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ABSTRACT 

 

Gold-carbon hybrids have been efficiently used as catalysts for the hydroamination of 

phenylacetylene with aniline. Carbon supports (single-walled and multi-walled carbon 

nanotubes, graphene oxide, graphite, graphitic cones, nanodiamond, ordered 

mesoporous carbon, carbon xerogel, carbon black, activated carbon, and laser-ablation 

produced carbon foam) were homogenously decorated with gold nanoparticles (GNP) 

synthesized by in situ reduction of chloroauric acid (H[AuCl4]) in water. The 

performance of carbon materials used as catalytic supports has been here evaluated. The 

synthesized gold-carbon hybrids worked remarkably well as catalysts for the targeted 

reaction. Conversion values as high as 79 % were achieved by suitably adjusting the 

gold:carbon support w/w ratios. Our results indicate that the catalytic activity strongly 

depends on gold:carbon support w/w ratios and on the structure and textural properties 

and dispersibility of the carbon supports used. Thus, the best gold-carbon catalyst 

performance in terms of conversion values and low carbon support content has been 

achieved when using graphene oxide as well as supports (carbon black, carbon 

nanotubes, and nanodiamond) that combine high BET surface areas, well-developed 

mesoporosity, and good dispersibility in water during the GNP decoration process. 

 

Keywords: Gold-carbon catalysts; gold nanoparticles; hydroamination; carbon supports; 

gold-carbon hybrids 
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1. Introduction 

 

Metal nanoparticle decoration is able to provide fascinating catalysis application 

opportunities to carbon materials. Thus, applications for these metal-carbon hybrids 

have been successfully demonstrated in fuel cell technologies [1-4] and heterogeneous 

catalysis [5-9]. On the other hand, the use of gold nanoparticle (GNP)-based catalysts 

has been widely explored in recent years [10]. Hence, while the bulk metal is largely 

non-active in catalysis [11], GNP exhibit a surprisingly high catalytic activity, which 

mainly depends on the nanoparticle size and the support used [12-15]. Additionally, 

GNP-based catalysts enable operating at low reaction temperatures and, in most cases, 

provide high reaction selectivity [15,16]. GNP-decorated carbon supports are able to 

provide outstanding catalytic performance [17-21]. Eventually, the catalytic 

performance of the deposited GNP may be synergistically favored by the carbon 

supports used [17,19,22,23]. A variety of methods are being utilized for the synthesis of 

gold-carbon hybrids [24,25], including physicochemical methods such as 

electrodeposition [26] or laser ablation of metal targets in liquids [27], and the most 

commonly used wet chemical strategies involving the reduction of gold containing 

compounds [22, 28]. 

 Hydroamination reactions enable the synthesis of nitrogen-containing organic 

compounds which are widely present in the nature and provide biological- and 

pharmaceutical activity [29], and can be used in cosmetics as well as intermediates in 

many industrial processes and in the synthesis of agrochemical products [30]. The 

conventional synthesis routes to obtain C-N bond-containing molecules are however 

limited, hence it is of great importance the development of methods to catalytically add 

a nucleophile nitrogen to a C-C multiple bond [31,32]. Gold-containing complexes and 
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GNP are able to efficiently catalyze this reaction [33,34]. Moreover, the use of GNP in 

the catalysis of hydroamination reactions avoids the use of acidic media and the 

formation of by-products in very regioselective hydroamination reactions [11,35]. 

 In this work we show that carbon materials of a variety of structural, textural, 

composition and dispersibility properties could be efficiently used as supports for GNP-

based catalysts. Thus, different carbon supports - graphene oxide (GO), single-walled 

carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), graphitic 

cones (GC), graphite (G), nanodiamond (ND), carbon xerogel (CX), carbon black (CB), 

activated carbon (AC), ordered mesoporous carbon (OMC), and laser-ablation-produced 

nanostructured carbon foam (CF)- have been chemically decorated with GNP, and the 

resulting gold-carbon hybrids have been then tested for the catalysts of the 

hydroamination of phenylacetylene with aniline [35]. Scheme 1 shows the reaction 

pathway proposed by Corma et al. by which the hydroamination of phenylacetylene 

with aniline occurs through the regioselective Markovnikov rule to yield an enamine 

that, subsequently, tautomerizes to the more stable imine (phenyl-(1-

phenylethilidene)amine) [35].  

 

 

 

Scheme 1. Au-assisted catalysis of the hydroamination of phenylacetylene with aniline 

[35]. 
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Conversion values of up to 79 % have been achieved with the synthesized gold-carbon 

hybrids. Our results indicate that the measured catalytic performance strongly depends 

on the carbon support used as well as on the gold:carbon support w/w ratios. 

 

 

2. Experimental 

 

Commercial carbon materials, including SWCNT produced by the high-pressure CO 

disproportionation technique (as-produced HiPco SWCNT [36], Carbon 

Nanotechnologies Inc., batch# RO501), high purity MWCNT produced by the CVD 

technique (10-15 nm in diameter, ≥ 10 microns in length, Nanothinx S.A.), single layer 

GO (CheapTubes Inc.; purity: 99 %. wt., synthesized by a modified Hummers’ method 

[37]), GC produced by hydrocarbon pyrolysis (n-TEC) [38], G (Merck, particle size <50 

µm), Vulcan XC-72R CB (Delta Tecnic S.A.), ND (purified, grade G01, PlasmaChem), 

and AC (Morgui Clima S.L.) were here tested as carbon supports. Our study also 

includes CX prepared by polycondensation of resorcinol and formaldehyde in water by 

Pekala’s sol-gel method [39], OMC synthesized using a template-mediated process 

described elsewhere [1], and CF, a nanostructured carbon material that consists mainly 

of aggregates of amorphous carbon nanoparticles produced by laser ablation of 

naphthalene [40].  

Elemental analysis (Thermo Flash EA 1112 Series NC analyzer) data of the 

carbon supports used are shown in Table 1. All tested carbon materials have carbon 

contents over 80 wt. %, except GO due to its high oxygen content (44.9 wt.%) and 

SWCNT because of the ~20 wt. % Fe catalyst that resulted of the HiPco SWCNT 
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production process [36], as determined by thermogravimetric analysis (TGA, Setaram 

Setsys 2000 thermobalance, samples were analyzed in Pt pans at a heating rate of 

10ºC/min up to 850ºC in an atmosphere of air flowing at 100 mL/min). The selected 

carbon supports exhibit significant differences in textural properties, as shown in Table 

2. Nitrogen adsorption–desorption isotherms were measured at 77 K (Micromeritics 

ASAP 2020). Surface area measurements and porosity were studied using the 

Brunauer–Emmett–Teller (BET) method between 0.05 and 0.3 P/P0, and t-Plot and 

Barret-Joyner-Halenda (BJH) methods. 

 GNP decoration of carbon materials was performed by in situ reduction of 

chloroauric acid (H[AuCl4], Sigma-Aldrich, 99.999 %) with sodium citrate (Sigma-

Aldrich, 99.0 %) and sodium borohydride (NaBH4, Sigma-Aldrich, 98 %) in water 

[41,42] as follows: the carbon supports were dispersed in 25 mL of a 5.4 mM sodium 

citrate aqueous solution, and then bath-sonicated for 2 hours. The resulting carbon 

dispersions were subsequently transferred to a boiling flask, followed by the addition of 

23 mL of distilled water. The dispersion was refluxed and 2 mL of a 12.5 mM H[AuCl4] 

solution were poured to the boiling dispersion. Then, 100 µL of a freshly prepared 112 

mM NaBH4 solution were added. NaBH4 is a strong reducing agent broadly used to 

produce small GNP, and it is here utilized to boost the full reduction of H[AuCl4] [43-

45]. It is then assumed that under these experimental conditions the reduction from 

Au(III) to Au(0) was complete. The mixture was kept at 100 ºC until the GNP 

decoration process ended. The duration of this process depends of the decorated carbon 

support: 30 minutes for SWCNT, MWCNT and CB, 4 hours for CF and GC, and 12 

hours for the rest of carbon supports tested. This suggests that certain characteristics and 

compositions of the carbon supports used may ease the GNP decoration process. Fixed 

H[AuCl4], sodium citrate, and NaBH4 concentrations were utilized in all GNP 
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decoration experiments. Contrary to the formation of GNP directly on MWCNT 

sidewalls described by Zhang et al. [28], this in-situ decoration process leads to the 

formation of GNP in solution, that then adhere to the carbon supports. In absence of 

carbon supports, UV-vis characterization (Thermo Scientific Evolution 600 

spectrometer) of the resulting red wine colored GNP solutions shows the characteristic 

GNP surface plasmon resonance band at 525 nm [46]. The time required for GNP 

incorporation onto the carbon supports used and, therefore, the efficiency of this 

chemical GNP decoration method can be monitored by measuring the evolution of UV-

vis spectra of solutions that result of filtering the synthesized gold-carbon hybrids, so 

the 525 nm band is no longer observed when complete GNP decoration is finally 

reached. 

The gold/carbon support dispersions were then cooled down to room 

temperature, filtered through a 0.22 µm polycarbonate membrane filter (Millipore, 

GTTP02500), and washed (3x10 mL water, and 3x10 mL acetone) to remove solvent- 

and reactant traces and, eventually, non-attached GNP. Finally the resulting gold-carbon 

hybrids were dried in an oven at 110 ºC for 1 hour. The effect of adjusting the 

gold:carbon support w/w ratios used (i.e. the gold loading of the resulting gold-carbon 

hybrids) for this GNP decoration procedure was studied for each carbon support for the 

catalysis application mentioned above. 

GO required a modified GNP decoration process to prevent that the material 

becomes largely agglomerated during filtration, which would hinder its subsequent use 

in catalysis. Thus, after 12 h of decoration, Au/GO suspensions were filtered until 1 mL 

of the initial dispersion was left. The material was then redispersed by sonication and 

finally washed (3x10 mL water, and 3x10 mL acetone) and partially filtered, so the Au-
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GO material was kept in ~1 mL acetone prior to proceeding with the catalysis 

experiments. 

 The resulting gold-carbon hybrids were characterized by transmission electron 

microscopy (TEM, JEOL JEM 2000 FXII microscope, operated at 60 kV, equipped 

with a CCD GATAN mod. 609 camera), TGA, and X-ray diffraction (XRD, CuKα 

radiation, Bruker D8 Advance Series 2). The average Au fcc crystallite size of GNP was 

calculated from XRD measurements using the Scherrer equation [47]. 

The hydroamination of phenylacetylene with aniline was used here to test the 

catalytic activity of the synthesized gold-carbon hybrids. The reaction was carried out in 

air atmosphere and using anhydrous solvents to avoid the formation of acetophenone, 

which can be easily obtained as by-product in presence of water under these conditions 

[35]. The hydroamination reaction was performed in a 15 mL Schlenk tube equipped 

with a magnetic stirrer. In a typical experiment, the gold-carbon hybrids were 

redispersed in deuterated toluene (1 mL; 99.8 at. % D, anhydrous, Sigma-Aldrich) 

inside a Schlenk tube by mild (bath) sonication. The starting gold content was 2.5 mol 

% with respect to the reactants in all experiments. Subsequently, aniline (93 mg, 1 

mmol; purity >99.5 %, Fluka), phenylacetylene (102 mg, 1 mmol; purity >98 %, 

Panreac) were added to the suspension. The reaction mixture was then placed in an oil 

bath at 100 ºC for 24 h.  

After reaction, the resulting dispersion was filtered through a celite filter, and the 

filtrate was analyzed by quantitative 
1
H NMR (Bruker AV 400 spectrometer) using 

dodecane as internal standard (47 mg, 0.25 mmol; purity >99.8 %, Sigma-Aldrich). 

Calibration was used to follow the course of the reaction. The conversion was calculated 

referred to the dodecane signal at 1.31 ppm. The reactants reference signals were those 

of the aniline appearing between 6.17 and 6.44 ppm, and those assigned to 
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phenylacetylene at a chemical shift between 7.28 and 7.45 ppm. For the reaction 

product, the signal used to calculate the conversion was the one at 1.88 ppm. Again, the 

use of GO supports required a modified procedure: 1 mL Au-GO hybrid acetone 

dispersion samples were carefully transferred to a Schlenk tube and mixed with 4 mL of 

deuterated toluene. The mixture was stirred and then heated to 80 ºC while bubbling 

with dry air to remove acetone. The complete acetone removal was confirmed by 
1
H 

NMR. 

 

 

3. Results and Discussion  

 

TEM characterization reveals that efficient GNP decoration of all tested carbon supports 

has been achieved with the chemical method used (Fig. 1 and 2). TEM and XRD 

characterization indicate that the GNP size strongly depends on the gold:carbon support 

w/w ratio of the synthesized gold-carbon hybrids and on the structure and dispersibility 

of the carbon supports.  

 The application of the synthesized gold-carbon hybrids as catalysts of the 

hydroamination of phenylacetylene with aniline has been then evaluated. We firstly 

confirmed that the pristine carbon supports did not provide any catalytic activity. This is 

an important issue as some of them contain significant amounts of metal nanoparticles 

or metal traces (most notably, the as-produced HiPco SWCNT used), while others (such 

as ND) are reported to eventually provide catalytic activity by themselves [48]. On the 

contrary, the synthesized gold-carbon hybrids act as good catalysts of the investigated 

organic reaction: Fig. 3 shows the conversions achieved for each gold-carbon hybrid at 

different gold:carbon support w/w ratios. 
1
H NMR results discarded the formation of 
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by-products, therefore indicating the high selectivity of the targeted hydroamination 

reaction. When suitably adjusting the gold:carbon support ratios, conversion values 

higher than 60% have been achieved for almost all the tested carbon supports after 24 h 

reaction, reaching maximum conversion values for CB (79 %), GO (76 %) and 

MWCNT and SWCNT (74 %, Fig. 3 and Table 3). It is also interesting to point out that 

GO provided this high conversion values at the lowest carbon support content (Au-GO 

1:1) of all decorated carbon materials. For each carbon support tested, the highest 

conversion values were reached when the complete GNP loading occurs at the lowest 

carbon support contents. UV-vis spectra of the solutions that result of filtering the 

gold/carbon support dispersions after GNP decoration and TGA analysis of the 

synthesized gold-carbon hybrids were used to determine the gold:carbon support 

compositions that lead to the complete Au loading onto the carbon supports. Thus, as an 

example, UV-vis studies revealed that all produced GNP are allocated on CB for CB 

contents ≥ 1:2 Au-CB. Therefore, 2:1 Au-CB hybrids were produced in defect of carbon 

support, as indicated by the deep red wine colored solutions obtained after filtration of 

the produced Au-CB hybrids. This was further confirmed by TGA analysis, which 

revealed that only 63% of the starting Au was incorporated as GNP onto CB for this 

hybrid composition. Increasing the CB content to 1:2 Au-CB however led to the 

complete GNP decoration of CB. Further increasing the carbon support content hinders 

the reactants diffusion and, therefore, leads to decreased conversion values. Turnover 

number (TON) values of up to 40 would be ideally expected for Au catalyst 

concentration of 2.5 mol %. TON values of around 25-30 were measured for all tested 

gold-carbon hybrids (Table 3).  

The measured GNP average crystallite size that provides the maximum 

conversion values strongly depends on the carbon support used (Table 3). The smallest 
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average Au fcc crystallite size values (5.4 to 6.7 nm) were measured for ND and 

nanostructured mesoporous carbon supports whose structure consists of aggregates of 

amorphous carbon nanoparticles (CB and CF). The use of graphene-based supports 

(GC, SWCNT, MWCNT, G, and GO) led to the formation of GNP of larger average Au 

fcc crystallite size (7.9 to 14.8 nm). 

The small GNP size values measured when using CB, ND and CF can be 

explained in terms of the large number of defects in their structure that would act as 

anchor points [49], therefore limiting the increase in nanoparticle size that occurs during 

further agglomeration of GNP before they stick onto the support [28]. Thus, the 

defective structure of CX is expected to provide small GNP sizes in the synthesized Au-

CX hybrids. Instead, values of 14.7 nm were measured in the Au-CX hybrid that 

provided the best catalytic performance. Additionally, the total amount of CX that must 

be added to efficiently allocate all synthesized GNP is larger than it would be expected 

for a material whose BET surface area is larger that those of CB, ND, and CF (Table 2). 

A careful study of our results indicate that there is a correlation between the 

dispersibility of the carbon supports, their microporous and mesoporous nature and the 

obtained GNP size and, therefore, the catalytic performance of the resulting gold-carbon 

hybrids. Thus, while CF, CB, and ND are mainly mesoporous materials (Table 2), CX 

exhibits both high micro- and mesoporosity. As mentioned above, sodium citrate acts as 

a reducing agent, pH buffer and as a surfactant agent not only for GNP but also for the 

carbon supports in water, enabling their efficient dispersion. Therefore, carbon supports 

and GNP actually compete for the free citrate available in solution, so for fixed sodium 

citrate concentration conditions, this citrate concentration available in GNP growth 

greatly determines the GNP size. Both micropores and mesopores are accessible for 

small molecules like citrate, so the use of carbon supports of large micropore and 
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mesopore surface areas such as CX should lead to a decreased free citrate concentration 

when compared with Au-decoration processes that involve the use of CF, CB, or ND, 

which are mainly mesoporous materials. As this free-citrate concentration enables both 

the GNP growth and dispersion, the effect of this CX-citrate interaction might lead to 

the measured larger GNP diameters.  

AC and OMC dramatically showed this effect. Their huge micropore area 

combined with mesopore areas of 602 and 94 m
2
/g (Table 2), respectively, together with 

their poorer dispersibility in water resulted in even larger Au fcc average crystallite 

sizes (16.9 and 27.0 for OMC and AC, respectively) and the need of larger carbon 

support contents: both materials required up to 1:4 gold:carbon support w/w ratio to be 

able to allocate all GNP, which contrasts with the 1:1 and 1:2 gold:carbon support w/w 

ratios achieved for GO, and for carbon nanotubes, CB and ND, respectively (Fig. 3), 

highly mesoporous carbon supports whose BET surface areas are around 200-300 m
2
/g 

(Table 2). Table 3 reveals that there is not a straightforward correlation between the 

gold content and the GNP size, therefore suggesting that both the structural and textural 

features of each carbon support used, together with, eventually, the presence of 

functional groups on their surface determine the obtained GNP size. The high gold 

contents of these gold-carbon hybrids (as high as 49 wt. % for Au-GO, Table 3) also 

accounts for the ability of these carbon supports for allocating GNP. The use of Au-AC 

and Au-OMC hybrids led to the lowest maximum conversion values (Fig. 3, Table 3). 

On the contrary, GO, that exhibits high microporosity, behaves here differently 

probably due to that the microporosity present in the dry solid drastically decreased 

when the material was highly exfoliated in water, leading to a huge surface area 

available for the GNP deposition. Moreover, the high oxygen-based functional group 

mainly as alcohol and epoxide groups [50] (44.9 wt. % O content, Table 1) allowed a 
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good GO dispersibility in water, so less citrate was required to interact with the GO 

surface, remaining free in solution to stabilize GNP. The presence of these oxygen-

containing functional groups in GO and also in ND (mainly as alcohol groups [51], 9.6 

wt. % O, Table 1) may also assist the GNP deposition and, eventually, may favor the 

gold-carbon hybrid/reactants interaction, so they may also further account for the 

enhanced catalytic performance of their hybrids. On the other hand, gold-carbon hybrid 

catalysts involving carbon supports that exhibited poor dispersibility in water and low 

BET surface areas such as G and GC required the largest carbon support contents (1:32 

and 1:16, respectively) to provide their highest conversion values (Fig. 3). It is also 

worth mentioning that, in spite of the significant differences among the tested carbon 

supports in terms of structural and textural features, composition, dispersibility, and 

GNP size of the resulting hybrids, not quite large differences in the highest TON values 

have been measured. These differences might be even smaller if TON values are 

calculated considering the calculated mass balances for each gold-carbon hybrid 

composition. Fig. 4 shows that taking into account the number of moles of the reactants 

and the resulting product, mass balance values higher than 90% were achieved for low 

carbon support contents. As mentioned above, the addition of large support amounts 

ultimately leads to hindered reactants diffusion (the reaction volume was kept at 1 mL 

for all catalysis experiments). However, significant product adsorption on the carbon 

supports used might be expected, and this would more markedly occur when using 

carbon supports exhibiting high BET surface areas and well-developed microporosity 

(such as AC, OMC, and CX) and probably also in carbon supports with oxygen-

containing functional groups (GO, ND). This might account for the mass balance values 

around 70% calculated for the corresponding gold-carbon hybrids (Fig. 4). At this point, 
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it is important to insist again that no by-products of the hydroamination reaction have 

been detected by 
1
H NMR. 

The kinetics of the reaction for the gold-carbon hybrids that provided the highest 

TON values were studied. Thus, Fig. 5 compares the conversion of phenylacetylene into 

phenyl-(1-phenylethilidene)amine in presence of Au-CB and Au-SWCNT 1:2 catalysts 

as a function of time. While both Au-CB and Au-SWCNT hybrids provided similar 

conversions (79 and 74 %, respectively, Table 4), the maximum conversion is reached 

faster when using CB as support, probably due to the presence of more active smaller 

nanoparticles in CB. Fig. 5 suggests that deactivation with time of the catalyst occurs. 

TEM characterization of the gold-carbon hybrids after reaction might indicate that 

catalyst deactivation can be addressed to GNP agglomeration (Fig. 6), accounting for 

the lack of cyclability of the synthesized gold-carbon hybrids for this catalytic 

application and, therefore, impeding catalyst reusability. 

Finally, the catalytic performance of gold/carbon foams produced by laser 

ablation of chloro(triphenylphosphine)gold(I) ([AuCl(PPh3)]) was evaluated (Fig. 7) 

[40,52]. This gold-carbon hybrid consists of GNP embedded within carbon matrices that 

comprise both amorphous carbon aggregates and graphitic nanostructures. Gold loading 

of 33 wt. % and average Au fcc crystallite size of 23.0 nm were measured by TGA and 

XRD, respectively. Contrary to the Au-CF hybrids produced by the GNP chemical 

decoration route described in this work, no catalytic activity has been however achieved 

with these gold/carbon foams. TEM characterization reveals that all observed GNP are 

coated with carbon layers (Fig. 7), that can eventually be extremely thin (Fig. 7, see 

insets). This would prevent the required interaction between the catalyst and the 

reactants, therefore accounting for the lack of catalytic activity of this gold-carbon 
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hybrid. This result highlights the convenience of the GNP decoration chemical route 

described here for the efficient application of CF in catalysis. 

 

 

4. Conclusions 

 

Gold-carbon hybrids can efficiently be used for the catalysis of the hydroamination 

reaction of phenylacetylene with aniline. Our results clearly indicate that the carbon 

support structure, composition, dispersibility, and porosity greatly affect the GNP 

decoration process and the resulting GNP size and, therefore, the catalytic performance 

of the gold-carbon hybrids. The best gold-carbon hybrid catalyst performance in terms 

of conversion values and low carbon support content has been achieved when using GO 

as well as supports that combine high BET surface areas, well-developed mesoporosity, 

and good dispersibility in water during the GNP decoration process (CB, SWCNT, 

MWCNT, and ND). However, remarkable catalyst performance can be eventually 

achieved for all tested carbon supports when suitably adjusting the gold:carbon support 

w/w ratios. We believe that improved catalyst performance may be achieved by further 

optimizing the GNP deposition process as well as the gold loading for the reaction 

volume used, which in turn are key issues toward commercial applications for these 

gold-carbon catalysts. Future work on the way to the practical use of these hybrids will 

be focused in exploring the catalysis of other organic reactions, as well as in enhancing 

the catalysis performance in terms of conversion and catalyst cyclability and lifetime 

through further tailoring the GNP size and the carbon support (for example, by means of 

support- [19,22,39,40,53-58] and GNP [16] functionalization) to prevent GNP leaching 

and the observed GNP agglomeration. 
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Table 1 

Elemental composition of the tested carbon supports. 

Material O % C % H % N % S % 

SWCNT 1.4 76.4 0.4 0.2 0.0 

MWCNT 0.2 99.2 0.0 0.1 0.0 

GO 44.9 44.6 2.5 0.2 0.6 

CF 2.1 96.3 0.7 0.1 0.0 

GC 0.1 99.3 0.4 0.7 0.0 

CB 0.2 98.6 0.0 0.2 0.0 

G 0.6 96.9 0.0 0.1 0.0 

CX 2.5 92.6 1.3 0.2 0.0 

ND 9.6 83.7 0.7 2.6 0.0 

AC 5.9 87.9 0.8 0.2 0.0 

OMC 7.7 82.6 2.1 0.2 0.0 
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Table 2  

Textural properties of the tested carbon supports. 

Carbon 

support 

BET surface 

area
a
 (m

2
/g) 

Mesopore 

area
b
 (m

2
/g) 

Mesopore 

volume
c
 

(cm
3
/g) 

Micropore 

area
d
 (m

2
/g) 

Micropore 

volume
e
 

(cm
3
/g) 

SWCNT 298 284 0.975 - - 

MWCNT 171 220 0.897 - - 

GO 169 11 0.008 161 0.094 

CF 63 64 0.168 - - 

GC 26 26 0.069 - - 

CB 204 125 0.329 38 0.015 

G 8 11 0.039 - - 

CX 515 261 1.461 260 0.140 

ND 341 437 1.031 - - 

AC 754 94 0.082 703 0.412 

OMC 912 602 0.472 863 0.525 

 
a
 Surface area of the carbon supports measured by the BET method, between 0.05 and 

0.3 P/P0. 
b
 BJH desorption cumulative area of pores between 1.7 and 300 nm. 

c
 BJH desorption cumulative volume of pores between 1.7 and 300 nm. 

d
 Micropore area measured by t-Plot method. 

e
 Micropore volume measured by t-Plot method. 
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Table 3 

Composition, average Au fcc crystallite size and conversion of the gold-carbon hybrids 

that provided the best catalytic performance for each carbon support used. 

Carbon 

support 

Gold-carbon 

hybrid 

composition 

Gold 

loading  

(wt. %) 

Average 

crystallite size 

(nm) 

Conversion 

(%) 

TON 

SWCNT 1:2 28 9.2 74 35 

MWCNT 1:2 34 11.7 74 29 

GO 1:1 49 12.4 76 31 

CF 1:4 21 6.7 68 26 

GC 1:16 6 14.8 69 29 

CB 1:2 33 5.4 79 32 

G 1:32 3 14.1 69 27 

CX 1:2 34 14.7 61 24 

ND 1:2 33 5.7 69 28 

AC 1:4 19 27.8 55 23 

OMC 1:4 19 16.9 56 24 
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Figure Captions 

 

Fig. 1. TEM images of SWCNT (a), GC (b), G (c) and GO (d) decorated with GNP.  

 

Fig. 2. TEM micrographs of CN (a), CB (b), CF (c), OMC (d), CX (e) and AC (f) 

decorated with GNP.  

 

Fig. 3. Conversion values achieved using gold-carbon hybrids at different gold:carbon 

support w/w ratios.  

 

Fig. 3. Conversion values achieved using gold-carbon hybrids at different gold:carbon 

support w/w ratios (black and white version of Fig. 3). 

 

Fig. 4. Mass balance for each tested synthesized gold-carbon hybrid after performing 

the targeted catalytic reaction. 

 

Fig. 5. Kinetics of the studied catalytic reaction when using Au-CB (solid line) and Au-

SWCNT (dotted line) 1:2 hybrids. 

 

Fig. 6. TEM micrographs of Au-SWCNT hybrid after reaction showing large GNP 

agglomeration. 

 

Fig. 7. TEM micrograph of gold/carbon foams produced by laser ablation of 

[AuCl(PPh3)]. 
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Fig. 1. TEM images of SWCNT (a), GC (b), G (c) and GO (d) decorated with GNP.  
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Fig. 2. TEM micrographs of CN (a), CB (b), CF (c), OMC (d), CX (e) and AC (f) 

supports decorated with GNP. 
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Fig. 3. Conversion values achieved using gold-carbon hybrids at different gold:carbon 

support w/w ratios.  
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Fig. 3. Conversion values achieved using gold-carbon hybrids at different gold:carbon 

support w/w ratios (black and white version of Fig. 3). 
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Fig. 4. Mass balance for each tested synthesized gold-carbon hybrid after performing 

the targeted catalytic reaction. 
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Fig. 5. Kinetics of the studied catalytic reaction when using Au-CB (solid line) and Au-

SWCNT (dotted line) 1:2 hybrids. 
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Fig. 6. TEM micrographs of Au-SWCNT hybrid after reaction showing large GNP 

agglomeration. 
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Fig. 7. TEM micrograph of gold/carbon foams produced by laser ablation of 

[AuCl(PPh3)]. 

 

 

 


