reported in the literature 

for carbon/titania composites. A novel approach based on UV irradiation of carbons pre-

loaded with phenol was used to demonstrate the anomalous photochemical response of carbon 

materials towards phenol degradation. Analysis of the catalytic reaction from a different 

standpoint (inside the carbonaceous matrix) demonstrated the catalytic activity of certain 

carbon materials for phenol photodegradation, without considering photolytic breakdown and 

adsorption kinetics. The pseudo photochemical quantum yield of several activated carbons 

was higher than that of photolysis under the same conditions; the nature of the degradation 

intermediates was also modified in the presence of the carbon materials. Moreover, the 

degradation of the adsorbed fraction retained inside the pore structure of the carbons has been 

demonstrated. Our results suggest the occurrence of carbon-photon interactions which could 

be propagated through the graphene sheets of the materials, and could reach the adsorbed 

molecules inside the pores. 

 



 

1. Introduction 

The development of advanced oxidation processes for wastewater remediation has received 

much attention in the last years; particularly extensive research is being carried out on the 

synthesis of more efficient photocatalysts to promote the degradation of recalcitrant pollutants 

(and ideally the complete mineralization). Among the catalysts, titanium oxide -a direct wide-

band gap semiconductor (i.e. 3.20 eV)- has been extensively studied since it is non-toxic, 

photostable, cheap and very efficient under ultraviolet light (UV) [1-3]. The synthesis of 

porous titania, or its immobilization on porous supports has received much attention recently, 

because of the limitations of titania powders related to their recovery that prevent the large 

scale implementation in the wastewater remediation arena [4-8]. In this regard, extensive 

work has been carried out on the improved photocatalytic activity of semiconductors 

immobilized on carbon supports, carbon-coated titania or carbon doped titania [9-12].  

Carbons are strong light absorbing materials, despite of which they have been successfully 

used as support of photoactive species [13-16]. Although it is hard to understand how light 

could penetrate the carbon particles to reach the immobilized photocatalyst, carbon-titania 

composites have shown quite high efficiencies for the photodegradation of a variety of 

pollutants [17-19]. For instance, the presence of activated carbons and carbon nanotubes 

seems to change the photocatalytic activity of TiO2 towards the degradation of organic 

pollutants beyond the so-called “synergistic” effect (i.e., improved photodegradation rates) 

[13-16].  

In this regards, we have recently reported the anomalous response of an activated carbon 

towards phenol degradation in aqueous medium [20]. Direct UV irradiation of the solution in 

the presence of the carbon material and the absence of any other photoactive species showed 

that beyond phenol degradation by photolysis, the carbon material improved the photo-



 

oxidation rate of phenol, compared to bare or immobilized titania. The results suggested the 

occurrence of interactions between UV light and carbon particles. 

To discriminate whether this behaviour is a singular characteristic of that particular activated 

carbon or rather an intrinsic property of certain carbon materials, we have explored the 

behaviour of several porous activated carbons obtained from different precursors and 

exhibiting varied porosity and composition when exposed to UV irradiation. The aim of this 

work is to unambiguously demonstrate that under UV irradiation, carbon materials are 

capable of promoting the degradation of organic pollutants in aqueous medium (in the 

absence of semiconductor additives).  

2. Experimental 

2.1 Materials 

A series of porous activated carbons from different origins were selected for this study. The 

main physicochemical properties are compiled in Table 1. Briefly they are as follows: Q 

(bituminous coal, steam activation), PC (plastic waste derived, CO2 activation), CV (wood-

based, H3PO4 activation), FY5 (Calgon, bituminous coal based, steam activation) and BKK 

(bituminous coal, physical activation). The procedure for the preparation of PC has been 

described elsewhere [21].  

 
2.2 Photolysis and photodegradation experiments  

Dark adsorption and phenol photolysis and photodegradation experiments were performed 

under the same experimental conditions, by means of kinetics studies from batch experiments 

at room temperature. Briefly, for adsorption in dark conditions about 1 g L-1 of adsorbent was 

placed in dark glass flasks containing 400 mL of phenol solution (in distilled non buffered 

water) of initial concentration 100 mg L-1. The suspensions were vigorously stirred (600 rpm) 

and small aliquots of the solution (~1.5 mL) were taken out at predetermined time intervals 



 

and analyzed by reverse-phase HPLC (Spherisorb C18 column 125 mm x 4 mm), using 

methanol-water mixture (5:95) as mobile phase, using a photodiode array detector. The 

samples were previously filtered using regenerated cellulose filter having mean pore size of 

0.45 μm.  

 
Table 1. Main physicochemical characteristics of the selected activated carbons obtained 

from gas adsorption and elemental analysis.  

 Q CV FY5 BKK PC 
SBET [m2g-1] 1033 1280 799 961 1357 
VTOTAL [cm3 g-1]a 0.519 1.057 0.346 0.566 0.601 
VMICROPORES [cm3 g-1]b 0.316 0.314 0.256 0.292 0.453 
VMESOPORES [cm3 g-1]b 0.089 0.517 0.027 0.058 0.044 
Wo, CO2 (DR) [cm3 g-1]c 0.185 0.146 0.265 0.220 0.268 
C [wt.%] d 96.6 87.1 96.2 94.0 99.2 
H [wt.%] d 0.6 2.8 0.8 0.3 0.3 
N [wt.%] d 0.7 0.3 0.3 0.8 0 
O [wt.%] d 2.1 9.8 2.7 4.7 0.6 
pHPZC 8.9 2.2 9.0 8.5 10.9 
a evaluated at p/po 0.99  
b evaluated from DFT method applied to N2 adsorption data 
c evaluated from DR method applied to CO2 adsorption data 
d DAF basis 

 

Photodegradation experiments were carried out in a photo-reactor of 400 mL capacity. The 

UV irradiation source was provided by a high pressure mercury lamp (125 W), vertically 

suspended in a cylindrical, double-walled quartz jacket cooled by flowing water, immersed in 

the solution. The water cell was used to control the temperature during the experiments, 

preventing any overheating of the suspension due to the irradiation. At regular intervals, 

aliquots of the solution were extracted and analyzed. The corresponding extract yield for each 

pure compound was evaluated. The photolysis (non-catalyzed degradation reaction) of phenol 

was performed through the irradiation of an aqueous solution of phenol in the absence of 

catalyst. All the experiments were done in triplicate and demonstrated to be reproducible; 

reported data represent the average values.  



 

Prior to the experiments the photon flux arriving at the solution was measured through 

ferrioxalate actinometry [22]. The photochemical quantum yield of phenol photolysis (φ) -

defined by IUPAC as the ratio between the number of mol reacted, ΔN, per mole of photons 

absorbed (IAΔt)- was evaluated from the slope of the relation between the mol of pollutant 

degraded vs the irradiation time with the equation [23]:  

AN I tφΔ = Δ  

where IA is the photon flux absorbed by the sample, evaluated from the product of the incident 

photon flux Io, determined by actinometry, and the integrated absorption fraction FS over the 

wavelength range used in the experiment. The photochemical quantum yield was evaluated in 

solution from the slope of the plot of the number of mol of degraded phenol per incident 

photon flux vs the irradiation time.  

 

2.3 Photodegradation experiments on pre-loaded samples 

Carbon samples were loaded by putting in contact an adequate amount of the activated carbon 

with a diluted phenol solution (40 mg L-1), until all phenol is adsorbed (no phenol was 

detected in solution). Subsequently the samples were irradiated for 20 minutes using the 

photo-reactor described above. After irradiation, the carbon samples were extracted with 

ethanol and both the alcoholic extracts and the remaining aqueous solution were analyzed by 

HPLC. The corresponding extract yield for each pure compound was evaluated. 

 

2.4 Characterization of the carbon catalysts 

The nanotexture of the activated carbons was characterized by N2 (ASAP 2010, 

Micromeritics) adsorption isotherms at -196 ºC. Before the experiments, the samples were 

outgassed under vacuum (ca. 10-3 torr) at 120 °C overnight. The isotherms were used to 

calculate the specific surface area, SBET, total pore volume, VT, and pore size distribution 



 

using the density functional theory (DFT) assuming a slit-shape pore geometry. Additionally, 

the distribution of pores smaller than 0.7 nm (narrow micropores) was assessed from CO2 

adsorption isotherms at 0 ºC (Tristar 3000, Micromeritics) using the DR formulism. The 

activated carbons were further characterized by elemental analysis (LECO CHNS-932 and 

LECO VTF-900 automatic analyzers). 

A custom made device for TPD-MS was also used to evaluate the surface chemistry of the 

activated carbons. The samples were heated in a silica fused reactor up to 900 ºC at a heating 

rate of 10 ºC min-1. The analysis was done under high vacuum conditions (below 10-5 mbar) 

and the gas phase was continuously monitored by a mass spectrometer. The amount of CO 

and CO2 evolved during the TPD experiments were quantified.  

3. Results and discussion 

3.1 Characterization of the activated carbons  

A detailed characterization of the porosity and surface chemistry of the selected activated 

carbons is shown in Table 1 and Figures 1 and 2. The analysis of the data obtained from the 

gas adsorption isotherms indicates that all carbons, with the exception of CV, show type I 

isotherms according to the IUPAC classification [24], characteristic of microporous materials. 

For CV, the N2 adsorption isotherm shows a hybrid I/IV character, with a broad knee at low 

relative pressures and a marked hysteresis loop (type H4) above 0.5. Theses features indicate 

that along with a microporous structure comprised of wide micropores, this sample exhibits a 

well developed mesoporosity. This was confirmed by the pore volumes obtained by the DFT 

method (Table 1).  

Regarding surface chemistry, the studied activated carbons present varied 

hydrophobic/hydrophilic nature as shown by data compiled in Table 1. For instance, large 

amounts of CO and CO2-releasing functionalities were obtained for carbons CV, BKK and 



 

FY5, assigned to carboxylic acids and anhydrides (decomposing as CO2 below 500 ºC), 

lactones, phenols and carbonyl/quinone-type groups (decomposing as CO and CO2 above 

600ºC) [25].  

Figure 1. N2 adsorption isotherms at -196 ºC of the as-received carbon materials, and after 

phenol removal under dark conditions (dark series) and UV irradiation (UV series).  

 

The large amount of gases (both CO and CO2) released for CV carbon is in good agreement 

with the acidic nature of this carbon (Table 1) shown by its pHPZC. In contrast, the low density 

of surface functional groups for Q and PC carbons confirmed their high hydrophobic 

character. The CO2 profiles of carbon BKK show two sharp and narrow peaks between 400 

and 600ºC, which should be attributed to the decomposition of inorganic compounds present 

in the mineral matter (ca. ash content 3.5 wt.%) rather than to oxygen-containing functional 

groups [26].  
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Figure 2. CO and CO2 profiles of the investigated carbons evaluated by TPD-MS.  

 

3.2 Phenol photodegradation in classical systems 

Given the porous nature of the investigated carbons, the amount of phenol (and its 

degradation intermediates) retained in the porous network of the carbons cannot be neglected. 

Consequently, the experiments were also carried out in the absence of UV irradiation (dark 

conditions) to differentiate between the adsorptive process and photo-oxidation under UV 

light (where both adsorption and degradation occur simultaneously). The performance of the 

studied carbons evaluated by kinetic measurements is shown in Figure 3. Data corresponding 

to phenol photolysis (non-catalyzed reaction) due to phenol degradation by direct UV 

irradiation of the solution has also been included for comparison reasons.  

First of all, it has to be mentioned that phenol degradation was not observed in the absence of 

UV irradiation: neither in solution nor in the presence of carbon. Thus, the decay in phenol 

concentration during experiments labelled as dark conditions is exclusively due to the 

retention on the porosity of the catalysts. This was further confirmed by the HPLC analysis of 
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the species in solution and also the compounds retained in the carbons porosity -previous 

extraction of the adsorbed phase in ethanol-. Moreover the mass balance between both phases 

after the adsorption experiments matched completely. This is, phenol was the only compound 

detected in dark conditions.  

 

Figure 3. Phenol concentration decay curves on the investigated photocatalysts after dark 

adsorption (A) and UV irradiation (B).  

 

The amount of phenol adsorbed during the dark experiments was strongly dependent on the 

physicochemical characteristics of the carbon materials. This was in good agreement with 

expectations based on the general knowledge about the adsorption mechanisms of phenol on 

activated carbons with varied chemical and porous features [27-29]. For instance, the largest 

amount adsorbed (after 6 hours) corresponded to carbons Q and PC which displayed high 

micropore volumes and hydrophobic character (Table 1), whereas the low uptake obtained for 

sample CV despite its high surface area and porous features accounts for its acidic nature 

[29].  
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In the case of photolysis, phenol degraded is due to direct interaction with UV light [30], 

being catechol (CAT), hydroquinone (HY) and benzoquinone (BZ) the main degradation 

intermediates detected (Figure 4). Along with the aromatic sub-products shown in Figure 4, 

short alkyl-chain organic acids (including formic acid and maleic acid among most 

representatives) were also detected in the solution (ca. 80 %). However, the analysis of the 

Total Organic Carbon (TOC) content rendered 73.5 mg C/L after UV irradiation for the 

photolysis (Table 2), indicating that under these conditions (i.e., lamp characteristics, phenol 

initial concentration, solution pH) conversion of phenol into CO2 + H2O (mineralization) 

accounted for only 3 % by direct UV irradiation of the solution. 

    

Table 2. TOC values (mg C/L) in solution after 6 hours (initial TOC values were 76 mg C/L 

in all the cases) and relative abundance of aromatic and short alkyl chain organic 

acid intermediates detected in solution (%). 

   Photolysis Q CV FY5 BKK PC 
UV light 73.5 10.2 21.8 22.3 17 15.8 

TOC values
(mg C/L) 

Dark Conditions
--- 15.7 48.9 24 18.7 3.5 

Aromatics  
24 12 39 30 18 19 Relative 

abundance
(%) 

Organic acids 
76 88 61 70 82 81 

 

It has to be considered that photolysis is measured in a catalyst-free solution, for which 

dispersion of the UV light by interaction with suspended solids (catalysts particles) is not 

expected. Thus, the incident light is only utilized on the direct breakdown of the pollutant. 

The photochemical quantum yield for phenol degradation (φ) in the photolytic reaction - 

determined from the plot of the number of mol of degraded phenol per incident photon flux vs 

the irradiation time- yielded φ = 16 mmol/Einstein, which matches with values reported in the 



 

literature for this aromatic compound using different UV sources and solution conditions 

[31-33].  

 

Figure 4. Evolution of the concentration of phenol degradation intermediates upon UV 

irradiation of the different investigated photocatalysts. BZ (squares), HY (circles) 

and CAT (triangles).  

 

In the presence of the activated carbons, the photocatalytic degradation becomes more 

complex as physical adsorption and photo-oxidation coexist. Under these conditions, 

estimation of the photochemical efficiency is a hard task due to the difficulties associated to 

the evaluation of the accurate incident photon flux (due to the fraction of light absorbed by the 

carbon and light scattering by the catalyst particles suspended in solution). Anyhow it seems 

reasonable to consider that this would certainly be much lower than that in the photolytic 

reaction (where neither light scattering nor catalyst absorption occur). At the same time, UV 

light is a priori not expected to interact with the adsorbed molecules retained on the porosity 

of the carbons, and so degradation of the adsorbed fraction would not be expected (either for 
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phenol or any of its degradation intermediates). Thus, the concentration of phenol molecules 

in solution is expected to decrease due to adsorption (the adsorbed fraction increasing with 

time) and photolysis.  

The rate of phenol disappearance when the activated carbons are used as photocatalysts is 

shown in Figure 3, compared to the adsorption rate in dark conditions. For all the activated 

carbons the initial rate of phenol adsorption is very fast and most of the amount adsorbed is 

accomplished within the first 60 minutes. Upon UV irradiation the overall rate of phenol 

disappearance increased remarkably for all the carbons, which was somehow expected due to 

the simultaneity of the adsorption and photo-oxidation processes. This trend was more evident 

at the initial stage of the reaction (short times), and particularly more evident for carbon CV 

where the phenol removal increased from 35 % in dark conditions (adsorption) to 90 % under 

UV light. This observation was rather surprising since carbon CV has an acidic nature, and 

thus the retention of phenol (and its degradation intermediates) is not favoured [27, 28]. To 

identify if the behaviour of this acidic carbon was linked to any likely modification in its 

surface chemistry induced by the UV irradiation, a blank experiment was carried out in the 

absence of phenol (UV irradiation of the activated carbon in water). An exhaustive 

characterization (gas adsorption, thermal and elemental analysis) revealed that neither the 

textural nor the physicochemical properties of CV carbon were modified upon UV irradiation 

in the blank experiments (the same result was obtained for all the studied carbons). Thus the 

improved removal rate under UV light might be attributed to the acidic nature of CV carbon. 

In the case of carbon FY5, the kinetics of phenol disappearance (photo-oxidation + 

adsorption) under UV light proceeded slowly. This trend was also observed for the dark 

experiments, and thus could be explained by the narrow distribution of micropore sizes of this 

sample (according the N2 adsorption data).  



 

After 6 hours of irradiation, phenol was almost completely removed from the solution 

although some other intermediates were visible in the solution in detectable quantities (below 

0.5 mmol L-1). The evolution of the intermediates concentration in the solution with the 

irradiation time is shown in Figure 4, while the TOC values measured after 6 hours are 

compiled in Table 2. The solution TOC values decreased after 6 hours irradiation with the 

exception of carbon PC, which value was about 5 times larger than the corresponding value 

obtained at dark conditions (where only adsorption occurs).  

Speciation of the intermediates found in the solution indicated the predominance of organic 

acids (Table 2). What is more interestingly inferred is that relative abundance of the 

degradation intermediates detected in solution was not the same for all the carbons (Figure 4) 

and seemed to be related to their physicochemical features. Outstanding differences were also 

noticeable compared to photolysis. For instance, the amount of HY at short times for carbon 

Q largely exceeded that of photolysis. These results suggest that the activated carbons must 

play a role in the photo-oxidation reaction. The modification of phenol photodegradation 

pathway has already been postulated when the carbon is used as support of a semiconductor 

(typically TiO2) [15, 16].  

It is interesting to point out the differences concerning the nature of the photodegradation 

intermediates observed for Q, PC and FY5 carbons; in spite these materials display a rather 

similar basic nature (see pHPZC in Table 1), small amounts of BZ were obtained even from the 

early stages of the photocatalytic reaction when Q is used as catalyst, as opposed to carbons 

FY5 and PC. The opposite trend was obtained for HY with these three carbons. The 

concentration of BZ decreases gradually with time, whereas for CAT and HY this trend was 

not observed. In the former the concentration rather stabilized at large times (with the 

exception of carbon Q), where for the latter, there is an increase after 3 hours of irradiation in 

the case of carbons CV, FY5 and PC. At converse for the acidic carbon CV, the amount of 



 

HY detected in solution increased after 2-3 hours of irradiation, showing a concentration peak 

at about 240 min). This is surprising bearing in mind that, due the porous nature of the 

activated carbons, these intermediates are expected to adsorb in the carbon porosity and thus 

the amount detected in solution should be larger for photolysis. In all cases, the high 

concentrations found for CAT (dominant for all the carbons but BKK) anticipate the 

preferential photo-oxidation of phenol through the cathecol pathway in the presence of 

activated carbons. Similar observations have been reported when carbon materials are used as 

catalyst supports [13-16, 20]. This degradation pathway is considered more advantageous for 

the complete mineralization of phenol than conversion to BZ and HY [34, 35], that proceeds 

through a complex mechanism involving a larger number of intermediates (organic acids). 

The high concentration of organic acids detected for the carbons PC, FY5 and CV (which also 

displayed higher amounts BZ and HY) supports this evidence.  

To discriminate whether if the activated carbons have any role on the photo-oxidation process 

itself, or if the decrease in phenol concentration is due to simultaneous adsorption and 

photolytic reaction, the results have been analysed from different viewpoints.  When UV light 

is applied, the solution (initially single component) becomes a complex multicomponent 

matrix due to the photolytic breakdown of phenol into hydroxylated phenols and other 

derivatives, as mentioned above. At the same time, these newly formed compounds can i) 

undergo further photodegradation and ii) be adsorbed in the porosity of the activated carbons.  

The extent of adsorption on the carbons porosity will be controlled by the affinity of each 

compound towards the carbons, and competitive adsorption effects [36, 37]. Based on the 

similar chemical structure between phenol and its aromatic photo-oxidation intermediates 

(i.e., CAT, BZ, HY and so forth), it seems reasonable to expect similarities in their affinity 

(i.e., adsorptive performance) towards the carbons. The retention of these compounds from 

single component solutions on the studied carbons confirmed this hypothesis. Indeed, for all 



 

the degradation intermediates the adsorption kinetics and amount adsorbed under dark 

conditions were very similar to those obtained for phenol, even for the acidic carbon (data not 

shown). Moreover, thermal analysis of the exhausted carbons also confirmed that these 

compounds occupy the same adsorption sites in the activate carbons. Thus, a competitive 

adsorption scenario between phenol and these intermediates for the active sites would be 

expected in the presence of the activated carbons.  

In contrast, the organic acids show smaller affinity for the activated carbons [38], with much 

lower adsorption capacities and slow kinetics from single component solution. Thus, although 

preferential adsorption of the aromatic compounds over the organic acids occurs [36], at this 

point it has to be reminded that all the experiments have been carried out using diluted phenol 

solutions. Based on previous studies [28, 29] and considering the porous features of the 

activated carbons (Table 1), the initial concentration used is far below the maximum 

adsorption capacity of the carbons. In other words, the porous network of the activated 

carbons is not saturated, and active sites of adsorption are available at any time. 

Consequently, phenol and its photo-oxidation intermediates should be retained on the porosity 

of the activated carbons during the irradiation experiments.  

Moreover, UV light is not a priori expected to reach the adsorbed fraction (inside the carbons 

porosity) for which no desorption of the retained compounds should occur. So if photolytic 

breakdown of phenol is the only reaction occurring and carbons are considered as non 

photoactive materials, the enhancement in the overall phenol degradation efficiency (so-called 

synergistic effect when C/Ti composites are used) [15, 16] would be exclusively governed by 

the adsorption rate on the carbons porosity.  

Nevertheless, our results contest this hypothesis, which cannot account for the different 

photochemical behaviour (rate and intermediates speciation) obtained for activated carbons 

with similar porosity and varied surface chemistry. This is the case, for instance, of carbons Q 



 

and PC that both have similar phenol adsorption kinetics in dark conditions (Figure 3) and 

display a basic character and microporous structure. However, although the overall phenol 

removal under UV light seems to be similar, the evolution of intermediates detected in 

solution is very different (Figure 4). The TOC values (Table 2) also followed a different 

trend, and in the case of PC carbon the obtained values increased after UV irradiation (as 

discussed above). All these results point out to a specific role of the activated carbons on the 

photo-oxidation reaction.  

On the other hand, this eventual photocatalytic response of activated carbons under UV 

irradiation could just be considered as a consequence of a confinement effect of the 

compounds in the porosity of the activated carbons (i.e, concentration effect on photolysis), 

the former exclusively acting as porous supports. This hypothesis should not be disregarded at 

first as the photolysis yield increases with the initial concentration of the pollutant/phenol in 

solution (data not shown). To clarify this issue, we have characterized the activated carbons 

after the UV experiments by thermal and gas adsorption. The DTG profiles after the UV 

irradiation were similar to those of the corresponding dark experiments for all the studied 

activated carbons (data not shown), with a single peak between 200 and 500 ºC attributed to 

the desorption of phenol and/or degradation intermediates [28]. Moreover the intensity of this 

peak was about the same for both experiments, with the exception of carbon FY5. 

Analogously, the N2 adsorption isotherms revealed a decrease in the porosity of the carbons 

after phenol exposure, compared to the pristine samples (Figure 1). Although this was 

observed for both dark and UV experiments, there are some important differences to be 

mentioned. Surprisingly, for all the samples with the exception of CV, the decrease in the N2 

adsorption isotherm is smaller after UV irradiation, being this trend more evident for carbon 

FY5. Since UV light brought about an increase in the phenol removal (also confirmed by the 

decrease in TOC values in Table 2), one would have expected just the opposite trend as the 



 

removed phenol is retained on the carbons porosity; particularly for those carbons where this 

effect was more remarkable, such as BKK and FY5.  

The observed fall in the textural properties (Figure 1) indicates that the concentration of 

species adsorbed on the porosity of the carbons is lower after UV irradiation than after dark 

condition experiments (with exception of CV). In the case of CV, the decrease in the porous 

features accounts for 19 % after irradiation, vs 5 % for adsorption. The different behaviour of 

this acidic carbon can be attributed to the low phenol removal efficiency under dark 

conditions (35 %), which is largely increased when UV light is applied (90 %). Consequently, 

the amount of species adsorbed after UV irradiation would be expected much larger. Based on 

these results, there seems to be a mass unbalance between the amount of phenol detected in 

solution and that retained on the carbon porosity during UV illumination.  

All these results suggests several possible scenarios on which (1) adsorption of the photo-

oxidation intermediates is hindered or suppressed; (2) intermediates remain (rather than being 

adsorbed) or are released to the solution; (3) a partial mineralization of phenol and/or the 

compounds could be occurring if UV light interacts with the adsorbed compounds retained in 

the inner porosity.  

The desorption of the intermediates once adsorbed (scenario 2) is unlikely to happen based on 

their favourable thermodynamic features for adsorption on the activated carbons and their 

behaviour from single component solutions based on our own studies (data not shown) and 

the literature [36, 38]. On the other hand, the large TOC values (Table 2) measured in solution 

for carbons FY5 and BKK confirm that the intermediates remain in solution, at least after 6 

hours (scenario 2). 

The occurrence of kinetic restrictions that would avoid or delay their adsorption in the 

porosity of the carbons (scenario 1) cannot be disregarded if carbon/UV light interactions are 

not discarded. These interactions would appear at carbon/solution interface, and could have a 



 

negative effect on the accessibility of the photo-oxidation sub-products to the carbons 

porosity (scenario 1) or could promote the decomposition and perhaps partial mineralization 

of the adsorbed compounds (scenario 3).  

Based on conventional wisdom, it is hard to believe that UV light could penetrate inside the 

porosity of strong absorbers as carbon materials. However, herein proposed scenario 3 can 

also be possible if the carbon/UV light interactions occur at the carbon surface promoting the 

photo-generation of charge carriers (likely electron-hole pairs) that could migrate through the 

graphitic sheets in the carbons and then be transferred to the adsorbed compounds. Moreover, 

the oxygen functionalities decorating the edges of the graphene layers (carbon CV) could act 

as charge injectors upon UV excitation, or stabilize the photo-generated charge carriers 

(minimizing recombination).  

To demonstrate if the UV light can somehow interact with the compounds retained inside the 

porosity of the carbon materials and thus promote the photo-oxidation of the adsorbed 

fraction, the reactions occurring inside the carbonaceous matrix were investigated. 

 

3.3 Phenol photodegradation inside the carbonaceous matrix: pre-loaded carbons  

To discriminate the catalytic activity inside carbon materials without considering the effects 

of adsorption kinetics and solution photolysis, irradiation was performed on carbon samples 

pre-loaded with phenol. Details are addressed on the experimental section; briefly the selected 

activated carbons were put in contact with a phenol solution and once no phenol was detected 

in the aqueous solution, UV irradiation was applied. First of all, it should be mentioned that 

after irradiation of the pre-adsorbed carbons, no desorption (leaching out) of phenol itself or 

any other compound was detected in the aqueous solution (confirming that above-mentioned 

scenario 2 does not occur). This is important as it guarantees that photolysis of phenol or its 

degradation intermediates do not take place. For these experiments, a high carbon:phenol ratio 



 

was used to ensure that all phenol is adsorbed on the carbons and that nothing remained in 

solution (avoiding photolysis). Thus, due to the low amount of phenol loaded on the activated 

carbons, the irradiation time was set to 20 minutes.  

To determine the extent of phenol photodegradation (if any) inside the carbons, the samples 

were extracted in ethanol and the extracts were analyzed. Figure 5 shows the obtained results 

for the different preloaded carbons. It can be clearly seen that, with the exception of carbon 

PC, varied amounts of phenol and its photo-oxidation intermediates were detected in the 

extracts. Since no leaching out of any compound was detected for any carbon at any time, 

these results unambiguously demonstrate that the phenol adsorbed inside the carbons porosity 

is decomposed only when the activated carbons are exposed to UV irradiation.  

 

Figure 5. Quantification of the species detected in the extracts of the pre-loaded carbons after 

UV irradiation during 20 minutes. The dotted line represents the initial amount of 

phenol pre-loaded in the carbons.  
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Only the phenol adsorbed on carbon PC was not decomposed, which indicates that this 

singular photocatalytic behaviour does not apply for all type of carbon materials, but it is 

somehow related to their physicochemical and/or structural features. Earlier works in the 

literature have also reported a non photoactive behaviour of activated carbons [15, 39].  

Unfortunately, we do not fully understand yet the relationship between the nature of the 

carbons and their photocatalytic activity under UV. In fact, the ash content of the studied 

carbons is not negligible (except for PC which ash content is zero), for which a contribution 

of the mineral matter cannot be discarded. However, preliminary data on de-ashed carbons 

(sample Q) have shown that although the photochemical yield decreased when the ash was 

removed, photo-oxidation of phenol still occurs for demineralised carbons. The issue of the 

effect of the mineral matter remains currently under investigation in our group, and it will be 

the object of upcoming studies.  

On the other hand, the highest phenol photo-oxidation was found for carbon Q and CV, which 

have completely different chemical and structural properties as shown in Table 1 and Figure 1 

(ca. basic and acidic nature, respectively). It is also interesting to remark that for all the 

carbons (but PC), phenol photodegradation was larger or similar than in the photolytic 

reaction (using the same phenol initial concentration). This is most remarkable since the 

incident photo flux arriving at the phenol molecules adsorbed inside the carbons porosity is 

expected to be smaller than that from solution (see discussion above). In this regard, the 

experiments on the pre-loaded samples enabled to estimate an apparent or pseudo quantum 

yield (φps) to compare with photolysis. As above mentioned, in the presence of the activated 

carbons the photochemical efficiency cannot be stricto sensu considered a quantum yield due 

to the difficulties in evaluating the fraction of light absorbed by the carbon (i.e., the accurate 

incident flux over the adsorbed phenol molecules). As an approximation, the pseudo quantum 

yield has been estimated assuming that all photons are absorbed by phenol (disregarding light 



 

absorption by the black catalyst). This φps value would account for the minimim limit of the 

actual quantum yield, allowing the comparison of the different carbons. Under these 

conditions, the retrieved φps values for samples Q and CV were higher (ca. 1.5 times) than that 

of photolysis, whereas the pseudo quantum yields of samples FY5 and BKK was similar to 

the photolytic reaction.  

The nature of the intermediates detected was also different for the studied carbons, which 

confirms the role of the carbon matrix on the photocatalytic degradation pathway; for instance 

resorcinol (RES) was also detected in the extracts of carbons BKK, Q and FY5. Still there is 

no clear correlation between the photochemical response of the carbons towards phenol 

degradation and their physico-chemical features. Large amounts of CAT were obtained for the 

basic carbons (with the exception of sample PC), whereas the concentration of BZ and HY 

increased for the acidic CV carbon.  

Anyhow, these results do not demonstrate whether if the UV light penetrates inside the 

carbons porosity or if carbon-photons interactions occur at the external carbon surface being 

subsequently propagated through the graphene sheets. Although most research is needed to 

further comprehend this photochemical behaviour observed in certain carbon materials, at this 

stage the most likely mechanism could be as follows. When the carbon is illuminated under 

UV light, a fraction of the incident photon flux would provoke the generation of charge 

carriers, which will diffuse randomly through the graphene sheets. The role of the graphitic 

sheets of carbons would be of paramount importance for the migration of the photogenerated 

electrons, minimizing recombination and favouring the electron transfer to the adsorbed 

molecules (phenol, water). The incorporation of oxygen-containing functionalities on the 

edges of the graphene sheets (the case of carbon CV) does not seem to have a negative effect 

on the photodegradation yield. Surface functionalities are known to withdraw electron density 

from the graphene sheets, although in this case, these groups could act either as charge 



 

injectors upon UV excitation, or stabilize the photo-generated charge carriers (minimizing 

recombination). All these hypotheses currently remain under investigation. These 

photogenerated carriers seem to have enough redox potential to generate more reactive 

species (•OH, O2
2-) and/or directly oxidize phenol. The formation of hydroxyl radicals (•OH) 

can be expected as water is simultaneously co-entrapped in the porosity associated to phenol 

molecules during the pre-adsorption step [28]. The occurrence of superoxide anions (O2
2-) can 

also be suspected as the overall photo-oxidation yield was reduced under oxygen-free 

conditions (for both photolysis and carbon catalysed reactions). Analogous photon-induced 

charge carrier generation has been reported for single wall carbon nanotubes [39]. Also, 

generation of •OH radicals by microwave irradiation (ca. 10-3 eV) of aqueous solutions has 

been reported in the presence of activated carbons [40].  

These results are most outstanding bearing in mind that activated carbon is the most widely 

used adsorbent for wastewater remediation based on adsorption technology. The possibility of 

carrying out in-situ degradation of pollutants on loaded carbon materials without the need of 

semiconductor additives offers an interesting opportunity to couple advanced oxidation 

techniques (for the degradation of refractory pollutants) with classic and highly skilled 

adsorption technologies.  

 

4. CONCLUSIONS  

 

Heretofore, carbon materials have been mainly used as supports of the photoactive species in 

the catalytic degradation of pollutants, and the synergistic effect observed in carbon-supported 

catalysts has been linked to the decrease in the recombination rate of the hole/electrons pair 

generated in the semiconductor (typically TiO2) when immobilized. In this work we have 

investigated the photochemical behaviour of a series of activated carbons with varied 



 

physicochemical features under UV light towards phenol degradation. An improved 

photodegradation yield was obtained when the activated carbons themselves are used as 

catalysts, suggesting the ability of carbon materials to promote the photo-oxidation of organic 

pollutants in the absence of semiconductor additives.  

To further investigate this finding, the photocatalytic reaction was followed from inside the 

carbonaceous matrix. This allows the effects of i) the photolytic breakdown from solution and 

ii) the confinement due to adsorption in the porosity of the activated carbons to be 

disregarded. Under this viewpoint, the photochemical quantum yield of several activated 

carbons was higher than that of photolysis under similar conditions; the nature of the 

degradation intermediates was also modified in the presence of the carbon materials. 

Moreover, the degradation of the adsorbed fraction retained inside the pore structure of the 

carbons has been demonstrated. Our results suggest the occurrence of carbon-photons 

interactions which could be propagated through the graphene sheets of the materials, and 

could reach the adsorbed molecules inside the porosity. 

Although more efforts are needed to further comprehend the photocatalytic mechanism which 

is taking place in carbon materials, we believe this work marks a starting point for further 

research in this field. 

 
ACKNOWLEDGMENTS 

The authors thank the financial support of projects CTM2008/01956 and HP2007/0122. LFV 

thanks CSIC for her predoctoral fellowship. COA thanks Dr. Vix (IS2M-CNRS) for kindly 

providing the TPD-MS. 

 

REFERENCES 

[1] Ollis DF, Al-Ekabi H. Photocatalytic purification and treatment of water and air. 

Amsterdam: Elsevier; 1993. 



 

[2] Pelizzetti E, Serpone N. Photocatalysis: fundamental and applications. New York: Wiley; 

1989. 

[3] Cunningham J, Al-Sayyed G, Srijaranai S. Aquatic and surface photochemistry. In: Helz 

GR, Zepp RG, Crosby DG, editors. Boca Raton, Florida: Lewis Pub; 1994, p. 317-348.  

[4] Choi H, Stathatos E, Dionysiou D. Sol-gel preparation of mesoporous photocatalytic TiO2 

films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B 

2006; 63:60-7.  

[5] Mohseni M. Gas phase trichloroethylene (TCE) photooxidation and byproduct formation: 

photolysis vs. titania/silica based photocatalysis. Chemosphere 2005; 59:335-42. 

[6] Erdeia L, Arecrachakula N, Vigneswaran S. A combined photocatalytic slurry reactor-

immersed membrane module system for advanced wastewater treatment. Sep Purif Technol 

2008; 62:382-8.  

[7] Sunada F, Heller A. Effects of water, salt water, and silicone overcoating of the TiO2 

photocatalyst on the rates and products of photocatalytic oxidation of liquid 3-octanol and 3-

octanone. Environ Sci Technol 1998; 32:282-6. 

[8] Fernández A, Lassaletta G, Jiménez VM, Justo A, González-Elipe AR, Herrmann JM, 

Tahiri H, Ait-Ichou Y. Preparation and characterization of TiO2 photocatalysts supported on 

various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic 

activity in water purification. Appl Catal B: Environ 1995; 7:49-63. 

[9] Tryba B, Morawski AW, Inagaki M. Application of TiO2-mounted activated carbon to the 

removal of phenol from water. Appl Catal B 2003; 41:427-33.  

[10] Toyoda M, Nanbu Y, Kito T, Hirano M, Inagaki M. Preparation and performance of 

anatase-loaded porous carbons for water purification. Desalination 2003; 159:273-82. 

[11] Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 

photocatalysis. Carbon 2011; 49(3):741-72.  



 

[12] Puma GL, Bono A, Krishnaiah D, Collin JG. Preparation of titanium dioxide 

photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review 

paper. J Hazard Mater 2008; 157:209-19. 

[13] Keller N, Rebmann G, Barraud E, Zahraa O, Keller V. Macroscopic carbon nanofibers 

for use as photocatalyst support. Catal. Today 2005; 101:323-9. 

[14] Torimoto T, Ito S, Kuwabata S, Yoneyama H. Effects of adsorbents used as supports for 

titanium dioxide loading on photocatalytic degradation of propyzamide. Environ Sci Technol 

1996; 30 (4):1275-81. 

[15] Matos J, Laine J, Herrmann JM. Synergy effect in the photocatalytic degradation of 

phenol on a suspended mixture of titania and activated carbon. Appl Catal B Environ 1998; 

18: 281-91. 

 [16] Araña J, Doña-Rodríguez JM, Tello Rendón E, Garriga i Cabo C, González-Díaz O, 

Herrera-Melián JA, Pérez-Peña J, Colón G, Navío JA. TiO2 activation by using activated 

carbon as a support. Part I. Surface characterisation and decantability study Appl Catal B: 

Environ 2003; 44:161–72. 

[17] Zhang X, Zhou M, Lei L. TiO2 photocatalyst deposition by MOCVD on activated 

carbon. Carbon 2006; 44:325-33.  

[18] Silva CG, Wang W, Faria JL. Photocatalytic and photochemical degradation of mono-, 

di- and tri-azo dyes in aqueous solution under UV irradiation. J Photochem Photobiol A: 

Chem 2006; 181:314-24. 

[19] Takeda N, Iwata N, Torimoto T, Yoneyama H. Influence of carbon blacks as an 

adsorbent used in photocatalyst films on photodegradation behaviors of propyzamide. J Catal 

1998; 177:240-46. 

[20] Velasco LF, Parra JB, Ania CO. Role of activated carbon features on the photocatalytic 

degradation of phenol. Appl Surf Sci 2010; 256:5254-8.  



 

[21] Parra JB, Ania CO, Arenillas A, Rubiera F, Palacios JM, Pis JJ. Textural development 

and hydrogen adsorption of carbon ma- terials from PET waste. J Alloys Compd 2004; 379(1-

2):280-9. 

[22] Kuhn HK, Braslavsky SE, Schmidt R. Chemical actinometry (IUPAC technical report). 

Pure Appl Chem 2004; 76:2105-46. 

[23] Braslavsky SE, Glossary of terms used in photochemistry, 3rd edition (IUPAC 

Recommendations 2006), Pure Appl. Chem., 79 (2007) 293–465. 

[24] Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, 

Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to 

the determination of surface-area and porosity (recommendations 1984). Pure Appl Chem 

1985; 57:603-619. 

[25] Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM. Modification of the surface 

chemistry of activated carbons. Carbon 1999; 37 (9):1379-89. 

[26] Kyotani T, Karasawa S, Tomita A. A TPD study of coal chars in relation to the catalysis 

of mineral matter. Fuel 1986; 65:1466-9. 

[27] Radovic LR, Moreno-Castilla C, Rivera-Utrilla J. Carbon materials as adsorbents in 

aqueous solutions. In: Radovic LR, editor. Chemistry and Physics of Carbon. New York: 

Marcel Dekker; 2000, p. 227-405. 

[28] Velasco LF, Ania CO. Understanding phenol adsorption mechanisms on activated 

carbons. Adsorpt 2011; 17:247-54.  

[29] Ania CO, Parra JB, Pis JJ. Effect of texture and surface chemistry on adsorptive 

capacities of activated carbons for phenolic compounds removal. Fuel Proc Technol 2002; 77-

78:337-43. 

[30] Gonzalez MG, Oliveros E, Wörner M, Braun AM. Vacuum ultraviolet photolysis of 

aqueous reaction systems. J Photoch Photobio C 2004; 5(3):225-46.  



 

[31] Gimeno O, Carbajo M, Beltrán FJ, Rivas FJ. Phenol and substituted phenols AOPs 

remediation. J Hazard Mater 2005; 119(1-3):99-108. 

[32] Rodríguez M, Abderrazik NB, Contreras S, Chamarro E, Gimenez J, Esplugas S. Iron 

(III) photoxidation of organic compounds in aqueous solutions. Appl Catal B: Environ 2002; 

37:131-7. 

[33] Kusic H, Koprivanac N, Bozic AL, Selanec I. Photo-assisted Fenton type processes for 

the degradation of phenol: a kinetic study. J Hazard Mater 2006; 136(3):632-644. 

[34] Santos A, Yustos P, Quintanilla A, Garcia-Ochoa F. Kinetic model of wet oxidation of 

phenol at basic pH using a copper catalyst. Chem Eng Sci 2005; 60:4866-78.  

[35] Santos A, Yustos P, Quintanilla A, Rodríguez S, Garcia-Ochoa F. Route of the catalytic 

oxidation of phenol in aqueous phase. Appl Catal B: Environ 2002; 39:97-113. 

[36] Mijangos F, Diaz M. Kinetic analysis of a bimetallic ion exchange system by 

microscopic measurement of the moving boundaries. J Col Interf Sci 1994; 164:215-222. 

[37] Mijangos F, Navarro A, Jodra Y. Kinetic analysis of phenol adsorption from aqueous 

systems. Can J Chem Eng 2001; 79:737-43.  

[38] Lee CYC, Pedram EO, Hines AL. Adsorption of oxalic, malonic and succinic acids on 

activated carbon. J Chem Eng Data 1986; 31:133-6. 

[39] Matos J, Chovelon JM, Cordero T, Ferronato C, Influence of Surface Properties of 

Activated Carbon on Photocatalytic Activity of TiO2 in 4-chlorophenol Degradation. The 

Open Environ. Eng. J. 2009;2:21-29. 

[40] Lu S, Panchapakesan B. Photoconductivity in single wall carbon nanotube sheets. 

Nanotechnology 2006; 17:1843-50.  

[41] Quan X, Zhang Y, Chen S, Zhao Y, Yang F. Generation of hydroxyl radical in aqueous 

solution by microwave energy using activated carbon as catalyst and its potential in removal 

of persistent organic substances. Molec Catal A: Chem 2007; 263:216-22.  


