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ABSTRACT 

Directionally solidified alkali halide binary eutectics have been recently proposed as 

THz polaritonic metamaterials based on their ordered microstructure and the suitable 

phonon-polariton resonances in the THz range of the spectrum. In the present work we 

focus on the search of new available eutectic systems both binary and ternary eutectics 

with well-ordered fibrous or lamellar microstructures and interparticle distances from 1 

to several tens of microns. Simple effective homogenization models have been used to 

calculate effective permittivity and transmittance in the THz range of eutectic slices. 

This lets us identify the electromagnetic spectral ranges where hyperbolic dispersion is 

expected together with a significant transmittance value. The hyperbolic dispersion 

range shifts with microstructure size, that is, with growth parameters, showing that the 

materials response can be finely tuned by the manufacture conditions. Applications with 

these materials cover the electromagnetic range from 5 to 20 THz.  
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1. INTRODUCTION 

THz waves are used in communications, imaging or sensing technologies. Nowadays 

also, there are new laser sources that give THz technology increased importance. 

According to M. Tonouchi [1], higher power THz sources, more sensitive THz sensors 

and more functional materials are still required to realize all kinds of imagined 

applications.  

In particular, there is a need for passive elements that would serve to handle 

(focussing, shaping and guiding) the THz beams. Suitable materials for these devices 

include materials with very large, near zero or negative dielectric constant in the 

appropriate wavelength range. Small losses are also required so that subwavelength 

guiding or focusing can be made possible. Existing metamaterials in the THz range 

would fulfil these requirements but the fabrication methods based on micro/nano 

machining of 2D or 3D architectures are yet expensive and time consuming [2]. Large 

2D metal-dielectric metamaterials have been produced by drawing techniques, using 

technologies similar to those developed for photonic crystal optical fibers fabrication [3, 

4]. Recently, a bottom-up technique to fabricate composite meta-atoms for photonic 

wavelengths by self-assembling of metallic particles has also been implemented [5]. 

Negative effective permeability or permittivity has also been obtained in composite 

materials consisting of aligned metallic or polaritonic wires embedded in a dielectric 

matrix [6, 7, 8]. The reason is that frequency ranges of negative permittivity (with 

hyperbolic dispersion relations) or negative permeability occur in some uniaxially 

anisotropic materials. These anisotropic media may present lower losses than resonance 

based negative permeability, negative permittivity materials.  

Directionally solidified eutectics (DSEs) are in-situ self-organized composites of two 

or more crystalline phases. The use of this kind of composite to manufacture 

metamaterials has been proposed previously [9, 10]. The microstructure of DSEs may 

consist of rods of one phase embedded into the matrix of the other phase or of alternate 

lamellae with a dominant alignment direction (the pulling direction or the growth 

direction) [11]. DSEs mimic in bulk form anisotropic phase orderings that are otherwise 

achieved by costly top-down or nano-fabrication approaches [12]. The characteristic 

length of the transverse microstructure of DSEs for well ordered, coupled 

microstructures spans from tens of nanometers to tens of microns. These are 
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subwavelength dimensions for THz radiation, and thus, appropriate homogenization 

theories can be applied to approximately describe the propagation of THz waves in 

these materials. Required low losses and large dielectric contrast are achieved by alkali 

halides in the THz range (or FIR). They show wide ranges of transparency in this region 

and the negative or very large dielectric constant is provided by the phonon-polariton 

resonance which, moreover, in these compounds, consists of a single mode. In addition, 

having small values of the entropy of melting, coupled, halide eutectic composites 

generate well-ordered microstructures presenting anisotropic dielectric behaviour [13].  

Recently, polaritonic metamaterial behaviour has been proved in NaCl-LiF and KCl-

LiF rod-like directionally solidified eutectics [14]. They were solidified by the 

Bridgman method so that 14 mm diameter ingots were prepared and characterized by 

FTIR reflectance spectroscopy. The IR reflectance of KCl-LiF was reasonably well 

reproduced by electromagnetic calculations assuming a perfectly hexagonal 

arrangement of LiF rods inside the chloride matrix. The response contained the Mie-

resonance of the LiF polaritonic rods at large rod diameters and converged to a rod-size 

independent LiF polaritonic resonance at small rod-size diameters. In the latter case, a 

simple Maxwell-Garnett effective medium model can describe the reflectance spectra. 

This description, shown by S. Foteinopoulou [15] to be suitable whenever the ratio or 

periodicity (a) to wavelength in vacuum () satisfies the relationship a/ < 0.1, 

generates a material with hyperbolic dielectric permittivity in certain wavelength ranges 

that would allow the subwavelegth guiding and large light transmittance in Fabry-Perot 

cut slices [16, 17, 18]. The potentiality of those self-organized easy-to-grow materials 

has been, consequently, put forward, and the search for new eutectic systems working at 

different wavelengths as well as the investigation of real materials with its intrinsic 

variability in size of the dispersoids and experimental demonstration of the predicted 

properties requires more work. 

In the present manuscript we report the microstructure and THz dielectric 

permittivity in the quasistatic approximation (sufficiently long wavelength limit) of 

some selected alkali halide eutectics. We aim at showing the potentiality of these 

materials as a source for metamaterials or polaritonic photonic crystals in the THz, and 

at encouraging theoretical as well as experimental work in understanding and 
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identifying properties and applications hidden in those easy-to-manufacture self-

assembling composites. 

2. BACKGROUND 

As we have said in the Introduction, the materials chosen for this study are the 

simplest halide salts. The THz properties of alkali halides are determined by the 

phonon-polariton interaction. In the simple rock-salt structure the simplest description 

contains one single phonon polariton with transverse (T) and longitudinal (L) 

frequencies so that the dielectric constant (real part) is negative in the interval T <  < 

L (Reststrahlen region), and positive outside this interval. Damping of the phonon 

polariton broadens the Im() curve, and  does not diverge at T. In figure 1 we 

sketch the frequency range of negative permittivity, Re () <0 (T and L values are the 

extreme points of the segments on the plot) for several materials (alkali halides, fluorite 

and MgO). The static ( <<T) and high frequency ( >> L) approximate values of 

Re () are also given in the diagram. For the chosen materials it can be seen that T 

ranges between 142 cm-1 (4.26 THz) for KCl to 306 cm-1 (9.17 THz) for LiF or 401 cm-

1 (12.0 THz) for MgO; while L ranges from 214 cm-1 (6.41 THz) for KCl to 659 cm-1 

(19.8 THz) for LiF and 718 cm-1 (21.5 THz) for MgO [19]. 

 

 

Figure 1: Reststrahlen region and permittivity of some halides and MgO below (s, static permittivity) 

and above (inf, high frequency permittivity) the phonon-polariton dispersion region. 
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 The materials used in this study have been prepared by solidification from the 

melt of eutectic mixtures [11]. Directional solidification of eutectic composites 

consisting of phases with low melting entropy produces a solid with a microstructure of 

separated phases, lamellae, fibres or more complex morphologies, well aligned along 

the solidification direction. Unidirectional alignment along the solidification direction 

induces anisotropic properties in otherwise isotropic composites. The size and 

morphology of the eutectic structure can be modified by simply changing the growth 

rate according to the following relationship between interphase spacing aand the 

solidification rate v: 

a 2·v = K1         (1) 

K1 is a constant which depends on the eutectic system under study. Hence, finer 

microstructures would be obtained at higher growth rates. The eutectics utilized in this 

study are composed of low melting entropy single phases and consequently, solidify on 

a coupled growth regime with well aligned, highly homogeneous microstructures. For 

volume fractions of the minority phase f < 0.3 we obtain fibrous microstructures. 

Otherwise the expected microstructure is lamellar.  

With respect to the electromagnetic properties, the permittivity of an anisotropic 

composite formed by phase f embedded in phase m (at volumetric fraction 1-f), 

assuming that the microstructure consists of long fibers or platelets of phase f aligned in 

the Z direction and with deep subwavelength size in the XY transverse plane, can be 

calculated using an arithmetic average for parallel polarization (equation 2a) or the 

Maxwell formula for perpendicular polarization (eq. 2b). The effective permittivity 

values are [20]: 

For E // z axis (fiber long axis)    (1 )f mf f        (2a) 

For E ┴ z axis (fiber long axis)    
(1 ) (1 )

(1 ) (1 )
f m

m
f m

f f

f f

 
 

 

  


  
  (2b) 

Equations 2a and 2b, will be used in the following to predict the electrical response of 

the fibrous composites presently subject of study, as a first approximation. f and m 

denote the permittivity of phase f (fibers or platelets) and phase m (matrix), respectively. 

Note that this simple description does not incorporate any information on the size or 

shape of the dispersoids inside the matrix. It only takes into account the fact that the 
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composite is a 2D structure, infinite in the Z direction. If E // rods, equation 2a, 

resonances appear at the optical transverse polaritonic modes, TO, of component 

phases. However, the poles of equation 2b correspond to resonant modes localized at 

the interface between rods and matrix [2]. 

Also notice that the resonances occurring for E ┴ z move when the volume fraction of 

the minority phase changes. In fact for low volume fractions, when f is very small, the 

surface resonances excited with E perpendicular to rods take place at f = -m, that is, at 

a frequency, sf, lower than the optical longitudinal mode, LO, of the fibers, and at sm 

below and near to LO of the matrix, as long as the reststrahlen regions of matrix and 

fibers are sufficiently apart from one another. In directionally solidified eutectics, the 

maximum filling factor for a fibrous microstructure is approximately 1/3. If f = 1/3, the 

resonances appear at f = -2m. So, sf decreases and moves away from LO of the fiber 

and sm moves in the opposite direction, coming nearer to LO of the matrix. As we see, 

the frequencies of the composite polaritonic resonances may be tuned by changing the 

volume fractions of the minority phase. 

When the microstructure is lamellar, being the Z axis perpendicular to the lamellae, 

the appropriate formulas to calculate the effective permittivity, given by arithmetic and 

harmonic averages, are [20]:  

For E // XY (lamellae plane) 

    
1 2(1 )f f         (3a) 

For E ┴ XY (lamellae plane)  

    
1

1 2

1 f f
 





 
  
 

    (3b) 

Where f is now the volume fraction of phase 2. 

Equation 3b has also a pole, and so, resonances are also expected for this 

perpendicular polarization when 1/2 = (f-1)/f. This resonance causes absorption near 

LO of the minority phase. It corresponds to longitudinal bulk modes excited inside the 

thin lamellae that are observed, for example, in thin film absorption experiments 
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performed in -polarization under non normal incidence [21]. As f increases, this 

frequency also shifts to lower values.  

Apart from the shift, in both cases, an increase in volume fraction of the minority 

phase, increases the intensity of its associated resonance (surface modes in the fibrous 

microstructure or longitudinal optical mode resonance in the lamellar case). 

It is relevant to recall now that bulk perpendicular longitudinal-optical modes of 

lamellae shift to frequencies larger than LO as the thickness of the lamellae increases 

beyond several microns. The rod surface modes excited in perpendicular polarization at 

sf also shift towards lower energies and higher order modes appear for rod diameters 

larger than several microns. Those features are not predicted by the simple model used 

here but they should be taken into account as the size of the microstructural features 

increases beyond several microns.  

Using the effective permittivity values given above, the polarized reflectance or the 

transmittance of bulk samples can be calculated making use of the Fresnel equations. If 

we write the complex refractive index of the medium, assuming that the permeability is 

1, as 

n n i            (4) 

The transmittance for normal incidence of a slice with thickness d in air (nair = 1) is 

given by T= 2 , where  is the amplitude coefficient given by:  

12 21

12 21

exp( )

1 exp(2 )

t t inkd

r r inkd
 





       (5) 

with the Fresnel transmission and reflection amplitude coefficients given by 

12 21

2

1
t nt

n
 





        (6) 

12 21

1

1

n
r r

n


  





        (7) 

These equations will be used in this paper to calculate the transmittance of real 

systems.  
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3. EXPERIMENTAL METHODS 

Eutectic ingots of 14 mm diameter have been grown using the directional 

solidification Brigdman method in a resistive furnace with up to 40 K/cm gradient at the 

solid-liquid interface. The starting powder compositions are the ones of the 

corresponding eutectics, given in table I. Pulling rates could be varied between 1 mm/h 

and 100 mm/h. The grown materials were cut with diamond wafering blade and 

polished with diamond pastes and suspensions, either dry or with wet vehicles, as 

required by the different solvent sensitivity of the different materials. Optical 

microscopy and scanning electron microscopy (SEM) was used to observe the samples 

microstructure. The SEM images were taken in a Merlin Field Emission Scanning 

Electron Microscope SEM from Carl Zeiss (Germany). Phase interspacing and 

volumetric fraction of the phases were obtained by image analysis using the software 

Digital Micrograph from Gatan Inc. Thin slices of the materials were obtained by 

lapping around 0.5 mm thick slices until thickness was below 100 m. Transmittance 

measurements with unpolarized light at normal incidence have been made with a Perkin 

Elmer SPECTRUM 100 FT-IR spectrophotometer. 

 

4. MICROSTRUCTURE OF DSE HALIDES. 

In table I we record some binary and ternary halide eutectics that have been grown in 

our laboratory. Typical microstructures are given in figure 2 for binary eutectics and in 

figure 3 for one ternary eutectic. The binary eutectics with a low volumetric fraction of 

the dispersed phase show ordered microstructures consisting of rods embedded in 

matrix (marked with F in table I, column number 2). When the tendency to faceting of 

one or both components is stronger ribbons instead of rods, as is the case of NaF in 

NaCl [22, 23] or faceted rods, in MgO-CaF2 are observed [24]. The systems shown in 

Table I grow coupled so that large ingots of ordered eutectics can be prepared. In figure 

4 we give an optical photograph of transverse and longitudinal slices, around 1 mm 

thickness, of the eutectic KCl-LiF. The material is rather transparent in the transverse 

direction, which is an indication of the good longitudinal alignment of the LiF fibers 

inside the matrix. Probe of this is that at NIR wavelengths (3 m), in-line transmittance 
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in transverse sections of this material is larger than 50% for samples grown at 6, 20 and 

50 mm/h and 1mm thick. 

 

 

Figure 2: Micrographs of transverse cross-sections of the binary eutectics KCl-LiF (a), NaCl-LiF (b), 

NaCl-NaF (c), CaF2-MgO (d) and CaF2-LiF (e). a, b and c are SEM micrographs; d and e are transmission 

optical micrographs. The dark phase is the fluoride phase in figures a to d. Figures d and e are reproduced 

with permission from Merino RI, Pena JI, Larrea A, de la Fuente GF and Orera VM. Melt grown 

composite ceramics obtained by directional solidification: structural and functional applications. Recent 

Res. Devel. Mat. Sci. 2003; 4: 1-24. 

 



J. Europ. Ceram. Soc. (2014)XXXXXXXX              doi: 10.1016/j.jeurceramsoc.2013.10.025 Post-print 

 10

The average interfiber distances or interlamellar distances, span a range from 1 m to 

several tens of microns [22, 23, 24, 25, 26, 27, 28, 31]. Pulling rates from 1 mm/h to 

100 mm/h are achievable in Bridgman method with interphase spacings following 

equation (1). 

 

 

Figure 3: Micrographs of transverse cross-sections of the NaCl-LiF-CaF2.The dark phase is LiF. The 

lighter one corresponds to CaF2. The matrix (grey phase) is NaCl. 

 

 

Figure 4: Optical photograph of a longitudinal (left) and transverse (right), polished section of a KCl-LiF 

eutectic grown at 20 mm/h. The slices are approximately 1mm thick, and the diameter of the transverse 

cut is 13 mm. 

 

For samples with inter-rod distances below approximately 5 m, the quasistatic 

approximation can be applied in the polaritonic region (wavelengths from 15 to 70 m), 

with the effective dielectric constant being insensitive to small variations of rod 

diameters that might result from the directional solidification procedure. Increasing the 

number of components in eutectic mixtures has been used previously to get finer 
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microstructures [29]. Upon this assumption, we have grown the ternary system NaCl-

LiF-CaF2. A homogeneous eutectic microstructure has been achieved by Bridgman at 

pulling rates up to 10 mm/h. Above this value, with this growth method some ternary 

colonies form. The microstructure is shown in figure 3, corresponding to 6 vol % CaF2 

+ 30 vol % LiF in a 54 vol % NaCl matrix. The minimum interparticle spacing (LiF to 

LiF centers in transverse cross-section) achieved for pulling rates of 40 mm/h amounts 

to 2.5 m. This is to be compared with 5.5 m in LiF-NaCl at the same pulling rate 

[30], or 3.6 ±1m in LiF-KCl [31]. This makes some gain over the binary system as can 

be seen comparing the sizes in figures 2b and 3b, which are crystals grown at the same 

pulling rate. More importantly, the size of the individual dispersoids (transverse cross-

section) is here also smaller, mainly much smaller for the CaF2 minority phase. It is to 

remark the very homogeneous microstructure that is achieved, consisting of composite 

with dispersed phases CaF2-LiF inside a matrix of NaCl. As this ternary eutectic has 30 

vol% of LiF distributed as dispersed elongated and aligned phase inside a matrix 

consisting mainly of NaCl, the intensity of the resonant modes in perpendicular 

polarization also increases. The maximum pulling rate for coupled growth can most 

probably be shifted to larger pulling rates (and smaller microstructures) using different 

growth procedures that present larger thermal gradients at the solid-liquid interphase. 

 

5. THz PROPERTIES OF ALKALI HALIDE EUTECTICS 

Early studies of the THz properties (IR reflectance measurements) of some alkali 

halide eutectics were reported for NaF-LiF lamellar eutectics [32]. Authors argued that 

they observed the resonances excited at the interface of both polaritonic crystals. 

Recently, A. Reyes-Coronado et al. [14] investigated the far infra-red reflectance in the 

3 to 11 THz range of KCl-LiF and NaCl-LiF, for both electric field parallel or 

perpendicular to LiF rods polarizations and different rod diameters. The LiF rod Mie 

scattering mode that is excited with parallel polarization was observed to shift to longer 

wavelengths with the increase of the rod diameter, while, at the smaller diameters, the 

Maxwell-Garnett approximation described to a high degree of precision the material 

reflectance in this range. Calculations of the mode pattern in these composites followed 

for waves propagating along [16, 17] or across [17,18] the LiF rods at different 

wavelengths (10 THz and 14 THz).  
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The interest in this material relies on the characteristic hyperbolic dispersion that the 

aligned eutectics present at several regions of the electromagnetic spectrum. In figure 5a 

we give the calculated permittivities (using equations 2) of the eutectic NaCl-LiF using 

as NaCl and LiF dielectric constant the one-mode Lorentz model with the parameters 

given in the figure caption, between 3 and 20 THz. It can be seen that at 5 THz the NaCl 

matrix reststrahlen region dominates, with excitation of bulk resonances of the matrix 

(E// to rods) and perpendicular (E^ to rods) polarizations. In parallel polarization, 

moreover, the bulk resonances of LiF rods appear at 9.22 THz. Finally, around 14 THz, 

another resonance appears in perpendicular polarization. This corresponds to the pole of 

equation 2b, which, at very small diameters and very small volume fraction of fibers, 

equals to the surface phonon-polariton resonance of LiF cylinders, which is excited only 

in perpendicular polarization [21]. This resonance shifts with rod diameter and is 

sensitive to the shape of the dispersoids. It can be thus tailored at will, as well as the 

bulk LiF-rods Mie-resonance excited in parallel polarization.  

 

       

Figure 5: a) Permittivity of the eutectic NaCl-LiF in both polarizations (E parallel to the long direction of 

the LiF fibers (lower part) and perpendicular (upper plot)). b) Permittivity of the eutectic CaF2-LiF in 

both polarizations (E parallel to the lamellae (lower part) and perpendicular (upper plot)). Solid line: 

Re(), dotted line: Im (). Fit parameters for the permittivity of the constituents: NaCl: 0 = 5.67, ∞ = 

2.303, TO = 4.92 THz,  = 0.18 THz; LiF: 0 = 8.705, ∞ = 2.027, TO = 9.22 THz,  = 0.527 THz. CaF2: 

0 = 6.621, ∞ = 2.131, TO = 7.73 THz,  = 0.156 THz (TO denotes the transverse optical mode frequency 

and  the damping constant). The regions where the materials have indefinite permittivity are shadowed. 
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Figure 6: Transmittance of (a) NaCl-LiF and (b) CaF2-LiF slices, 50 m thick for parallel (dotted line) 

and perpendicular (solid line) polarizations. Calculations using the data of figure 5. The regions where the 

materials have indefinite permittivity are shadowed. 

 

The permittivity values given in figure 5a would result in a transmittance for a 50 m 

thick slab as given in figure 6a. This shows clearly where we do expect to have enough 

transmitted intensity. At around 6.7 THz, the transmittance in parallel polarization is 10 

%, with ´// positive (2.8) and ´^ negative ( -3.1). At this energy the matrix has negative 

dielectric constant, and so it is not transmissive. The presence of LiF rods with ´> 0 at 

25vol% opens this transmission window with a hyperbolic dispersion. This region, also 

present in KCl-LiF, has been studied with the aid of computer simulations and 

experiments by M. Massaouti et al [31]. In the range from 14 to 17 THz, the same kind 

of dispersion exists (´// > 0 and ´^ < 0), so that, a slice cut parallel to the rods will 

channel light in a plane perpendicular to the rods [17]. In this region it is LiF that 

possesses negative dielectric constant. The resonance giving rise to ´^ < 0 corresponds 

to the LiF surface modes which are excited with E perpendicular to the rods. At around 

10 THz, ´// < 0 and ´^ > 0. Consequently -polarized light will propagate collimated 

along the LiF rod direction inside a transverse-cut slice of the material [17]. These three 

regions of indefinite permittivity are shadowed in figures 5a and 6a. 

As the volume fraction of LiF diminishes calculations show that the transmittance at 

10 THz (in perpendicular polarization) and 16 THz (in parallel polarization) increases, 

while the intensity of the LiF resonances, bulk or surface, decreases. Moreover, if the 

reststrahlen regions of the matrix shifts to lower energies, the window at around 6.7 

THz shifts to lower energies, broadens (both materials being transparent) and 
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transmittance increases. Of course, only a part of this high transmission window will 

correspond to hyperbolic behavior. This corresponding to shadowed regions in Fig. 6a 

The rest of the window around 10 THz (between 8 and 9.2 THz), matrix and rods both 

have positive permittivity and there is strong contrast. This might generate photonic 

crystal-like behavior with the appropriate microstructural size and filling fraction. For 

example, on approaching 9.2 THz from below, in the NaCl-LiF (r/a = 0.26 for 25 vol% 

filling fraction), ’LiF = 10.9 while ’NaCl = 0.94, so that, according to the gap maps 

given in [33], a TM gap should open with a around 10 m or 16.6 m.  

Reflectance of KCl-LiF and NaCl-LiF from 3 to 11 THz, reported in the literature, 

[14] conform to the predictions of equations 2 at small interparticle distances. In figure 

7 we compare the transmittance measured in perpendicular polarization at shorter 

wavelengths, frequencies between 11 and 24 THz, with the expected one calculated 

with the Maxwell-Garnett model (eqs. 2b and 5). The samples are transverse-cut slices 

of KCl-LiF grown at 6 and 2 mm/h (rod diameters 2.6±0.2 and 4.7±0.3 m 

respectively). We used KCl and LiF dielectric constant values as tabulated by Palik. We 

can see clearly the strong absorption that corresponds to the excitation of the surface 

transverse modes at the LiF rods. It shifts towards longer wavelengths (lower energies) 

as the LiF rod-diameter increases, as expected [21].  

 

Figure 7: Transmittance of KCl-LiF slices, 90 m thick, cut perpendicular to the rod direction 

(perpendicular polarization). Measurements: filled squares (2 mm/h pulling rate) (black online), open 

circles (6 mm/h pulling rate) (red online). Calculation: dotted line (blue online), using dielectric constant 

of components as tabulated by Palik [34]). 
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In figure 5b we give the calculated ´ of a lamellar eutectic, using equations 2. In 

particular of the eutectic CaF2-LiF containing 42 vol% CaF2. For the CaF2 and LiF 

dielectric constants between 3 and 25 THz, we used the one-mode Lorentz model with 

the parameters given in the figure caption. Around 15 THz (´//=-0.95 and ´^=1.85) and 

at 18.5 THz (´//=0.45 and ´^=-0.28) we have indefinite dielectric constant concomitant 

with a significant transmittance for a 50 m thick slab in one polarization (see figure 

6b). Both regions arise at both sides of the high frequency resonance which appears 

with perpendicular polarization at around 16.3 THz, and so will shift and change 

permittivity magnitude with LiF volume fraction and also, beyond the long wavelength 

limit, with the thickness of the lamellae. 

Polaritonic metamaterial predictions for these and new eutectic systems are given in 

figures 8a to 8e. In these figures we present the real parts of the parallel and 

perpendicular dielectric constants and transmittances calculated for 50 m or 20 m 

thickness slices of the fibrous NaCl-LiF, KCl-LiF, NaCl-NaF, CaF2-MgO and NaCl-

LiF-CaF2 eutectics, under the long wavelength limit approximation (equations 2 and 3), 

using equation 5. The dielectric constants were calculated with equations 3, using as 

input data the ones tabulated by Palik [34]. Shadowed regions describe these frequency 

ranges in which dielectric constants of different sign in the two polarizations, predict 

hyperbolic dispersion. Real materials have, apart from the main Lorentz type resonance, 

other resonances of smaller magnitude due to multiphonon absorption or defects that 

can have strong influence on the transmittance of composites in the areas of interest  

In general, in the possible regions of hyperbolic dielectric constant, the transmittance 

is small due to increased absorption. This is more pronounced for parallel polarization 

configuration. The behavior of NaCl-NaF eutectic system is very similar to that of 

NaCl-LiF (figures 7a and 8c), except for the increased absorption in the former due to 

the NaF. Note also that when the volume fraction of fibers is sufficiently small (for 

example LiF in KCl, figure 8b), the perpendicular polarization surface resonance is not 

intense enough to open a hyperbolic behavior on its high energy side (surface modes 

excited with E perpendicular to the LiF fibers). This is even more pronounced when 

multiple resonances are required to describe the permittivity of the rods. 
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Figure 8: Calculated permittivity (real) and transmittance of slices for parallel (dotted line) and 

perpendicular (solid line) polarizations of the eutectics: (a) NaCl-LiF, slices 50 m thick; (b) KCl-LiF, 

slices 50 m thick; (c) NaCl-NaF, slices 20 m thick, (d) CaF2-MgO and (e) NaCl-LiF-CaF2. 

Calculations using the data tabulated by Palik and equations 1a and 1b. The regions where the materials 

have indefinite permittivity are shadowed. 

 

For the ternary eutectic NaCl-LiF-CaF2, a Maxwell-Garnett type model can be 

employed. For parallel polarization one extra absorption due to CaF2 between the ones 

due to NaCl and LiF is expected (equation 2a). In the perpendicular polarization, 
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surface localized modes between CaF2-NaCl, CaF2-LiF and LiF-NaCl would give 

absorptions at frequencies below the longitudinal optical modes of LiF and CaF2, 

introducing more broadened resonances around 14 THz. A behavior similar to NaCl-LiF 

is expected in the very small size microstructures (compare figures 8a and 8e). Apart 

from the CaF2 absorption, the most important difference between the ternary composite 

and the NaCl-LiF is the smaller size of the microstructure and the fact that LiF fibers are 

located nearer to one another, only separated by the CaF2 phase. The spatial pattern of 

the interphase modes will also be affected by this microstructure, so that inter-rod 

localized modes might arise [16]. It is worth noticing that other ternary eutectics do 

exist that might substitute the CaF2 phase in the inter-LiF regions by another less 

absorbing phase, thus enhancing localization of light at the inter-rod space.  

 

6. SUMMARY 

In this work we report on several alkali halide based eutectics grown by the 

Bridgman method. They present highly anisotropic and homogeneous microstructures, 

either fibrous-like or lamellae. The ternary eutectic NaCl-LiF-CaF2 has also been 

grown, its microstructure being described here for the first time. The microstructural 

sizes show interparticle distances (center-to-center) from 1 m to several tens of 

microns. 

Simple effective homogenization models have been used to calculate effective 

anisotropic permittivity and transmittance in the THz range of eutectic slices with E 

either perpendicular or parallel to the rod or lamellae composing the microstructure. 

This allows identifying the ranges where hyperbolic behaviour is expected together with 

significant transmittance. When the size of the dispersed phase particles is not very 

small as compared with electromagnetic wavelength, resonances are expected to shift 

with the size, as has been shown for the resonance around 15 THz in KCl-LiF. 

Consequently, the associated hyperbolic dispersion ranges will also shift showing that 

the materials response can be to a certain extent tailored by the manufacture conditions. 

Size and shape sensitivity could also be important in real systems where some 

variability in the dispersed phase size and shape is expected. 
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Recently published calculations of light propagation and spatial mode distributions 

on NaCl-LiF and KCl-LiF systems demonstrate that hyperbolic, indefinite permittivity 

causes canalization of electromagnetic waves, revealing the potentialities of this family 

of compounds. We have shown here that many other eutectics exists that can be chosen 

for a particular application. Moreover, ternary eutectics open the palette of possibilities 

(in properties of the components, volume fraction and microstructural sizes) at the time 

of choosing the appropriate material for an intended application wavelength in the THz 

range. 
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Table 1: Some eutectics grown in our lab. 

Eutectic  
A - B (- C) 

Micros- 
tructure 

f (vol %) 

Phonon 
modes A 

(THz) 
TA-LA 

Phonon 
modes B 

(THz) 
TB-LB 

Notes 

Binary PED      

KCl-LiF F 7 % LiF 
4.26 - 6.41 

9.17 - 19.75 
[26, 
31] 

NaCl-LiF F 25 % LiF 4.92 - 7.91 9.17 - 19.75 [27] 

NaCl-NaF R 25 % NaF 4.92 - 7.91 7.31 - 12.35 

This 
work; 
[22, 
23] 

CaF2-MgO F 9 % MgO 7.73-14.18 12.05-21.52 [24] 

CaF2 - LiF L 42% CaF2 7.73-14.18 9.17 - 19.75 [25] 

BaF2 – NaF L 43 % NaF 5.52 - 9.56 7.31-12.53 [28] 

Ternary PED      

NaCl-  
LiF- CaF2 

F to L 
6 % CaF2 
30 % LiF 

4.92 - 7.91 
7.73 - 14.18 
9.17 - 19.75 

This 
work 

F: Fibers; L: Lamellae; R: Ribbons 

 


