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ABSTRACT

In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice

is provided. To this end, the similarity of middle-tropospheric variables—which are important for the de-

velopment of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily

time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the two-

sample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the

similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most

important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow

a mixed distribution. By providing global similarity maps for each variable under study, regions where

reanalysis data should not assumed to be ‘‘perfect’’ are detected. In contrast to the geopotential and

temperature, significant distributional dissimilarities for specific humidity are found in almost every region

of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order

moments. However, when considering standardized anomalies, distributional and serial dissimilarities are

negligible over most extratropical land areas. Since transformed reanalysis data are not appropriate for regional

climate models—in opposition to statistical approaches—their results are expected to be more sensitive to

reanalysis choice.

1. Introduction

With over 8200 and 1900 citations respectively, the first

National Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) re-

analysis (Kalnay et al. 1996) and the 40-yr European

Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA-40; Uppala et al. 2005) are the most

widely used datasets in modern atmospheric sciences.

They have been extensively used in the development

of both dynamical and statistical downscaling schemes

to either provide the lateral boundary conditions for

driving regional climate models (RCMs; e.g., Herrera

et al. 2010; Zahn and von Storch 2010) or to calibrate

and test statistical transfer functions (Wilby and Wigley

1997; Hanssen-Bauer et al. 2005; Fowler et al. 2007;

Maraun et al. 2010 and references therein).

Although it is well known that reanalysis data suffer

from inhomogeneities as well as distributional and serial

dissimilarities (Kistler et al. 2001; Trenberth et al. 2001;

Bengtsson et al. 2004; Sterl 2004; Trenberth and Smith

2005; Trenberth et al. 2005, 2007; Chen et al. 2008a,b;

Pitman and Perkins 2009; Screen and Simmonds 2011;

Trenberth et al. 2011), which are especially frequent in

regions where the observational network is sparse, they

are interchangeably used and implicitly assumed to be

‘‘perfect’’ in downscaling studies (Jones et al. 2011). This

is a subject of some concern, as the results of both dy-

namical and statistical downscaling approaches have

been shown to be sensitive to the choice of the reanalysis

data used for their development (Fernández et al. 2007;

Koukidis and Berg 2009; Eum et al. 2011).

In this study, we provide a worldwide overview on the

expected sensitivity of downscaling studies to reanalysis

choice. To this end, we test the similarity of 1) the
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distributions and 2) the day-to-day sequences of middle-

tropospheric circulation, temperature, and humidity

variables from ERA-40 and NCEP–NCAR reanalysis

data on a daily time scale. Although these variables play

a central role in the development of both dynamical and

statistical downscaling schemes (Buishand et al. 2004;

Abaurrea and Asin 2005; Cavazos and Hewitson 2005;

Sauter and Venema 2011) to the best of authors’ knowl-

edge, a global survey on their degree of agreement is still

missing. We focus on the NCEP–NCAR and ERA-40

reanalyses because, in contrast to more recent reanalysis

products (Saha et al. 2010; Dee et al. 2011; Ebita et al.

2011; Rienecker et al. 2011), they have been extensively

used by the downscaling community and hence are more

relevant within the context of our study.

For assessing distributional similarity, two alternative

scores are applied: the two-sample Kolmogorov–Smirnov

statistic (KS statistic), defined as the maximum distance

between two empirical cumulative distribution functions,

and the probability density function (PDF) score (Perkins

et al. 2007), to estimate the overlapping probability den-

sity area for both series. After detecting which of these

scores is preferable for this kind of study, we provide

global maps of distributional similarity for both boreal

winter (December–February, DJF) and summer (June–

August, JJA) and each of the above-mentioned variables.

For assessing the correspondence of the day-to-day se-

quences, global maps of the Pearson correlation coeffi-

cient are also shown. These maps should be of general

interest to the downscaling community, since they de-

tect those regions of the world where—for a given vari-

able of interest—reanalysis data should not assumed to be

‘‘perfect.’’

Whereas in dynamical approaches the raw reanalysis

data have to be applied in order to maintain the internal

consistency between different variables used to define

the lateral boundary conditions (Laprise 2008), statisti-

cal downscaling techniques are able to work with data

transformations that potentially correct distributional

dissimilarities. Hence, we additionally calculate distri-

butional differences for the anomalies (zero mean) and

standardized anomalies (zero mean and unit variance) of

the original time series and we map those geographical

areas where data transformation is recommended as a

precursor step of statistical downscaling approaches.

In addition to showing where downscaling studies are

expected to be sensitive to the underlying reanalysis

data, the agreement of two distinct reanalyses indicates

that they are more constrained by assimilated observa-

tions than by internal model variability and thus can

reasonably assumed to reflect reality (Sterl 2004). On the

contrary, in case of considerable inconsistencies, at least

one of the reanalyses is dominated by internal model

variability rather than the observations and hence cannot

be assumed to reflect reality. There also exists the possi-

bility of both reanalyses being wrong in spite of perfect

agreement between them. The probability of such a

consistent error is especially high if observations prone

to considerable measurement errors are assimilated in

both reanalyses, as is the case for moisture data from

operational radiosondes (Elliott and Gaffen 1991; Ross

and Elliott 2001; Wang et al. 2003). However, reliable

global observational datasets for middle-tropospheric

variables on daily time scale are not available yet. Thus,

even if both reanalyses were mistaken, this could not

be verified for these variables. On the basis of these

considerations, the disagreement between the two re-

analysis datasets is an appropriate first estimator of ob-

servational uncertainty.

2. Data

Reanalysis similarity is tested for the 0000 UTC time

series of temperature T, geopotential Z, and specific

humidity Q at 500 and 850 hPa (e.g., Z500), for both

boreal winter (DJF) and summer (JJA). The 21-yr pe-

riod from 1980 to 2000 is chosen to include satellite data,

which considerably improve the quality of the reanalysis

products from 1980 onward Sterl (2004).

The ERA-40 data have been downloaded from the

ECMWF data server (http://data-portal.ecmwf.int/data/

d/era40_daily) and the NCEP–NCAR reanalysis data

have also been obtained online (http://www.esrl.noaa.

gov/psd/thredds/dodsC/Datasets/ncep.reanalysis). Both

datasets come on an identical regular grid of 2.58, which

is convenient for the present comparison. Note that

these publicly available data are the products of internal

interpolation processes, which are known to introduce

additional errors. Hence, it is advisable to use the native

resolution (1.1258 for ERA-40 and 1.8758 for NCEP–

NCAR) to fully analyze a particular reanalysis.

While the satellite data assimilated in NCEP–NCAR

consisted of temperature retrievals only (Kalnay et al.

1996), additional moisture-related retrievals were used

in ERA-40 (see Uppala et al. 2005, p. 2965, for more

details). Hence, inconsistencies in Q are expected to be

larger than in Z and T, especially over the ocean areas

and ice sheets, where the radiosonde station coverage is

sparse.

3. Methods

At each grid box, the agreement between both re-

analyses is assessed in terms of 1) distributional similarity

and 2) correspondence of the day-to-day sequences

(hereafter also referred to as serial similarity). For the first
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condition, the probability distributions are compared,

which accounts for differences in both the mean (bias)

and in higher-order moments. To this end, we compare

two competing scores: the statistic of the classical two-

sample KS statistic (see, e.g., Wilks 2006) and the re-

cently suggested PDF score (Perkins et al. 2007), which

has been frequently used for assessing distributional simi-

larity (Maxino et al. 2008; Pitman and Perkins 2009; Mao

et al. 2010; Brands et al. 2011a,b; Kjellstrom et al. 2010).

The PDF scores and KS statistics are calculated

separately for each season (winter and summer), con-

sidering the corresponding daily time series. Moreover,

in order to isolate distributional dissimilarities due to

errors in the first- and second-order moments, we also

consider anomalies and standardized anomalies. In

the first case, we remove the seasonal mean, whereas in

the second case we additionally divide by the seasonal

standard deviation.

As in Pitman and Perkins (2009), the PDF score is

used as a metric of agreement between the PDFs of the

two reanalysis datasets. Probability densities for both

the NCEP–NCAR ( f) and ERA-40 (g) time series are

estimated at N equally spaced bins m1, . . . , mN spanning

the range of the joined sample (in this work we consider

N 5 64). For this purpose, we apply kernel density

smoothing with Gaussian kernels, a nonparametric tech-

nique for fitting a theoretical distribution to an empirical

dataset [see Perkins et al. (2007) for details on the par-

ticular Matlab implementation]. Thereafter, the densities

are normalized by their sum, and the minimum bin values

are aggregated as follows:

PDF-score 5 �
N

i51

minff (mi), g(mi)g. (1)

Thus, the PDF score has an intuitive interpretation as

the common overlapping probability density, yielding

one for identical distributions and zero for completely

disjoint ones.

The KS test is a nonparametric statistical hypothesis

test for checking the null hypothesis (H0) that two can-

didate datasets come from the same underlying theo-

retical distribution. It is defined by the statistic

KS-statistic 5 max
2n

i51
jF(zi) 2 G(zi)j, (2)

where n is the length of the time series (ranging from

1896 to 1932 days for the DJF and JJA seasons, respec-

tively); F and G are the empirical cumulative frequencies

of the NCEP–NCAR and ERA-40 time series, respec-

tively; and zi denotes the ith data value of the sorted

joined sample. This statistic is also bounded between

zero and one, but, in contrast to the PDF score, the dis-

tributional similarity is indicated by low values.

An advantage of the KS statistic is that its theoretical

distribution is known a priori. Consequently, p values for

hypothesis testing (H0: both the ERA-40 and NCEP–

NCAR time series come from the same underlying dis-

tribution) can be directly estimated (Wilks 2006). For the

PDF score, however, no theoretical distribution is avail-

able and computationally costly Monte-Carlo methods

cannot be circumvented if a statistical inference is to be

made (Brands et al. 2011a).

Note that the daily time series used in this study are

serially correlated; that is, the number of independent

data points in a given time series (the effective sample

size n*) is much lower than the sample size n. Hence, the

KS test’s assumption of independent data points does

not hold and artificially low p values for the KS statistic

are obtained, leading to too many type-1 errors (i.e.,

rejections of the H0 of equal distributions when it is

actually true). Thus, the effective sample size n* is cal-

culated separately for each NCEP–NCAR and ERA-40

time series before calculating the p value of the KS

statistic, assuming that the underlying data follow a first-

order autoregressive process (Wilks 2006):

n* 5 n
1 2 p1

1 1 p1

, (3)

where n* is the effective sample size and p1 is the lag-1

autocorrelation coefficient.

In addition to these distribution-oriented scores, the

correspondence of the day-to-day sequences is estimated

with the Pearson correlation coefficient. Note that both

types of differences are important from a downscaling

point of view, since they affect the distributional and se-

rial characteristics of the regionalized time series (Charles

et al. 2007; Brands et al. 2011b).

4. Results

a. Comparison of KS statistic versus PDF score

To understand which distributional similarity metric

is preferable for the present study, we first point out that

Q values in the NCEP–NCAR dataset cluster at near-

zero values at many grid boxes, which leads to a mixed

(discrete–continuous) character for this variable. This is

shown in the top and center panels of Fig. 1 for Q500 in

DJF and JJA, respectively. These panels map the rela-

tive empirical frequency (in percent) of the first of 1000

equally spaced bins and thus illustrate where and to which

degree the values for Q cluster near zero. With percent-

ages over 50%, the clustering primarily occurs over

Antarctica and Greenland, but as well is relevant over
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the eastern tropical Pacific and the Tibetan Plateau

during DJF and over the northeastern Sahara, southern

Africa, and the Indian Ocean during JJA. As an illus-

trative example of this clustering phenomenon, the

bottom panel in Fig. 1 shows the histograms [consid-

ering 64 bins, as in Eq. (1)] and empirical cumulative

distribution functions (CDFs) for a grid box on the East

Antarctic Ice Sheet (EAIS) (758S, 758E).

Obviously, the clustering of near-zero values for Q in

NCEP–NCAR leads to a mixed, precipitation-like dis-

tribution (note the scale jump along the ordinate of the

histogram in Fig. 1). This poses important limitations on

the calculation of the PDF score, since the kernel den-

sity smoothing applied in (1) has been found to be in-

appropriate in this case. In this context, we have found

that the calculation of the PDF score may lead to in-

accurate results if the percentage of near-zero values

exceeds a threshold of 5% (as was the case in the pre-

vious example). In those cases, the mixed character of

the sample poses numerical problems on the kernel

density estimation. In turn, because of its empirical

nature, the KS statistic is not affected by this problem and

thus is the preferred score when generating global maps

of distributional similarities between both reanalyses.

Apart from the above-mentioned problem, our results

are generally insensitive to the applied score, with a clear

linear relationship between PDF score and KS statistic.

This is illustrated in Figs. 2a and 2b, which shows the

KS statistics against the PDF scores for Z500 and Q500.

In the case of Q500 (see Fig. 2b), those markers departing

from the linear relationship (see, e.g., point labeled as 3)

correspond to grid boxes where differences between both

reanalysis datasets are not in the mean but in higher-

order moments (see Figs. 2e and 2h). Two further ex-

amples are given for the case of optimal distributional

similarity (labeled as 1 and shown in Figs. 2c and 2f) and

dissimilarity due to differences in the mean (labeled as 2

and shown in Figs. 2d and 2g).

b. Maps of distributional similarity

Figure 3 maps the distributional similarity between

NCEP–NCAR and ERA-40 in terms of the KS statistic

for the different variables (columns), seasons (rows),

and levels (top and bottom panels). The color darkening

from yellow to black denotes increasing values for the

KS statistic, (i.e., increasing discrepancies in the cor-

responding distributions). Note that the KS statistic is

displayed only in case the distributional dissimilarities

are significant at a test level of 5%. Otherwise, the

corresponding grid box is whitened, indicating optimal

distributional consistency. Results are presented for

both the original and anomaly data in DJF and JJA (in

different rows in Fig. 3).

The distributional similarity is generally highest for Z,

followed by T and then Q. At 500 hPa (see Fig. 3, top),

the corresponding spatial patterns can be grouped into

two classes: T and Z on the one hand and Q on the other.

For Z500, significant distributional dissimilarities are

concentrated on the tropical oceans and adjacent land

areas like eastern tropical Africa and the Andes, and are

of considerable magnitude as measured by the KS sta-

tistic. In JJA they additionally cover the Amazon Basin,

the eastern Sahel, India, and the Malay Archipelago,

while in DJF significant dissimilarities arise over the

Subantarctic Belt.

The distributional difference pattern of T500 is similar

to that of Z500, but more extensive. In general, more

land areas are affected by significant dissimilarities, which

is especially evident over the EAIS in DJF. Note that in

many regions (e.g. the eastern tropical Pacific, the western

tropical to subtropical North Atlantic, and the Amundsen

Sea) results are sensitive to seasonality.

Distributional agreement for Q500 is considerably

weaker than for Z500 and T500, and exhibits distinct

FIG. 1. Percentage of near-zero Q500 values in the NCEP–NCAR

data mapped at each grid box for (top) DJF and (middle) JJA. (bot-

tom) The absolute frequencies for a particular illustrative grid box

(758S, 758E) for DJF. The inset of the histogram shows the empirical

CDFs, as well as the resulting KS statistic and its corresponding p value.

Fig(s). 1 live 4/C
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spatial patterns. With a few exceptions in central to east-

ern Europe and North America, areas of optimal distri-

butional similarity for both seasons are virtually absent.

The lowest consistency is found over Greenland, the

tropics, and Antarctica, while the seasonal variations of

the results are most pronounced for the Northern Hemi-

sphere midlatitudes.

In contrast to the results obtained at 500 hPa, the dis-

tributional difference patterns at 850 hPa (see Fig. 3, bot-

tom) are more similar for T and Q than for Z and T. For

Z850, as compared with Z500, considerable distributional

dissimilarities are found over the EAIS and Tibet in both

DJF and JJA, and over Greenland, the Arabian Peninsula,

and the Rocky Mountains in JJA. Except for Patagonia,

any region in South America is affected by large dissimi-

larities in at least one season of the year. The entire African

continent is covered by marked inconsistencies, with the

exception of northern (southern) Africa in DJF (JJA).

For T850, as compared with T500, distributional differ-

ences generally increase over the oceans (with the

FIG. 2. (a),(b) PDF score vs KS statistic for all grid boxes, except for those where the PDF score could not be

calculated (see text for details); grid boxes along 08 and 508N, 758S are colored. (c)–(h) PDFs and associated PDF

scores, as well as CDFs and their associated KS statistics/p values for the grid boxes labeled ‘1’–‘3’ in (b). All results

are for the original DJF data.

Fig(s). 2 live 4/C
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FIG. 3. Maps of distributional similarity for the daily time series of ERA-40 and NCEP–NCAR Z, T, and Q at (top) 500 and (bottom)

850 hPa, as revealed by the KS statistic. Color darkening from yellow to black indicates increasing dissimilarity. If the H0 values of equal

distributions cannot be rejected at a test level of 5%, the grid box is whitened and the distributional similarity is assumed to be optimal.

Results are presented for both the original and anomaly data.

Fig(s). 3 live 4/C
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exception of the Arctic Ocean), over Greenland, the

Antarctic, central Asia, and the Rocky Mountains. For

Q850, as compared with Q500, distributional differ-

ences are higher in the tropics, but slightly lower in the

Southern Hemisphere midlatitudes. A large area of

optimal distributional similarity is found over western

Eurasia in DJF, as well as over the Arctic (except

Greenland) and northern Siberia in JJA.

For Z500, Z850, and T500, the distributional differ-

ences are almost exclusively in the mean; that is, they

can be corrected by using anomaly time series. This is

evident by comparing the KS statistics calculated upon

the anomalies with those calculated upon the original

data (see Fig. 3).

For T850, distributional differences are limited to the

first- and second-order moments. After correcting the

mean, significant distributional dissimilarities remain

over the tropics and Southern Hemisphere (see Fig. 3,

anomalies). However, they completely disappear if both

the mean and variance are corrected (i.e., standardized

anomalies are compared; not shown).

In contrast to Z and T, large areas of significant dis-

tributional differences remain for the anomaly data of Q

(see Fig. 3, anomalies), which means that for this vari-

able errors are in higher-order moments rather than in

the mean. If standardized anomalies are compared (see

Fig. 4, standardized), the distributional similarity for

Q850 is optimal over virtually all land areas except Tibet,

Greenland, and the EAIS, as well as over most ocean areas

of in the extratropical Northern Hemisphere and in the

Southern Hemisphere subtropics. For the standardized

anomalies of Q500, however, significant distributional

dissimilarities persist over a large part of the oceans,

the ice sheets, South America, and southern Africa in

at least one season of the year, indicating the presence

of distributional differences associated with skewness

and/or kurtosis.

Note that similar spatial patterns of distributional dif-

ferences are obtained when applying the same analysis

to the 21-yr time series of the presatellite area (1959–78).

This indicates that the effect of the major observational

changes introduced by assimilating satellite data from

1979 onward is of minor importance for the distributional

similarities of both reanalyses.

c. Correlation maps

As was the case for the distributional similarity, cor-

relation is generally highest for Z, followed by T and Q

(see Fig. 5). Areas of poor correlation are confined to

the Antarctica, the tropics and, in case of Q, the sub-

tropics. Relative to the patterns of the distributional

differences, areas of poor correlation (below 0.4) are less

extensive, indicating that high correlation does not

necessarily imply distributional similarity. This is most

evident for Q at both height levels, as well as for T850.

For these variables, high correlation coefficients are con-

trasted by considerable distributional differences over the

extratropical oceans and Greenland. The same finding

can be observed over the EAIS for T850 and Q850 in

DJF (cf. Figs. 5 and 3).

Note that the statistical significance of correlation was

estimated by first calculating the effective sample size, as

described in Kristjansson et al. (2002), and then applying

a standard two-sided significance test on the basis of

Student’s t distribution. This procedure corrects for

committing too many type-1 errors in the face of serially

FIG. 4. Maps of distributional similarity for the daily time series of ERA-40 and NCEP–NCAR Q at (left) 500 and

(right) 850 hPa, as revealed by the KS statistic. Color darkening from yellow to black indicates increasing dissimilarity. If

the H0 values of equal distributions cannot be rejected at a test level of 5%, the grid box is whitened and the distributional

consistency is assumed to be optimal. Results are presented for the standardized anomalies.

Fig(s). 4 live 4/C
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correlated time series. Virtually all correlations where

found to be significant at a test level of 5%, the only ex-

ception being Q850, for which spurious (i.e., nonsignificant)

correlations where found in only 1.4% of the grid boxes.

However, as these coincide with very poor correlation

values (below 0.1) in any case, statistical inference pro-

vides no relevant practical information at this point.

5. Discussion and conclusions

The agreement of daily NCEP–NCAR and ERA-40

reanalysis data, as defined by the similarity of proba-

bility distributions, is generally higher for Z and T than

for Q. For the latter, a clustering of near-zero values

in the NCEP–NCAR data, which is absent in ERA-40,

impedes the applicability of the PDF score, while the

KS statistic remains robust due to its empirical nature.

These probably erroneous Q values, which have been

contributed to the postprocessing of radiosonde data

(Elliott and Gaffen 1991), are not restricted to cold

and/or dry regions, as has been previously suggested

(Elliott and Gaffen 1991; Chen et al. 2008b; Paltridge

et al. 2009), but also occur in warm/humid climates, par-

ticularly during summer.

In contrast to Pitman and Perkins (2009), who as-

sessed the distributional similarity of reanalysis products

for air temperatures at 2 m and 1000 hPa, in our study

and in the case of T850 large differences are not only

found in the tropics, but also occur at Southern Hemi-

sphere high latitudes, Greenland, central Asia, and the

Rocky Mountains. These differences probably occur be-

cause Pitman and Perkins (2009) did not compare each

season separately, as was done in this study.

Although the variables under study generally suffer

from large serial and distributional differences in cases

where they lie below ground (e.g., in Tibet and Ant-

arctica), this does not necessarily hold if the underlying

observational network is dense, as, for example, is the

case for the European Alps.

In accordance with Sterl (2004), who compared Z500

from ERA-40 and NCEP–NCAR on monthly time scale,

the similarity of the day-to-day sequences—as measured

by the Pearson correlation coefficient—is generally weak

in the tropics. High correlation does not necessarily imply

high distributional similarity, which is evident from the

results of T and Q over the extratropical oceans and

Greenland and underlines the added value of assessing

distributional similarity.

FIG. 5. Maps of consistency for the day-to-day sequence of the daily time series of ERA-40 and NCEP–NCAR Z, T, and Q at (top) 500

and (bottom) 850 hPa, as revealed by the Pearson correlation coefficient. Color darkening from yellow to black indicates increasing

dissimilarity.

Fig(s). 5 live 4/C
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If compared with our study, the results of earlier global

comparisons between NCEP–NCAR and ERA-40, which

mostly assessed monthly to annual mean values, are only

partly transferable to the daily time scale. To quote an

example, significant distributional inconsistencies for at-

mospheric moisture were not only found over the oceans

(Trenberth et al. 2005), but over most land areas as well.

This shows that assessing the agreement of reanalysis data

on a daily time scale provides added value to doing so on

monthly or seasonal mean time scales, which is in accor-

dance with the results of Pitman and Perkins (2009) and

Ben Daoud et al. (2009).

The present study should be of general interest to the

downscaling community, since it shows that the sensitiv-

ity of downscaling applications to reanalysis uncertainty

is expected to be significant in most of the regions where

the current downscaling efforts are concentrated [e.g.,

in Africa, one of the target regions of the international

Coordinated Regional Climate Downscaling Experi-

ment (CORDEX) initiative (Giorgi et al. 2009; Jones

et al. 2011)]. In particular, weighting dynamical models

(RCMs) according to their reanalysis-driven perfor-

mance, or using reanalysis data for perfect prognosis

statistical downscaling applications, may be problematic

in these regions. Although applying third-generation re-

analysis data (Saha et al. 2010; Dee et al. 2011; Ebita et al.

2011; Rienecker et al. 2011) for downscaling is expected

to more closely reflect ‘‘reality,’’ it is important to recall

that validating downscaled time series against in situ

observations is not only a measure of model performance,

but of reanalysis quality as well.

The final message is that middle-tropospheric vari-

ables from reanalysis data should not be uncritically

assumed to be ‘‘perfect’’ in downscaling studies. This is

particularly the case for Q, a variable that not only

suffers from differences in the mean but in higher-order

moments as well. To alleviate this problem, we recom-

mend researchers work with (standardized) anomalies,

which largely reduce distributional differences. For the

statistical downscaling approach, reanalysis uncertainty—

as defined by the KS statistic and Pearson correlation—

can be essentially removed over most extratropical land

areas except Greenland and Antarctica by using stan-

dardized anomalies. For the dynamical downscaling ap-

proach, which has to work with untransformed reanalysis

data in order to keep the internal consistency among the

boundary variables, we recommend exploring the sensi-

tivity to several driving reanalysis conditions.
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