(54) Título: FOSFORILACIÓN EN LOS RESIDUOS THR-248 Y/O THR-250 DEL FACTOR DE TRANSCRIBE E2F4 COMO DIANA TERAPÉUTICA EN PROCESOS PATOLÓGICOS QUE CURSAN POR POLIPOLEDIA SOMÁTICA

(57) Resumen: El objeto de la invención se basa en la inhibición de la fosforilación específica del factor de transcripción E2F4 humano en sus Thr-248 y/o Thr-250 para inhibir procesos de endoreduplicación somática en células.
postmitóticas que pueden estar asociadas con diversas situaciones patológicas. La invención cubre cualquier método de inhibición específica de la fosforilación proteica conocido en la actualidad (incluido la expresión de formas mutantes de E2F4 carentes de los residuos Thr fosforilados por p38MAPK) o desarrollado en el futuro que pueda ser aplicado a las Thr-248 y/o Thr-250 del factor de transcripción E2F4 humano.
5 SECTOR DE LA TÉCNICA

La presente invención pertenece al sector farmacéutico, en concreto se refiere a la identificación de dianas moleculares para el desarrollo de herramientas terapéuticas.

ESTADO DE LA TÉCNICA ANTERIOR

Es conocida la asociación existente entre la reactivación del ciclo celular en células postmitóticas, con la consiguiente síntesis de ADN de novo, y diversos procesos patológicos que afectan tanto a neuronas (neurodegeneración, isquemia, etc.) como miocitos (cardiomiopatía hipertrófica, patologías vasculares asociadas a la hipertensión y envejecimiento). En muchos casos, la reactivación del ciclo celular no supone la división celular sino que forma parte de un mecanismo de endoreduplicación (Ullah et al., 2009) que se traduce en la generación de poliploidía somática (poliploidía que afecta únicamente a ciertos tipos celulares y no se transmite de generación en generación). Quizá un ejemplo de patología asociada a la poliploidía somática sea la enfermedad de Alzheimer (EA). En esta enfermedad, se sabe que las neuronas reactivan el ciclo celular antes de degenerar (Yang et al., 2003), incrementando el contenido de ADN en su núcleo (Arendt et al., 2010). Es previsible que estas neuronas sufran modificaciones morfológicas y funcionales que comprometan su supervivencia (Frade y López-Sánchez, 2010). De hecho, se ha descrito que las neuronas hiperploïdes son las que degeneran predominantemente en el cerebro de pacientes con EA (Arendt et al., 2010). El tejido muscular cardíaco contiene también un porcentaje de miocitos poliploides, cuya proporción puede verse alterada en situaciones patológicas (Yabe y Abe, 1980; Vliegen et al., 1995). El músculo liso vascular también puede sufrir alteraciones asociadas con la poliploidía (McCrann et al. 2008). Es por ello que el conocimiento de la base molecular implicada en la endoreduplicación facilitará el diseño de herramientas
terapéuticas que prevengan las patologías asociadas a la poliploidización somática. Hasta la fecha no se han desarrollado herramientas terapéuticas conducentes a prevenir la endoreduplicación somática asociada con patologías humanas, probablemente porque se trata de un campo de investigación muy reciente en el que están empezando a surgir nuevos conceptos.

US20080139517A1 propone la administración de uno o más agentes capaces de inhibir la progresión del ciclo celular neuronal ya sea en una fase temprana del ciclo celular o reduciendo la estimulación mitogénica en la alteración de la memoria asociada a la edad (AAMI, del inglés age associated memory impairment), alteración cognitiva leve (MCI, del inglés mild cognitive impairment), EA, demencia cerebrovascular y otras condiciones neurodegenerativas retrogenéticas. Sin embargo, en dicho documento de patente se asume que el proceso degenerativo cursa por la progresión del ciclo celular clásico y no por endoreduplicación. Además, este documento de patente no amplía el espectro a otras enfermedades del sistema nervioso y del corazón en las que se ha descrito o pueda describirse reactivación del ciclo celular generador de poliploidía.

En Morillo et al., 2010, se indica que el proceso de endoreduplicación en neuronas conduce a la tetraploidía neuronal ocurre de manera natural durante el desarrollo embrionario, dando lugar a poblaciones específicas de neuronas que adquieren mayor tamaño, dendritas más largas, y regiones diferenciales de inervación en su tejido diana (Morillo et al., 2010). Se sabe que la endoreduplicación en estas neuronas surge en respuesta a la activación del receptor de neurotrofinas p75 (p75NTR) mediada por el factor de crecimiento nervioso NGF (del inglés “nerve growth factor”). Estas neuronas duplican su ADN y permanecen en un estado tipo G2 debido al efecto de la neurotrofina BDNF, la cual actúa a través de su receptor TrkB evitando la transición G2/M. Por tanto, se sabe que la tetraploidización neuronal tiene lugar durante el desarrollo del sistema nervioso mediado por NGF vía p75NTR, induciendo la actividad del factor de transcripción E2F1, para la re-entrada en el ciclo celular. Aquellas neuronas tetraploides que no reciben suficiente señal de BDNF tratan de realizar la mitosis seguida de su muerte por apoptosis. En el cerebro de Alzheimer es conocida la presencia de p75NTR y de NGF en las regiones afectadas. Esto sugiere que la
hiperploidía observada en las neuronas afectadas podría ser causada por el mismo mecanismo que genera neuronas tetraploides durante el desarrollo del sistema nervioso. La disminución de niveles de TrkB observada en estadios avanzados de la enfermedad podría facilitar la muerte neuronal (ver el desarrollo de este modelo en Frade y López-Sánchez, 2010).

Deshènes et al. 2004, hace referencia a los mecanismos de regulación de la proliferación y la diferenciación del epitelio celular intestinal humano, e indica la posible fosforilación del factor de transcripción E2F4 por p38MAPK. Sin embargo, este documento concluye que actualmente existe la necesidad de investigar qué residuos del factor de transcripción E2F4 serían fosforilados por p38MAPK, como parte de los mecanismos de regulación de la proliferación y la diferenciación del epitelio celular intestinal humano.

Ninguno de estos documentos identifica moléculas candidatas como dianas terapéuticas para inhibir la poliploidización patológica. Por tanto, actualmente existe la necesidad de prevenir la endoreduplicación causante de la poliploidización patológica en células postmitóticas como método terapéutico, mediante la identificación de nuevas dianas terapéuticas.

BREVE DESCRIPCIÓN DE LA INVENCIÓN

La presente invención hace referencia a un agente inhibidor de la fosforilación por p38MAPK del factor de transcripción E2F4 en su Thr248 y/o Thr250, para su uso en la prevención y/o tratamiento de una patología asociada a la poliploidía somática.

Así mismo, la presente invención se refiere a un método de prevención y/o tratamiento de una patología asociada a la poliploidía somática, caracterizado porque comprende la administración al paciente de una cantidad terapéuticamente efectiva de un agente inhibidor de la fosforilación del factor de transcripción E2F4 de SEQ ID No: 1, en su Thr248 y/o Thr250.

Por último, la presente invención se refiere al uso de un agente inhibidor de la fosforilación por p38MAPK del factor de transcripción E2F4 en su Thr248 y/o
Thr250, como diana terapéutica en la prevención y/o tratamiento de una patología asociada a la poliploidía somática.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

En una realización preferente de la presente invención, el agente inhibidor de la fosforilación por p38^{MAPK} del factor de transcripción E2F4 en su Thr248 y/o Thr250, para su uso en la prevención y/o tratamiento de una patología asociada a la poliploidía somática, se caracteriza porque es una forma mutante del factor de transcripción E2F4, cuya secuencia aminoácida se identifica como SEQ ID No: 1 (humano). Preferentemente, dicha forma mutante del factor de transcripción E2F4 con SEQ ID No: 1 presenta una sustitución en Thr248 y/o Thr250 por un aminoácido no susceptible de ser fosforilado por p38^{MAPK}, distinto de glutamato o aspartato. Más preferentemente, dicho aminoácido no susceptible de ser fosforilado, es Alanina.

En otra realización preferente de la presente invención, el agente inhibidor de la fosforilación por p38^{MAPK} del factor de transcripción E2F4 en su Thr248 y/o Thr250, para su uso en la prevención y/o tratamiento de una patología asociada a la poliploidía somática, se caracteriza porque es un fragmento de E2F4 comprendido en SEQ ID No: 1, con idéntica capacidad de interferir con la fosforilación por p38^{MAPK} de E2F4 endógeno.

En otra realización preferente de la presente invención, el agente inhibidor de la fosforilación por p38^{MAPK} del factor de transcripción E2F4 en su Thr248 y/o Thr250, para su uso en la prevención y/o tratamiento de una patología asociada a la poliploidía somática, se caracteriza porque es una forma de E2F4 de otra especie con mutaciones en las Thr conservadas. Preferentemente dicha forma de E2F4 de otra especie se selecciona entre SEQ ID No 2 (pollo) y SEQ ID No 3 (ratón) (ver Fig. 1).

En otra realización preferente de la presente invención, el agente inhibidor de la fosforilación por p38^{MAPK} del factor de transcripción E2F4 en su Thr248 y/o Thr250, para su uso en la prevención y/o tratamiento de una patología asociada a
la poliploidía somática, se caracteriza porque es una molécula sintética que mimetiza la forma mutante del factor de transcripción E2F4 de SEQ ID No: 1, con una sustitución por Alanina en Thr248 y/o Thr250.

Por otro lado, la presente invención hace referencia al agente inhibidor de la fosforilación por p38MAPK del factor de transcripción E2F4 en su Thr248 y/o Thr250, para su uso en la prevención y/o tratamiento de una patología asociada a la poliploidía somática, caracterizado porque dicha poliploidía somática se produce por endoreduplicación en células postmitóticas. Preferentemente, dichas células postmitóticas son neuronas y/o miocitos.

Adicionalmente, la presente invención hace referencia al agente inhibidor de la fosforilación por p38MAPK del factor de transcripción E2F4 en su Thr248 y/o Thr250, para su uso en la prevención y/o tratamiento de una patología asociada a la poliploidía somática, caracterizado porque dicha patología asociada a la poliploidía somática se selecciona de entre el siguiente grupo: enfermedad neurodegenerativa, isquemia, cardiomíopatía hipertrófica, patología vascular asociada a la hipertensión y envejecimiento. Preferentemente, dicha patología asociada a la poliploidía somática es una enfermedad neurodegenerativa. Aún más preferentemente, dicha enfermedad neurodegenerativa es Alzheimer.

En otra realización preferente de la presente invención, el método de prevención y/o tratamiento de una patología asociada a la poliploidía somática, que comprende la administración al paciente de una cantidad terapéuticamente efectiva de un agente inhibidor de la fosforilación del factor de transcripción E2F4 de SEQ ID No: 1, en su Thr248 y/o Thr250, se caracteriza porque dicho agente inhibidor se puede encontrar comprendido o bien en un péptido o proteína asociado a otro péptido permeable a la membrana celular que facilita su incorporación al interior celular, o bien en un vector capaz de infectar neuronas y/o miocitos, preferentemente adecuado para terapia génica, más preferentemente dicho vector es un vector viral, y aun más preferentemente dicho vector viral es un lentivirus.

Nuestro laboratorio ha desvelado el mecanismo empleado por NGF/p75NTR para
inducir la reactivación del ciclo celular en neuronas de pollo durante el desarrollo embrionario, efecto que genera endoreduplicación y tetraploidía neuronal (Morillo et al., 2010). Dicho mecanismo se basa en la activación de la Ser/Thr kinasa p38MAPK en el núcleo de las células afectadas (Fig. 2), y la posterior fosforilación del factor de transcripción E2F4 en residuos treonina (Fig. 3). Cualquier otra vía de señalización que activase p38MAPK en células postmitóticas podría resultar en hiperploidización empleando al factor de transcripción E2F4. En el pollo solo existen dos residuos susceptibles de ser fosforiladas por p38MAPK, las treoninas Thr\textsubscript{261} y Thr\textsubscript{263} (Fig. 1). El uso del software NetPhosK 1.0 predice que estas treoninas están inmersas en un dominio conservado con las proteínas E2F4 humana y de ratón (Fig. 1). En el caso de la proteína E2F4 humana la treonina susceptible de ser fosforilada por p38MAPK, tal y como predice el software NetPhosK 1.0, es la treonina Thr\textsubscript{248} (el sitio consenso de fosforilación de la p38MAPK, requiere de un residuo Pro consecutivo, secuencia TP, que se encuentra tras dicha treonina). Se ha considerado proteger también la Thr 250 humana pese a carecer de un residuo Pro consecutivo. El motivo es su grado de conservación con las treoninas Thr\textsubscript{251} del ratón y Thr\textsubscript{263} del pollo, ambas con un residuo Pro consecutivo y predichas por el software NetPhosK 1.0 como treoninas susceptibles de ser fosforiladas por p38MAPK.

La fosforilación de los residuos Thr\textsubscript{261}/Thr\textsubscript{263} de E2F4 es crucial para la reactivación del ciclo celular inducida por NGF vía p75NTR en las células de retina de embrión de pollo en proceso de diferenciación neuronal (Fig. 4). Tal reactivación del ciclo celular conduce a la tetraploidía neuronal (Morillo et al., 2010). Hemos observado que el empleo de una forma constitutivamente activa de E2F4 de pollo, en la cual las Thr\textsubscript{261} y Thr\textsubscript{263} han sido substituidas por Glu (un aminoácido cargado positivamente que mimetiza el estado fosforilado de la Thr) es capaz de mimetizar el efecto de NGF sobre las neuronas de la retina (Fig. 4AB). También hemos demostrado que el uso de una forma dominante negativa de E2F4 de pollo (Thr\textsubscript{261}Ala/Thr\textsubscript{263}Ala) que impide su fosforilación por p38MAPK es capaz de inhibir el efecto de NGF sobre el ciclo celular en cultivos neurogénicos de retina (Fig. 4C,D). Por ello, es previsible que la expresión de esta forma mutante Thr\textsubscript{261}Ala/Thr\textsubscript{263}Ala (o bien la forma humana Thr\textsubscript{248}Ala/Thr\textsubscript{250}Ala) en las neuronas o miocitos afectados asociados con las
patologías descritas anteriormente podría inhibir el proceso de endoreduplicación y la hiperploidización consiguiente, lo cual podría prevenir, o al menos ralentizar, la progresión de la enfermedad. La presente invención hace referencia al uso de dichas formas mutantes de E2F4 para prevenir la hiperploidización y los efectos patológicos asociados en diversas enfermedades que afectan a células postmitóticas (neuronas y células musculares).

Por tanto, la presente invención demuestra que la fosforilación del factor de transcripción E2F4 en unos residuos Thr conservados homólogos de las Thr248 y Thr250 en el E2F4 humano es crucial para la inducción de endoreduplicación en neuronas de retina.

Esta invención también protege cualquier método para inhibir de manera específica la fosforilación del factor de transcripción E2F4 humano en su Thr248 y/o Thr250 (en adelante fosfoE2F4). La inhibición de dicha fosforilación impediría la capacidad de E2F4 para inducir la síntesis de ADN en células postmitóticas, lo cual tiene claros beneficios terapéuticos.

La presente invención también hace referencia a cualquier método para inhibir la señalización de p38MAPK/fosfoE2F4, preferentemente mediante una forma mutante de E2F4 en la que la Thr 248 y/o la Thr250, ha(n) sido sustituida(s) por un residuo Ala, tal como hemos realizado en nuestro laboratorio con E2F4 de pollo.

De forma alternativa, la presente invención también hace referencia a cualquier otro método de inhibición de la señalización de p38MAPK/fosfoE2F4, como por ejemplo:
- sustitución de Thr248 y/o Thr250 por otros aminoácidos no susceptibles de ser fosforilados,
- uso de un fragmento de E2F4 con idéntica capacidad de interferir con la fosforilación de E2F4 endógeno,
- uso de formas de E2F4 de otras especies con mutaciones en las Thr conservadas,
- uso de moléculas sintéticas que mimeticen la forma E2F4 mutada, etc.
La presente invención también protege cualquier medio de transferencia específica de las formas mutadas de E2F4 mencionadas anteriormente al interior de las células afectadas, como por ejemplo mediante vectores apropiados, péptidos susceptibles de atravesar la membrana celular, etc.

La invención supone las siguientes fases:

1) Generación de la molécula bloqueante de la fosforilación del factor de transcripción E2F4 humano en las células diana

La molécula elegida para bloquear la fosforilación de E2F4 humano en su residuo Thr248 y/o Thr250 (ya sea la secuencia del gen codificante para E2F4 humano o de otra especie, la secuencia peptídica de E2F4 humano o de otra especie, la secuencia parcial de del gen codificante para E2F4 humano o de otra especie, la secuencia peptídica parcial de E2F4 humano o de otra especie, u otra molécula que mimetice la región o regiones de interacción entre E2F4 y p38MAPK capaz de bloquear la fosforilación de E2F4 humano en su residuo Thr248 y/o Thr250) será generada por síntesis química o mediante clonación de la secuencia de ADNc en un plásmido que pueda generar vectores adecuados para terapia génica.

En este último caso, la secuencia codificante debe amplificarse previamente con una enzima termoestable y con capacidad proof-reading a partir de ADNc derivado del ARNm obtenido previamente de una línea celular o de un tejido de origen humano. Para clonar la secuencia se usan primers en los que se han incluido las dianas de restricción compatibles con el polilinker del vector elegido para su clonación. La elección de dicho vector se hace en base al procedimiento usado en el EJEMPLO 4 para introducir la secuencia elegida en las células diana. Una vez clonada la secuencia se realiza un proceso estándar de mutagénesis dirigida conducente a modificar específicamente el codón ACT codificante de la Thr248 y/o Thr250 para transformarlo en un codón específico de cualquier aminoácido excepto Glu o Asp. El plásmido así generado se co-transfecta en una línea celular apropiada capaz de empaquetar el vector de interés.

2) Expresión de la molécula bloqueante de la fosforilación del factor de
transcripción E2F4 humano en las células diana

En aquellas células en las que está activa la vía de señalización p38MAPK-E2F4 se espera que p38MAPK resulte inhibido al unirse al exceso de moléculas de que mimetizan la forma de E2F4 mutada, capaz de interaccionar con p38MAPK pero incapaz de ser fosforilada. De este modo se bloquea el proceso de endoreduplicación en dichas células. Las moléculas bloqueantes pueden ser expresadas por las mismas células diana si son transferidas en forma de ADN (usando vectores apropiados tales como los lentivirus, p. ej.). Alternativamente, las moléculas bloqueantes pueden ser transferidas mediante péptidos capaces de atravesar la membrana celular con mayor o menor especificidad de tipo celular diana.

A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.

DESCRIPCIÓN DE LAS FIGURAS

FIGURA 1. Estructura, dominios funcionales y conservación de secuencias del factor de transcripción E2F4. En la figura se ilustran la comparación entre las secuencias aminoácidas de los factores de transcripción E2F4 humano (H. sapiens), del ratón (M. musculus), del pollo (G. gallus), del sapo Xenopus laevis (X. laevis) y del pez cebra (D. rerio). Se indican también los distintos dominios funcionales conocidos, que incluyen la región de unión al ADN (DB), el dominio de dimerización (DIM), la "marked box" (MB) y el dominio de transactivación (TA). Se indica también la región que incluye las Thr248 y Thr250 de la secuencia humana conservadas en las otras especies (indicado por pequeños rectángulos): Thr249 y Thr251 en la secuencia del ratón, Thr 261 y Thr263 en la secuencia del pollo, Thr228 en el sapo y Thr217 en el pez cebra. A esta región la denominamos
dominio regulador (RD). Los aminoácidos conservados completamente en el dominio regulador se indican con un punto.

FIGURA 2. La activación de p38MAPK nuclear en respuesta a NGF es necesaria para la reactivación del ciclo en cultivos neurogénicos de células de retina de embrión de pollo en E6. Estas células responden a NGF induciendo la reactivación del ciclo celular que conduce a la tetraploidía somática (endoreduplicación) (Morillo et al., 2010). A. Western blot con anti-p38MAPK activo (P-p38MAPK) y anti-p38MAPK en extractos nucleares de los cultivos neurogénicos mencionados tratados durante el tiempo indicado con 100 ng/ml NGF. Los ratios normalizados (Normalized ratio) entre los niveles de P-p38MAPK y p38MAPK se indican en la base. B. Tinción inmunocitoquímica con anticuerpos anti-p38MAPK activo (P-p38MAPK) en los cultivos neurogénicos mencionados tratados con 100 ng/ml NGF durante 20 min. Los nucleos se marcaron con bisbenzimida (Bisb.). Nótese el aumento de señal en el nucleo de las células tratadas con NGF. C. Ensayo de luciferasa en extractos de cultivos neurogénicos de células de retina de embrión pollo E6 transfectadas con un plásmido que expresa luciferasa bajo el control del promotor del gen cMyc, conocido por su respuesta a E2F durante la transición G1/S, y otro plásmido con expresión constitutiva de β-galactosidasa. Los valores de la ratio luciferasa/ β-galactosidasa se representan como “Actividad luciferasa”. El tratamiento con 100 ng/ml NGF supone la activación del promotor cMyc, indicio de reactivación del ciclo celular. Este efecto se bloquea con el inhibidor selectivo de p38MAPK SB203580 (usado a 5 μM). D. Incorporación de BrdU, como indicativo de entrada en fase S, en cultivos neurogénicos de células de retina de embrión pollo E6. El tratamiento con 100 ng/ml NGF supone el incremento en la proporción de células en fase S, efecto bloqueado por el inhibidor selectivo de p38MAPK SB203580 (usado a 5 μM), pero no por el inhibidor selectivo de JNK SP600125 (usado a 7 μM). *p<0.05; ***p<0.005 (Test t de Student)

FIGURA 3. Fosforilación de E2F4 en residuos treonina promovida por NGF en cultivos neurogénicos de células de retina de embrión de pollo en E6. En la parte superior se muestra un western blot realizado con anticuerpos anti-fosfoThr (αp-
Thr) en extractos inmunoprecipitados con anticuerpos anti-E2F4, procedentes de los cultivos indicados tratados con diferentes combinaciones de 100 ng/ml NGF y el inhibidor selectivo SB203580 (usado a 5 μM). En la parte inferior se muestra un western blot realizado con anticuerpos anti-E2F4 en los mismos extractos sin inmunoprecipitar (INPUT). Puede observarse cómo la presencia de NGF supone el incremento en la fosforilación en residuos treonina, en tanto que la presencia del inhibidor de p38MAPK inhibe tal fosforilación.

FIGURA 4. La fosforilación de E2F4 en los residuos Thr261/Thr263 es capaz de inducir reactivación del ciclo en cultivos neurogénicos de células de retina de embrión de pollo en E6. A. Actividad luciferasa analizada tal y como se describe en la Figura 2C. La expresión de la forma constitutivamente activa de E2F4 (E2F4-CA), caracterizada por las sustituciones Thr261Glu/Thr263Glu, induce la actividad del promotor cMyc, efecto observable incluso en presencia del inhibidor selectivo de p38MAPK SB203580 (usado a 5 μM). B. La incorporación de BrdU se incrementa significativamente en células transfectadas con la forma constitutivamente activa de E2F4 (E2F4-CA), efecto observable incluso en presencia del inhibidor selectivo de p38MAPK SB203580 (usado a 5 μM). De los resultados mostrados en los paneles A y B se deduce que p38MAPK actúa exclusivamente a través de los residuos Thr261/Thr263. C. Actividad luciferasa analizada tal y como se describe en la Figura 2C. La expresión de la forma dominante negativa de E2F4 (E2F4-DN), caracterizada por las sustituciones Thr261Ala/Thr263Ala, previene el efecto de 100 ng/ml NGF sobre la actividad del promotor cMyc. D. La expresión de la forma dominante negativa de E2F4 (E2F4-DN), previene el efecto de 100 ng/ml NGF sobre la incorporación de BrdU en los cultivos neurogénicos de retina.

FIGURA 5. Esquema del procedimiento de clonación de la secuencia codificante de E2F4 en un plásmido que permita la generación de un vector apropiado para terapia génica (lentivirus, etc.), por ejemplo. El ARNm obtenido a partir de células o tejido humano se convierte en ADNc utilizando una transcriptasa reversa. La secuencia codificante de E2F4 humano se representa como un rectángulo gris en el que se indica la posición del codón codificante de la Thr 248. Este codón está
flanqueado por dos dianas de restricción específicas (C y D). Se diseñan dos primers a partir de la secuencia de los extremos de la región codificante con una diana de restricción específica en sus extremos 5' (A y B). Estas dianas aparecen también en el polilinker del vector de expresión, y son usadas para la clonación de la secuencia codificante de E2F4 en dicho vector. P: promotor encargado de la transcripción de la proteína E2F4. pol: secuencia de poliadenilación usada para introducir una cola poli(A) en el ARNm generado por el vector.

FIGURA 6. Esquema del procedimiento de mutagénesis de la secuencia codificante de E2F4. Se diseñan una pareja de primers externos que flanquean las dianas de restricción C y D (flechas externas) y otra pareja solapante de primers internos que incluyen en su secuencia el codón de Thr248 mutagenizado (flechas internas). Se realizan dos reacciones de amplificación por PCR con DNA polimerasa Pfu y los productos de la reacción se desnaturalizan conjuntamente. Después de renaturalizar el ADN se obtienen, entre otras posibilidades, la situación indicada en el esquema. La extensión con DNA polimerasa Pfu crea doble hélices de ADN con las secuencias de los primers externos en sus extremos. Estas secuencias se amplifican exponencialmente con dichos primers resultando en fragmentos de ADN con la Thr248 mutagenizada en Ala, flanqueada por las dianas de restricción C y D. La secuencia que contiene la mutación se puede subclonar en el vector de expresión usando para ello las dianas de restricción C y D.

BIBLIOGRAFÍA

- Deschênes et al. 2004 “The Nucleocytoplasmic Shuttling of E2F4 Is Involved in the Regulation of Human Intestinal Epithelial Cell Proliferation and Differentiation”.

15 EJEMPLOS

Los siguientes ejemplos específicos que se proporcionan en este documento de patente sirven para ilustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma.

EJEMPLO 1 - Clonación de la secuencia codificante de E2F4 humano

La secuencia codificante de E2F4 humano (posiciones 64-1305 de la secuencia con número de acceso en el NCBI: NM_001950) (SEQ ID No 4) se clona en un plásmido que pueda generar vectores adecuados para terapia génica (vectores lentivirales, por ejemplo). La secuencia codificante debe amplificarse previamente con la enzima ADN polimerasa Pfu a partir de ADNc derivado del ARNm obtenido previamente de una línea celular o de un tejido de origen humano. Para clonar la secuencia se usan primers en los que se han incluido las dianas de restricción EcoRV y PacI (subrayadas en las secuencias indicadas al pie de este párrafo) compatibles con el poli-linker del vector de expresión lentiviral (ver esquema.
simple de dicho vector en la Fig 5, la diana EcoRV se correspondería con A y la diana PacI se correspondería con B en dicho esquema). Ejemplos de estos oligonucleótidos son los siguientes:

5 SEQ ID No 5: Oligo 5’-CAACAGATATCATGGCGAGGCCGAGCCACA-3’
SEQ ID No 6: Oligo 3’-CCATTAAATTAGGGTCCAGCCACACAGGGC-3’

Correspondientes el primero a los nucleótidos en posición 64-83 y complementario el segundo a los nucleótidos en posición 1319-1338 de la secuencia de E2f4 humano.

El amplificado así obtenido se clona en el vector pGEM-Teasy (Promega), el cual no posee dianas de restricción EcoRV o PacI, en el que se realizará la mutagénesis dirigida descrita en el punto 2.

15 EJEMPLO 2 - Mutación de la Thr248 (la mutación de la Thr250 puede hacerse mediante un procedimiento similar una vez generada la mutación Thr248Ala)

Una vez clonada la secuencia de E2f4 humano en el vector pGEM-Teasy se diseñan oligonucleótidos en la región comprendida entre las posiciones 731-754 de la secuencia codificante de E2f4 humano, correspondiente a la SEQ ID No 4. Estos oligonucleótidos incluyen el codón ACT codificante de la Thr248 (en la posición 742-744 de la secuencia codificante de E2f4 humano) mutado como codón específico de Ala (secuencia GCT). Ejemplos de estos oligonucleótidos pueden ser:

SEQ ID No 7: Oligo 5’mutado: 5’-TCAGCTCGTCCCACTGCTG-3’ (posición 735-754).
SEQ ID No 8: Oligo 3’mutado: 5’-CAGTGGGAGCGAGCTGAGGA-3’ (posición 732-751).

Estos oligonucleótidos (que contienen la mutación subrayada) serán usados como primers de dos reacciones independientes indicadas en la Fig. 6. Para estas reacciones se diseña otra pareja de primers que flanquean las dianas de
restricción de la enzima BspEI (indicadas como C y D en la Fig 6). En la secuencia del ADNc codificante para E2F4 humano existen dos dianas BspEI en las posiciones 374-379 y 979-984, con secuencia TCCGGA. Ejemplos de estos primers pueden ser:

SEQ ID No 9: Oligo 5’ no mutado: 5’-AAGGTGTGGTGCAGCAGAG-3’ (posición 352-371).
SEQ ID No 10: Oligo 3’ no mutado: 5’-GGTCTGCCTTGGATGGGCTCA-3’ (posición 1005-1025).

Posteriormente se realizan dos reacciones de amplificación por PCR con DNA polimerasa Pfu tal como se indica en el esquema de la Fig. 6 (Oligo 5’ no mutado con Oligo 3’mutado y Oligo 5’mutado con Oligo 3’ no mutado), y los productos de la reacción se desnaturalizan conjuntamente. Después de renaturalizar el ADN se obtienen, entre otras posibilidades, la situación indicada en el esquema de la Fig. 6. La extensión con DNA polimerasa Pfu de estos híbridos crea doble hélices de ADN susceptibles de ser amplificados con primers externos (Oligo 5’ no mutado y Oligo 3’ no mutado; ver Fig. 6). De este modo se obtienen fragmentos de ADN con la Thr248 mutagenizada en Ala, flanqueada por las dianas de restricción C y D (ver Fig. 6). La secuencia que contiene la mutación se puede subclonar entonces en el plásmido pGEM-Teasy generado en el punto 1, usando para ello las dianas de restricción C y D (BspEI). Después de secuenciarse los clones modificados se selecciona uno en el que la secuencia se haya incorporado en la orientación adecuada.

EJEMPLO 3 - Generación de vectores para terapia susceptibles de infectar el sistema nervioso

El plásmido pGEM-Teasy con la secuencia codificante de E2F4 humano mutada (T248A) se corta con las enzimas EcoRV y Pacl para liberar dicha secuencia y se subclona en el vector de expresión lentíviral pSMPUW-Hygro (Cell Biolabs, Inc.) en su poli-linker que contiene las dianas EcoRV y Pacl. El vector así generado se co-transfектa en una línea celular apropiada capaz de empaquetar el vector de interés.
EJEMPLO 4 - Expresión de la forma mutada de E2F4 en células diana

En aquellas neuronas o miocitos en los que está activa la vía de señalización p38MAPK-E2F4 se espera que p38MAPK resulte inhibido al unirse al exceso de moléculas de E2F4 mutado, al igual que hemos observado en neuronas en proceso de diferenciación tratadas con NGF. De este modo se bloquea el proceso de endoreduplicación en dichas células. Dado que la fosforilación de E2F4 en su Thr248 no participa en otras funciones celulares excepto la endoreduplicación, su presencia en otras células no debería tener efectos colaterales.
REIVINDICACIONES

1. Un agente inhibidor de la fosforilación por p38MAPK del factor de transcripción E2F4 en su Thr248 y/o Thr250, para su uso en la prevención y/o tratamiento de una patología asociada a la poliploidía somática.

2. El agente inhibidor según la reivindicación 1, caracterizado porque es una forma mutante del factor de transcripción E2F4 con SEQ ID No: 1.

3. El agente inhibidor según las reivindicaciones 1 y 2, caracterizado porque dicha forma mutante del factor de transcripción E2F4 con SEQ ID No: 1, presenta una sustitución en Thr248 y/o Thr250 por un aminoácido no susceptible de ser fosforilado por p38MAPK.

4. El agente inhibidor según las reivindicaciones 1 a 3, caracterizado porque dicho aminoácido no susceptible de ser fosforilado es Alanina.

5. El agente inhibidor según la reivindicación 1, caracterizado porque es un fragmento de E2F4 comprendido en SEQ ID No: 1, con idéntica capacidad de interferir con la fosforilación por p38MAPK de E2F4 endógeno.

6. El agente inhibidor según la reivindicación 1, caracterizado porque es una forma de E2F4 de otra especie con mutaciones en las Thr conservadas.

7. El agente inhibidor según la reivindicación 6, caracterizado porque dicha forma de E2F4 de otra especie se selecciona entre SEQ ID No 2 y/o SEQ ID No 3.

8. El agente inhibidor según la reivindicación 1, caracterizado porque es una molécula sintética que mimetiza la forma mutante del factor de transcripción E2F4 de SEQ ID No: 1, con una sustitución por Alanina en Thr248 y/o Thr250.

9. El agente inhibidor según las reivindicaciones 1 a 8, caracterizado porque dicha poliploidía somática se produce por endoreduplicación en células
postmitóticas.

10. El agente inhibidor según las reivindicaciones 1 a 9, caracterizado porque dichas células postmitóticas son neuronas y/o miocitos.

5

11. El agente inhibidor según las reivindicaciones 1 a 10, caracterizado porque dicha patología asociada a la poliploidía somática se selecciona de entre el siguiente grupo: enfermedad neurodegenerativa, isquemia, cardiomiopatía hipertrófica, patología vascular asociada a la hipertensión y envejecimiento.

10

12. El agente inhibidor según las reivindicaciones 1 a 11, caracterizado porque dicha patología asociada a la poliploidía somática es una enfermedad neurodegenerativa.

15

14. Un método de prevención y/o tratamiento de una patología asociada a la poliploidía somática, caracterizado porque comprende la administración al paciente de una cantidad terapéuticamente efectiva de un agente inhibidor de la fosforilación del factor de transcripción E2F4 de SEQ ID No: 1, en su Thr248 y/o Thr250.

15. El método de prevención y/o tratamiento según la reivindicación 14, caracterizado porque dicho agente inhibidor se encuentra comprendido en un péptido o proteína asociado a otro péptido permeable a la membrana celular que facilita su incorporación al interior celular.

16. El método de prevención y/o tratamiento según la reivindicación 14, caracterizado porque dicho agente inhibidor se encuentra comprendido en un vector capaz de infectar neuronas y/o miocitos.

17. El método de prevención y/o tratamiento según la reivindicación 16, caracterizado porque dicho vector es un vector viral.
18. El método de prevención y/o tratamiento según la reivindicación 17, caracterizado porque dicho vector viral es un lentivirus.

19. Uso de un agente inhibidor de la fosforilación por p38MAPK del factor de transcripción E2F4 en su Thr248 y/o Thr250, en la prevención y/o tratamiento de una patología asociada a la poliploidía somática.
FIG. 1
FIG. 2

A

Extracto nuclear

<table>
<thead>
<tr>
<th></th>
<th>0 min</th>
<th>10 min</th>
<th>30 min</th>
<th>120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p38MAPK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-p38MAPK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ratio normalizada: 1.00 3.42 6.30 7.09

B

Control

NGF (20 min)

C

Actividad luciferasa

<table>
<thead>
<tr>
<th></th>
<th>Vehículo</th>
<th>SB203580</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Actividad luciferasa</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

D

% núcleos BrDU+

<table>
<thead>
<tr>
<th></th>
<th>Vehículo</th>
<th>SB203580</th>
<th>SP600125</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>% núcleos BrDU+</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 3

IP: αE2F4

NGF

SB203580

αp-Thr

INPUT

αE2F4

HOJA DE SUSTITUCION (REGLA 26)
FIG. 4

A

Actividad luciferasa

control E2F4-CA control E2F4-CA

vehículo SB203580

B

% BrdU

control E2F4-CA control E2F4-CA

vehículo SB203580

C

Actividad luciferasa

vehículo NGF vehículos NGF

control E2F4-DN

D

% BrdU

vehículo NGF vehículos NGF

control E2F4-DN

HOJA DE SUSTITUCION (REGLA 26)
FIG. 5

Células o tejido humano
↓
ARNm
↓
ADNc

↓ PCR

HOJA DE SUSTITUCION (REGLA 26)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K, A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:
 * A* document defining the general state of the art which is not considered to be of particular relevance.
 * E* earlier document but published on or after the international filing date
 * L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * O* document referring to an oral disclosure use, exhibition, or other means.
 * P* document published prior to the international filing date but later than the priority date claimed

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
20/02/2013

Date of mailing of the international search report
28/02/2013

Name and mailing address of the ISA/

OFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Facsimile No.: 91 349 53 04

Authorized officer
J. Collado Martínez
Telephone No. 91 3493095

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

C (continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of documents, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6303335 B1 (BERNARDS RENE et al.) 16/10/2001, especially column 3, line 36-column 4, line 59; column 16; column 18, lines 1-33; figures 1A-1, 2.</td>
<td>1-19</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in the search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JPH10509035 A</td>
<td>08.09.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO9615243 A1</td>
<td>23.05.1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0792359 A1</td>
<td>03.09.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2221495 A</td>
<td>06.06.1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU709319 B2</td>
<td>26.08.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT414148 T</td>
<td>15.11.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004127471 A1</td>
<td>01.07.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2006502188 A</td>
<td>19.01.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1558268 A2</td>
<td>03.08.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2499599 A1</td>
<td>01.04.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2003272539 A1</td>
<td>08.04.2004</td>
</tr>
</tbody>
</table>
CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>Classification</th>
<th>Subclass</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61K38/17</td>
<td></td>
<td>2006.01</td>
</tr>
<tr>
<td>A61P23/28</td>
<td></td>
<td>2006.01</td>
</tr>
<tr>
<td>A61P9/10</td>
<td></td>
<td>2006.01</td>
</tr>
</tbody>
</table>
Este informe de búsqueda internacional no se ha realizado en relación a ciertas reivindicaciones según el artículo 17.2.a) por los siguientes motivos:

1. ☒ Las reivindicaciones n°: 14-19
 se refieren a un objeto con respecto al cual esta Administración no está obligada a proceder a la búsqueda, a saber:

 Las reivindicaciones 14-19 se refieren a una materia que esta Administración considera afectada por las disposiciones de la Regla 67. 1 (iv) PCT, relativa a un método de tratamiento terapéutico del cuerpo humano o animal. A pesar de ello, se ha efectuado una búsqueda para estas reivindicaciones basada en los efectos atribuidos a los agentes inhibidores de la invención.

2. ☒ Las reivindicaciones n°: 1 (parcialmente)
 se refieren a elementos de la solicitud internacional que no cumplen con los requisitos establecidos, de tal modo que no pueda efectuarse una búsqueda provechosa, concretamente:

 La reivindicación 1 tiene por objeto un agente inhibidor de la fosforilación por p38 MAPK del factor de transcripción E2F4 en su Thr248 y/o Thr250. Por lo tanto, el agente inhibidor se ha caracterizado exclusivamente por la función que dicho compuesto ha de cumplir, pero no se ha identificado como una entidad o conjunto de entidades químicas concretas. Por ello, se considera que el objeto reivindicado no alcanza a cumplir los requisitos de claridad del Artículo 6 del PCT, hasta tal extremo que resulta imposible llevar a cabo una búsqueda significativa basada en la reivindicación 1, tal y como ésta ha sido redactada.

 En base a lo anterior, esta Administración ha restringido la búsqueda a polipéptidos, constituidos por formas mutantes del factor de transcripción E2F4 de secuencia SEQ ID No: 1, 2 ó 3, adecuados como inhibidores de la fosforilación por p38 MAPK del factor de transcripción E2F4 endógeno en su Thr248 y/o Thr250 en los términos descritos en la solicitud.

3. ☒ Las reivindicaciones n°: 3, 4, 9-13
 son reivindicaciones dependientes y no están redactadas de conformidad con los párrafos segundo y tercero de la regla 6.4(a).
A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD
Ver Hoja Adicional

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
A61K, A61P

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
EPDOC, WPI, TXTUS, INVENES, EMBL-EBI, GOOGLE SCHOLAR

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría*</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para la reivindicaciones n°</th>
</tr>
</thead>
</table>

* Categorías especiales de documentos citados:
 "A" documento que define el estado general de la técnica no considerado como particularmente relevante.
 "E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.
 "L" documento que puede plantear dudas sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).
 "O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.
 "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.
 "T" documento ulterior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.
 "X" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.
 "Y" documento particularmente relevante; la invención reivindicada no puede considerarse que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.
 "&" documento que forma parte de la misma familia de patentes.

Fecha en que se ha concluido efectivamente la búsqueda internacional.
20/02/2013

Fecha de expedición del informe de búsqueda internacional.
28 de febrero de 2013 (28/02/2013)

Nombre y dirección postal de la Administración encargada de la búsqueda internacional
OFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Nº de fax: 91 349 53 04

Funcionario autorizado
J. Collado Martínez
Nº de teléfono 91 3493095

Formulario PCT/ISA/210 (segunda hoja) (Julio 2009)
<table>
<thead>
<tr>
<th>Categoría</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las reivindicaciones nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DOCUMENTOS CONSIDERADOS RELEVANTES</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A US 6303335 B1 (BERNARDS RENE et al.) 16/10/2001, especialmente columna 3, línea 36-columna 4, línea 59; columna 16; columna 18, líneas 1-33; figuras 1A-1, 2.</td>
<td>1-19</td>
</tr>
<tr>
<td>A</td>
<td>A WO 2004026246 A2 (UNIV NEW YORK ET AL.) 01/04/2004, Familia de documento citado por el solicitante. Especialmente resumen; páginas 2-4, 19-21.</td>
<td>1-19</td>
</tr>
<tr>
<td>Documento de patente citado en el informe de búsqueda</td>
<td>Fecha de Publicación</td>
<td>Miembro(s) de la familia de patentes</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JPH10509035 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO9615243 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0792359 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2221495 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU709319 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT414148 T T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004127471 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2006502188 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1558268 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2499599 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2003272539 A1</td>
</tr>
</tbody>
</table>
CLASIFICACIONES DE INVENCIÓN

A61K38/17 (2006.01)
A61P25/28 (2006.01)
A61P9/10 (2006.01)