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Multipartite plant viruses were discovered because of discrepancies between the 1 

observed dose response and predictions of the independent action hypothesis (IAH) 2 

model.  Theory suggests that the number of genome segments predicts the shape of 3 

the dose response, but a rigorous test of this hypothesis has not been reported.  Here 4 

Alfalfa mosaic virus (AMV), a tripartite Alfamovirus, and transgenic Nicotiana tabacum 5 

plants expressing none (wild-type), one (P2) or two (P12) viral genome segments were 6 

used to test whether the number of genome segments necessary for infection predicts 7 

dose response.  Dose response for wild-type plants was steep and congruent with 8 

predicted kinetics for a multipartite virus, confirming previous results.  Moreover, for 9 

P12 plants the data support the IAH model, showing that the expression of virus 10 

genome segments by the host plant can modulate the infection kinetics of a tripartite 11 

virus to those of a monopartite virus.  However, the different types of virus particles 12 

occurred at different frequencies, with a ratio 116:45:1 (RNA1:RNA2:RNA3), which will 13 

affect infection kinetics and required analysis with a more comprehensive infection 14 

model.  This analysis showed that each type of virus particle has a different 15 

probability of invading the host plant, both at the primary- and systemic-infection 16 

levels.  Whilst the number of genome segments affects dose response, taking into 17 

consideration differences in the infection kinetics of the three types of AMV virus 18 

particles results in a better understanding of the infection process. 19 

  20 
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Introduction 21 

There is great variation in the architecture of the genome between viruses; the nucleic acid 22 

used, its polarity in the case of RNA viruses, replication and transcription strategies, and 23 

genome size all vary between viruses.  Moreover, this variation has important implications for 24 

virus biology and evolution, imposing limitations and providing opportunities.  Another 25 

characteristic that varies between viral genomes is the number of genome segments, which 26 

are essentially analogous to chromosomes as they are the highest level of physical 27 

organization of the genome.  Whereas many viral genomes are composed of only a single 28 

segment, some viruses have evolved genomes with multiple segments.  For example, the 29 

Orthomyxoviridae have evolved six to eight genome segments, and reassortment of these 30 

segments during mixed-genotype infections is a key feature of their epidemiology and 31 

evolution (1, 2).  Whereas for the Orthomyxoviridae all genome segments are packaged into 32 

a single virus particle, some plant viruses are multipartite: each segment is packaged 33 

individually into a virus particle (3).  The number of genome segments for multipartite plant 34 

RNA viruses ranges from two (i.e., Bymovirus) to four (i.e., Hordeivirus), whereas the 35 

Nanovirus have single stranded DNA genomes comprised of six to eight ssDNA genome 36 

segments (4). 37 

The existence of multipartite viruses was first suggested by observations that were at 38 

odds with predictions of the independent action hypothesis (IAH) model (5).  The IAH model 39 

assumes that each virus particle has a non-zero probability of infection and that particles do 40 

not affect each other during the infection process (6-8).  Many IAH model predictions have 41 

been confirmed experimentally for monopartite plant viruses (6, 7, 9-11).  Given that different 42 

types of virus particles obligatorily need to complement each other for multipartite viruses, 43 

one would not expect the IAH model to hold for a multipartite virus.  Multipartite viruses were 44 

indeed discovered due to the effects of multipartition on the relationship between dose and 45 

local-lesion number.  Price and Spencer (12) first reported that the relationship between dose 46 



 4	  

and the number of local lesions for Alfalfa mosaic virus (AMV), Tobacco necrosis virus (TNV) 47 

and Tobacco ringspot virus (TRSV) on local lesion hosts was steeper than predicted by the 48 

IAH model.  It was quickly recognized that these steep dose local-lesion relationships could 49 

be explained if there were complementation between different types of virus particles (13, 50 

14).  The groundbreaking work of Fulton (5) finally put this hypothesis on firm ground.  51 

Through a series of elegant experiments with Sour cherry necrotic ringspot virus (nowadays 52 

renamed as Prunus necrotic ringspot virus, [PNRSV]) and Prune dwarf virus (PDV), Fulton 53 

demonstrated that the dose local-lesion relationship was steeper than IAH predictions, and 54 

that infectivity of the virus sometimes could be influenced by inactivated virus, depending on 55 

whether the inactivation method degraded the viral RNA.  The conclusion that at least two 56 

particles were needed to cause infection was then confirmed by the discovery that 57 

preparations of some plant viruses were comprised of two or more virus particles (3).  58 

Moreover, preparations of a single type of particle had low infectivity, which was restored in 59 

mixtures of the different types of particles. 60 

Although there is strong experimental evidence that multipartition of the genome 61 

affects infection kinetics (3, 5), numerous key issues related to the infection process of 62 

multipartite viruses have not been addressed.  First, all work on infection kinetics concerns 63 

local lesions, meaning that the results cannot necessarily be extrapolated to infection of 64 

permissive hosts.  Moreover, the effects of multipartition on systemic infection have not been 65 

considered.  As it is precisely productive systemic infections that will result in between-host 66 

transmission, this omission is biologically relevant.  Will the kinetics of primary and systemic 67 

infection in a permissive host conform to predictions for a multipartite virus?  Second, if the 68 

different particle types are not present at the same frequency, this may have a profound 69 

effect on dose response.  Consider the hypothetical example of a bipartite virus for which 70 

one segment is one hundred times as abundant as the other, whilst both segments have the 71 

same probability of entering host cells.  In this case, the dose response will be limited and 72 

shaped by the low frequency variant, because any site invaded by the low frequency variant 73 
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has probably already been invaded by the high frequency variant.  Therefore, it needs to be 74 

considered if different particle types are present at the same frequency, and if they are not, 75 

what the ramifications are for infection kinetics.  Finally, there are methodological limitations 76 

in the original pioneering study of Fulton (5): the comparison between data and models is not 77 

rigorous, and the testing of hypotheses is purely qualitative.  Although Fulton´s work is 78 

seminal from a historical perspective, these shortcomings have not been addressed in 79 

subsequent studies to date. 80 

Here the kinetics of multipartite virus infection was re-examined, using the tripartite 81 

AMV and Nicotiana tabacum plants as a model system.  A study design that allows for a 82 

rigorous, quantitative analysis of whether the genome segment number predicts multipartite 83 

virus dose response and accounts for deviations from IAH model predictions was used.  84 

Three plants were used for dose-response experiments: Nicotiana tabacum L. cv. Samsun 85 

(henceforth referred to as ´wild-type plants´), a transgenic plant derived from N. tabacum cv. 86 

Samsun that expresses AMV genomic segment RNA2 under the Cauliflower mosaic virus 87 

35S promoter (´P2 plants´), and a transgenic plant expressing AMV genomic segments 88 

RNA1 and RNA2 (´P12 plants) (15).  Note that uncoated AMV RNA segments can achieve 89 

cell-to-cell movement (16-18), whereas for systemic movement the formation of virus 90 

particles, each again encapsidating a single RNA segment, is required (17).  It has already 91 

been shown that the P2 and P12 transgenic plants can support full-blown AMV systemic 92 

infection in the absence of the expressed segment in the inoculum (15), and it was 93 

anticipated that the expressed RNA segments could therefore complement virus particles to 94 

generate primary or systemic infection.  Here it was attempted to alter the infection kinetics of 95 

AMV from those of a tripartite virus to those of a bipartite or monopartite virus, by inoculating 96 

AMV into transgenic plants expressing one or two viral genome segments.  These results 97 

show that the underlying mechanisms are more complex than previously thought and 98 

suggest reasons why multipartition might have evolved. 99 

 100 
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Materials and Methods 101 

 102 

Preparation of viral stocks 103 

Virus purification was performed from infected Nicotiana benthamiana plants inoculated with 104 

transcripts of RNAs 1, 2 and 3 obtained from an infectious clone of the AMV strain 425 105 

Leiden.  Virus particles were isolated 4 days post inoculation (dpi) as previously described 106 

(19).  The purified particles were resuspended in PE buffer (10 mM NaH2PO4, 1 mM EDTA, 107 

pH 7.0), aliquoted in stocks of 50 µl and stored at -80 ºC until use. 108 

 109 

Dose response experiments 110 

Plants were kept in a growth chamber at 24 °C and 16 hours light for one week until 111 

transplantation from agar plates to soil.  Thereafter they were kept in a greenhouse at 24 °C 112 

and 16 hours light.  We opted for a large single-block experiment, given that any block-level 113 

experimental variation would tend to lead to smoother dose responses (20, 21).  Fifteen 5-114 

week-old plants were inoculated for each of eight virus doses obtained from a 5-fold dilution 115 

series in PE buffer, and as mock-infected controls.  Each plant was rub-inoculated with 5 µl 116 

of serially diluted viral stock or only buffer, and Carborundum was used as an abrasive.  117 

Plants were monitored for the AMV-symptoms daily until 14 dpi. 118 

 119 

Detection of AMV infection 120 

The presence of AMV in inoculated and upper leaves was performed by tissue printing 121 

analysis using transversal section of the corresponding petiole, as described previously (22).  122 

The inoculated leaves were also analyzed by grinding the full leave with 10 volumes of cold 123 

extraction buffer (50 mM sodium citrate, 5 mM EDTA, pH 8.5), which was then directly 124 

applied to the membrane as described previously (23).  RNA was fixed to the membrane with 125 

a UV cross-linker (700x100 µJ/cm2).  Hybridization and detection were conducted as 126 
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previously described (24) using a DIG-riboprobe (Roche Diagnostic GmbH) complementary 127 

to nt 1 - 964 (GenBank L00162.1) of AMV RNA4. 128 

 129 

Quantification of viral stocks 130 

Total RNA was extracted from purified virus particles using TRI REAGENTTM (Sigma-Aldrich, 131 

Inc.) and following the manufacturer’s recommendations.  Purified RNA was serially diluted 132 

(5-fold dilutions) in TE buffer and 1 µl of each dilution was directly applied on a nylon 133 

membrane together with serial dilutions of known amounts of in vitro transcribed RNAs 1, 2 134 

and 3 of AMV.  The quantification of the transcribed AMV RNAs was performed by 135 

spectrophotometer ND-1000 (Nanodrop®) and by agarose gel using a RNA ladder (RiboRuler 136 

High Range RNA Ladder 200 to 6000, Thermo Scientific).  Replicas of the same membrane 137 

were hybridized with specific DIG-riboprobes for the AMV RNAs 1 (complementary to nt 350 138 

- 861; GenBank L00163.1), 2 (complementary to nt 162 - 680; GenBank X01572.1), RNA3 139 

(complementary to nt 369 - 1248; GenBank K03542.1), or the RNA4 (complementary to nt 1 140 

- 964; GenBank L00162.1).  Hybridization and detection was conducted as previously 141 

described (24) using a chemiluminiscent substrate and the LAS-3000 digital imaging system 142 

(FujiFilm).  As AMV RNA4 is a subgenomic RNA of RNA3, the concentration of RNA4 was 143 

estimated by subtracting the estimated RNA3 concentration. 144 

To estimate the number of genome equivalents present and their estimated 145 

frequencies, all data for the standard curve (input and readout values of known dilutions) 146 

were first log10-transformed to ascertain over what range the response was linear.  The 147 

dynamic range was limited to one dilution before the response appears to saturate. Linear 148 

regression on the log10-transformed data was then performed, rendering high values for the 149 

coefficient of determination (mean r2 ±SD = 0.994 ±0.006).  For those samples that fell within 150 

the dynamic range, the estimated linear regression parameters were used to estimate the 151 

unknown concentrations in the virus samples.  Finally the number of genome equivalents 152 

was calculated based on the length of the genome segment. 153 
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 154 

Estimating the area of primary infection foci in different plant types 155 

N. tabacum plants wild-type, P1, P2 or P12 were inoculated with a mixture of capped 156 

transcripts corresponding to AMV RNAs 1, 2, a modified RNA3, which expresses the green 157 

fluorescent protein (GFP) (25) and a few micrograms of purified AMV CP as described in 158 

(26).  The fluorescence derived from the chimeric AMV RNA3 encoding GFP was monitored 159 

using a Leica Stereoscopic Microscope.  The area of infection foci was measured at 2 and 3 160 

dpi, using ImageJ software (27). 161 

A generalized linear model (GLM) was used to statistically analyze the data (SPSS 162 

20.0), with the Akaike Information Criterion (AIC) used to establish that the best-supported 163 

model, using a gamma distribution and log link.  Pairwise comparisons were made using the 164 

estimated marginal means with a Holm-Bonferroni correction.  To test if there was an effect 165 

of type of plant on the proportion of systemically infected leaves, the lowest dose at which 166 

the majority of plants was infected for each plant genotype (1/625 dilution for wild-type, 167 

1/3125 dilution for P2 and 1/78125 dilution for P12) was considered.  The highest infected 168 

leaf was considered the limit of systemic infection, and the number of systemic leaves below 169 

the highest infected leaf positive for AMV infection was counted.  A test of equal proportions 170 

was then performed (R 2.14), grouping the data by plant type.  Pooled data of each plant 171 

type were used to perform pairwise comparisons, with a Holm-Bonferroni correction for 172 

multiple comparisons. 173 

 174 

Modeling dose response: classic framework with equal frequencies of all types of 175 

virus particles 176 

A simple framework for considering the dose response of a multipartite virus, which assumes 177 

that the different types of virus particles are present at the same frequency, is first described.  178 

This model is equivalent to the description given by Fulton (5), although little detail is given in 179 

that publication.  However, here the model is geared to describing the frequency of primary 180 



 9	  

and systemic infection, rather than the number of local lesions. 181 

It is assumed that each virus particle type acts independently in the infection process 182 

up to the point that it has successfully breached an epidermal cell and can then begin to 183 

support replication in the presence of the other necessary particle types, a part of the 184 

infection process that is subsequently referred to as ´invading´ the host plant.  The different 185 

particle types will behave differently in this process (e.g., in the presence of RNAs 1 and 2, 186 

there will be replication of these segments (28)), but the complete cellular infection cycle 187 

cannot be completed unless all three particles have invaded a cell (15).  The assumption of 188 

independence is warranted if the virus is only passively carried up until entering the cell, and 189 

if particles do not aggregate.  The mean number of particles invading each cell is αjdj, where 190 

αj is the probability of that particle type j invading a cell and dj is the dose of that particle type.  191 

Note that α needs to be carefully interpreted here, being a probability that reflects the ability 192 

of a segment to support virus replication.  The assumption is then made that the number of 193 

particles of type j per cell, vj, follows a Poisson distribution, such that 194 

Pr 𝑣! = 𝛼!𝑑!
!! 𝑒!!!!! 𝑣!! , where j can take the values 1, 2, …, k (k = 3 for AMV).  195 

Therefore, the frequency at which a cell is infected by at least one particle of type j, Cj, will 196 

then be 𝐶! = 1 − Pr 𝑣! = 0 = 1 − 𝑒!!!!!.  However, the virus can only replicate if all the 197 

necessary k particle types have invaded the cell.  If the frequency of the particles in the 198 

inoculum is the same, then for each dose (a dilution of the inoculum) the dose of each 199 

particle type (d) in the inoculum will also be the same.  If it is also assumed the probabilities 200 

of infection for each particle type are the same (e.g., α ≡ α1 = α2 = … = αk), and that the 201 

successful infection of one cell will eventually lead to observable infection of the inoculated 202 

leaf, then the frequency of infection in the inoculated leaf (I) will then be 203 

 204 

(1) 𝐼 = 𝐶!!
!!! = 1 − 𝑒!!" !

. 205 

 206 
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For systemic infection of a plant, there is an additional infection step that each particle type 207 

surmounts with a probability βj.  Moreover, it is assumed that there is heterogeneity in host 208 

plants in their susceptibility to systemic infection by the virus.  This assumption is made 209 

because even at high doses not all plants are always infected.  These cases would be 210 

extremely unlikely under a maximum-likelihood framework that did not include heterogeneity 211 

in host susceptibility, and hence would strongly affect model parameter estimates.  Although 212 

heterogeneity in susceptibility could be modeled in detail (21), a simpler but in this case 213 

equally effective manner to take differences in susceptibility into account is to assume that 214 

only a fraction ψ of host plants can be systemically infected.  If it is again assumed that 215 

systemic infection probabilities are the same for all particle types (β ≡ β1 = β2 = … = βk), the 216 

frequency of systemic infection in plants (Is) will be 217 

 218 

(2) 𝐼! = 𝜓 1 − 𝑒!!"# !
. 219 

 220 

For both equations 1 and 2, when k = 1 the model collapses to an IAH model that assumes 221 

that each particle and particle type act independently.  Therefore, when k = 1, this model is 222 

referred to as the IAH model.  When k > 1, the infection presented above is referred to as the 223 

dependent action (DA) model.  Note that k can take values of less than 1, but this outcome is 224 

not expected here given previous results (5, 12).  Note that for fitting the classic infection 225 

model, the combined dose (d) of all three particle types was used. 226 

 227 

Modeling dose response: a general framework 228 

A limitation of the classic framework for analysis of dose-response of multipartite viruses is 229 

that it does not take into account the possibility that the frequency of different particle types 230 

varies in the inoculum.  Moreover, the probabilities of primary and systemic infection in the 231 

inoculated and systemic leaves may also not be the same for each particle type.  A simple 232 
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model taking these three aspects into account is therefore introduced.  For primary and 233 

systemic infection the probabilities that a plant will be infected are, respectively, 234 

 235 

(3) 𝐼 = 1 − 𝑒!!!!! !!
!!!  and 236 

 237 

(4)   𝐼! = 𝜓 1 − 𝑒!!!!!!!
!!

!!! , 238 

 239 

where ω is introduced so that the interactions between particles of one particle type can be 240 

non-additive.  When ω < 1 there are antagonistic interactions between particles of one 241 

particle type, whereas when ω > 1 there are synergistic interactions.  When ω ≠ 1, the 242 

general model predictions are equivalent to those resulting from the classic model having an 243 

estimated k different from the actual number of genome segments.  For dose response in 244 

transgenic plants expressing one or two viral RNA segments, the term for infection of these 245 

segments becomes 1 (i.e., all plants have undergone the equivalent of being invaded by 246 

expressing the RNA segments) and it is dropped from the model.  I.e., for primary infection of 247 

P2 plants, which express AMV RNA2, the frequency of primary infection is 𝐼 = 1 −248 

𝑒!!!!! ! 1 − 𝑒!!!!! !
 whereas for P12 plants it is 𝐼 = 1 − 𝑒!!!!! !

. 249 

To test whether the data support inclusion of model parameters, model selection was 250 

performed over a series of models based on equations 3 and 4.  Model 1 assumes additive 251 

interactions between particle types (ω = 1) and equal probabilities of primary and systemic 252 

infection between particle types (α ≡ α1 = α2 = α3 and β ≡ β1 = β2 = β3).  Note that this model 253 

is only equivalent to the classic model if the frequency of different particle types is equal.  254 

Three parameters must therefore be estimated: α, β and ψ.  Model 2 assumes no additive 255 

interactions between particles, but allows probabilities of infection for the different particle 256 

types to vary.  The frequency of the different particle types was measured empirically, 257 

meaning that seven parameters must therefore be estimated: α1, α2, α3, β1, β2, β3, and ψ.  258 
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Model 3 allows for non-additive interactions between particles, but assumes that probabilities 259 

of infection are equal.  Four parameters must therefore be estimated: α, β, ψ, and ω.  Model 260 

4 allows for non-additive interactions and allows probabilities of infection to vary for the 261 

different particle types.  Eight parameters must therefore be estimated: α1, α2, α3, β1, β2, β3, 262 

ψ, and ω.  Finally, Model 5 allows the probabilities of primary infection for the first and third 263 

particle types (α1 and α3) to be host-plant dependent and allows for non-additive interactions.  264 

(The second particle type is needed only for infection of the wild-type plant, and only a single 265 

estimate of α2 is therefore needed.)  Model 5 is therefore the least restricted model.  Although 266 

it is probably over-parameterized, this model serves to test whether model fit can be further 267 

improved.  Eleven parameters must be estimated: α1,WT, α1,P2, α2, α3,WT, α3,P2, α3,P12, β1, β2, β3, 268 

ψ, and ω. 269 

 270 

Model fitting and selection 271 

To fit the model to the data, a maximum likelihood approach was used.  Given that each 272 

plant represents an independent observation, the likelihood of a model prediction for Ii is 273 

𝐿 𝐼! 𝑋,𝑌 = 𝑋
𝑌 𝐼!! 1 − 𝐼! !!!, where X is the total number of plants inoculated, and Y is the 274 

number of plants infected in the inoculated leaf, and likewise for systemic infection.  From a 275 

biological perspective, a plant can only become systemically infected after successful 276 

primary infection has occurred.  However, since primary and systemic infections were 277 

determined independently, the likelihood of systemic infection is also calculated over all the 278 

data and not just over the fraction of plants found to have primary infections.  The model was 279 

fitted to the data for each plant type by first performing grid searches over large parameter 280 

spaces to ensure a global solution was found.  Next, stochastic hill climbing was performed 281 

to determine exact parameter estimates.  These searches were also performed on 1000 282 

bootstraps of the data, to estimate the 95% confidence interval (CI) of the parameter 283 

estimates.  AIC was then used to perform model selection. 284 
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 285 

The data used for modeling dose response have been deposited at Dryad: 286 

doi:NN.NNNN/dryad.XXXXX. 287 

 288 

Results 289 

 290 

Predictions of a simple infection model 291 

The IAH model (equation 1) predicts a dose response with a singular shape (19), which can 292 

shift position depending on the infection probability (Fig. 1a).  The same model can be 293 

extended to a multipartite virus, when it is assumed that (i) particles of each type act 294 

independently in invading the host (entering host cells, see Materials and Methods), and (ii) 295 

that particles of k types are necessary for infection, which corresponds to actual number of 296 

different segments.  This infection model predicts a steeper dose response for multipartite 297 

viruses, if the frequency of particles and their probabilities of invading the host are the same 298 

(Fig. 1b-c).  In this case, the number of genome segments determines the shape of the dose 299 

response, but it can again shift positions, depending on the infection probabilities of the 300 

different particle types (Fig.1b-c).  However, if the frequency of different particle types is not 301 

the same or their infection probabilities are different, the dose response will tend to be 302 

shallower (Fig. 1d), approaching the IAH response when, for example, one of the genome 303 

segments is very rare (Fig. 1e).  On the other hand, a steep dose response equivalent to 304 

simple model predictions for a tripartite virus can be achieved when the frequency of 305 

particles is not equal (Fig. 1f), but the product of dose and infection probability (αjdj,) is 306 

approximately equal for all particle types. 307 

One can therefore expect a steep dose-response for a multipartite virus 308 

corresponding to simple model predictions only under specific conditions.  When these 309 

conditions are not met, the dose response will tend to be smoother.  Moreover, any 310 
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experimental error (e.g., variation in virus dose or inoculum size) will also tend to make the 311 

dose response smoother (20, 21).  Therefore, the observation of steep responses for plant 312 

multipartite viruses seems to be somewhat unlikely from the outset, and its apparent 313 

commonality is therefore striking (5, 12). 314 

 315 

Rejection of IAH model for AMV infection of wild-type and P2 plants 316 

Recent work on IAH for Tobacco etch virus (TEV), a monopartite Potyvirus, confirmed 317 

various IAH model predictions (7, 10, 11).  On the other hand, the relationship between AMV 318 

dose and the number of local lesions has been reported to be steeper than IAH predictions 319 

(12).  Therefore, we first set out to confirm that the data for the infection of wild-type and P2 320 

plants do not support the IAH model, whereas data for the P12 plants were expected a priori 321 

to support the IAH model.  This analysis with the classic infection model was performed to 322 

test whether these experimental results and analysis are compatible with historical results.  323 

Equations 1 and 2 were fitted to the data, with a separate analysis for wild-type, P2 and P12 324 

plants (see Materials and Methods).  For wild-type plants, it was indeed found that the DA 325 

model was better supported than the IAH model (Table 1), as the dose response was 326 

steeper than IAH model predictions (Fig. 2a).  For P2 plants the DA model was also better 327 

supported than the IAH model (Table 1), as the dose response for P2 plants was also 328 

steeper than IAH predictions (Fig. 2b).  The steep dose response for both wild-type and P2 329 

plants is also shown by k values significantly greater than 1 (Table 1).  On the other hand, for 330 

P12 plants, IAH was the best-supported model (Table 1) and dose response was very similar 331 

to model predictions, being shallower then for P2 or wild-type plants (Fig. 2c). 332 

 333 

Frequency of AMV particle types 334 

The frequency of the three different AMV particle types was then considered, because these 335 

frequencies should be equal in order for an analysis with the classical model to be pertinent.  336 

However, it was found that particle types were present at different frequencies in the virus 337 
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stock.  The observed ratio (± SD) RNA1:RNA2:RNA3:RNA4 was 116.4 ±17.5 : 44.8 ±8.0 : 338 

1.0 ±0.3 : 123.6 ±23.7, meaning that RNA3 is relatively scarce.  Note that RNA4 was 339 

included in this analysis, but is not required for infection (15). 340 

 341 

General infection model suggests particle-dependent probability of invading the host 342 

Initial analysis of the data using the classic infection model suggests the DA model is 343 

supported for AMV infection of wild-type and P2 plants, whereas the IAH model is supported 344 

for infection of P12 plants.  However, given that there are differences in the frequency of the 345 

different particle types, the data were analyzed with a general infection model (see Materials 346 

and Methods).  This second analysis was performed for the data of all three plants types at 347 

once.  Moreover, this approach has the added benefit that it allows testing not only whether 348 

the different particle types have different invasion probabilities, but also whether these 349 

invasion probabilities are independent of the presence of other particle types (i.e., host-plant 350 

dependent in this setup).  Models 1 - 5 were therefore fitted to the data and model selection 351 

was performed.  Model 2 was the best-supported model (Table 2 and Fig. 3).  Although the fit 352 

(i.e., NLL) of Models 4 and 5 is slightly better, model selection with AIC shows that the data 353 

provide less support for these models: the minor improvement in model fit does not 354 

compensate for the addition of extra parameters into the model (Table 2).  Model 2 allows 355 

each particle type to have its own probabilities of invasion (α) and systemic infection (β), but 356 

does not include host-plant-dependent infection probabilities or non-additive interactions 357 

between particles during infection. 358 

 359 

Effects of the expression of genome segments on secondary infection 360 

Given the large differences in systemic infection probabilities predicted by both models 361 

(Tables 1 and 2), we expected to observe qualitative differences in infection dynamics 362 

between the different plant types.  To study infection dynamics, the area of primary infection 363 

foci at two time points was measured (Fig. 4a).  If primary infection foci expand rapidly, then 364 
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the probability of systemic infection may be larger; the virus may then reach vascular tissue 365 

before host responses limit its expansion (11, 22).  There was a significant effect of plant 366 

type on the area of primary infection foci (GLM: P = 0.001), and there were significant 367 

differences in area between all plant types (P < 0.001 for all pairwise comparisons).  368 

Moreover, there also appeared to be differences in the intensity of fluorescence, with lower 369 

fluorescence in wild-type than in P2 and P12 plants (Fig. 4b-d).  In all cases, the differences 370 

are in line with expectations based on estimated probabilities of primary infection: P12 > P2 > 371 

wild-type for foci area and fluorescence intensity. 372 

Whether there was evidence for qualitative differences in AMV systemic infection in 373 

the three different plants used was also considered.  There appear to be fewer systemically 374 

infected leaves in systemically infected P2 and wild-type plants than in P12 plants (Fig. 5).  375 

To test if this effect was significant, the data from systemically infected plants at all doses 376 

were pooled and then performed a χ2 test for trend in proportions.  A highly significant effect 377 

of plant type was found (χ2 = 13.476, 1 d.f., P < 0.001) overall.  Pairwise comparisons 378 

showed that there are not significant differences between wild-type and P2 plants (P = 379 

0.377), whereas there are significantly more leaves infected in P12 plants than in wildtype or 380 

P2 plants (P < 0.001 for both comparisons). 381 

 382 

Discussion 383 

The infection kinetics of AMV, a tripartite virus, was studied in wild-type tobacco plants and 384 

transgenic plants expressing one (P2) or two (P12) AMV genome segments (15).  A steep 385 

dose response was found in wild-type plants, concordant with previous results for multipartite 386 

viruses (5, 12).  A rigorous analysis of the data with the classic infection model, which 387 

assumes the three types of virus particles occur at the same frequency in the inoculum, was 388 

therefore highly congruent with these historical results.  For P2 plants similar results were 389 

obtained, confirming that IAH model predictions are not supported for tripartite viruses, even 390 
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when the host plant expresses one genomic segment.  On the other hand, for P12 plants the 391 

dose response was shallower and IAH model predictions were supported. These 392 

observations show that expression of 2 viral RNA segments in the host plant could modify 393 

the infection kinetics of a tripartite virus to those of a monopartite virus. 394 

Analysis of dose response with the classical infection model assumes that all three 395 

types of virus particles occur at the same frequency.  However, it was found that the different 396 

particle types were not present at the same frequency.  Specifically, the virus particle 397 

containing RNA3 was present at a relatively low frequency.  We have not encountered a 398 

discussion of the frequency of different particle types in the literature on multipartite viruses.  399 

Nevertheless, published primary data on AMV support the particle frequencies observed 400 

here.  The ultracentrifugation patterns (i.e., Schlieren peaks) obtained for two AMV 401 

preparations show a lower peak for middle component than bottom component, whilst top 402 

component is almost as abundant as bottom component (Fig. 1 on pg. 521 of reference 403 

(29)).  The frequency of RNA3 is so low that ´top component´ in ultracentrifugation studies 404 

probably corresponds mainly to particles encapsulating RNA4.  Electrophoresis of RNA 405 

purified from AMV particles clearly shows that (i) RNAs 1 and 4 are the most abundant, (ii) 406 

that levels of RNA2 are intermediate, and (iii) that RNA3 is scarce (Fig. 7 on pg. 97 of 407 

reference (3)).  This congruence in observed patterns suggests that the frequency of 408 

particles estimated here might be a general pattern for AMV. 409 

The different frequencies at which different virus particle types occur have 410 

implications for the shape and position of the dose response.  Given the scarcity of RNA3, 411 

the dose response for wild-type plants would be predicted to be similar to that predicted by 412 

the IAH model (Fig. 1e).  The empirical dose response is, however, significantly steeper than 413 

IAH model predictions (Fig. 2a).  Data were therefore analyzed with a general infection 414 

model, and model selection identified Model 2 as the best-supported model.  This model 415 

incorporates the empirically measured frequencies of particle types and allows each particle 416 

type to have its own probability of invasion and systemic infection.  Parameter estimates for 417 
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Model 2 suggest the probability of invasion is more than 2 orders of magnitude higher for 418 

AMV particles encapsidating RNA3, whereas probabilities of invasion are more or less 419 

similar for the other two particle types (Table 2).  Note that this result does not depend solely 420 

on analysis of infection in P2 and P12 plants alone; it also follows logically form observing 421 

both a steep dose response in wild-type plants and different frequencies of the different 422 

particle types.  Moreover, what makes this modeling result compelling is that the probabilities 423 

of invasion and systemic infection for different particle types also account for the position of 424 

the dose response curves in the different plant types.  Fig. 1 shows that the shape and 425 

position of the dose response curve are both dependent on the invasion probability, and 426 

these results show that Model 2 can also account for both.  It would not have been surprising 427 

if the expression of genome segments by the host plant would have affected the probability 428 

of invasion of other viral segment, but the model-selection results suggest no such effect 429 

occurs (i.e., Model 2 has more support than Model 5).  Therefore, from the perspective of the 430 

theoretical framework developed here, the experimental system used (i.e., transgenic plants 431 

expressing viral RNA segments) responds exactly as expected.  This rigorous and complete 432 

analysis therefore confirms results from the preliminary analysis using the classical model.  433 

However, it also shows that in reality infection kinetics are more complicated, as the inclusion 434 

of differences in particle frequencies illustrates that there are differences in the invasion 435 

probabilities of different particle types. 436 

What mechanisms might account for these differences in invasion probabilities?  437 

Effective ´invasion´ of cells in the inoculated leaf may require fewer molecules of RNA3 than 438 

molecules of RNAs 1 and 2.  We are not hereby suggesting a threshold, as such a model 439 

would behave differently than the infection models presented here.  Rather, the invasion 440 

process can be seen as two steps: (i) physically breaching the cell and then (ii) being 441 

capable of supporting the infection process.  In this framework, particles of each type have 442 

an independent probability of being successful at either step.  This suggests two mechanistic 443 

explanations of the model.  First, RNA3 is the shortest genome segment, and as a 444 
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consequence particles encapsidating RNA3 may be considerably more stable than those 445 

containing RNAs 1 and 2, or they may enter cells in the inoculated leaf more easily.  In both 446 

cases, the probability of breaching a cell would be higher.  Second, it may be that the 447 

probability that a RNA3 molecule that has breached the cell can support replication is higher 448 

than that for RNAs 1 and 2.  In this case, RNAs 1 and 2 might be degraded more quickly 449 

intracellularly.  The fact that RNAs 1 and 2 code all the genes required for replication (15) 450 

suggests that these segments must prime the cell for replication, but that once a cell is 451 

primed the probability that an RNA3 molecule can successfully start a productive infection is 452 

considerably higher.  One might therefore expect qualitative differences in infection dynamics 453 

between the different the host plants.  Indeed, primary infection foci expanded more rapidly 454 

in P2 and P12 plants, whereas systemic movement appears to be enhanced only in P12 455 

plants.  These observations again suggest that little RNA3 is required during infection. 456 

A key question that remains enigmatic is why multipartite genomes have evolved, and 457 

what adaptive advantages multipartition confers.  Four possible adaptive advantages 458 

conferred by genome segmentation alone – as opposed to multipartition – have been 459 

suggested.  These advantages to segmentation alone may be relevant to this discussion 460 

because multipartition itself might be a pleiotropic effect of segmentation.  I.e., given that 461 

most plant viruses are non-enveloped, segmentation of the genome might inevitably lead to 462 

the formation of multiple virus particles.  First, at the usually high genomic mutation rate of 463 

RNA viruses (30), a small segment would have a greater chance of being replicated without 464 

errors than a larger one (31).  Second, reassortment could allow for rapid recombination, 465 

reducing the effects of clonal interference between beneficial mutations occurring on different 466 

genome segments while also bolstering purifying selection against deleterious mutations 467 

(32), although in one case reassortment appears to be scarce in the field for a multipartite 468 

virus (33).  Third, segmentation could allow for regulation of expression, because each 469 

segment can have its own regulatory sequence, a hypothesis that has good experimental 470 

support (34).  Finally, segmentation can in principle allow for faster replication of viral 471 
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genome, through the accommodation of additional transcriptional units (35).  In addition to 472 

the advantages conferred by genome segmentation alone, dividing the genome over multiple 473 

virus particles could confer the following three advantages.  First, recent work suggests that 474 

the stability of particles will be improved by having shorter genome segments and smaller 475 

particles with a lower packaging density (36, 37), lending credence to the view that 476 

encapsidation imposes limits on the size of genome fragments.  Second, it has been 477 

suggested that vectors may transmit smaller particles more efficiently (38), although this 478 

hypothesis has, to our knowledge, not been tested.  Nonetheless, an increased chance for 479 

complementation would, theoretically, favor the evolution of a multipartite genome (39).  480 

Third, recent work suggests that the frequencies of different genome segments evolve to 481 

distinct levels, suggesting virus particle frequencies might have a regulatory role in gene 482 

expression (40). 483 

On the other hand, irrespective of the advantages it might confer, the packaging of 484 

different genome segments in multiple types of particles will also have a cost.  This cost 485 

arises because infection requires the entry of all genome segments into the same cell, during 486 

primary and systemic infection of the plant.  If the total number of genomes that enter a cell 487 

during both processes is not large and if there are no mechanisms that physically link the 488 

different particle types during between-host and between-cell transmission, there will be an 489 

appreciable probability that not all types of genome segments will be represented.  Assuming 490 

the same probability of cellular infection per genome segment of the complete (monopartite 491 

virus) or partial genome (multipartite virus), the same number of encapsidated copies of the 492 

complete virus genome will in principle lead to lower levels of host infection for a multipartite 493 

virus than for a monopartite virus (39).  The results presented here, however, strongly 494 

suggest that infection probabilities of the different virus particles can be highly divergent.  We 495 

speculate on a further reason why multipartite viruses might have evolved, and a mechanism 496 

that mitigates the cost of multipartition.  If the probability that RNA3 can support infection 497 

(i.e., invade a cell) is higher than that for RNAs 1 and 2, then the virus could efficiently infect 498 
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even if there are less copies of this segment present.  Evolution could then favor the down-499 

regulation of RNA3 sequences by means of multipartition.  Down-regulation of RNA3 would 500 

then allow for reallocation of cell resources to produce more particles encapsidating RNAs 1 501 

and 2, the limiting factors at the start of infection.  This higher production could then, in 502 

principle, boost overall levels of infection and therefore be adaptive.  More evidences will be 503 

necessary to show this hypothesis has merit, although it is compatible with other hypotheses 504 

for why multipartite viruses have evolved. 505 
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 617 

Figure 1: Infection model predictions 618 

For all panels, the log10-transformed dose is on the abscissae (where dose is the sum of the 619 

doses for each type of virus particle), and the infection frequency is on the ordinate.  In panel 620 

a, predictions of the infection model for virus with 1 genome segment (k = 1; IAH) are shown, 621 

with infection probabilities decreasing from 3.3×10-3, 1×10-3, 3.3×10-4 and 1×10-4, for the 622 

curves from left to right (the grain of the dotted line becomes finer as infection probability 623 

decreases).  Note that changing the infection probability shifts the curve, but does not alter 624 

its shape.  Panels b and c show model predictions for a virus with two (k = 2) and three (k = 625 

3) genome segments at the equal frequencies for different particle types, respectively, and 626 

the same infection probabilities.  Note that whilst genome segment number alters the shape 627 
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of the curve, changing infection probability only changes its shape.  Panel d shows model 628 

predictions for a tripartite virus in which each segment has an infection probability of 3.3×10-629 

3, but one segment has a ten-fold higher frequency than the other two.  The shape of the 630 

dose response is then similar to that of a bipartite virus.  Panel e shows model predictions for 631 

a tripartite virus in which each segment has an infection probability of 3.3×10-3, but one 632 

segment has a ten-fold lower frequency than the other two.  The dose response is then 633 

similar to that of a monopartite virus.  In panel f, the frequency of the different particle types 634 

is the same, but the probability of infection for the rare segment is 3.3×10-2.  The dose 635 

response is then as steep as possible for a tripartite virus in the absence of non-additive 636 

interactions (k is equal to the actual number of genome segments, or ω = 1), even though 637 

particle frequencies are different. 638 

  639 
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 640 

Figure 2: Data and model predictions for different plant types 641 

For all panels, the log10-transformed total dose of particles is on the abscissa and the 642 

frequency of infection is on the ordinate.  Dose is the sum of the doses for all three particle 643 

types.  Solid lines represent the predicted dose response for infection of the inoculated of the 644 

best-supported model; DA for wild-type and P2 plants, IAH for P12 plants.  The dotted lines 645 

represent the model prediction of dose response for systemic infection.  Circles represent the 646 

data for infection of the inoculated leaf, and triangles represent the systemic infection data.  647 

Errors bars indicate the 95% confidence interval.  Note the steeper dose responses for wild-648 

type and P2 plants, and the decrease between the dose response for the inoculated leaf and 649 

systemic tissue, from wild-type to P2 to P12, at which point the two curves practically 650 

coincide.  For parameter estimates see Table 1.  651 
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 652 

Figure 3:  Effects of genome-segment number on dose response 653 

For all panels, the log10-transformed dose is on the abscissae and the frequency of infection 654 

is on the ordinate.  Dose is the sum of the doses for all particle types.  Solid lines represent 655 

the predicted dose response for wild-type plants, coarse dotted lines for P2 plants, and fine 656 

dotted lines for P12 plants.  Circles are the data for wildtype plants, triangles P2 plants and 657 
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crosses P12 plants, with errors bars indicating the 95% confidence interval.  Panel a shows 658 

the results for Model 1 fitted to the inoculated leaf data, panel b the results of Model 1 for 659 

systemic infection, panel c the results of Model 2 for the inoculated leaf, and panel d the 660 

results of Model 2 for systemic infection.  Both models include the empirically determined 661 

frequency of different particle types.  Model 1 fits the data poorly, because the invasion 662 

probability for all particle types is the same.  The most abundant particle type (RNA1) then in 663 

fact determines the infection kinetics, resulting in a response that is indifferent to the plant 664 

type.  Model 2 allows each particle type to have a different infection probability, even thought 665 

these infection probabilities do not depend on the plant type (i.e., Model 5), and fits the data 666 

much better.  Model 3 (not shown) fit the data poorly.  Models 4 and 5 (not shown) fit the 667 

data slightly better than Model 2, but model selection indicated that the improvements in fit 668 

did not justify the additional free parameters added. 669 

  670 
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 671 

Figure 4: Effects of plant type on virus expansion in primary infection foci 672 

Panel a gives the area (mm2) of primary infection foci at 2 (white bars) and 3 (gray bars) dpi, 673 

for the three plant types used.  The error bars represent the 95% CI.  Primary infection foci at 674 

3 dpi are shown for the wild-type (panels b and c), P2 (panel d) and P12 (panel e) plants.  675 

Besides the differences in size, the foci for the P2 and P12 plants have a higher intensity of 676 

fluorescence, suggesting that there are higher levels of infection.  677 
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 678 

Figure 5:  Effects of plant type on systemic infection 679 

All leaves from inoculated tobacco plants were sampled, and tissue-printing analysis was 680 

performed.  To compare the effects of plant type on systemic infection, the lowest dose for 681 

which the majority of inoculated plants were infected was considered, even though this dose 682 

was smaller for P12 than for P2 than for wild-type plants.  In the above figure, the blots are 683 

given for each plant type, with the dilution specified by the ratio right of the plant type.  N-684 

label columns indicate the plant replicate, and rows indicate the leaf.  ILa is the inoculated 685 

leaf (ground whole leaf), ILb is the inoculated leaf stem, SL are the numbered stems of 686 

systemic leaves, with SL1 being the leaf above the inoculated leaf.  For P12 plants the data 687 

for even higher dilutions are also given, to show that at all doses all leaves remain infected 688 

(panels d and e).  689 
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Table 1: Model fitting and selection results for testing the IAH and DA models a  690 

Plant Model Parameter estimates NLL AIC ΔAIC AW 
Wild-type IAH α = 6.46 [4.17-10.23] × 10−12 

β = 7.08 [4.07-16.22] × 10−2 

ψ = 1 [0.830-1] 

  9.273 24.545 4.557 0.093 

 DA α = 1.35 [0.89-2.57] × 10−12 

β = 9.54 [4.90-16.98] × 10−2 

k = 2.635 [1.912-3.426] 
ψ = 0.937 [0.806-1] 

  5.994 19.989        - 0.907 

P2 IAH α = 1.55 [1.07-2.45] × 10−11 

β = 0.204 [0.079-0.372] 
ψ = 0.965 [0.893-1] 

10.407 26.814 5.609 0.057 

 DA α = 3.55 [2.40-5.62] × 10−11 

β = 0.204 [0.060-0.363] 
k = 2.801 [2.067-3.630] 
ψ = 0.996 [0.895-1] 

  6.603 21.206        - 0.943 

P12 IAH α = 1.20 [0.25-2.04] × 10−10 

β = 1 [*] 
ψ = 0.987 [0.922-1] 

14.226 34.452        - 0.600 

 DA α = 7.59 [1.91-25.70] × 10−11 

β = 1 [0.977-1] 
k = 0.731 [0.521-1.380] 
ψ = 1 [0.926-1] 

13.633 35.265 0.814 0.400 

 691 
a Data for each plant type was analyzed separately here, to determine whether the IAH 692 

(independent action hypothesis) or DA (dependent action) model is best supported by the 693 

data.  For the wild-type and P2 plants, we expect to reject this model as three and two 694 

particles types, respectively, are required for infection.  For the P12 plant, we expect the 695 

hypothesis to be supported because only one particle type is required for infection, as the 696 

other two are supplied in trans by the plant.  Model parameter estimates and their 95% 697 

confidence intervals are given.  NLL is the negative log likelihood, a measure of model fit.  698 

AIC is the Akaike Information Criterion, ΔAIC is the different between a given model and the 699 

best fitting model, and AW is the Akaike Weight, a measure of the relative support for the 700 

model.  Note that comparison between models is always for a given plant type.  * indicates 701 

that the lower and upper 95% CI limits coincide with the estimate parameter value. 702 

  703 
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Table 2: Model fitting and selection results for Models 1-5a 704 

Model Parameter estimates NLL AIC ΔAIC AW 
1 α = 2.95 [2.19-4.17] × 10−9 

β = 1 [0.209-1] 
ψ = 0.775 [0.775-0.948] 

152.742 311.483 237.805       0 

2 α1 = 2.34 [0.11-8.51] × 10−11 

α2  = 3.24 [0.11-8.91] × 10−11
 

α3  = 1.86 [0.10-9.77] × 10−8 

β1 = 0.182 [0.032-0.295] 
β2 = 6.17 [3.16-100] × 10−2 

β3 = 1 [0.324-1] 
ψ = 0.981 [0.901-0.998] 

 29.839  73.678          - 0.667 

3 α = 2.82 [2.29-28.84] × 10−9 

β = 0.525 [0.209-0.776] 
ω = 0.949 [0.949-1.047] 
ψ = 0.845 [0.777-0.953] 

150.903 309.806 236.128      0 

4 α1 = 2.45 [1.07-8.91] × 10−11 

α2  = 3.24 [1.07-9.55] × 10−11 

α3 = 2.00 [1.12-9.12] × 10−8 

β1 = 0.182  [0.34-0.302] 
β2 = 6.46 [3.47-100] × 10−2 

β3 = 1 [0.123-1] 
ω = 1.047 [0.953-1.048] 
ψ = 0.980 [0.902-0.998] 

 29.768  75.768 1.858 0.264 

5 α1,WT = 2.51 [0.81-11.48] × 10−11 

α1,P2 = 4.57 [2.23-16.57] × 10−11 

α2 = 1.51 [0.19-2.88] × 10−10 

α3,WT  = 1.41 [0.79-14.79] × 10−9 

α3,P2  = 3.72 [0.45-6.31] × 10−9 

α3,P12  = 1.78 [0.36-3.63] × 10−8 

β1 = 0.102 [0.043-0.234] 
β2 = 1.45  [0.81-16.60] × 10−2 

β3 = 1 [0.295-1] 
ω  = 0.976 [0.952-1.048] 
ψ = 0.980 [0.943-1] 

 28.105  78.210 4.532 0.069 

 705 
a Data for all three plant types was analyzed jointly here, to determine whether the general 706 

infection model, incorporating differences in the frequencies of different types, could 707 

adequately explain the dose-response data.  Model parameter estimates and their 95% 708 

confidence intervals are given.  NLL is the negative log likelihood, a measure of model fit.  709 

AIC is the Akaike Information Criterion, ΔAIC is the different between a given model and the 710 

best fitting model, and AW is the Akaike Weight, a measure of the relative support for the 711 

model. 712 


