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The repository rocks to inject CO2 at the Hontomín test site (northern Spain) are dominantly limestones and dolostones (Fig. 1). Interaction between dissolved CO2-rich brine and the rocks will induce dissolution of carbonate minerals. Since the Hontomin brine contains sulfate, gypsum 

(or anhydrite at depth) can precipitate, resulting in a gypsum coating on the dissolving carbonate minerals’ surface to cause its passivation. These reactions may change the porosity, permeability and storage capacity of the reservoir. In this study, laboratory column experiments under 

atmospheric pCO2 are performed to quantify these processes.1-D numerical simulations of the experimental results using the reactive transport code CrunchFlow (Steefel, 2009) are suitable to validate kinetic parameters, such as the mineral reactive surface area values and kinetic 

rate laws) used to predict the geochemical evolution in experiments run under supercritical CO2 conditions (pCO2 of 80 bar and 60 
 

C). 

Variation of Ca, Mg and S concentrations and pH with time is shown in Fig. 4. With time, calcium concentration is higher than the initial one (dolomite dissolution), magnesium is released (dolomite dissolution), and the concentration of sulfate is lower than the initial one (gypsum 

precipitation). The simulations match the experimental data (Fig. 4). Reactive surface area values were adjusted to match the experimental results. After 3 months,  the calcite precipitate at the end of the column (before 0.015m), anhydrite precipitate at the beginning of the column 

(first 0.005m) and dolomite dissolves, causing an increase in porosity of the beginning of the column is observed (Fig. 4) . The simulated pH is lower than the measured one likely due to CO2 degassing. Dedolomitization (mole per mole replacement of dolomite by calcite) is a 

negligible process in these experiments (Fig. 5).  Based on the reactive surface area values obtained and considering that the column is run under supercritical conditions (pCO2 of 150 bar and 70⁰C), simulations predict significant dissolution of dolomite that causes very high 

increase in porosity along the entire column (Fig. 6). 

The 1-D numerical simulations of the experimental results of dolomite dissolution at atmospheric pCO2 and 25 ⁰C show that: 

 

- Values of the adjusted reactive surface areas are similar to those calculated based on the geometric surface area. These values are used to predict the geochemical behavior of he column run at supercritical CO2 conditions. 

 

- The main processes that take place are dissolution of dolomite and gypsum formation at the entrance of the column. Calcite precipitation and dedolomitization are negligible. Consequently, initial porosity increases up to 90% at the entrance of the column.  

 

Simulations under supercritical CO2 conditions (similar to the ones at the injection site of Hontomin) show a significant increase in the initial porosity along the column. Future experimental results under these conditions will be used to validate the resulting simulations. 

Fig. 5 Variation of the simulated volumetric fraction of minerals along the column at  

atmospheric pCO2 and 25⁰C: (a) calcite, (b) gypsum, and (c) dolomite and porosity 

variation(d). 

Fig. 6 Variation of the simulated mineral volumetric fraction along the column 

at pCO2 of 150 bar and 70⁰C: (a) calcite, (b) gypsum, (c) dolomite and  

variation of porosity (d). 

Fig.1 About 2-3 % of the supercritic CO2 will be dissolved in the reservoir brine (fingering formation).  

The dissolved CO2-rich brine will interact with the reservoir rocks (limestones and dolostones in Hontomín).  
 

Fig. 2 (a) Flow-through column packed with dolomite fragments shown in (b).  

Fig. 4 Variation of output solution concentration with time under atmospheric 

pCO2: (a) Ca2+,(b) Mg2+, (c) SO4
2- and (d) pH.  

a) b) 

d) c) 

A column experiment was conducted under atmospheric pCO2 (Fig.2). The input solution circulated through the column (V = 39 mL) packed with dolomite fragments (1-2 mm in size) (Fig. 2) at 8.3x10-10 m3/s, i.e., Darcy velocity (VD) of 1.5x10-6 m3/m2/s, which is similar to the flux at the 

vicinity of the injection borehole at Hontomin. The input solution was rich in calcium and nearly equilibrated with respect to gypsum with an initial pH of 2.5. The initial porosity is 0.46. For the 1-D simulations the column is discretized in 20 nodes. The code couples the transport 

equation with the kientic rate laws, and the reactive surface areas are updated according to the equations shown in Fig. 3. 
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Fig. 3. Conceptual model and reactions that are considered in the reactive 

transport code CrunchFlow.  

Eq. 1 

Eq. 2 

Eq. 3 

Eq. 4 

QINP  = 8.3x10-10 m3/s  VD=1.5x10-6 m3/m2/s 

m =21.2 g  

Φ = 0.46 

h= 2.6 cm 

r= 1.3 cm  
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