
Dangers of using global bioclimatic datasets for

ecological niche modeling. Limitations for future climate

projections
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Abstract

Global bioclimatic datasets are being widely used in ecological research to

estimate the potential distribution of species using Climate Envelope Mod-

els (CEMs). These datasets are easily available and offer high resolution

information for all land areas globally. However, they have not been tested

rigorously in smaller regions, and their use in regional CEM studies may

pose problems derived from their poor representation of local climate fea-

tures. Moreover, these problems may be enhanced when using CEMs for

future climate projections —a topic of current active research,— due to the

uncertainty derived from the future altered climate scenarios.

In this paper we use distributional data of European beech (Fagus syl-

vatica) in Northern Iberian Peninsula to analyze the discrepancies of the
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CEMs (predictive skill, variable importance and consistency using different

predictor subsets) resulting from three alternative public, high-resolution cli-

mate datasets: A benchmarking regional climate dataset developed for the

are of study (UC), the University of Barcelona Atlas for the Iberian Penin-

sula (UAB) and the worldwide WorldClim bioclimatic dataset (WC). The

same CEM techniques (multiple logistic regression and multivariate adap-

tive regression splines) were applied to the different datasets, showing that

the quality of the baseline climate has a great impact on the resulting models,

as manifested by the different contributions of the bioclimatic predictors to

the resulting models. Artifactual bioclimatic variables were found in some

datasets, representing topographical features and spatial gradients, rather

than true climatic patterns, thus significantly contributing to the models,

although not for the right reasons. This causes a misleading model inter-

pretation and problems for extrapolation in future climate conditions, as

evidenced analyzing the future projections obtained using state-of-the-art

regional climate projections from the ENSEMBLES project.

Keywords: Species distribution models, WorldClim, UAB Atlas, regional

climate projection, impacts of climate change

1. Introduction1

Climate Envelope Models (CEMs), also referred to as ecological niche2

models or species distribution models, are statistical predictive tools applied3

in ecological research to estimate the distribution of species, biological com-4

munities or habitats (Guisan and Zimmermann, 2000; Elith and Leathwick,5

2009). The use of these models is widespread throughout the ecological litera-6
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ture in a variety of application fields, such as biodiversity conservation (Wilt-7

ing et al., 2010), invasive species propagation (Jeschke and Strayer, 2008) and8

impacts of climate change (Thuiller, 2003; Araújo et al., 2005), among others.9

Typically, these techniques use medium to high-resolution grids (several min-10

utes to seconds of arc, see e.g. Kriticos et al., 2012) over the area of interest11

and combine observations of species occurrence with appropriate bioclimatic12

indicators defined at the grid box scale. The result is a predictive model13

assigning a probability of occurrence to each of the grid boxes as a function14

of the bioclimatic indicators.15

The recent development of new global high-resolution bioclimatic datasets16

has broaden the scope of CEMs across different regions and continents and17

has also boosted their application in climate change impact studies (Peterson18

et al., 2002; Hijmans and Graham, 2006). The need for high-resolution input19

data in this context has been already highlighted by some authors, given the20

unability of coarse-resolution models to represent local refugia (e.g. Randin21

et al., 2009; Franklin et al., 2013). One of the most popular global bioclimatic22

products is the WorldClim dataset (Hijmans et al., 2005), which is widely23

being used because it is easily available and offers high resolution (∼1km) for24

all land areas globally. Other newer global interpolated products of similar25

characteristics have appeared recently in the literature (e.g. the new Climond26

dataset, Kriticos et al., 2012, which is partly based on WorldClim data),27

indicating the high demand of these kind of products in the last years.28

However, these global datasets have not been tested rigorously in smaller29

regions, and their use in regional studies may pose problems derived from30

their poor representation of local climate features over certain areas. To31
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date, most of the studies fail to explicitly analyze the sensitivity of CEMs to32

the baseline climate data (Peterson and Nakazawa, 2008; Soria-Auza et al.,33

2010), partly because of the lack of high-quality climate datasets —in many34

areas of the world— that may be confidently used as a reference. Moreover,35

in those studies applying CEMs for future climate projections, the defects of36

the baseline climatology may be enhanced by the uncertainty derived from37

the future climate scenarios (Beaumont et al., 2008; Wiens et al., 2009), thus38

seriously compromising the practical validity of the resulting projections for39

planners and adaption–strategists (see, e.g., Araújo and New, 2006).40

In this study we present a sensitivity analysis of CEMs to different base-41

line climate datasets, using distributional data of a tree species —the Eu-42

ropean Beech (Fagus sylvatica L.), Fagus henceforth— in Northern Iberian43

Peninsula. In particular, we consider three different climate datasets encom-44

passing a range of spatial extents, from global to regional: The WorldClim45

global database, the Atlas by the Universitat Autónoma de Barcelona for the46

Iberian Peninsula (Ninyerola et al., 2005), and the benchmark high–quality47

regional grid developed by the authors at the University of Cantabria for the48

region of study (Gutiérrez et al., 2010); hereafter we will refer to them as49

WC, UAB and UC respectively. The same CEM techniques (multiple logistic50

regression and multivariate adaptive regression splines) were applied to the51

different datasets, evaluating the resulting models in the light of their AUC52

and Cohen’s κ, as the usual performance metrics in CEM studies.53

A first comparison of the three datasets reveals deficiencies of WorldClim,54

which fails to properly represent all precipitation bioclimate indices over55

the region. We show how these artifactual indices are actually representing56
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topographical features and spatial gradients as a result of the underlying57

interpolation process, rather than true climatic patterns, thus significantly58

contributing to the CEM models, although not for the right reasons. This59

causes a misleading interpretation of the resulting models and problems for60

extrapolation in future climate conditions. The problems found are beyond61

the deficiencies reported for WorldClim precipitation in mountainous areas62

(Hijmans et al., 2005; Tadić, 2010).63

In order to estimate the sensitivity of the resulting CEMs in future cli-64

mate scenarios, we considered the regional projections given by the ensem-65

ble of Regional Climate Models (RCMs) from the EU-funded ENSEMBLES66

project for the A1B scenario (Jacob et al., 2007). First, the delta method67

was applied to obtain the future climate projections —and the correspond-68

ing derived bioclimatic indices,— adding the differences to the three different69

baseline climatologies (see, e.g., Räisänen, 2007; Zahn and von Storch, 2010,70

for a description and application of delta method). Then, future projections71

of species distributions were obtained by applying the different CEM models72

to the corresponding future bioclimatic indices. The resulting projections dif-73

fered markedly —particularly for WorldClim,— highlighting the inadequacy74

of high resolution worldwide climate datasets for their application in regional75

climate change studies. However, when only temperature-related bioclimatic76

variables —more robust across the different datasets— were included, the77

projections were in relatively good agreement for all the datasets.78

This paper is organized as follows. In Sec. 2 the area of study and datasets79

used in the paper are presented. Sec. 3 describe the different methodologies80

applied, including CEM modeling algorithms, model assessment. The main81
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results and discussion are presented in Sec. 4. Finally, some conclusions are82

given in Sec. 5.83

2. Area of Study and Datasets84
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Figure 1: Location of the study area. In the top panel the orography of the target

area is represented at a 1km resolution (meters above sea level). In the lower panel, the

distribution of Fagus is shown at a 1km pixel resolution.

The area of analysis in this study is centered in Northern Iberian Penin-85
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sula, with a bounding box of coordinates 42.60◦N,−5.00◦E to 43.60◦N,−2.99◦E86

(Fig. 1). In the Iberian Peninsula, Fagus forests are mainly found in the87

Northern mountain areas although they reach the Iberian and Central Ranges88

at some particular locations (Costa et al., 1998). Fagus has a restricted niche89

in the study area, linked to mountainous areas mostly between 400 and 1400m90

above sea level. 95% of the presence localities used in this study lie within91

this elevation range, showing a very clear unimodal distribution. The sharp92

interaction between Fagus and the climatic gradient in the study area has93

motivated the choice of this species, which is expected to be modeled with94

higher accuracy than other generalist species (Brotons et al., 2004; Araújo95

and Guisan, 2006; Tsoar et al., 2007). This region is determined by the ex-96

tent of the UC climate grid, which has the smallest geographical extent of97

the datasets used in this study.98

2.1. Species distribution data99

The information on Fagus distribution was obtained from the Forest Map100

produced by the Third National Forest Inventory (MARM, 2006). The origi-101

nal vector map was filtered so that all polygons containing the target species102

were retained and then rasterized to a pixel size of 0.0083◦ (aprox. 1km),103

leading to a total of ca. 900 localities of presence within the study area104

(Fig. 1, bottom panel).105

Most probabilistic modeling methods require absence points —in addi-106

tion to occurrences— for training (see e.g. Bedia et al., 2011). Since we107

lacked of real absences, we generated synthetic background points assigning108

them a value of zero (absence). Occurrence data define the conditions un-109

der which the species is more likely to be present, whereas background data110
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establishes the environmental domain of the study (Hijmans et al., 2012).111

Thus, background points do not represent actual absences, and they are ran-112

domly generated in an equal number to the presences, following some authors113

who suggest that intermediate prevalences produce better results (McPher-114

son et al., 2004; Allouche et al., 2006; Mateo et al., 2010). In addition, we115

set a buffer radius of 2000m around known presences, in order to minimize116

false negatives due to cartographic inaccuracies inherent to the delineation117

of vectorial maps (Graham et al., 2008).118

2.2. Baseline climate datasets119

For the sake of conciseness, we only introduce their main characteristics120

of the climate datasets used in this study, with some emphasis in the descrip-121

tion of the more recent benchmarking UC dataset. The interested reader is122

referred to the published documentation of these datasets for further details123

on their construction.124

WorldClim (WC, Hijmans et al., 2005) is a global temperature and pre-125

cipitation dataset with a spatial resolution of 30 arc–seconds (aprox. 1km),126

obtained applying a thin–plate spline smoothing interpolation algorithm to127

a large number of weather stations throughout the world, covering most of128

Earth’s for approximately 50 years (1950–2000). This dataset is freely avail-129

able for download from internet (http://www.worldclim.org).130

The climate surfaces of the University of Barcelona Atlas (UAB, Ninyerola131

et al., 2005) were calculated by multiple regression and residual analysis,132

introducing as covariates a relatively simple set of variables: altitude, slope,133

different indices used to describe distance to the sea, solar radiation and134

terrain curvature. Temperature and precipitation data for the period 1950–135
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2000 were obtained from the national network of the Spanish Meteorology136

Agency (AEMET), and from the literature in the case of Portugal. The137

UAB dataset is provided at a very high resolution (200m) for the entire138

Iberian Peninsula, and is available for download from the internet (http:139

//opengis.uab.es/wms/iberia/mms/index.htm).140

The high resolution climate grid developed for Cantabria and surround-141

ing territories by the University of Cantabria (UC, Gutiérrez et al., 2010),142

is based on the same AEMET stations network than UAB. Data from 148143

(62) stations were used for precipitation (temperature), respectively, after a144

process of data quality control, within the period 1950-2003. All data series145

were required to have a minimum of 10 years with less than 10% of miss-146

ing values, and they were tested for relative homogeneity (Alexandersson,147

1986; Alexandersson and Moberg, 1997) and absolute homogeneity (SNHT148

method, Khaliq and Ouarda, 2007), after discarding outliers. The perfor-149

mance of different techniques was tested, namely thin–plate splines, angular150

distance weighting and kriging (Krige, 1951), obtaining best results with the151

latter one. This method has been widely used in climate research (Atkinson152

and Lloyd, 1998; Biau et al., 1999; Haylock et al., 2008) and provides high153

flexibility for covariate introduction and uncertainty analysis. In the case154

of the precipitation, a two–step interpolation process was conducted: first,155

precipitation occurrence was interpolated using indicator kriging (Juang and156

Lee, 1998); then, the amount of precipitation was interpolated using ordinary157

kriging, assigning values of 0 to all ‘dry’ points. Thus, the frequency distri-158

bution of precipitation for both occurrence and amount was optimally fit.159

In the calculation of uncertainty, the dependency among observations was160
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incorporated following Yamamoto (2000). The final 1km–resolution grid was161

obtained by regression–kriging (Hengl et al., 2007), introducing a set of ba-162

sic covariates describing terrain characteristics including, elevation, distance163

to coastline, and topographic blocking effects. The interpolated tempera-164

ture and precipitation were subject to expert revision by meteorologists of165

AEMET based on their deep knowledge on the climate of this region (Cano,166

1999), leading to final refinement by elimination of some coastal weather sta-167

tions with systematic errors, not detected in the previous stage of automated168

data quality control.169

Thus, UC and UAB are constructed upon the same network of stations170

and using a similar methodology, based on multiple linear regression with171

a residual adjustment by means of an interpolation process. The main dif-172

ferences between them lie the level of detail at which the resulting surfaces173

have been checked for quality, due to their different geographical coverages,174

and in the type of covariates introduced into the models. In this sense, UAB175

uses an input orography of 200m resolution, and introduces terrain curva-176

ture among other covariates, thus leading to a fine-grain level of detail that177

is then propagated into the climate surface by the regression model. On the178

other hand, WC is based on thin–plate splines, considering a simple set of179

covariates (longitude, latitude and elevation), which are applied to a much180

more sparse network of observations, provided its worldwide coverage.181

In this work we consider the set of 19 bioclimatic indices provided by182

WorldClim, which are commonly used in ecological modeling (see Table 1).183

To allow for full spatial comparability among the three datasets (UC, UAB184

and WC), the original layers were re-projected to geographical coordinates185
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and resampled to match the same 1km regular grid. For UC and UAB,186

the bioclimatic indices were derived from the precipitation and temperature187

layers provided in those cases. The common baseline period 1950–2000 was188

selected for the three datasets based on their temporal overlapping. The189

resulting bioclimatic indices are compared in Table 1 and partially displayed190

in Fig. 3.191

2.3. Future climate projections192

In order to calculate future projections of species distributions using193

CEMs, we considered the state-of-the-art regional projections given by seven194

Regional Climate Models (RCMs, Table 2) from the EU-funded ENSEM-195

BLES project (van der Linden and Mitchell, 2009). These RCMs were run196

over a limited domain covering Europe with a horizontal resolution of 25km,197

driven at the boundaries by different GCM simulations under the A1B emis-198

sion scenario (Nakićenović, 2000). However, it has been recently recognized199

that the outputs of the RCMs cannot be used directly for impact studies,200

since they may contain important biases resulting from different physics and201

parameterizations involved in their formulation (Winkler et al., 1997). To202

alleviate this problem, we applied the so-called ‘delta’ method (see, e.g.,203

Räisänen, 2007; Zahn and von Storch, 2010) or ‘change factors’ (Winkler204

et al., 1997) and, thus, the baseline climatological values are modified at205

a grid-box level by a change factor, obtained as the difference/ratio of the206

temperature/precipitation values between a future period (e.g. 2071-2100)207

and the control period (1970-1999 in this study). We computed the altered208

future bioclimatic indices for the periods 2011–2040, 2041–2070 and 2071–209

2100, based on the climate change signals for precipitation, minimum and210
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maximum temperature values. The mean ensemble increments (and devia-211

tions) obtained for the region of study for the periods 2011–2040, 2041–2070212

and 2071–2100 were, respectively, -32.2 (47.6), -93.8 (32.2) and -173.3 (82.5)213

mm/year for precipitation; 0.80 (0.18), 1.76 (0.19) and 2.54 (0.12) ◦C for214

minimum temperature, and 0.92 (0.17), 1.98 (0.14) and 2.94 (0.22) ◦C for215

maximum temperature.216

3. Methods217

3.1. CEM modeling algorithms218

CEMs were originally constructed using a number of probabilistic al-219

gorithms, namely generalized linear models, support vector machines, artifi-220

cial neural networks, maximum entropy, and multivariate adaptive regression221

splines (see Bedia et al., 2011, for a comparative analysis of this techniques222

in the framework of species distribution modeling). All methods yielded sim-223

ilar results, with slight to moderate differences in the resulting probabilistic224

distributions, leading to the same overall conclusions. We selected gener-225

alized linear models (GLMs) as the preferred technique to use, given that226

the focus of this study is to analyze the uncertainties derived from the base-227

line climatology, rather than the inherent differences stemming from the use228

of different modeling algorithms. Although non-linear techniques may lead229

to models of improved predictive accuracy (Elith et al., 2006; Bedia et al.,230

2011), on the other hand they may eventually obscure the actual contribu-231

tion of each variable proven their higher complexity. With this regard, GLMs232

provide a flexible and robust framework for assessing the statistical signif-233

icance of the explanatory variables and the estimation of their importance234
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(see Section 3.4), providing a simple and sound model interpretability at a235

low computational cost (see Guisan et al., 2002, for an overview of GLMs in236

the context of species distribution modeling). Nevertheless, throughout the237

manuscript we will also present some results corresponding to the Multivari-238

ate Adaptive Regression Splines models (MARS, Friedman, 1991) as an ex-239

ample of non-linear technique, that illustrates the consistency of the results240

regardless of the modeling technique applied. MARS is a non–parametric241

method for regression which approximates the underlying function through242

a set of adaptive piecewise linear regressions, known as basis functions. More243

details on this method are presented in (Bedia et al., 2011).244

3.2. Correlation analysis245

The high inter-dependence between some of the bioclimatic variables used246

as predictors (Table 1) gives raise to the issues of redundancy and multi-247

collinearity, negatively affecting variable selection and model interpretability248

due to the drastic changes in model parameter values, and also hampering249

the ability of the model for extrapolation (Brauner and Shacham, 1998), cen-250

tral in climate change studies. In order to avoid redundancy, we eliminated251

from the analysis the bioclimatic variables yielding correlation values above252

0.95 (Spearman’s rho coefficient) in the pairwise cross-correlation matrix of253

each dataset (intra-dataset correlations). The threshold of 0.95 is conser-254

vative, and it was chosen in order to keep other variables that, although255

also highly correlated, may still provide some useful additional information.256

Moreover, in the next step, collinear variables have been set aside of subse-257

quent analyses (Sec 3.3). In addition, we also computed pairwise correlations258

between datasets (inter-dataset correlations) as a first exploratory analysis259
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of the consistency of the different climatologies.260

3.3. Multicollinearity analysis and variable selection261

After the elimination of highly correlated variables, the resulting non-262

redundant datasets were further checked for multicollinearity. Among the263

different approaches available for detecting multicollinearity (see Brauner264

and Shacham, 1998, for an overview), we have followed the classical method265

based on the condition number of the normal matrix, which has been exten-266

sively used for collinearity diagnosis (Brauner and Shacham, 1998). In the267

absence of multicollinearity, the eigenvalues, condition indices and condition268

number of the predictors matrix will all equal one. As collinearity increases,269

eigenvalues will be both greater and smaller than one (eigenvalues close to270

zero indicate a multicollinearity problem), and the condition indices and the271

condition number will increase, leading to an unstable model definition.272

The simplest approach to circumvent multicollinearity consists of drop-273

ping all collinear variables. However, in order to avoid inferential problems274

derived from arbitrarily dropping/retaining predictors (Graham, 2003), we275

have followed a sequential data-driven modeling approach: first, the variable276

attaining the highest predictive performance (in terms of AUC) is retained.277

Then, the remaining variables are tested for collinearity, setting a maximum278

allowable condition number below 30. Those variables producing condition279

numbers above the threshold of 30 are dropped, and the selection proce-280

dure is iteratively repeated until no more candidate variables remain. The281

main disadvantage of this approach is that no critical value for the condi-282

tion number has been established to indicate harmful collinearity (Brauner283

and Shacham, 1998). The value chosen has been suggested by (Cohen et al.,284
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2003), and represents a “rule of thumb” criterion, that we deemed appro-285

priate in this case after checking the the low cross-correlation values of the286

resulting datasets (Fig.2) and their spatial distribution (Fig.3). We followed287

this variable selection procedure for each dataset (UC, AUB and WC) lead-288

ing to three different sets of bioclimatic predictors, subsequently used in the289

following analyses.290

3.4. Variable importance assessment291

In order to estimate variable importance in the context of logistic regres-292

sion, we have applied the method of hierarchical partitioning, by which the293

independent effect of each variable is calculated by comparing the fit of all294

models containing a particular variable to the fit of all nested models lacking295

that variable (Chevan and Sutherland, 1991). For instance, for variable X1,296

its importance I would be calculated as follows:297

Ix1 =
k−1∑
i=0

∑
(r2y,X1Xh

− r2y,Xh
)/

(
k − 1

i

)
k

(1)

where Xh is any subset of i predictors from which X1 is excluded. As a result,298

the variance shared by two or more correlated predictors can be partitioned299

into the variance attributable to each predictor. This method provides a300

robust assessment of variable importance and has been shown to outper-301

form other methods used for variable importance estimation in the context302

of regression analysis, after the removal of spurious variables (Murray and303

Conner, 2009).304
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3.5. Model assessment305

We performed a k-fold cross-validation of the models, with k=10 stratified306

randomly splitted subsets of presence/absence, each of them containing an307

approximately equal number of presences and absences (50%), following the308

criteria presented in Section 2.1. Model skill was assessed by computing the309

ROC curves for each model and calculating the corresponding AUCs. We310

also computed Cohen’s κ using prevalence as the probability cutoff threshold311

(P = 0.5).312

All the analyses were conducted in the R language and environment for313

statistical computing (R Development Core Team, 2012).314

4. Results and Discussion315

4.1. Correlation analysis of bioclimatic variables316

The intra-dataset pairwise correlation analysis identified some redundant317

variables, common to the three datasets (Fig. 2a-b). As a result, BIO1, 6318

and 11, based on temperature data, were in all cases highly cross-correlated319

(ρ > 0.95), and only BIO11 was retained. Regarding precipitation, variables320

BIO12 and 13 (redundant with BIO16) and BIO17 (redundant with BIO14)321

were dropped for the same reason. There is a high number of temperature-322

related bioclimatic variables highly correlated with precipitation ones in the323

WC dataset, whereas these correlations are lower and less frequent in the case324

of UAB and UC. As an example, unlike UC and UAB, BIO5 of WC shows325

a very high correlation with BIO14 and BIO17 (Fig. 2b). This constitutes a326

first note of warning on the problems with the precipitation variables in WC.327
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The inter-dataset pairwise correlations revealed remarkable differences328

between the bioclimatic variables among datasets. The lack of consistency329

between datasets is more accentuated for WC than for UAB, with regard to330

the UC data (Fig. 2c-d). There is a general good agreement between precip-331

itation variables of UAB and UC, but there is scarce correspondence in the332

case of WC, highlighting again the problems derived from precipitation data333

in WC. These differences become apparent in the spatial distribution of the334

bioclimatic variables displayed in Fig. 3. For instance, BIO14 (precipitation335

of the driest month) has a comparable spatial distribution for UC and UAB.336

Although UAB exhibits a fine-grain level of detail that seems not realistic in337

this case, it does not significantly alter the overall spatial pattern, preserving338

a high level of agreement with UC (ρ=0.91, rmse=4.8). On the contrary,339

BIO14 of WC has a markedly different spatial distribution and magnitude340

(ρ=0.64, rmse=13.7). Similar results are obtained for BIO15, which in the341

case of WC is strongly correlated with the topography, and unlike UC and342

UAB, with negative sign (Fig. 4). With regard to the temperature-related343

bioclimatic variables, BIO9 (mean temperature of the driest quarter) is the344

most similar among datasets, evidencing a close relationship with the orog-345

raphy in all cases (Fig. 4). On the other hand, BIO3 (isothermality) and346

BIO5 (maximum temperature of the warmest month), are not correlated at347

all with orography in UC, but they are in UAB and WC. Moreover, in the348

case of BIO3, the signs of the correlation of UAB and WC are opposite.349

Therefore, the correlation analysis revealed important inconsistencies be-350

tween datasets. The largest deviations are exhibited by WC, with some351

bioclimatic patterns that seem more related with orography than with the352
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actual climatic features of the study area, as represented by UC. This is spe-353

cially true in the case of precipitation, as none of the bioclimatic variables is354

able to approximate the UC and UAB precipitation pattern, which in general355

terms are more similar than WC. However, regardless of their dependence on356

temperature or precipitation, the most differing bioclimatologies correspond357

to those related with climatic variability (BIO2 and 3 for temperature, and358

BIO15 for precipitation). In this case, UAB also failed to approximate the359

UC climatologies.360

4.2. Variable selection and importance in the models361

The large differences among the bioclimatic datasets, with intra-dataset362

dependencies and correlations of varying nature and magnitude, prevents363

from the use of a common subset of variables for the development of the364

CEM models, from which an overall assessment of variable importance can365

be made. Thus, we applied the variable selection procedure independently to366

each dataset, which yielded the predictor combinations (or subsets hereafter)367

presented in Table 3.368

In all cases, the first variables chosen (based on their maximization of369

model AUC), were related with temperature. These were BIO9 (mean tem-370

perature of the driest quarter) in the case of UC and WC, and BIO5 (maxi-371

mum temperature of the warmest month) in the case of UAB, both related372

with the temperature regime during summer in the study area. In the case373

of BIO9, due to its strong control by orography (Fig. 4), the differences of374

UAB and WC with UC are minor. In the case of BIO5, WC shows a 2◦C375

mean bias, although the spatial pattern is well preserved in general terms.376

Variable BIO14 (Precipitation of the driest month) was included in the three377
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subsets of predictors.378

For the sake of conciseness, in the analysis of variable importance we379

will display only the results of the UC subset, provided that the overall380

results and conclusions are similar when the UAB and WC subsets are used381

instead. The variable importance given to temperature–related variables is382

quite high in the case of the UC model, and also in the case of UAB, whereas383

WC models tend to give larger importance to precipitation-related variables,384

notably BIO14 (Fig. 5).385

The variable importance in the models evidences that temperature is an386

important variable for modeling Fagus distribution, which implies a strong387

orographic component, as highlighted in Fig. 4. Nevertheless, there is an388

important fraction of the variability explained by precipitation in the UC389

model (BIO16), a variable that is weakly correlated with the elevation in the390

study area, and therefore the added value of precipitation for Fagus modeling391

should not be disregarded. As a result, some variables very correlated with392

topography are very important for Fagus CEMs. In the case of precipitation393

variables of WC, this relationship with the orography is not justified by a394

real climatic phenomenology, but rather by a side effect of the interpolation395

algorithm. The same applies to some temperature-related bioclimatic vari-396

ables, like BIO2 and BIO5, that both UAB and WC include with preference397

in their models, and which exhibit large differences with the UC benchmark.398

4.3. Predictive skill of the models399

For the assessment of CEM predictive skill, we computed the AUC and400

Cohen’s κ of the 10-fold cross validation models, considering for each dataset401

its own subset of predictors (Table 3), thus maximizing the predictive skill402
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in each case. All models achieved fairly high AUC and Cohen’s κ values,403

typically attributed to predictive systems with a good discrimination abil-404

ity (Swets, 1988; Landis and Koch, 1977). The results corresponding to Co-405

hen’s κ are comparable to those obtained by AUC, and thus, for the sake of406

brevity, we will refer only to AUC hereafter. In addition, the results achieved407

by the more sophisticated MARS algorithm are also displayed, evidencing its408

better performance in terms of AUC (Fig. 6), although in relative terms, the409

results are similar to GLMs.410

As previously shown, some precipitation variables have a large weight in411

the WC model, even though they do not correspond to the actual precipita-412

tion pattern in the study area. However, this had no apparent effect on the413

CEM skill, which was similar in the three datasets, with a slightly better per-414

formance of GLM in the case of UAB (median > 0.90 considering the k=10415

models of the k-fold cross validation. Fig. 6, lower panel). Given that the416

largest differences between datasets are in precipitation, we also computed417

CEMs using temperature variables only (indicated in Table 3 without the418

asterisk). In this case, the results were more similar across datasets, with a419

very slight loss of skill, more apparent for MARS than for GLM models, prob-420

ably due to the non-linearities between both types of variables that MARS421

is able to capture. The inclusion of precipitation improved the predictive422

skill of the UAB and UC models, confirming the added value of precipitation423

for Fagus modeling, previously indicated in the independent effects analysis424

(Sec. 4.2). On the contrary, the removal of precipitation variables in the WC425

model did not produce any changes the AUC, evidencing that precipitation426

variables of WC provide little or no improvement at all in CEM skill, once427
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temperature-related ones are used.428

4.4. CEM predictions and uncertainty429

As it can be expected from the similar predictive skills attained by the430

UC, UAB and WC Fagus CEMs, the probabilistic maps yielded similar re-431

sults in terms of spatial distribution of Fagus potentiality (Fig. 7a), although432

some fine-grain details, previously shown in the bioclimatic predictors, are433

now apparent in the predicted distributions of UAB. The sharp transitions434

between presence and absence in UAB and WC (probability threshold of435

0.5), contrasts with the smooth probabilistic spatial prediction of the UC436

model. In order to test the robustness of these models to changes in the437

predictor combinations, we alternatively constructed CEMs using the three438

different variable subsets (Table 3) for each climate dataset, and computed439

the standard deviation of the resulting distribution maps. We found that440

UC yielded very similar distributions in all cases, whereas the spread of the441

predictions was larger in the case of UAB and WC (Fig. 7b), showing the442

robustness of the UC models to changes in the predictor combinations.443

4.5. Future distribution forecasting444

Future Fagus distributions were computed using the models obtained445

in the previous section, but driven by the regional scenarios described in446

Sec. 2.3, calculated according to the delta method. The future distributions447

corresponding to each RCM projections were computed individually, and448

the mean and standard deviation of the resulting ensemble was computed449

in a grid box basis (Fig. 8). Note that in the future maps presented, espe-450

cially in the case of WC, the native grid of the RCMs is noticeable. This451

21



is the “true” resolution of the climate change signal provided by the EN-452

SEMBLES RCMs (∼25km), added to the baseline climatology applying the453

delta method. Thus, the resulting squared tessellation is not an artifact, but454

the real resolution at which projections can be realistically provided in this455

case. We prefer to keep it instead of smoothing the maps by means of an456

interpolation process, as this would represent an added source of uncertainty457

to the projections. In addition, by preserving the original resolution of the458

climate change signal, the spatial consistency of UC and UAB models when459

deltas are applied is highlighted, as opposite to WC, which also constitutes460

an indication of the lack of robustness of WorlClim in the representation the461

climate in the region of analysis.462

In general, future distributions using UC and UAB datasets are simi-463

lar, and represent the expected trend of Fagus retreat in its southern Eu-464

ropean limit of distribution, in accordance with previous studies on this465

species (Kramer et al., 2010; Felićısimo et al., 2010). In contrast, future466

range projections produced by WC do not follow a logical pattern, in the467

sense that a very sudden decline in potentiality is projected for the first pe-468

riod (2011-2040), that is reverted during the second period (2041-2050). In469

addition, the uncertainty (i.e., the standard deviation of the ensemble) as-470

sociated to WC projections is very large, a clear symptom of an unreliable471

future projection.472

Note, however, that when only temperature-related bioclimatic variables473

—more robust across the different datasets— are considered in the modeling474

process, the projections obtained with the resulting CEMs are in relatively475

good agreement for all the datasets and similar to the full-variable results476
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obtained in the case of UC. This gives some extra evidence of the instability477

caused in the future projections by the deficiencies of the baseline climate in478

the CEM modeling process.479

5. Conclusions480

We found that the precipitation of WorldClim does not correspond to the481

actual climatic conditions in the study area, neither in the spatial pattern482

represented, nor in its magnitude. On the contrary, the UAB dataset was483

able to preserve both characteristics, although other problems derived from484

the inclusion of fine-grain covariates in the regression models were noticeable485

in some bioclimatic maps and in the resulting CEMs. Even though temper-486

atures had a similar spatial distribution in all datasets –with an important487

negative bias in the case of maximum temperatures in WC–, some of the488

derived bioclimatic variables, such as the mean diurnal temperature range489

and the isothermality, showed large differences. With this regard, our re-490

sults evidence the reliance of these bioclimatic variables on the orography,491

attributable to the interpolation methods used to build the climatologies.492

As a result, in spite of the large differences among datasets and the high493

importance attained by precipitation-related variables in the WC model,494

their respective CEMs were able to skillfully predict current Fagus distri-495

bution in all cases, attaining similar model performances after the cross–496

validation tests, and consistent results independently of the modeling algo-497

rithm used. Nevertheless, in the case of UAB and WC, this comes at the cost498

of a misleading model interpretation and a lack of robustness of the resulting499

CEMs with the introduction of new predictor combinations. With regard to500
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future projections, as far as the climate change signals in the delta method501

are not added to true climatic features, but on statistical artifacts highly502

related to the topography, the resulting future maps obtained using WC be-503

come unreliable due to the large spread of the forecasts, yielding non-robust504

projections.505

Modelers should be aware of the limitations imposed by the poor repre-506

sentation of regional climate that global datasets perform at some areas of507

the world. Due to the lack of adequate high-resolution data for validation in508

many areas of the world, the problems derived from the use of WorldClim for509

CEM development at a regional/local scale might not be readily apparent,510

given that model skill, as determined by the commonly applied performance511

metrics, is not necessarily as bad as to discard the models. However, we512

warn about the potentially misleading interpretability of the resulting mod-513

els and their inadequacy for climate change studies, which seriously impair514

their practical applicability in biodiversity management and conservation515

planning.516

Finally, we want to emphasize that the aim of this study is to warn about517

the critical importance of accurate input climate data for CEM analysis and518

interpretability, and subsequent extrapolation to future climate conditions,519

and not the estimation of the current/future bioclimatic potentiality of Fagus,520

that would require accounting for other sources of uncertainty beyond the521

scope of this paper (see, e.g. Fronzek et al., 2011).522
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Araújo, M.B., Guisan, A., 2006. Five (or so) challenges for species distribu-538

tion modelling. J. Biogeogr. 33, 1677–1688.539
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Code Variable definition units Mean UAB error WC error

RMSE rho Bias RMSE rho Bias

BIO1 Mean annual temp. ◦C 10.64 0.49 0.97 0.05 0.47 0.97 0.12

BIO2 Mean diurnal temp. range ◦C 11.5 1.22 0.76 0.60 3.13 0.82 2.99

BIO3 Isothermality (BIO2/BIO7) × 100 % 44.53 2.24 0.43 -0.85 6.37 -0.20 -6.01

BIO4 Temp. seasonality (σ × 100) % 521.51 28.54 0.96 -11.87 44.7 0.95 29.05

BIO5 Max. temp. of warmest month ◦C 25.31 1.07 0.85 -0.4 2.6 0.77 -2.34

BIO6 Min. temp. of coldest month ◦C -0.53 0.97 0.96 0.42 1.61 0.97 1.47

BIO7 Annual temp. range ◦C 25.84 1.74 0.94 -0.82 4.09 0.94 -3.81

BIO8 Mean temp. of wettest quarter ◦C 5.66 1.36 0.90 0.28 2.72 0.83 2.3

BIO9 Mean temp. of driest quarter ◦C 17.15 0.54 0.91 -0.05 0.8 0.88 -0.50

BIO10 Mean temp. of warmest quarter ◦C 17.26 0.53 0.92 -0.07 0.72 0.91 -0.41

BIO11 Mean temp. of coldest quarter ◦C 4.59 0.64 0.97 0.24 0.64 0.96 0.22

BIO12 Annual precip. mm 1015.8 173.12 0.91 44.28 339.12 0.73 -130.69

BIO13 Precip. of wettest month mm 128.38 22.71 0.92 -3.13 44.81 0.81 -22.72

BIO14 Precip. of driest month mm 38.28 9.37 0.91 6.6 13.65 0.64 4.13

BIO15 Seasonality of precip.(cv × 100) % 33.97 4.84 0.66 -3.42 10.79 0.15 -9.45

BIO16 Precip. of wettest quarter mm 353.33 61.81 0.92 0.82 124.51 0.79 -63.51

BIO17 Precip. of driest quarter mm 136.3 28.73 0.91 20.08 44.19 0.69 20.43

BIO18 Precip. of warmest quarter mm 144.12 26.84 0.91 15.67 47.21 0.79 22.44

BIO19 Precip. of coldest quarter mm 317.43 58.69 0.91 4.87 123.96 0.65 -68.2

Table 1: Summary of explanatory bioclimatic variables used for climate envelope models.

The spatial mean values computed with the reference climatology (UC) are indicated in the

fourth column. Errors of the other two climate datasets (UAB and WC) w.r.t. UC data

are indicated in terms of their root mean square error (RMSE) Spearman’s rho correlation

(rho) and bias. σ = standard deviation, cv = coefficient of variation.
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Institution Model boundary GCM Reference

Centre National de Recherches Météorol. RM4.5 CNRM-CM3 Radu et al. (2008)

Danish Meteorol. Inst. HIRHAM5 CNRM-CM3 Christensen et al. (2006)

Koninklijk Nederlands Meteorol. Inst. RACMO2 MPI-ECHAM5-r3 van Meijgaard et al. (2008)

Hadley Center/UK Met Office HadRM3 HadCM3-Q0 Collins et al. (2006)

Abdus Salam Int. Centre for Theor. Phys. RegCM3 HadCM3-Q0 Pal et al. (2007)

Max Planck Inst. for Meteorol. REMO MPI-ECHAM5-r3 Jacob et al. (2001)

Swedish Meteorol. and Hydrol. Inst. RCA3.0 BCCR-BCM2 Kjellström et al. (2005)

Table 2: Summary of the ENSEMBLES regional climate models used in this study. The

driving GCMs and related references are also indicated.

Dataset BIO Variable

UC 9, 16*, 3, 18*, 14*

UAB 5, 2, 14*, 18*, 16*, 15*

WC 9, 5, 2, 14*, 19*

Table 3: Variable subsets resulting after the application of the variable selection procedure

(Section 3.3) to each of the climate datasets. Variables are displayed in their order of

inclusion in the models. Precipitation-related variables are marked with an asterisk.
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Figure 2: Pairwise cross–correlation matrices of the bioclimatic variables (Spearman’s rho

correlation coefficients. Values below 0.7 not shown). Intra-dataset correlation matrices

(truncated) are displayed in the upper panels for UAB (a) and WC (b). Note that the

benchmark UC dataset is represented in both panels (a and b) for better comparability.

Inter-dataset correlation matrices are displayed in the lower panels: (c) UAB vs. UC and

(d) WC vs. UC. Note that variables from BIO1 to BIO11 are related with temperature,

and from BIO12 to BIO19 with precipitation (see Table 1 for details).
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Figure 3: . Bioclimatic variables included in the UC, UAB and WC subsets after the vari-

able selection procedure (Table 3). Mean UC values are indicated in the lower right hand

side of the corresponding panels. For UAB and WC, the root mean square error (rmse),

Spearman’s rho correlation coefficient (rho) and bias with regard to UC are indicated. For

details on variable definition and units see Table 1.
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Figure 4: Correlation coefficients of the bioclimatic variables used in the different models

with the terrain elevation, according to the three datasets tested.

40



BIO9 BIO16 BIO3 BIO18 BIO14

R
sq

0.00

0.05

0.10

0.15

0.20
UC
UAB
WC

Figure 5: Variable importance (R2) estimated as the independent effect of each variable

following the hierarchical partitioning approach (Section 3.4). Variables selected corre-

spond to the UC model selection. Values represented correspond to the mean ± standard

deviation of the k=10 models of the cross validation test.
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Figure 6: Area under the ROC curve (AUC) attained by the different CEMs in the 10–fold

cross validation. The results are shown for both the temperature-only models, and for the

temperature and precipitation models (using the variable subsets indicated in Table 3 ).

The results are presented for both the GLM and the MARS algorithms.
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Figure 7: (a): Distribution maps obtained for Fagus according to the three datasets

tested, using each one its corresponding subset of predictor variables (Table 3). (b): Multi

predictor dataset uncertainty (standard deviation units) of the above models (spatial mean

(m) is indicated for each panel).
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Figure 8: CEM future projections calculated according to the UC, UAB and WC climate

datasets, using their respective subsets of predictors (Table 3). Maps in (a) represent the

multi-RCM ensemble projections (Table 2) for the three future transient periods consid-

ered. Maps in (b) represent the standard deviation of the multi-model ensemble means.
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