

Reactive Oxygen/Nitrogen Species and Antioxidants in Legume Nodules

Manuel Becana

Estación Experimental de Aula Dei Consejo Superior de Investigaciones Científicas Zaragoza (Spain)

Abbreviations: APX, ascorbate peroxidase; CAT, catalase; γ ECS, γ -glutamylcysteine synthetase; DR, dehydroascorbate reductase; GR, glutathione reductase; (h)GSHS, (homo)glutathione synthetase; MR, monodehydroascorbate reductase; PRX, peroxiredoxin; SOD, superoxide dismutase

ROS metabolism in nodules

complex interaction (and balance) of ROS and antioxidants among cell compartments

RNS metabolism in nodules

nitric oxide metabolism and transport are poorly known

Metabolic pathway or enzyme class	Protein	Gene ID (TC/Mt3.5)	Leaf	Petiole	Stem	Veg Bud	Flower	Pod	Root	Nodule	Root O	Nod 4	Nod 10	Nod 14	Nod 16 [*]
Ascorbate	GMP	Mt3.5Chr3.3805													
biosynthesis	GalLDH	Mt3.5.1Chr4.4628													
Thiol biosynthesis	γECS	Mt3.5.1Chr5.526c													
	GSHS	Mt3.5.1Chr7.6630													
	hGSHS	Mt3.5.1Chr7.6629			(
Peroxide detoxification Superoxide detoxification	Арх	Mt3.5Chr3.5209													
	Арх	Mt3.5Chr3.6657			1				1.00						
	Арх	Mt3.5.1Chr4.3262													
	Apx	Mt3.5.1Chr4.4085													
	Apx	Mt3.5.1Chr5.334		_											
	Apx	Mt3.5.1Chr8.4124		_									_		
	DR	TC142960											_		
	DR	TC160649		_	_										_
	MR	10148060				_						_			_
	MR	TC144388						_			_				
	GR	TC160208													
	Catalasa	TC150098													
	CuiznSOD	Mt3 5 1Chr4 3020						_						1	
	CijZnSOD	Mt3.5.1Chr7.6665		-											
	CuZnSOD	Mt3.5.1Cbr6.1025b				1									
	MnSOD	TC144459													
	FeSOD	TC148846													
	FeSOD	TC148518			à						1	1			
	Gpx	Mt3.5.1Chr1.724													
Thiol peroxidases	Gpx	Mt3.5.1Chr8.4849													
	Gpx	Mt3.5.1Chr8.4850													
	Gpx	Mt3.5.1Chr8.5356													
	Gpx	Mt3.5.1Chr1.3012	1												
	2C-Prx	AC146630.25.2a													
	2C-Prx	Mt3.5.1Chr1.5087									-				
	PrxQ	Mt3.5.1Chr4.7318												1 ·····	
Protein disulfide reductases	Trx/Grx	Mt3.5.1Chr1.2406													
	Trx/Grx	Mt3.5.1Chr1.4644											1		
	Trx/Grx	Mt3.5.1Chr1.5411												1	
	Trx/Grx	Mt3.5Chr3.5347									1				
	Trx/Grx	Mt3.5Chr3.6854				-			1						
	Trx/Grx	Mt3.5.1Chr4.3507													
	Trx/Grx	Mt3.5.1Chr4.4715a			(a										
	Trx/Grx	Mt3.5.1Chr4.749													
	Trx/Grx	Mt3.5.1Chr5.1359a													
	Trx/Grx	Mt3.5.1Chr5.1991									_				
	Trx/Grx	Mt3.5.1Chr5.3294				_					_				
	Trx/Grx	Mt3.5.1Chr7.4100													
	Try/Gry	Mt3.5.1Chr7.5195													
	Try/Gry	Mt3 5 1Cbr7 5472b													
	Trx/Grx	Mt3.5.1Chr7.6129													-
	Trx/Grx	Mt3.5.1Chr7.770e													
	Trx/Grx	Mt3.5.1Chr8.3560													
	GST	Mt3.5.1Chr1.5511									(
	GST	Mt3.5.1Chr2.4037													
Glutathione S- transferases	GST	Mt3.5.1Chr4.4924													
	GST	Mt3.5.1Chr5.3239													
	GST	Mt3.5.1Chr5.3544													
	GST	Mt3.5.1Chr5.6793										1.00			1.00
	GST	Mt3.5.1Chr5.8195													
	GST	Mt3.5.1Chr7.3104											1		
	GST	Mt3.5.1Chr7.3107	1	1	1										
	GST	Mt3.5.1Chr7.3108				1									
	GST	Mt3.5.1Chr7.3141						1							
	GST	Mt3.5.1Chr7.3144						1							
	GST	Mt3.5.1Chr7.3145													
	GST	Mt3.5.1Chr7.3147													
	GST	Mt3.5.1Chr7.3149													
	651	IVIT3.5.1UNF/.3155													
	651	WIT3.5.1UNF/.5/5/		_											
	G01	Mt3 5 10 hr9 4954													
	G01	Mt3 5 10 hr9 4953													
	631 MT	Mt3 5 10hr4 4004													
Metal homeostasis and detoxification	MT	Mt3.5.1Chr8.2470													
	NAS	Mt3.5.1Chr1.3615													
	NAS	Mt3.5.1Chr2.2244													

Four aspects of ROS/RNS metabolism in nodules

- Superoxide dismutases: ROS metabolism
- Thiols (glutathione and homoglutathione synthesis): ROS/RNS metabolism
- Nitrosoglutathione reductase: RNS metabolism
- Nonsymbiotic and truncated hemoglobins: ROS/RNS interaction/metabolism

Superoxide dismutases in nodules

different isoforms are present in each cellular compartment

Cytosolic CuZnSOD: *in situ* RNA localization in indeterminate nodules

expression is mainly localized in zones I + II

Cytosolic CuZnSOD: immunolocalization of the protein in *Sesbania* nodules

the 'cytosolic' enzyme is present in the nucleus in addition to the cytosol of stem nodules

Mitochondrial MnSOD: *in situ* RNA localization in indeterminate nodules

expression is mainly localized in the infected zone

Mitochondrial MnSOD: localization of promoter activity in *Lotus japonicus*

promoter activity can be detected in vascular bundles

MnSOD and FeSOD: immunolocalization of the proteins in *Sesbania* nodules

MnSOD is present in the mitochondria of vascular bundle cells and FeSOD in the chloroplasts of stem nodules and in nuclei of stem and root nodules

MnSOD

Superoxide production in Sesbania nodules

this ROS is mainly produced in the vascular bundles in the cortex of stem and root nodules

Four aspects of ROS/RNS metabolism in nodules

- Superoxide dismutases: ROS metabolism
- Thiols (glutathione and homoglutathione synthesis): ROS/RNS metabolism
- Nitrosoglutathione reductase: RNS metabolism
- Nonsymbiotic and truncated hemoglobins: ROS/RNS interaction/metabolism

Thiol compounds

GSH is widespread in organisms but hGSH is exclusive of legumes

Thiol biosynthesis

GSH and hGSH synthesis involves two sequential ATP-dependent reactions

γECS: γ-glutamylcysteine synthetase (h)GSHS: (homo)glutathione synthetases

Localization of thiol biosynthesis

γECS is localized exclusively in the plastids of nodules and in the chloroplasts of leaves and stem nodules (Sesbania rostrata)

Localization of thiol biosynthesis

GSHS and hGSHS are localized in both the plastids and cytosol in roots, nodules and leaves

Thiol metabolism in nodules

- the enzymes γECS and (h)GSHS are present in the plastids and/or cytosol
- (h)GSH synthesis in the cytosol requires export of γ EC from plastids; this has regulatory implications
- bacteroids have their own γECS and GSHS, which have poor homology with the plant enzymes

Thiol metabolism

expression of the *GSHS* gene, but not of the *hGSHS* gene, is induced by indole-3-acetic acid (IAA), cytokinins (CK), and polyamines (PA), suggesting different functions for the corresponding enzymes (GSHS and hGSHS) and thiols (GSH and hGSH)

Exposure time (h)

Four aspects of ROS/RNS metabolism in nodules

- Superoxide dismutases: ROS metabolism
- Thiols (glutathione and homoglutathione synthesis): ROS/RNS metabolism
- Nitrosoglutathione reductase: RNS metabolism
- Nonsymbiotic and truncated hemoglobins: ROS/RNS interaction/metabolism

Nitrosoglutathione (GSNO) and nitrosoglutathione reductase (GSNOR)

- GSNO is not just a NO reservoir or a form for NO transport. In animals, GSNO participates in the post-translational modification of proteins by nitrosylation
- In plants, GSNO is involved in abiotic and biotic stress responses.

- **GSNOR** belongs to the alcohol dehydrogenase family of enzymes and has a dual function: GSNO catabolyzing activity (**GSNOR**) and GSH-dependent formaldehyde dehydrogenase activity (**FDH**)
- In animals, and presumably also in plants, GSNOR activity catalyzes the reduction of GSNO by NADH producing GSSG and NH₂OH and regulates NO levels
- In plants, GSNOR is involved in abiotic and biotic stress (such as heavy metals, wounding, and pathogen attack) and in response to stress-related compounds (jasmonic and salicylic acids). In leaves, GSNOR has been localized in the chollenchyma cells

Alcohol dehydrogenase/GSNOR gene family of Lotus japonicus

at least five genes have been identified in this model legume; one of them, which we have designated as *LjADH4*, is orthologous to the *Arabidopsis GSNOR*

Alcohol dehydrogenase/GSNOR enzyme family: phylogenetic analysis of higher plant proteins

predicted proteins group in three clusters: one includes typical ADHs, one includes GSNOR enzymes, and one has intermediate sequence homologies and has unknown enzyme activities

LjADH/GSNOR genes: differential expression in plant tissues

LjGSNOR (and other genes of the alcohol dehydrogenase family) is expressed in all plant organs, including nodules, although at lower levels than in leaves

Four aspects of ROS/RNS metabolism in nodules

- Superoxide dismutases: ROS metabolism
- Thiols (glutathione and homoglutathione synthesis): ROS/RNS metabolism
- Nitrosoglutathione reductase: RNS metabolism
- Nonsymbiotic and truncated hemoglobins: ROS/RNS interaction/metabolism

Plant hemoglobins

- three types: symbiotic (leghemoglobins and some hemoglobins from actinorhizal plants), nonsymbiotic, and truncated
- nonsymbiotic are further divided into class 1 and class 2, based on amino acid sequences and biochemical properties

(A) Classical "3-on-3" structure of leghemoglobins and nonsymbiotic hemoglobins
(B) "2-on-2" structure of truncated hemoglobins
[Hoy & Hargrove (2008) Plant Physiol Biochem 46: 371-379]

Nonsymbiotic and truncated hemoglobins of *Lotus japonicus*

- five hemoglobin genes, encoding two class 1 (GLB1), one class 2 (GLB2), and two truncated (GLB3) proteins
- all genes have four exons and three introns, organized similarly to the *GLB1*, *GLB2*, and *GLB3* genes of *Arabidopsis*, respectively

Phylogenetic analysis of GLB proteins of higher plants

- three clusters corresponding to the three types of hemoglobins
- GLB2s are closely related to leghemoglobins

Hemoglobins of *Lotus japonicus*: differential expression in plant tissues

- one gene of each hemoglobin type (*LjGLB1-1*, *LjGLB2*, and *LjGLB3-1*) is highly expressed in nodules
- LjGLB1-2 is expressed almost exclusively in leaves and nodules, whereas LjGLB3-2 in uniformly expressed in all plant organs

Hemoglobin genes of *Lotus japonicus*: effects of nitric oxide and abiotic stress

- *LjGLB1-1* was the only gene responsive to NO (using SNAP and SNP as NO donors)
- LjGLB1-1 was also induced by hypoxia and sucrose, whereas LjGLB3-1 was induced by low temperatures

Hemoglobins of *Lotus japonicus*: differential expression in response to hormones

- abscisic acid (ABA), 1-aminocyclopropane-1-carboxylic acid (ACC), and polyamines (PA) induce *LjGLB1-1* expression
- cytokinins (CK) suppress *LjGLB2* and *LjGLB3-1* expression

Hemoglobins of Lotus japonicus: in situ localization of mRNAs

LjGLB1-1 and LjGLB1-2 mRNAs are localized in the infected zone, vascular bundles, and inner cortex
 LjGLB2 and LjGLB3-2 are preferentially expressed in the mid/inner cortex and vascular bundles

Nonsymbiotic hemoglobin LjGLB2: promoter activity localization

- in roots, the LjGLB2 promoter is active in the tips and vacular bundles
- in young nodules, the promoter is more active in the cortex, infected zone (especially in the periphery) and vascular bundles; however, as nodules age, staining can be seen only in the vascular bundles

Truncated hemoglobins *LjGLB3-1* and *LjGLB3-2*: promoter activity localization

- in roots, the two promoters are active in the tips and vascular tissue
- in young nodules, the *LjGLB3-1* promoter is active in the cortex, infected zone, and vascular bundles; as nodules age, staining can be only seen in the mid/inner cortex and vascular bundles
- in nodules, *LjGLB3-2* promoter activity is seen in the mid-cortex and vascular bundles

Conclusions and prospects

 Superoxide dismutases and hemoglobins are highly expressed in vascular bundle cells, which may be explained by the high metabolic activity of these cells associated with metabolite transport

 GSH and hGSH are synthesized in the plastids and cytosol of nodules, but γEC needs to be exported from the plastids. The GSHS and hGSHS genes are differentially regulated in response to NO or hormones, suggesting different functions for the two thiols. Localization of promoter activities will be determined

 GSNOR (LjADH4) is expressed at significant levels in nodules and a novel ADH (LjADH5), with pehaps intermediate properties between ADH and GSNOR, has been identified. Recombinant proteins are being prepared for biochemical characterization

Hemoglobins GLB1-1, GLB2 and GLB3-1 are highly expressed in nodules and may be essential for symbiosis. GLB1-1 may be involved in NO metabolism (as occurs for the GLB1s of monocots), whereas GLB2 and GLB3-1 may play roles related to nodule development. Recombinant proteins and RNAi lines are being prepared for molecular and biochemical characterization

Acknowledgments

Martin Crespi

Institut des Sciences du Végétal, CNRS Gif-sur-Yvette, France

David Dalton

Reed College Portland, OR, USA

Euan James

Scottish Crop Research Institute Dundee, UK

Michael Udvardi

Samuel Roberts Noble Foundation Ardmore, OK, USA

Shusei Sato Satoshi Tabata

Kazusa DNA Research Institute Kazusa, Japan

Pilar Bustos-Sanmamed Maria C. Rubio Maria R. Clemente Alejandro Tovar-Méndez Martha Sainz Javier Ramos Carmen Pérez-Rontomé

Estación Experimental de Aula Dei, CSIC Zaragoza, Spain

