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[1] The potential use of synchronization as a method for data assimilation is investigated in
a Lorenz96 model. Data representing the reality are obtained from a Lorenz96 model
with added noise. We study the assimilation scheme by means of synchronization for
different noise intensities. We use a novel plot representation of the synchronization error
in a phase diagram consisting of two variables: the amplitude and the width of the error
after a suitable logarithmic transformation (the so-called mean-variance of logarithms
diagram). Our main result concerns the existence of an ‘‘optimal’’ coupling for which
the synchronization is maximal. We finally show how this allows us to quantify the
degree of assimilation, providing a criterion for the selection of optimal couplings and
validity of models.
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1. Introduction

[2] A difficult aspect of modeling and forecasting spa-
tially extended chaotic systems is the problem of data
assimilation [Kalnay, 2002]. We have physical observations
of the state (hereafter reality) of a given system that we want
to describe by a mathematical/computer model so that we
can make predictions on the future states of the system. The
physical system under consideration is very complicated,
nonlinear, and has many degrees of freedom, like for
instance the Earth’s atmosphere. Data assimilation refers
to the process by which the representation of the atmosphere
in the computer model is periodically adjusted to attempt to
make it consistent with current observations of the atmo-
spheric state.
[3] There are many difficulties when trying to assimilate

real observations in spatially extended dynamical systems.
Typically, observational data are collected at discrete posi-
tions and a few time instants. This leaves much uncertainty
about the actual structure of the physical state below some
spatial resolution or/and above a certain frequency range.
Furthermore, the mathematical model is often an imperfect
description of the real system because it is affected by
parameter mismatches and uncertainties, it describes the
physical system at a certain scale so that many spatial
degrees of freedom are excluded, and simplifications are
often used. Also, there are experimental errors in every
observation of the real system, which would make it
impossible to find an error free forecasting from the
mathematical model, even under a ‘‘perfect model’’ hypoth-
esis. Prediction is further complicated by the existence of
relevant nonlinearities and the corresponding chaotic nature

of the system evolution. All these difficulties make the
problem of forecasting spatially extended nonlinear systems
a great challenge.
[4] While there is probably no perfect solution to the

assimilation problem, much effort has been invested in the
last few years in obtaining forecasts that evolve as close as
possible to the true system for some reasonable time. In
practice, this is usually done by means of variational
methods (e.g., 4dVar [Kalnay, 2002]), in which an optimi-
zation with respect to the compatibility of the solution and
the model on the one hand, and with respect to the
difference with the observations on the other hand, is carried
out. Such an optimization is numerically very expensive and
has the unavoidable drawback that there might be many
local minima of the functional that one needs to minimize.
This may hinder the numerical solution from converging to
the optimal solution in a finite time. Furthermore, since in a
variational approach the problem is posed as a boundary
value problem, one cannot be sure that the solutions have
the same properties at the borders of the assimilated interval
as in the middle. Actually, this might be a great problem
since in prediction one is usually interested in the solution at
the end of the time interval. Therefore studying new
alternative methods for assimilating observational data into
our simplified mathematical models is nowadays of great
interest.
[5] Recently, there have been studies proposing a dynam-

ical approach, rather than a variational approach, to assim-
ilate and predict chaotic systems [Yang et al., 2006; Duane
et al., 2006; Duane and Tribbia, 2007; Cohen et al., 2008].
The basic idea of this novel approach is to somehow
synchronize the mathematical model to the real system.
Synchronization refers to the common tendency of identical
systems to behave in a similar way when coupled [Boccaletti
et al., 2002; Pikovsky et al., 2003]. The dynamical synchro-
nization approach to assimilation (in contrast to the varia-
tional ones) has the immediate advantage of being
computationally much less expensive. Furthermore, the
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differential role of the boundary versus the interior of the
assimilated interval does not exist in synchronization
methods. This suggests that assimilation by means of syn-
chronization may be a promising alternative to variational
methods.
[6] However, criteria to evaluate the quality of the

dynamical synchronization approach have yet to be firmly
established. Recently, in the work of Yang et al. [2006] the
authors presented some new ideas to solve this issue for
the case of a low-dimensional chaotic system. By contrast,
the problem in high-dimensional chaos is much more
complicated and it is far from clear how one could proceed
to extend the tools that work for low-dimensional systems.
This is particularly problematic in systems with spatial
degrees of freedom, like atmosphere evolution models.
Spatially extended dynamical systems have an arbitrary
large number of degrees of freedom and often exhibit
spatiotemporal chaos. A full understanding of the effect
of spatial correlations in assimilation and prediction has
long remained elusive.
[7] In this paper we propose a new technique to solve

the problem of evaluating the quality of assimilation via
dynamical synchronization in spatially extended systems.
We exploit the information provided by the recently intro-
duced mean-variance diagram [Primo et al., 2005, 2007;
Gutiérrez et al., 2008; Fernández et al., 2008]. Our results
show that there exists an optimal coupling for which the
partial synchronization of the model to the reality is largely
enhanced. We find that the extent and magnitude of spatial
correlations are the quantities that determine the quality of
the assimilation in spatially extended systems. For this
optimal coupling the spatial extent of connected synchro-
nized regions becomes maximal and the predictive power of
the model is thus the best we can achieve with the synchro-
nization setting in the presence of noise in the dynamics of
the reality.
[8] As an application example of our proposed technique

to analyze the performance of synchronization as a method
to assimilate a highly dimensional model to observations we
study an ideal test bed system consisting of a Lorenz96
model with random noise representing the ‘‘real data’’. In
the case studied here no observational noise is considered,
i.e., the observations coincide with the reality. We try to
describe the observations with a noiseless Lorenz96 system,
which is then coupled to observations in order to attain a
synchronized state. We discuss both the case of ‘‘perfect’’
and ‘‘imperfect’’ model. Numerical estimators to quantify
the degree or goodness of the assimilation via synchroni-
zation are then analyzed in both cases. The optimal coupling
is studied and an ansatz describing the ability to compare
the dynamics of models by synchronization is proposed.
[9] The paper is organized as follows. In section 2 we

introduce the system we use, required definitions, and
describe the synchronization scheme. Section 3 is devoted
to introduce the quantities that will be needed to character-
ize the synchronization error, as well as the mean-variance
plot. In section 4 we discuss assimilation by means of
synchronization in the limit case of a perfect model, where
the computer model is assumed to be identical to the
observation. Section 5 is devoted to the most interesting
case in which we try to assimilate a noisy reality into our

computer model. Finally, some concluding remarks are
provided in section 6.

2. The Model

[10] In this paper we do not aim at studying very intricate
models, but rather focus on a minimal model exhibiting
spatiotemporal chaotic dynamics that can be used to test the
use of synchronization as a tool to assimilate observations.
We assume our mathematical model is reasonably good at
describing the physical system, otherwise it would have
absolutely no predictive power. In other words, we assume
our computer model is able to capture well the slow varying
degrees of freedom (low frequencies) of the physical
system, while rapidly changing degrees of freedom escape
our mathematical description. In the model example we
consider here we achieve this in a simple way by using a
deterministic dynamical model with random noise added to
the dynamics. The noise term represents fast degrees of
freedom that our computer model will not be able to
capture. A given trajectory of this noisy model constitutes
our reality.
[11] As a prototypical example of a spatially extended

chaotic system we study a noisy Lorenz96 model [Lorenz,
1996]:

@tun ¼ �un�1 un�2 � unþ1ð Þ � un þ F þ hn tð Þ; ð1Þ

where n = 1. . . L, L = 256 is the system size, F = 8,
and hn(t) is a Gaussian distributed noise with delta
correlations hhn(t1)hm(t2)i = 2Ddnmd(t1 � t2), where D is
the noise intensity. The Lorenz96 system was integrated
using an Euler algorithm with time step Dt = 10�4. Periodic
boundary conditions are applied in all our simulations. This
toy model mimics some aspects of the dynamics of the
atmosphere such as advection, constant forcing, and linear
damping. In our simulations we have studied system sizes of
L = 128, 256, and 512. The idea is to explore large enough
systems, where the properties we are interested in exhibit
universality. Although traces of this universal behavior are
expected to be recognizable also in smaller systems. All our
plots correspond to L = 256, but similar results are found for
the other system sizes studied.
[12] The trajectories generated by equation (1) represent

the ‘‘reality’’, i.e., the real observations of the physical
system. These data have to be assimilated in the computer
model of the physical system. The computer model we use
to describe the observations is simply the deterministic
Lorenz96 model, i.e., equation (1) without noise. Note that
we want to describe situations in which reality and model
can be made gradually compatible. This can be easily done
by varying the noise intensity for instance: the larger the
noise intensity, the further away will our model be from the
data we want to assimilate. Mismatches between model and
reality parameters (like physical constants, system size, . . .),
although likely to be present in realistic situations, will not
be considered at this stage. Let us remark that our prelim-
inary study focuses on situations in which our model can
capture quite well reality apart from the very short scale and
fast varying degrees of freedom, which we assume cannot
be resolved.
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[13] In our synchronization scheme trajectories of
equation (1) will play the role of observations. Herein we
choose the simplest coupling and write the equation of the
response system as

@tvn ¼ �vn�1 vn�2 � vnþ1ð Þ � vn þ F þ k un � vnð Þ; ð2Þ

where the term k (un � vn) couples the model vn(t) with the
observation un(t), where k is the strength of the coupling.
[14] The case of zero noise intensity, D = 0, has been

studied in great detail in recent years in the context of chaos
synchronization of spatially extended dynamical systems. In
this case, the coupled system (1)–(2) shows a critical phase
transition, from an unsynchronized to a synchronized state,
for k above some critical threshold [Ahlers and Pikovsky,
2002]. This synchronization transition belongs to the uni-
versality class of the bounded Kardar-Parisi-Zhang equation
(bKPZ [Ahlers and Pikovsky, 2002; Bagnoli and Rechtman,
2006]). For couplings below the critical value the synchro-
nization error, w = u � v (we use bold letters to denote a
vector, u(t) = {un(t)}n=1

L ), evolves toward some asymptotic
state characterized by a typical amplitude and (finite)
correlation length [Szendro et al., 2009]. This correlation
length corresponds to the typical extent of highly synchro-
nized regions. By contrast, in the noisy case, D 6¼ 0, there is
no longer a sharp phase transition – namely, no matter how
strong the coupling is, perfect synchronization is never
reached.
[15] Note that in realistic situations synchronization may

be strongly affected by parameter mismatches or structural
differences of the model equations with respect to the
equations governing the reality. Therefore the situation
described in this article should be considered as a starting
point for further, more realistic, studies. Interestingly, syn-
chronization can also be used as a tool to obtain better
models. For example, the degree of synchronization of
model and reality can be used to obtain better estimates
for model parameters [Parlitz et al., 1996].

3. Surface Growth Picture and Mean-Variance
Diagram

[16] For the analysis of the synchronization errors w(t) =
u(t) � v(t) we find very convenient to make use of a surface
growth picture [Pikovsky and Kurths, 1994; Pikovsky and
Politi, 1998]. This mapping allows one to generically
interpret the spatial structure and growth of the logarithm
of perturbations in terms of the Kardar-Parisi-Zhang (KPZ)
equation [Kardar et al., 1986; Barabási and Stanley, 1995]
describing the evolution of stochastically driven surfaces.
This framework is very powerful for the analysis of both
generic infinitesimal [Pikovsky and Kurths, 1994; Pikovsky
and Politi, 1998; Szendro et al., 2007; Pazó et al., 2008,
2009] and finite perturbations [López et al., 2004; Primo et
al., 2006, 2007; Gutiérrez et al., 2008; Fernández et al.,
2008] as well as synchronization errors [Ahlers and Pikovsky,
2002; Szendro et al., 2009].
[17] Let us now define the ‘‘surface’’ hn(t) = lnjwn(t)j =

lnjun(t) � vn(t)j. The spatial structure of the surface hn can
be analyzed by computing the power spectral density (PSD)
or structure factor Sq(t) = hĥq(t)ĥ�q(t)i, where ĥq(t) =
(1/L)

PL
n¼1[hn(t) � h(t)]exp(iqn/L) is the Fourier transform

of hn � h, and h(t) = (1/L)
PL

n¼1 hn(t) is the average surface
position. For a generic perturbation in a (homogeneous)
spatially extended chaotic system the surface constructed
in this way is expected to exhibit scale-invariant correlations
below the growing correlation length ‘�(t). In other words,
we have a stationary PSD that decays with two asymptotes:

Sq tð Þ � q� 2aþ1ð Þ if q� qc tð Þ
a tð Þ if q� qc tð Þ

�
ð3Þ

where qc(t) / ‘�
�1(t), and function a(t) does not depend on

q. Then we say that hn is a rough curve with a roughness
exponent a and a correlation length ‘�(t). Rough interfaces
in the KPZ universality class, which is the case relevant for
our study, invariably have a roughness exponent a = 1/2.
[18] One of the main advantages of this surface picture is

that many important quantities can be mapped into well-
known magnitudes in terms of the surface. For instance, an
important quantity is the squared surface width W2(t) =
h(1/L)

PL
n¼1[hn(t) � h]2i, which gives useful information

about the spatial structure of the perturbation surface. One
immediately obtains that the width W2 is directly connected
with the correlation length ‘� since, by the Parzival
relation, we can relate the surface width and the area below
the PSD curve:

W 2 tð Þ /
Z

Sq tð Þdq � ‘� tð Þ2a: ð4Þ

[19] This is a very simple but important result that allows
us to obtain the extent of the spatial correlations from the
simple measurement of the surface width.
[20] On the other hand, the error amplitude, can also be

immediately obtained as the exponential of the average
surface height, e(t) = hjw(t)ji = hexp[h(t)]i, and informs
about the typical size of the perturbation at any time. We
have e(t) � exp(lt), where l is just the average surface
velocity (h = lt) and also corresponds to the first Lyapunov
exponent.
[21] Therefore the dynamics of the perturbations can be

analyzed in a nice and intuitive way by two quantities –
namely, average height and surface width – that inform
about the size and spatial correlation length of the perturba-
tion, respectively. These two quantities can be conveniently
plotted in a graph W2(t) versus ln e(t), the so-called mean-
variance of the logarithm of perturbations (MVL) diagram,
to analyze perturbation growth. This plot is very simple to
obtain and inexpensive in computational terms, even for
complicated models. The MVL diagram has already proven
useful in the analysis of the impact of initial conditions on
the dynamics of free finite perturbations in operative weather
models [Primo et al., 2005, 2007; Gutiérrez et al., 2008;
Fernández et al., 2008].

4. Perfect Model Case D = 0

[22] It is instructive to first analyze the limiting case of a
perfect model, i.e., a zero noise strengthD = 0. In this case our
computer model, vn(t), describes perfectly well the reality,
un(t), and the ‘‘assimilation’’ procedure in equation (2)
simply leads to standard chaotic synchronization. In other
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words, for a strong enough coupling, k > kc, both systems,
reality and model synchronize up to any given precisionD in
a finite time tD, so that jun(t)� vn(t)j <D for times t > tD, no
matter their respective initial conditions. Therefore the pre-
dictive power of our computer model is only limited by a
forecasting horizon time t � l�1, where l is the main
Lyapunov exponent of the uncoupled system. Analyzing
the idealized perfect model limit will help us to understand
the more general situation with noise D 6¼ 0 discussed in
next section. A quite exhaustive study of this synchroniza-
tion transition in terms of the MVL diagram can be found in
the work of Szendro et al. [2009] for a different model
system.
[23] Here we focus on the aspects that are relevant for

assimilation. We have computed the error w between obser-
vation and model for different choices of the coupling k
below the synchronization threshold. We present numerical
simulations for a system of size L = 256 and the averages are
taken over 103 independent initial conditions. For any
coupling the PSD of the associated error surface hn(t) = ln
jwn(t)j scales according to equation (3) with Sq � q�2 for
length scales q < qc � 1/‘�(t), as corresponds to a KPZ
surface (see discussion in section 3). In the stationary state,
the characteristic wave number is expected to tend to zero,
qc � jk � kcjn, as we approach the synchronization
transition, k ! kc

�. The exponent n � 0.85 is universal
(i.e., fairly model independent), as expected for systems
near a phase transition [Ahlers and Pikovsky, 2002; Bagnoli
and Rechtman, 2006; Szendro et al., 2009].
[24] At long times the synchronization error becomes

stationary and both the amplitude and the surface width
reach a fixed point. This fixed point is fully characterized
by the asymptotic values Wa

2(k) = limt!1 W(t)2 and
ea(k) = limt!1 e(t), which describe the asymptotic state of
the synchronization error for a given coupling strength k
[Szendro et al., 2009].
[25] We now focus on this asymptotic state in the perfect

model case. For couplings below the threshold for complete

synchronization, k < kc, the error wn(t) between reality and
model tends toward an asymptotic state of partial synchro-
nization. This means that the two systems are synchronizing
at length scales below the characteristic length lc � qc

�1,
where lc = limt!1‘�(t). It is interesting to notice that the
characteristic length can be identified with the typical size
of regions on which the synchronization error has the same
structure as the first Lyapunov vector [Szendro et al., 2009],
i.e., on these regions the synchronization error behaves like
an infinitesimal perturbation to the trajectory of the reality.
For the purpose of assimilation the typical extent of syn-
chronizing regions (and therefore the size of the regions in
which the synchronization error behaves as an infinitesimal
perturbation) is important because only below this length
scale the structure of the solution of the model can be
expected to be compatible with the dynamics of the reality.
[26] In Figure 1 we plot the squared width Wa

2 versus the
amplitude ea in the asymptotic partially synchronized state
for different choices of the coupling strength. Here just as
reported by Szendro et al. [2009] for a different system, we
observe that the closer to the critical coupling strength, the
smaller the asymptotic value of the amplitude and the larger
the asymptotic value of the width. This behavior actually
reflects the approach to the complete synchronization state
as one gets closer to kc. The increase of the width follows
from equation (4) and it is due to the growth of the
correlation length lc � jk � kcj�n when the coupling
approaches the critical coupling kc. Therefore the coupling
parameter k determines the degree up to which the com-
puter model vn converges to the observation un. For cou-
plings above kc the system is fully synchronized with an
error jwj ! 0.

5. Non-Perfect Model Case D 6¼ 0 and the
Assimilation Problem

[27] We now study the case in which our model is not a
perfect copy of the reality. As discussed above, within our
approach this corresponds to having a noise D 6¼ 0 in
equation (1). Since in this case the reality and the computer
model are actually different systems, synchronization is
always partial no matter how strong the coupling is. We
want now to quantify up to what extent observations and
model are synchronized because this gives the measure of
the quality of the assimilation.
[28] We first compute the synchronization error w in the

asymptotic state for different coupling strengths and noise
intensities. As we did in the preceding section for the perfect
model case, we study the time evolution of the synchro-
nization error in the MVL diagram. The pair of variables
[e(t), W2(t)] also converges with probability one to an
asymptotic fixed point [ea(k, D), Wa

2(k, D)] that depends on
both noise intensity and coupling strength. In the following
we focus on analyzing the properties of these asymptotic
states of partial synchronization as the parameters D and k
are varied.
[29] The effects of assimilating the reality by our syn-

chronization scheme can be readily seen in Figure 2, where
we plot the asymptotic values of the error surface width
versus amplitude for different values of the noise intensity
D and various choices of the coupling parameter within the
range k 2 [0.5, 3.0]. The data on this plot were averaged

Figure 1. The squared width is plotted versus amplitude for
D = 0 and different coupling strengths below the threshold for
synchronization, 0.5 � k � 1.75 < kc. Points correspond to
the asymptotic stationary values (fixed points) of the pair
(ea,Wa) for increasing values of the coupling strength, as we
get closer to the critical value kc from right to left.
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over 103 independent trajectories for good quality statistics.
Note that the shape of the curves in Figure 2 is similar for
different noise intensities, so that the properties of the error
surface in the asymptotic limit are qualitatively independent
of the noise strength.
[30] Figure 2 shows important differences as compared

with the equivalent plot for the noiseless case in Figure 1.
We observe that the asymptotic error amplitude ea(k, D)
decreases when the coupling strength increases, as
expected. However, for any noise strength, the error surface
width Wa(k, D) exhibits a maximum. This is a remarkable
finding because it immediately implies the existence of an
‘‘optimal coupling’’ for which synchronization of observa-
tion and model is the best in a sense we will now enunciate.
For any given noise intensity D there is a value for the
coupling, kop(D), at which the error surface width peaks,
while for larger values of the coupling parameter the width
decreases. Since the surface width is mathematically
connected by equation (4) with the correlation extent, a
decrease of the width for strong couplings indicates a
destruction of spatial correlation, i.e., a reduction of the
typical spatial extent of connected regions over which
observation and model synchronize. In other words, assim-
ilation (via synchronization) of the observations leads to an
asymptotic state that is partially in the synchronizing state
up to a length scale lc, which becomes maximal for certain
coupling k = kop. However, further increasing the coupling
strength leads to a destruction of correlations and, therefore,
a loss of predictive power.
[31] The reduction of the correlation length can also be

made apparent by studying the PSD, Sq, of the error surface.
In Figures 3a and 3b we plot the PSD of the asymptotic state
for a noise strength D = 10�8 and various values of the
coupling, k � kop (a), and k 	 kop (b). As can be
immediately observed, the PSD shows a power law behavior
over wave numbers q above a cutoff qc(k). For couplings

below kop(D = 10�8) ’ 1.77, the power law has a slope of
�2, as expected (see discussion in section 3), and the cutoff
length lc(k) � 1/qc(k) increases as the coupling approaches
kop. The spatial extent of synchronized regions is maximal
at kop, where the q�2 power law decay of Sq extends over
up to very small wave numbers q. However, when the
coupling is increased beyond kop, not only the cutoff length
but also the slope of the power law is decreased, demon-
strating a progressive destruction of correlations on all
length scales. Identical behavior is observed for other noise
intensities (not shown) with the PSD showing maximal
correlation extent for an optimal coupling kop(D) that varies
with the noise intensity D in the same way as can be seen
in Figure 2.
[32] The existence of an optimal coupling can be seen as

a fingerprint of the critical phase transition discussed in
section 4 for the zero noise case. To show this, in Figure 4
we plot the asymptotic error amplitude and squared width
versus the coupling strength for various choices of the noise
intensity. Note that, although the amplitude is monotonical-
ly decreasing for increasing coupling strength, there is a
certain value of the coupling strength k � kop where the
curves become steeper. The behavior of the amplitude
resembles that of an order parameter at a phase transition.
In contrast with a true phase transition, though, the order
parameter (error amplitude) does not drop to zero but to a
value that depends on the noise strength. As the noise
strength becomes smaller the amplitude values after the
drop become closer to zero. This hints at the existence of a
true phase transition in the limit D ! 0, as expected from
the discussion in section 4.
[33] Moreover, the squared width shows a very sharp

peak at k � kop (see Figure 4b). This behavior is also highly
reminiscent of a critical phase transition, where the corre-
lation length diverges at the critical point. According to
equation (4) we have Wa

2(D, k) � lc(D, k)
2a. Therefore a

maximal width at k � kop(D) immediately implies that the
largest correlation length occurs at that optimal coupling.
Again, a true phase transition is only found in the limit
D ! 0, as can be seen in Figure 4b, where the peak becomes
higher as the noise intensity is lowered. In the zero noise
limit we expect Wa

2(kop) � L2a to diverges with the system
size with exponent a = 1/2, and kop(D ! 0) = kc. Thus as

Figure 2. The squared width at the asymptotic state is
plotted against the amplitude for various choices of the
noise and coupling strengths, 0.5 � k � 3. As the coupling
is increased, the amplitude still decreases monotonically but
there appears a maximum for the asymptotic width, which
depends on the coupling strength. For larger noise strength,
all asymptotic values are shifted to larger values of e and
smaller values of W 2.

Figure 3. We plot the power spectra of the asymptotic
interfaces corresponding to D = 10�8 and couplings k � km
and k 	 km, respectively. (a) For k � km the correlation
length increases as k is increased. (b) As k is increased
beyond km, correlations are destroyed progressively on all
length scales.
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D ! 0 we would have kop ! kc and lc(D ! 0, kop) ! L,
where the two systems would become completely syn-
chronized at kc. The phase transition is therefore blurred
by the presence of the noise. It is worth to mention that
kop is fairly independent of system size for large enough
systems, L > 128. However, the width at the maximum
increases with L, as expected, since in a larger system the
correlation length can reach larger distances.
[34] Let us briefly summarize in words the mathematical

results we obtained up to now in this section. It becomes
apparent that the destruction of the synchronized state for
too large couplings in the noisy case can be somehow seen
as an overreaction of the model with respect to the obser-
vations that we want to assimilate. A very large coupling
certainly makes the model v to be more similar to the
observation u on average, as it is reflected by the fact that
the error amplitude can be made very small indeed. How-
ever, using very large couplings has a drawback – all
information encoded in the spatial structure of the error
w is progressively lost, as reflected by the sharp drop of the
spatial extent of the correlation length. In other words, the
spatial structure of the error progressively deviates from that
of the desired synchronized state. Therefore if the coupling
is too large, we end up with an error that may be small on
average, but also a model that is performing badly as
synchronization with observation is concerned. This is
somehow similar to the phenomenon of overfitting. Our
main finding is that, for any noise intensity, there exists an
optimal coupling kop(D) that provides the best compromise
by maximizing spatial extent of the synchronized regions
between reality and model.
[35] Note that the optimum state we have found here is

essentially different from the one described by Yang et al.
[2006] for a low-dimensional system. In that case, the noise
is not included in the dynamics of the reality but is added
subsequently to the signal, mimicking observational noise.
Therefore although the solution of Yang et al. [2006]
converges progressively to the observation as the coupling
strength increases, it eventually starts to deviate from the
reality for too strong couplings. In our case, on the other
hand, reality and observation are identical and the solution
converges monotonously to the reality (in terms of the
amplitude of the synchronization error) as the coupling
strength is increased. Interestingly, despite the different

nature of the optima in the two cases, they both appear at,
or nearby, the value of the coupling that corresponds to the
critical coupling strength in the noise free case.
[36] At this point an important question is whether the

spatial correlations of the synchronized state that appear
with a given coupling are able to survive when the model is
left to evolve freely, i.e., when using the model to predict
the future states of the reality. To check this, we proceed as
follows. We couple observation and model as described in
equations (1) and (2) until a partial synchronized state is
attained (assimilation). Here we assimilated the system
during a time interval of length tassim = 419.4304. Then,
the coupling is switched off and the model and observation
are run freely in parallel (prediction). The error between
model and reality is then computed as time evolves. We
monitored the evolution of the error during an time interval
of length tfree = 26.2144. In order to compare the results for
different coupling strengths it is convenient to scale the
error amplitudes to some small value before the systems are
uncoupled. In Figures 5a–5d we plot the evolution of
amplitude and width of the synchronization error w, whose
amplitude is normalized to ln e0 = �8 before k is set to zero.
All figures correspond to a system size L = 256 and various
choices of the coupling strength and noise strength D = 10�8

(Figures 5a and 5b), and D = 10�6 (Figures 5c and 5d),
respectively. Each of the curves was averaged over 1000
realizations. The amplitude grows as time elapses and,
therefore, the temporal evolution can be read of from left
to right.
[37] To make the temporal scales more visible we plot the

temporal evolution of the squared width versus time in
Figure 6. The curves correspond to the same cases as in
Figure 5. Moreover, the insets of Figure 6 show the
temporal evolution of the amplitude. Note that the ampli-
tude grows exponentially with a growth rate corresponding
to the first Lyapunov exponent until nonlinear effects set in
causing a saturation of the amplitude. The saturation occurs
roughly at the same time as the break down of the width.
[38] At first a decrease of the width is observed. This

decrease indicates a slight destruction of spatial correlations
due to an incompatibility of the rescaled synchronization
error structure with the dynamics of the uncoupled system
[see Primo et al., 2007]. As can be seen by comparing the
different cases presented here, this effects gets stronger for

Figure 4. We plot (a) the amplitude and (b) the squared width against the coupling strength for various
choices of the noise strength. Note the steep decay of the amplitude and the sharp peak of the squared
width at km.
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larger values of D. The initial decrease is followed by a
period of increase of the correlations as the finite perturba-
tion behaves similar to an infinitesimal one. Eventually, as
errors grow too large, all correlations are destroyed.
[39] Whenever the noise level is moderate (i.e., for a good

enough model) the magnitude of the correlations is still
dominated by its magnitude during the assimilation proce-
dure (see Figures 5a and 5b). On the other hand, if the noise
is stronger, the correlations that have been gained previously
in the assimilation process are greatly lost and the effect of
choosing the optimal coupling is diminished (see Figures 5c

and 5d), however, the effect of choosing an optimal coupling
can still be seen. Nonetheless, if the noise is too strong
(i.e., our model is too bad), one can expect that all the
correlations produced during the assimilation procedure are
lost and it would not make sense any more to talk about
an optimal coupling strength.

6. Conclusions

[40] We have investigated the use of synchronization for
the assimilation of observations in a computer model. We

Figure 5. For (a, b) D = 10�8 and (c, d) D = 10�6, we plot the dynamics of the squared width versus
amplitude of the rescaled synchronization error after switching k to zero. The curves correspond to
different coupling strengths, (a, c) below and (b, d) above coupling strength km, respectively. Temporal
evolution can be read of from left to right. Note the decline of the width at small times.

Figure 6. For (a, b) D = 10�8 and (c, d) D = 10�6, we plot the temporal evolution of the squared width
of the rescaled synchronization error after switching k to zero. The curves correspond to the same
coupling strengths as in Figure 5. In the insets we show the temporal evolution of the corresponding
amplitudes.
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studied a system that is simple enough to allow us to learn
about the basic questions, but is still able to capture the
essential ingredients of more complex weather systems,
including high dimensional chaos. In our study observations
are generated by a noisy Lorenz 96 equation so that the
effect of noise on data assimilation performance can be
pondered. The computer model is then synchronized to the
(noisy) reality in the simplest fashion through a linear term
proportional to a coupling parameter k. Our analysis has
revealed that not only the magnitude of the synchronization
error is important but also its spatial structure. Indeed, our
study shows that the spatial structure is the key element in
order to quantify the quality of assimilation by means of
synchronization in complex spatially extended systems.
[41] Our main result concerns the existence of an optimal

coupling kop such that the partial synchronization of the
model to the observations is largely enhanced. This finding
is very important and may have implications for other
assimilation techniques apart from the particular application
in assimilation by means of synchronization. Our results
strongly suggest that the optimal solution of the assimilation
process may not necessarily be the one that produces the
smallest error. Rather, the extent and magnitude of spatial
correlations are the quantities that determine the quality of
the assimilation in spatially extended systems.
[42] For this optimal coupling the spatial extent of

connected synchronized regions becomes maximal and the
predictive power of the model is thus the best we can
achieve with the synchronization setting in the presence of a
noisy reality. The effect of using couplings larger than the
optimal one is twofold. On the one hand, the error magni-
tude is lower, as the spatial average error is concerned. At
first sight, this could be naively interpreted as if our model
becomes closer to the observation. However, our exhaustive
analysis clearly shows that this conclusion is incorrect. The
reason being that for couplings above the optimal value
there is a second effect – a progressive destruction of spatial
correlation at all scales. This phenomenon reminds of an
overfitting of the model to the reality and indicates an
incorrect spatial structure of the error for couplings above
kop.
[43] Our results allow us to suggest that the correlation

length lc (conversely Wa
2) may be used as a measure of the

degree of synchronization or, equivalently, it can be used as
a measure of the quality of data assimilation by means of
synchronization schemes. Note that the error surface width
Wa

2 measures deviations after a logarithmic transformation.
Thus Wa

2 is a kind of entropic estimator that is quite robust
to describe statistical properties. Furthermore, we have
related the appearance of a maximal correlation length to
the critical phase transition existing in the limit of a perfect
model (noiseless observations).
[44] Much work remains to be done as major problems,

which may appear in actual weather models, have not been
addressed in this paper. It is possible that the effects of
parameter mismatches, observation noise, or incomplete
information about the system (i.e., coupling restricted to
discrete times or a fraction of the spatial points) could
hamper the effects we have observed. Furthermore, in
realistic applications, such as weather prediction, the models
are generally inhomogeneous. It is known that quenched
inhomogeneities lead to a strong localization of errors

[Szendro et al., 2008] and similar effects might be expected
in systems where long-lived spatially correlated structures
appear due to the intrinsic dynamics of the system. The
effect of strongly localized errors on the results presented
here is, however, difficult to anticipate at this stage. No
doubt, all these questions need further investigation.
[45] Although beyond the scope of this article, it is very

likely that similar phenomena also appear in commonly
used variational approaches. Therefore it becomes apparent
that it would be of great interest to investigate the enhance-
ment of predictive power for variational assimilation
schemes when one tries to maximize the spatial correlation,
instead of solely minimizing the size of the error.
[46] Finally, we should point out that studies comparing

the performance of synchronization methods with the most
common variational approaches will be needed. An obvious
advantage of synchronization with respect to variational
methods is that the former is far less expensive in compu-
tational terms. However, it will be the performance with
respect to predictive power what should eventually be the
most important factor in such an evaluation.
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