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ntroductionI

GENERAL THOUGHTS ON TEST

Today, we, in the first world, are surrounded by an incredible number of integrated cir-

cuits. They fulfil many different tasks and there is no industrial sector that can remain free of

electronics. As an example, we could cite a well-known sports brand that has introduced a

running shoe with a microprocessor that calculates the exact amount shock absorption that

the runner needs.

This tremendous development relies on a law that everybody among the electronics

players have struggled to maintain: Moore’s Law [1]. However, the cost that has to be paid to

follow this geometric evolution is increasing at a rate that is not sustainable. That is in part

due to the fact that integrated circuits have to be sold at a reasonable price point. And conse-

quently, their production costs have to remain bounded. Nevertheless, the ever increasing

complexity of ICs has brought a component of the production costs to a bottleneck. This cost

component is circuit test.



INTRODUCTION
I • 1 TWO TEST PHILOSOPHIES

The tremendous expansion of electronics is undoubtedly a fruit of our consumption

society where the principal goal of industries is to compete to offer more for less money. In

other words: the customer rules. This is also true in the field of IC test, which is somewhat

driven by end-user considerations. When you buy something, you want some guarantee that

the product will fulfil your need. Translated to the IC test world, the customer has chosen a

given IC on the basis of a datasheet and he wants the specifications to be guaranteed. That is

what sets the basis of functional testing: what you sell is what you test. At first sight it seems

logical to think that the best way to guarantee the specifications is by measuring them.

Nevertheless, we should take into account that the only physical reality is the chip. This

small piece of silicon has been crafted according to a given layout and its functionality is

guaranteed within the normal variations of the fabrication process. A defect is whatever

makes the physical chip go out of the box of the normal process variation. Such a defect can

cause a permanent failure in the circuit (like an open or a short), be totally harmless (like a

dot of extra metal in a clear part of the layout), or even express itself during the useful life of

the circuit (like an oxide pinhole causing an oxide breakdown). From this last consideration

the concept of defect-oriented testing has been born. The goal of such testing is to ensure

that the IC is defect-free. Provided that a defect-free chip is within the normal process varia-

tions, the design specifications are guaranteed by-design. The main drawback of this philos-

ophy is that it is very difficult to ensure that a circuit is defect-free. Actually, it is almost

impossible to search for and detect any possible physical defect. Hence, what is actually

detected by defect-oriented tests are not the physical defects present on the chip but their

local expression at circuit level: in other words the faults that they cause. Historically, test

has been considered mainly as a manufacturing issue. In this context, particle contamination

during the fabrication process is the main source of defect. The interaction of these particles

at the different process steps usually leads to spots of additional or missing material. At cir-

cuit level, these spots are likely to cause either opens or shorts. As a results, the spot defects

that can have an impact on circuit functionality are those that modify the topology of the cir-

cuit either by shorting two node or by opening a conductive path.
2



General thoughts on test
Technological progress cannot be stopped and circuits are nowadays fabricated at the

65nm node. For such a deep-submicron process, considering only contamination-related

spot defects and shorts or opens is not sufficient anymore, even for digital circuits. Neverthe-

less, the quasi-monopoly of spot defects for manufacturing concerns has led to two impor-

tant consequences: i) the defect-oriented tests are often called structural tests has they target

defects that are supposed to alter the circuit topology, ii) opens or shorts have been gathered

into stuck-at (one or zero) and stuck-open faults models that aim to represent their effects on

digital gates. Ideally, defect-oriented test should be associated to a level of confidence, a

defect-coverage that would give a measure of how many defects a given test can detect.

However, such a metric is not possible to extract so simpler one is used: the fault-coverage.

For digital circuits, as the considered faults are often limited to stuck-at and stuck-open, fault

coverage can be evaluated.

For digital ICs, structural test techniques have been adopted widely by the industry for

three main reasons. One of them is that tools are available to evaluate the fault-coverage of

the different structural tests. Another powerful reason is that there is just no alternative: the

functionality of today complex digital systems is so wide that it is impossible to make an

exhaustive validation. It would take too much time to test all the possible combinations and

sequences in sequential circuits, and time is a key parameter in a production line. The cost of

test is directly proportional to test time and is not mitigated by high volumes as could be the

cost of test instrumentation. The last reason is that some generic and reusable structural test

techniques exist. Automatic Test Pattern Generators (ATPGs) are able, as the name indi-

cates, to generate automatically a number of input sequences (the test patterns) that maxi-

mize the detection of stuck-at faults in a circuit. In order to improve the accessibility and

observability of digital circuits, that is inherently limited to the number of pads, the so-called

boundary –scan technique has been introduced and formalized in the IEEE 1149.1 test bus

[2]. At last, Built-In Self-Test (BIST) techniques are also available that integrate the

resources required to test a circuit on the same chip. Ideally, the chip only requires a control

signal to start the test and outputs a pass/fail decision.

On the other hand, the analog and mixed-signal realm has not reached the point where

functional test is impossible. The reason for this is that the difficulty of analog test is not

driven by functional complexity but by performance [3]. While it is possible to manufacture
3



INTRODUCTION
industrial test equipment of higher performance than the circuit under test, functional test

will be the preferred solution for the industry. It was said at the ITC [5] that, for a defect-ori-

ented test to succeed in a production environment, it should:

◆ Enable testing mixed-signal circuits blocks or ICs in parallel, and provide test time

savings greater than the extra silicon cost, or

◆ Enable use of a lower-cost tester whose capital and/or operating cost savings are

greater than the extra silicon cost (if the whole chip can be tested on the tester), or

◆ Enable testing a performance that is otherwise untestable, and which must be tested.

As was said above, what is sold to the customer is a piece of silicon and a datasheet.

What the customer wants is that the datasheet specifications are fulfilled. A conceptual hitch

in this thought is that the functional measurements are realized at a given instant while the

specifications have to be guaranteed over time. If reliability tests are performed (like burn-in

tests), some confidence can be gained that the circuit should work properly during a given

period. But this is just a matter of probability and in-field failure can still occur. It seems nat-

ural and intuitive to associate a 100% confidence to a functional test, but this is erroneous: A

circuit that fulfils all the datasheet specifications may still present a defect.

Although the SIA roadmap has already pointed out that these systems will face serious

test problems, industry is still reluctant to adopt defect-oriented test solutions. As was said

above, this is because functional testing is still possible in many cases and the customer is

more comfortable with that. Despite the intents to extend digital test bus capabilities to ana-

log [6,7], there are still no re-usable analog test techniques whose defect-coverage can be

easily evaluated. Actually test quality evaluation is a cornerstone to the move toward defect-

oriented test.

I • 2 THE DIFFERENT TEST NEEDS

It is not a trivial task to determine the test needs of Σ∆ converters. Indeed, these circuits

appear in a wide variety of applications each of which puts the emphasis on a particular

aspect.

The principle of operation of Σ∆ converters consists of trading signal bandwidth for res-

olution. As a consequence, it was first applied to the low-frequency/high resolution segment
4



General thoughts on test
of the ADC market. This segment includes applications like geophysics and seismology

measurements, where resolutions as high as 24bits can be found for signals below 2Hz, and

also DC instrumentation. Then sigma-delta converters extended to the audio range (up to

44kHz for music CD) and will surely be the preferred solution for the audio DVD standard.

In order to benefit from technology scaling, the industry has been pushing this digital-

friendly conversion type. That is why Σ∆ converters can now be found in communication

applications like ADSL or ADSL+ and research is even underway to extend Σ∆ modulation

capability to radio-frequency front-ends. In addition, simple sigma-delta converters are also

being considered as a good candidate for Analogue Response Extractors in Mixed-Signal

Design-for-Testability (DfT) schemes [8]. Several DfT schemes have been proposed in the

last few years that involved Σ∆ converters [9]. Nevertheless, in [10], Cheng pointed that such

embedded DfT modulators should also be tested in order to guarantee the validity of the

extraction.

I • 2 . 1  Test across circuit life-cycle

Despite the fact that test needs are application-specific they can still be described simi-

larly across the circuit life cycle [4]. This life cycle is depicted in Figure  I-1

◆ Design.

Though it is far from being a systematic industrial practice, test experts claim that it

is of utmost importance to consider Circuit testing in early phases of the design.

That does not necessarily mean that special DfT features will be introduced in the

design. Rather, because the designer gains a deep knowledge of the circuit during

the design phase, he is probably the most skilled to know how the circuit should be

tested. Indeed, for validation purposes, he will have to set a simulation test bench

up. This information may be of interest for further exploitation. The introduction of

DfT in the circuit also represents some extra design effort. Nevertheless, the cost

associated with this effort may be reduced via systematic (reusable) approaches.
5
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General thoughts on test
◆ Prototyping / first silicon validation.

Once the design has been accepted, a first prototype is fabricated and a small num-

ber of samples is submitted to exhaustive characterization. The goal is to validate

the design; here, the complexity and test time is not a major concern. The most

important thing at this stage is to guarantee that the design fulfils all the specifica-

tions for any process within the normal variability. Hence, DfT may not have so

much impact at this point. Nevertheless, if DfT enables extra diagnosis capability, it

may help debugging the design and proposing new solutions.

◆ Wafer probe / burn-in

After the necessary redesign cycles, the circuit is sent to production, and circuit test

costs are focused on volume concerns. The first production test is known as wafer-

probe. The recently fabricated wafer is introduced in a handler and interfaced to an

ATE via a probe card. The circuits on the wafer are contacted, usually using bed of

nails fixtures. More concretely, needles contact on the circuit pads. At this stage, it

is very important to keep the test time as low as possible, as it will limit the produc-

tion line throughput. Moreover, wafer-probe intends to detect the major number of

defective parts before packaging. Indeed, the packaging operation represents an

important cost. Hence, wafer probe allows one to save the money related to the

packaging of defective parts. Nevertheless, circuit testing at this stage is quite lim-

ited due to the parasitics introduced by the probe. For instance, at-speed testing is

difficult to implement, which limits the test coverage. Hence, DfT schemes focus on

improving test time or test coverage.

◆ Package test

Once the circuits are within the package, their handling is easier and they can also

be tested in conditions closer to their final operation. In particular, extra circuitry

can easily be included on the test board close to the pins. This test can thus detect

the defective parts that were not detected during wafer probe, but also the parts

which have been damaged by packaging. Anyway, the concerns are the same as for

wafer probe test, in terms of test time and test coverage.
7



INTRODUCTION
Nevertheless, the type of product will greatly influence the package test. Indeed, a

sigma-delta modulator can be integrated as a standalone part and all its inputs and

outputs are available. However, the modulator may be integrated together with its

corresponding decimation filter, such that the modulator bit stream is not available

and the high frequency noise shaping cannot be studied directly. The limitations are

even worse for product types that have been gaining much interest in the last few

years such as System-on-Chip (SoC) and System-in-Package (SiP). In these cases, a

complex system is integrated on a single die for the former and on several dies but

in a single package for the latter. In the case of a modulator, it could be integrated,

for instance, together with a sensor, a decimation filter, a complex DSP, and some

memory. In that case, DfT is mandatory as it becomes very difficult to check

exhaustively the functionality of the system (just like for digital systems) and nei-

ther the modulator inputs nor outputs are available.

◆ Burn in

In order to ensure the quality of the device, a burn-in test is performed. The reliabil-

ity of a circuit can be compromised by defects that cannot be detected under normal

test conditions. For example, a defect could stretch a metal line without causing an

open. Nevertheless, electromigration may cause an open at that point during the cir-

cuit life. Burn-in test consists of putting the circuit under conditions that tend to

accelerate the expression of latent defects. Normally, the circuit is operated at a tem-

perature and polarization above the maximum specified. Normally, reliability

defects are associated with an activation energy, and increasing the operating tem-

perature is equivalent to accelerate the aging of the circuit.

◆ System test

Finally, when the circuit is introduced into a complex system, the components of the

system are likely to be tested. At a minimum, the system functionality is verified,

which implicitly comprises the components functionality. Any DfT feature at com-

ponent level that could ensure proper operation and help diagnosis would be very

valuable. Indeed, system assembly may have caused some components to fail. This
8



General thoughts on test
is the last test step before the product is shipped to the customer so it is of interest to

be able to repair the system by replacing defective components.

◆ In-field test

In some cases, where a circuit failure could have disastrous consequences, in-field

test could be valuable. Application fields such as automotive, spatial applications,

medical instrumentation or oilfield prospecting are possible candidates. In-field test-

ing is usually very difficult to perform, as the required test resources are usually nei-

ther available in the field of operation, nor possible to implement within the system.

Hence, in a majority of cases, only a clever DfT strategy could enable in-field test-

ing. Notice that two important categories have to be distinguished. The first one

gathers the strategies that allow one to test the circuit when it is idle, for example at

powering-up. The second one gathers the solutions that enable concurrent testing

which consists of performing the test without stopping the circuit’s normal opera-

tion. These solutions are much more difficult to find and usually much less afford-

able than the first ones. Indeed, they are likely to imply some kind of redundancy

and may have an important impact on area, performance and/or power consump-

tion.

◆ Maintenance

Maintenance is a different problem to that of in-field testing. Indeed, test resources

are normally available but the key objective is to diagnose which part of the system

is failing and not only to detect the failure. For complex systems involving a great

number of components and even different technologies (electronics, optics, MEMS,

sensors …) this task could become very tricky. Hence, DfT could bring an impor-

tant added value to system debugging. To an ideal extent, every components could

be made self-testable and system diagnosis would only consist of reading the failure

flags sent by the components. Maintenance and diagnosis is of utmost importance in

automotive applications, as cost is a great concern and total system replacement

may not be affordable.
9



INTRODUCTION
Ideally, for a given application, a test cost function should be built, taking into account

all of the aspects described above. For instance, a very stringent test may detect almost all

defective parts at the expense of also rejecting some of the good parts. For an application

with relatively low volume but with strong quality and reliability requirements, this could be

affordable. Indeed, the cost of the consequences of a defective part shipped as a good part

may outweight the cost of the test-related yield loss. The latter cost can easily be calculated,

but the former cost includes several concepts that are difficult to describe accurately and may

be more related to the company business model than to simple production aspects: mainte-

nance cost, replacement cost, and also impact on the company image, relation with the yield

learning curve (process quality), etc. It is obviously not the same to manufacture a chip for a

communication satellite application as for a low cost toy.

I • 2 . 2  Enhancing testability

Four parameters can be considered as critical across the different test points:

◆ test time

◆ test coverage

◆ cost of external resources

◆ limited access to circuit nodes (including in some cases the primary input and out-

put)

The International Technology Roadmap for Semiconductors [11] urges that Design-for-

Testability (DfT) for Analog and Mixed-Signal circuits be investigated to overcome these

shortcomings. Some research areas are sketched:

◆ Increase accessibility and observability: structured methodology should be provided

to input a test stimulus at internal points of the circuit and/or to monitor a given

node. The main objective is to circumvent the SoC specific issues, where even the

inputs and outputs of a circuit are not directly accessible. But the same structures

could be used to access internal circuit nodes and develop new test methodologies

with the purpose of improving test time and/or test coverage. The IEEE 1149.4 ana-
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log test bus standard goes in this direction, though much work is still necessary to

meet the AMS test needs.

◆ Shift part of the characterization equipment on-chip: this would relax the tester and

tester interface requirements, and standard characterization test methodologies

could be used. Nevertheless, in many cases it would be too expensive to implement

high quality instrumentation on-chip. Thus, clever solutions also have to be found to

relax the test signal requirements.

◆ Develop BIST: Built-In Self-Test methods are also a recommended way to tackle

most of the issues specified in the previous paragraph. An ideal BIST method does

not require any external resources apart from control signals and power supplies. In

other words, test stimulus generation, data acquisition, signature calculation and

even test interpretation can be performed on-chip. The most direct benefit of such

an approach is the reduced external resource requirements. Actually, ITRS states

that circuits with BIST facilities may be tested on specialized DfT testers, that only

have to provide clocking, power supply and low (medium)-speed I/O. An additional

benefit is the potential reduction in test time. Despite the fact that the circuit test

time is determined mainly by the measurements performed, the implementation of

BIST methods may enable massively parallel testing, improving the test chain

throughput dramatically. Finally, BIST schemes have to be contemplated in early

phases of the product design, which enables original test methodologies (functional

or structural) which can further reduce test time or improve test coverage.

The ITRS is focused primarily on cost issues related to IC manufacturing, and the issues

and sketched solutions concern production tests. Nevertheless, DfT can also be seen as an

added value for the end user in the large variety of application where reliability monitoring

is of interest.
11
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I • 2 . 3  Two specific topics

The research of alternatives to functional circuit testing has been motivated primarily by

the explosion of manufacturing test costs for digital ICs. Indeed, a functional test has to ver-

ify exhaustively all the circuit functionality and that takes a long time. As all the fabricated

ICs havw to be tested, test time becomes the limiting factor on the production line. As an

example, a combinational circuit with N inputs should be tested for 2N combinations. For a

circuit with 100 inputs it would take about 4x1012 years to perform an exhaustive test at 10

GHz. Needless to say, the case of sequential circuits is even worse. As the cost of testing

complex circuits become significant, much research effort has been focused on reducing test

time while minimizing test escapes. From a manufacturing viewpoint, test is also necessary

to avoid customer returns. Customer returns represent an elevated cost as it usually involves

the cost of part replacement, the cost of repair, the cost of the damages the failure may have

caused, and also the not-so-direct impact on company image. The earlier a defect can be

detected in the circuit fabrication process, the more money is saved. For instance, if a defect

is detected at wafer-probe level, the test saves the cost of packaging this defective cir-

cuit.Nevertheless, test should not be restricted to the manufacturing concern. There are situ-

ations where test suffers other kind of limitations that it would be interesting to address.

I • 2 . 3 . 1  Harsh environment applications

The testability needs for harsh environment circuits are different from production needs:

the testability features represent an added value for the application and thus for the end cus-

tomer, and the defects that are targeted are not (or at least not only) those that appear during

manufacturing but those that are due to environmentally-driven failure mechanisms.

The circuit is readily in the hands of the end-customer and the new focus of test is no

longer to avoid customer returns but to provide added-value. Money can be saved by mini-

mizing the impact of a defect occurring in the field of operation. Indeed, if a failure is

detected early, this enables a quick reaction; fault location, at least at system level, facilitates

maintenance and repair.

In harsh environment applications, circuits are generally not accessible and it is thus

highly unlikely that an operator can realize any test on the system in its field of operation.
12
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Furthermore, the lack of accessibility and observability of circuit inputs and outputs along

with the eventual limitation of communication channels is also a strong drawback to remote

testing. In that context, DfT solutions could be of interest, in particular to detect those para-

metric faults that affect the validity of the system output but cannot be diagnosed externally.

A very appealing DfT solution for these applications is Built-In Self-Test (BIST), which

could potentially enable periodic testing of the device in the field. This obviously lacks the

possibility of detecting transient events occurring during normal operation from which the

circuit recovers but offers the potential of being much more efficient in terms of fault cover-

age, area, power and robustness than concurrent-test solutions.

For analog circuits, a functional full-BIST would be very valuable as it provides an easy

interpretation. Moreover, as functional parameters are estimated, such a BIST scheme could

set the pass-fail limit to the absolute minimum requirements of the application. The counter-

part is that a functional full-BIST requires the implementation of analog test circuitry to pro-

vide (analyze) the input (output) signals, and this analog circuitry has to provide

performance that is superior to the device under test. This requirement is likely to cripple

reliability as the test circuitry could be as sensitive to defects and drifts as the device under

test. The reliability of the BIST circuitry is possibly the major concern of any proposal.

Extra-area may not be as important as for production-oriented BIST because yield is not an

issue. Depending on the application, large test times may also be affordable. Defect-oriented

BIST solutions represent an interesting alternative. However, harsh environments are not

production environments and the nature of defects is thus not the same in both. The faults

caused by these defects may also be different.

A harsh environment can be defined as an environment with parameters that are far from

the norm. Some of these environmental parameters are temperature, pressure, contamina-

tion, humidity, radiation, vibration, and electrical overstress. All the matter resides in defin-

ing what the norm is for these parameters. In the field of electronics, a comfortable definition

of a harsh environment could be any environment for which circuit operation has not been

qualified. For instance, several temperature ranges are defined for different applications. In

principle, a circuit is certified for one of the ranges seen in Table I.
13
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In petroleum and geothermal wells, the temperature may reach +200 to +300˚C. This

can be considered as an even harsher environment than for circuits specified in the military

range. Companies dedicated to well logging are thus often obliged to realize their own qual-

ification process for any component that may be used in such applications. Actually the

operation of a circuit in a harsh environment can be compared to the operation of a circuit

during a reliability test. Indeed, many of these environmental parameters are used as stress

vectors in reliability tests.

Harsh environments are thus more likely to cause failure mechanisms that normally cor-

respond to the circuit end-of-life phase [16,17]. ASICs for harsh environment application

should be designed with the highest reliability requirements in mind. DfT in a harsh environ-

ment context should focus on in-field test capability and target a variety of defects much

broader than production tests [16,17,18]. Spot-like defects like opens or shorts in the differ-

ent material layers can still appear in the field of operation and those production-test tech-

niques that have been developed to detect them still find an application. A well-known

failure mechanism that is related to temperature and aging is electromigration. Electromigra-

tion can cause both opens and shorts. Similarly, other mechanisms that can cause opens

include mechanical stress due to unmatched dilatation coefficients of the different materials

and temperature cycling, corrosion, electrostatic discharges causing local melting ... Shorts

can be due to a variety of phenomena. Electromigration has been seen as a possible cause

but conducting pipes of dopants difused along crystal defects, cracks or pinholes causing

“oxide breakdown” (that can be seen as a short between gate and channel in a transistor) are

Table I: IC qualification temperature ranges

Circuit class
Minimum

temperature
Maximum

temperature

commercial 0ºC 70ºC

industrial -40ºC 85ºC

extended -40ºC 125ºC

military -55ºC 125ºC
14
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also candidates. Serious drawbacks can arise if pinholes only debilitate the oxide, as oxide

breakdown could occur during the active life of the circuit. Oxide breakdown can also be

induced by the environment through an electrostatic discharge or an electrical overstress.

Spot defects that affect circuit topography are likely to have catastrophic consequences.

In many cases, it is not even necessary to carry out simulations to assess the effects of a

given defect. For instance, an open in the power supply line of the amplifier will set its out-

put to a high impedance. A short between the inputs of a differential integrator will also be

catastrophic. However, a short between the gate of a cascode transistor and a supply line in

an amplifier may only produce that transistor to settle in its linear region instead of its satu-

ration region. This could change the amplifier output range and DC gain as well as its

dynamic characteristics while preserving its function. In that sense, parametric defects, that

inherently cause parametric deviations, may have more pernicious effects than catastrophic

spot defects. A circuit that does not work at all is easily detected and some very simple tests

(like DC tests for instance) could suffice. Parametric drifts, in turn, are likely to cause perfor-

mance degradation of the device, bringing it out of specification. In that case, it is much

more difficult to assess wether the circuit under test is faulty or not.

Temperature variation in itself causes a variation of silicon properties. For instance, a

temperature decrease makes the transistors more conductive and thus increases current flow.

This can have both positive and negative effects but necessarily influences the performance

of the device. Similarly, transistor threshold voltages vary with temperature, as do leakage

currents. If a circuit is operated out of the temperature range for which it is specified, the

effects could be dramatic.

Dislocations can affect carrier relaxing time and recombining time and mobility. Ionic

and electronic superficial conduction over the LOCOS (Local Oxide) can provoke the

appearance of unwanted inversion layers. Small ions (as Na+, Cl- and K+) can diffuse rapidly

within Si, modifying the charge density and affecting the threshold voltage of the transistors.

Oxide breakdown (due, for instance, to an electrostatic discharge) may be only partial and

induce a drain-to-source current lower than that predicted. Interstitial states in the interface

of silicon with its oxide can trap electrons and holes, inducing a phenomenon known as

slow-trapping that results in an increase of |Vt| for an NMOS transistor and in a decrease for

a PMOS one. Moreover, these charges are not fixed, and if a low potential is applied to the
15
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transistor gate they can be liberated. This means that such a parametric deviation could be

transient and recover with time. It is obviously a critical test issue that only concurrent test-

ing could solve with certainty. A similar phenomenon is secondary slow trapping. The accu-

mulation of positive charge at the source of NMOS transistors, due to the presence of H+

ions (as function of the process and humidity) effectively lowers the active channel length

and thus increases the threshold voltage.

The effect of radiation on CMOS circuits may also cause parametric defects. The inter-

ested reader is referred to NASA documentation [19] for more details on these effects. In a

rough summary, the effects can be divided in two parts. The first one is related to ionization.

As high energy particles impact the device, pairs of electrons and holes are created in the

substrate and in the active zones. The electrons usually have high mobility and are quickly

swept by electrical fields. That is not the case for holes that may be trapped in silicon/oxide

interface defects, just like for the slow-trapping described before. The variation of the

threshold voltage will thus depend on the Total Ionization Dose received by the device.

Indeed, the effects of ionization are cumulative though some annealing is also possible. The

second part is linked to particles that can produce a high number of electron-hole pairs at a

time, such as heavy ions for instance. In that case, a transient parasitic current is created that

could impact the circuit functionality at the impact instant. For instance, that current could

be sufficient to reset a digital latch. These effects are known as Single-Event Effects and are

very difficult to detect due to their transient nature.

This kind of defect will thus cause parametric deviations of the circuit either at global or

local level that may vary with time. The stuck-at fault model is totally inappropriate to repre-

sent the faults associated with these defects [7]. Hence, harsh-environment applications have

testability requirements that are quite different from manufacturing ones.

I • 2 . 3 . 2  System-on-Chip

As outlined above, the main factor that has motivated the move from functional test to

structural test for digital circuits is the geometric evolution of their complexity. It has also

been stated that analog test difficulty is not driven by function complexity but by perfor-

mance. This last assumption is only partially true. If analog or simple mixed-signal circuits

are manufactured as stand-alone parts, the test complexity is reduced. However, there is a
16
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particular case for which analog test difficulty is also driven by circuit complexity; namely

the case of Systems-on-Chip (SoC).

Deep-submicron processes have brought the possibility to implement on a single piece

of silicon a complete system with several functional cores. These cores can be micro-con-

trollers, memory banks, DSP units and also sensors, analog signal conditioners and data con-

verters. Many Socs are actually mixed-signal parts. This may not represent at first sight a

testability issue as one may argue that the different cores can be tested separately. Neverthe-

less, such a simple sentence is much easier to pronounce than to bring to reality. One conse-

quence of such an approach is that the SoC test is bounded to the highest test requirements

among the different cores. For instance, if all the cores can be tested in parallel (which is not

necessarily possible), the slowest test is what will determine the SoC test time. Similarly, if

there is a high-speed digital core and a high-resolution Analogue-to-Digital converter an

ATE with both capabilities would be required. If the different cores have to be tested sepa-

rately as if they were stand-alone parts, accessibility and observability problems arise. Fortu-

nately, some solutions exist for digital circuits like boundary-scan or digital BIST, but if an

embedded analog circuit has to be tested functionally, analog signals have to be carried in

some manner to and from the SoC pads. In demanding application of either high-speed or

high-resolution this could be difficult to perform. Furthermore, the circuitry (busses, multi-

plexers, buffers, filters) added for such purpose should not significantly impact yield. In that

sense, standard approaches like the IEEE 1149.6 [6,7] test bus do not seem to help much.

Some techniques have been proposed to re-use part of the resources available on a chip.

For instance, it would be possible to use the memory and a DSP unit to perform an FFT on

the output of an ADC. However, such a re-use approach does not allow the concurrent test of

memory, ADC and DSP nor does it provide a solution to the generation and/or interfacing of

the test stimulus. Much of the research done to improve the testability of mixed-signal cir-

cuits targets BIST solutions. The concept is quite explicit: the objective is to carry out most

of the test on-chip, from test signal generation to data analysis. An ideal or full-BIST would

require only a digital start signal and output a digital PASS/FAIL signal. Such testability

would be ideal for SoC. Indeed, if each core could feature some kind of BIST, a simple

1149.1 test bus [2] could be used to trigger properly the different tests and to recover their

outputs.
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In that sense, SoC is a domain where analog test cost is not necessarily dominated by

test time. As for harsh environment applications, SoC analog test requires a significant

research effort to provide test solutions where the classical (functional) ones are not adapted.

I • 3 THE APPROACH IN THIS THESIS

An optimum test solution would be one that retains the main advantages of both tradi-

tional approaches while avoiding their main shortcomings. That is, a test solution that could

- directly or indirectly - be interpreted as a measurement of the circuit performance but at the

same time could detect the greatest number of defects. This, in turn, should be achieved with

limited resources.

Design is what relates the circuit structure to its function as seen in Figure I-2. As such,

it should be the bridge between functional and structural test. While going through the

design flow, downward in the modelling hierarchy, some macro specifications are set, build-

ing blocks and their characteristics are defined, architectures are chosen, transistors are

dimensioned and finally laid out to determine the physical actions that will bring the chip to

reality.

As we have said before, the manufacturing step is what actually defines what the chip

will be. Physical defects can only be properly described at the manufacturing level, taking

into account material properties. Albeit, inverting the design flow it could be possible to

model the defects or their impact on the chip (the faults) at higher hierarchy levels. The

lower the level, the more precise the defect modelling, but the harder its study and its testing.

At each hierarchy step towards the higher levels, it is likely that the information on test cov-

erage is less and less confident. In turn, more insight is gained into the functionality of the

defective chip. Thus, there may be an optimum at which defect modelling can easily be

interpreted in terms of functional impact while maintaining good coverage of the realistic

defects.

The approach that we defend in this thesis is probably not the optimum but is driven by

the above mentioned considerations. It consists of testing, directly or indirectly, the main

specifications of the basic building blocks that form the circuits under test. Taking a look at
18
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Figure I-2, we perform the test at the behavioural level. It may not be considered as a new

concept since testing the building blocks could be seen as part of the “divide and conquer”

approach. However, the novelty of our proposal is more in the line of the “design-based test-

ing” concept because the test is closely linked to the design flow and target the design

parameters. Actually, this approach is probably the intuitive way of testing complex systems.

The main contribution of this thesis is the full development of a digital design-based test

approach for Σ∆ modulators. It intends to determine the characteristics of the main building

blocks using only simple digital tests, without breaking the Σ∆ modulation loop.

The direct relation to circuit performance helps to maintain a good level of confidence,

even if the circuit specifications are not measured explicitly. And conversely, such a test can

detect defects that have brought circuit blocks out of normal process variations but have no

direct/strong impact on the top level specifications.

The rest of the thesis is organized as follows.

The first chapter of the thesis will introduce the reader into the field of Σ∆ converters.

The principle of operation as well as the main architectures will be described. A section will

also be dedicated to behavioural modelling and another to classical characterization meth-

ods.

The second chapter deals with the testability solutions that exist in the literature and that

could be applied to Σ∆ converters.

The third chapter describes the motivations of the approach defended in this thesis from

both a phylosophical and practical point of view.

The fourth and fifth chapters provide a detailed description and analysis of several digi-

tal tests for the most important non-idealities of the Σ∆ modulator building blocks.

The sixth chapter introduces important guidelines for the implementation of the test pro-

posal.

The seventh chapter discusses the design of an integrated prototype and presents a num-

ber of experimental results that validate the approach.

Finally, the thesis closes with concluding remarks.
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hapter 1C

Σ∆ MODULATORS TEST PARADIGM

The objective of this chapter is to discuss the testability of Σ∆ modulators. In the first

section, the operating principles of Analog-to-Digital converters based on Σ∆ modulation

are summarized. The most common architectures are described and modulators’ behavior is

discussed.

These basic considerations should allow the reader to understand the particular test

needs of Σ∆ modulators, which will then be discussed. A particular emphasis is put on the

techniques used to test A/D converters based on Σ∆ modulation functionally; these charac-

terization techniques are applicable to any class of A/D converters.



CHAPTER 1
1 • 1 A BRIEF SUMMARY OF A/D CONVERTERS BASED ON Σ∆ MODULATION

1 • 1 . 1  The structure and principles of Σ∆ converters

An Analog-to-Digital Converter based on Σ∆ modulation consists ofthree main parts, as

seen in Figure 1-1. A simple anti-aliasing filter, a Σ∆ modulator and a digital filter.

The Σ∆ modulator samples the input signal at a high rate (fs) and digitizes it at a low res-

olution. Its output is a low-resolution bit-stream at frequency fs. The digital filter then trans-

forms this low-resolution high-rate bit-stream into a high-resolution low-rate word-stream.

Apart from the filtering operation, the digital filter also performs a down-sampling opera-

tion. For that reason, it is often called a decimation filter. This singular A/D conversion is

based on two main principles: oversampling and noise-shaping.

Oversampling is a concept that can be applied to any A/D converter. Consider an appli-

cation for which the signal to be converted is limited to the bandwidth [0; fc]. According to

the well-known Shannon’s theorem, a finite-bandwidth signal can be fully represented (with

no ambiguity) by its sampled version whenever the sampling frequency fs is higher than dou-

ble the maximum signal frequency. Otherwise, a phenomenon known as aliasing occurs, and

the part of the signal spectrum above half of sampling frequency (the Nyquist frequency)

mixes with the reflected spectrum at the sampling frequency. This is illustrated in

Figure 1-2.

For the input frequency range defined above, a sampling frequency fs=2fc would thus be

sufficient. Oversampling simply consists of digitizing the input signal at a rate deliberately

higher than is strictly necessary. This offers the possibility to further filter the output and

gain some precision. For instance, if a flash converter samples input signal at a frequency

Figure 1-1: The structure of a Σ∆ converter
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fs=4fc, it is possible to take as the converter output the average of two consecutive codes,

providing a filtered output.

The ratio between the sampling frequency and twice the cut-off frequency of the output

filter is called Over-Sampling Ratio (OSR).

(1-1)

Notice that the filter cut-off frequency is what actually limits the input frequency range

of the oversampling converter. For a Σ∆ converter, the input frequency range in often

referred to as the converter (or modulator) base-band. The down-sampling factor that can be

applied by the decimation filter is also equal to the OSR.

In the conversion process from analog to digital, the signal is approximated to digital

discrete levels. As any approximation, this can be seen as an error and such error power sets

the absolute limit to the converter precision. The error power obviously depends on the con-

verter quantization step ∆. The finer the step, the better the signal approximation and the

lower the quantization error power. For any analog input (provided that the converter is not

in overrange), the quantization error is always bounded between -∆/2 and ∆/2. In principle, it

is possible to calculate the probability density function of the quantization error in the range

[-∆/2;∆/2] from the density function of the sampled input signal. Nevertheless if the input

signal varies randomly across the quantizer full-scale from sample to sample and the number

of quantizer steps is large, it can be shown [20] that the quantization error behaves as a uni-

fsfs/2

reflected spectrum
sampling at frequency fs

a)

fsfs/2

aliasing partsampling at frequency fs
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Figure 1-2: Sampling a continuous-time signal
a) with no aliasing, fc<fs/2
b) with aliasing, fc>fs/2
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form random variable in the range [-∆/2,∆/2]. In that case, its power spectral density is con-

stant,

(1-2)

The quantization error power spreads over the entire Nyquist range (from 0 to fs/2), so

by low-pass filtering the converter output, the part of the quantization error above the cut-off

frequency is attenuated and the converter precision is improved. As a result, the quantization

error (also called the quantization noise) power can be calculated by integrating the power

spectral density of Eq (1-2) over the converter baseband.

(1-3)

If the converter output is filtered, the precision improvement associated with that filter-

ing (i.e. due to oversampling) is limited to 10dB per decabe of the OSR.

The heart of Σ∆ converters is the Σ∆ modulator and its objective is to improve the bene-

fits of oversampling by shaping the quantization noise to high frequency. In that way, most

of the quantization error can be eliminated and the performance greatly improves. Bringing

the concept to an extreme, it is even possible to use a 1-bit quantizer and obtain, by proper

quantization noise shaping, high precision converters. The concept and benefits of noise

shaping are easily understood. What is less obvious is the manner to achieve it. The next

subsection will introduce it through a description of the first order modulator.

1 • 1 . 2  The first order modulator

The noise-shaping capability of Σ∆ modulators is achieved by feeding back the quanti-

zation error to the input. Figure 1-3 depicts a first order Σ∆ modulator. It can easily be seen
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from that diagram the reason for the Σ∆ name. Indeed, the quantizer output is subtracted

from the input signal to form the modulator quantization error: that is the delta operation

(Notice that here the modulator quantization error is not the same as the quantizer quantiza-

tion error). Then, this error signal is integrated which, in a discrete-time basis, is a summing

operation: the sigma operation.

In many cases, the approximation of the quantization error as a white noise does not

hold true. If the ratio between the input signal frequency and the sampling frequency is a

rational number, only a finite number of different levels are sampled and that sequence

repeats periodically [21]. If the ratio is

, (1-4)

where M and N are mutually prime, a number of N different points are sampled, so the quan-

tization error appears as a periodic sequence of fundamental frequency fs/N.

For low-resolution quantizers there is also a strong correlation between the quantization

error and the quantizer input signal. Let us take a brief example, depicted in Figure 1-4: an

input sinewave of amplitude 1 is sent to a 1-bit quantizer of full-scale 2. This quantizer is

indeed a simple comparator: a logic zero at the comparator approximates the input voltage to

a -1 input and a logic one to a 1 input. The comparator performs the sign operation. Hence,

we can write the quantization error as,

(1-5)
Nevertheless, in Σ∆ modulators, the signal manipulation before the quantizer typically

provides a quantizer input that is reasonably random or at least de-correlated from the mod-

ulator input signal, so that the result of Eq (1-2) gives a good insight into modulator perfor-

mance.
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If we consider the approximation of a uniform random quantization error for the quan-

tizer to be valid, the z-domain description of the modulator can be built as shown in

Figure 1-5, where the quantizer is linearized and an additive noise source (E) models the

quantization error.

This provides a linear description of the Σ∆ modulator that gives an insight into its oper-

ation. The following equation can be written that relates the modulator input X to its output

Y

, (1-6)

This reduces to,

, (1-7)

Thus, the modulator output is thus equal to the delayed modulator input plus the quan-

tizer error shaped by the function (1-z-1). Considering that

, (1-8)
the power spectral density of the modulator quantization noise can easily be calculated,

(1-9)

Assuming a large OSR (f<<fs), a first order Taylor series expansion of the sine function

can be used to calculate the total quantization noise power in the modulator baseband. Using

Eq (1-2), the noise power is,
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Figure 1-5: First order Σ∆ modulator linearized z-domain model
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. (1-10)

So it is shown that the noise shaping allows for a 9dB noise reduction per octave of

OSR, which represents a 6dB/octave improvement with respect to the gain for an unshaped

quantization noise. Considering that the converter full-scale is normalized to the range

[-1;1], the theoretical maximum effective number of bits (ENOB) of the first order Σ∆ mod-

ulator can also be calculated by resolving the following equation, assuming an N bit quan-

tizer,

. (1-11)

This equation reduces to,

. (1-12)

For instance, a first order modulator with a simple one-bit quantizer could achieve a res-

olution equivalent to a 9bit converter assuming an OSR of 138.

1 • 1 . 3  Second order modulator

The second order modulator was introduced to improve the noise shaping and conse-

quently to gain more resolution for a given OSR. At first sight, second order modulation

could have been obtained by simply adding another integrator in the loop, as seen in

Figure 1-6. Nevertheless, it can be easily shown that any perturbation would drive the state

variables U1 and U2 out of bound.
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Figure 1-6: Direct unstable implementation of a 2nd order Σ∆ modulator
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In order to avoid this issue [22] proposed to add a feedback path at the second integrator

input, as shown in Figure 1-7. This stabilizes the modulator and its internal states remain

bounded. Actually, it can be shown that second order modulators are unconditionally stables

for DC inputs [23, 24] and also for periodic inputs [25]. Due to this extra feedback path, this

modulator is sometimes called a double-loop modulator.

Other degrees of freedom in the modulator design can be obtained by adding gain coef-

ficients to the integrator branches. In particular, it is shown in [26] that adding a 0.5 gain to

each integrator allows the use of two delaying integrators instead of one, which is very valu-

able from an implementation viewpoint.

1 • 1 . 4  High-order architecture

In previous subsections, the principles of Σ∆ modulation have been explained and it has

been shown how a first order modulator allows one to shape the quantization noise towards

higher frequencies. Since the introduction of first and second order modulators, researchers

have been working on improving the efficiency of the concept. Indeed, the resolution for a

given OSR could be improved by shaping the noise more sharply. Or conversely, for a given

resolution, the OSR could be relaxed, allowing the A/D conversion over a broader range of

frequency.

This objective can be achieved and has actually been achieved through the generaliza-

tion of the 1st order Σ∆ modulator to higher orders. Consider the general scheme in

Figure 1-8. It represents a modulator diagram such that the integrator is replaced by a gen-

eral filter whose representation in the z-domain is H(z) and another filter G(z) has been

included in the feedback path. The modulator output can be related to the input as,

+
-
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X Y

Figure 1-7: Stable double-loop 2nd order Σ∆ modulator
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. (1-13)

It appears clearly that, to achieve a better conversion, the Signal Transfer Function

(STF(z)) should be an all-pass or a low-pass filter with a cut-off frequency above the desired

OSR, and the Noise Transfer Function (NTF(z)) should be a high-pass filter with the deepest

rejection band.

1 • 1 . 4 . 1  Single-stage

The design of single-stage high order modulators is not simple. Indeed, the loop filters

have to be properly designed such as to provide the desired noise shaping. Typically, a mod-

ulator is considered of order L when its NTF is of the form

. (1-14)

A wide range of different filter implementations could achieve such a result, but much

care has to be taken to ensure the stability of the loop [23,25]. Indeed, such modulators are

usually stable only in a given signal range. Notice that here, we are using a notion, stability,

with two different meanings. The first one is the most usual that requires from a stable

device that its internal states are bounded. The second and more practical one requires that

the internal states remain bounded within a given range.

A wide number of different ad-hoc architectures have been proposed in the literature for

different orders, but it is very difficult to provide a general architecture together with general

design guidelines. One of the better known proposal is probably the Lee-Sodini architecture

+
-
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Figure 1-8: Generalized Σ∆ modulator diagram
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[27], depicted in Figure 1-9, that contemplates the use of a series of integrators with local

feedback and feed-forward paths. In that case, the Signal and Noise Transfer Functions can

be written as

. (1-15)
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+
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Figure 1-9: General diagram of an Lth order Lee-Sodini Σ∆ modulator
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(1-16)

The choice of the coefficients is a trade-off between filter characteristics (i.e. the modu-

lator noise-shaping performance), stability and complexity. In switched-capacitor imple-

mentations, the filter coefficients are defined by capacitor ratio. Successful matching

techniques require the use of rational coefficients so as to build all the required capacitors as

an array of unit capacitors. If the above mentioned criteria require the use of very small (or

conversely very large) coefficients, large capacitors have to be used, which in turn require

high current driving capabilities from the amplifiers.

In an attempt to make the design of high-order switched-capacitors single-loop modula-

tors more systematic, a methodology is proposed in [24] to find appropriate coefficients to

implement a given noise transfer function in any of the following architectures: Cas-

cade-of-Integrators FeedBack (CIFB), Cascade-of-Integrators Feed-Forward (CIFF), Cas-

cade-of-Resonators FeedBack (CRFB), and Cascade-of-Resonators Feed-Forward (CRFF).

Further scaling of these coefficients can be used to meet output range requirements for

each integrator.

1 • 1 . 4 . 2  Cascaded

As explained above, high order modulators are difficult to design as they are prone to

instability. To cope with this drawback, [28] proposed to implement high order Σ∆ modula-

tion using a cascade of second and/or first order modulators in a way similar to what is done

in pipeline converters. The first stage digitizes the input signal and the successive stages dig-

itize the quantization error of the preceding stage. Figure 1-10 shows a generic cascaded

modulator that consists in n stages of order Li, with i varying from 1 to n. The modulator

output is obtained after proper cancellation by the reconstruction filter of all but the last

stage quantization errors.

For such a generic cascaded modulator, the following set of equations can be written,
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(1-17)

where Li is the order of the stage i modulator.

Hence, the reconstruction of the modulator output has to be

(1-18)

such that an equivalent order L=L1+...+Li+...+Ln is obtained

. (1-19)

There exist variations in the implementation of the cascade that depend on the architec-

tural choices for each stage. Moreover, it is also possible to feed to the next stage the quan-

tizer input instead of the quantizer error (the output minus the input). However, this change

has to be taken into account in the reconstruction filter.
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1 • 1 . 5 Σ∆ modulator analysis and modelling

Since the introduction of Σ∆ modulation, the overwhelming success of the concept

applied to A/D conversion has motivated a wide number of studies of Σ∆ modulation behav-

ior.

1 • 1 . 5 . 1  Ideal behavior

Even the simplest Σ∆ architecture - the first-order single-bit modulator - is not easy to

study. Several papers deal with peculiarities of its behavior even without considering

non-idealities. The quantizer linearization that has been used to derive an analytical transfer

function is indeed a coarse approximation that is valid mostly for multi-bit quantizers. For a

single-bit-quantizer (even embedded in a loop) it has been seen that the quantizer error is

strongly correlated to its input.

In principle, the appropriate mathematical domain to study Σ∆ modulation is that of

non-linear dynamics. The starting point of the study are the difference equations that govern

the modulator. Considering the 1st order modulator of Figure 1-5, we can write

, (1-20)

where u is the integrator output and x the input signal. The modulator output is not explicit in

Eq (1-20) and is equal to

. (1-21)

Within these seemingly simple equations is contained a complex behavior that can have

undesirable effects when considering the Σ∆ modulator as a data converter.

An example of such an odd behavior is that of limit cycles. Let us consider the case

when x is a DC input to the modulator that can be expressed as an irreducible fraction of the

Full-scale (consider the Full-scale normalized to [-1;1])

, (1-22)

It has been shown that for such an DC level, the modulator output is periodic with

period p if both n and p are odd and of period 2p if n and p are even [29]. Actually, the exact

structure of a limit cycle can be predicted by decomposing the fraction of Eq (1-22) using

the Euclid algorithm. For instance a 1/4 input DC level would lead to a repeating sequence

of the form 1 1 0 1 0 1 0 1, considering that a digital 1 corresponds to the Full-scale top level

un 1+ un xn sign un( )–+=

yn sign un( )=

x n
p
---=
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1 and a digital 0 to the Full-scale bottom level -1. The DC value associated with such a

sequence is exactly 1/4. It could thus be thought that such an effect is not significant as the

output mean value strictly follows the input mean value. Nevertheless, the noise shaping is

far from what was predicted by the linear theory in Eq (1-7). Indeed, quantization noise is

concentrated in high power tones at kfs/8 (k varying from 1 to 4), fs being the modulator sam-

pling frequency.

Furthermore, it has also been shown [30], that integrator leakage stabilizes limit cycles

for a small range of DC levels around the nominal level expressed in Eq (1-22). This obvi-

ously causes non-linearity in the modulator transfer function and is highly undesirable for

data converters. For the interested reader, it comes that the transfer function takes the form

of the Devil’s staircase [31]: a figure well-known by mathematicians and related to Cantor’s

set. As was said before, the quantization noise of limit cycles concentrates in high power

tones that are usually out of the converter base-band. Hence, it may appear that the quantiza-

tion noise is totally filtered by the decimation filter such that the converter output appears as

noise-free. The DC range over which the modulator locks in a limit cycle is thus referred to

as a dead-zone.

In another study [32], it has been shown that Σ∆ modulation is a mapping: if a bit-stream

is used as an input to a first order modulator, the output follows the input exactly. In that

sense there is absolutely no quantization error. This consideration does not concern com-

mon-use of Σ∆ modulators but we will see further that it has to be taken into account for our

test purpose.

Another important aspect of Σ∆ modulators is stability, which depends mostly on the

architecture and can thus be evaluated at difference-equations level. Further refinements may

include non-idealities like integrator clipping that will obviously influence the device stabil-

ity. However, as stated in [23], whenever clipping occurs some state information is lost and it

is likely that modulator performance be degraded. A modulator should thus be designed

such that clipping is avoided. Analytical studies of Σ∆ modulator non-linear dynamics are

not easy to perform, specially for complex modulators. One approach consists of describing

the quantizer as an input-dependent gain k element [24]:
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. (1-23)

The term y stands for the quantizer input.

In this way, it is possible to study the locus of the Noise Transfer Function poles as a

function of the quantizer gain. If any pole goes outside unit circle the modulator become

unstable. Extensive simulations are necessary to evaluate the quantizer effective gain as a

function of the modulator input, according to Eq (1-23). Indeed, the quantizer input statistics

cannot be evaluated analytically. It is then possible to limit the modulator input-range to the

domain that produces stable behavior.

A technique was also proposed in [33] to predict the effective gain of the quantizer. Con-

sidering the quantizer as multiple linearized gains for multiple inputs, the modulator can be

represented as two interconnected linear systems. The main difference with respect to the

describing function is that the distortion components produced by the non-linearity are not

neglected but are treated separately from the signal. This method provides results in accor-

dance with simulations but it is very complex to apply. With the computational power avail-

able in a current workstation, it is probably easier to simulate the system of difference

equations extensively.

1 • 1 . 5 . 2  Introduction of non-idealities

A simple z-domain model can thus be used to gain some insight into the non-linear

behavior of complex architectures. Nevertheless, much more work is necessary to evaluate

what could be the performance of a real device. The results obtained for the ideal model only

set the maximum attainable value. On the other hand, as will be seen in the next section, per-

formance evaluation of Σ∆ modulators usually requires the simulation of a large number of

samples. As a result, electrical simulations become prohibitively time-consuming. In a bot-

tom-up approach, macro-models of the modulator building blocks could be built in order to

simplify the circuits. By reducing the number of nodes, the simulation would speed-up.

However, the drawbacks are two-fold. On one hand the bottom-up approach implies that the

modulator architecture is clearly defined and that the macro-models are developed specifi-

cally for a given implementation. On the other hand, if the simulator remains electrical, the

speed improvement will remain limited. In turn, the main benefit is that, if the macro-models

k E y[ ]

E y
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are implemented accurately, the behavioral model simulation will give results that are very

close to a full electrical simulation. As electrical simulations are prohibitive, much work has

been done to identify modulators’performance degradation mechanisms and to model them

in a high level language (for example Matlab and its Simulink extension, VHDL,

VHDL-AMS, VerilogA). Hence, Σ∆ modulators can be quite accurately simulated at the

behavioral level using analog macros (integrators, comparators, DACs) that integrate the

most important non-idealities.

Behavioral simulations trade accuracy for speed with respect to electrical simulations.

But even in the context of behavioral simulation, a large grading of complexity can be found.

On one hand, a number of non-idealities can be included or not. In particular, it is well

known that the non-idealities that occur inside the modulator loop are spectrally shaped to a

greater or lesser extent. For instance, effects that can be referred to the quantizer input will

be shaped in the same way as the quantization noise. They are thus very unlikely to produce

any significant effect in the base-band. By contrast, the effects that can be referred to the

modulator input can be mapped to the input signal and directly affect the resolution. In that

sense, many designers opt for introducing non-idealities only in the first integrator [34,35].

This obviously decreases the complexity of the model but sacrifices some subtleties in the

modulator behavior.

In simulations, the non-idealities can be modelled with more or less accuracy. Even sim-

ple modelling provides significant insight into the impact of those non-idealities on perfor-

mance. Such modelling can be fruitfully adopted to make architectural level decisions. On

the other hand, if the behavioral model has to represent a given implementation in a reliable

manner, much more care has to be taken and model complexity increases [38].

This subsection is intended to give an overview of the most common non-idealities that

should be considered in Σ∆ modulator behavioral models. As most Σ∆ modulators are

implemented in switched-capacitors structures [26,24,38,41], we will focus on the non-ide-

alities that affect the two main building blocks: the integrator and the comparator.

Guidelines are also provided to introduce these non-idealities in event-driven simulators

such as Matlab Simulink. The reader interested in a more details on Matlab Simulink imple-

mentation is referred to [35, 36,37].
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◆ Noise

Noise in Σ∆ modulator occurs basically in switched capacitors and in the op-amp.

This phenomenon can easily be modelled by a random source. The noise associated

with switched capacitors has the well-known white spectral density of kT/C (in

V2/Hz), where k is the Boltzman constant, T the temperature and C the capacitance.

Op-amp noise is slightly more complicated to quantify. There is an input-referred

white noise that depends roughly on the amplifier transconductance and also a

flicker (1/f) noise source should be taken into account.

White noise sources can be implemented using gaussian random number genera-

tors. Flicker noise, in turn, cannot simply be generated with a white random source

as it is spectrally shaped. One solution consists of calculating a flicker noise

sequence prior to simulation. This can in principle be done by filtering a white noise

source. A simple implementation would be to take several white noise sources and

sample and hold them at different octaves. The first noise source would be sampled

and held for each point of the simulation, the second one each 2 points and so on.

The last noise source would be sampled and held twice over the whole simulation. It

can be shown that the sum of these noise sources has a power density close to 1/f

with a ripple of the order of 1dB.

The relevance of each noise source greatly depends on its position in the Σ∆ loop.

Theoretically, all switched capacitors and op-amp should be provided with their

respective noise sources. Nevertheless, it is easy to show that the noise sources that

are located inside the loop and cannot be referred directly to the modulator input are

attenuated, at least partially, by the NTF. As a result, it is usually sufficiently accu-

rate to introduce noise sources only in the first integrator. This practice, however, is

not recommended if the nonlinear dynamics of the modulator are of great concern.

Indeed, noise sources located inside the loop may not affect the base-band noise

power but may help stabilizing the loop or smoothing some non-linear effects. This

positive effect, known as dithering, is sometimes deliberately introduced in the form

of a pseudorandom noise source.
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◆ Offset

In principle, offsets in the integrators and in the comparator do not affect the perfor-

mance of the Σ∆ modulator in terms of Signal-to-Noise Ratio. However, their intro-

duction in the behavioral model is straightforward and inexpensive in terms of

simulation time so there is no reason for not introducing them.

◆ Capacitor mismatch

In switched-capacitor integrators, branch coefficients are defined by capacitor

ratios. Limitations in the achievable capacitor precision thus cause errors in these

coefficients, which set the locations of the poles and zeros of both the Noise and

Signal Transfer Functions of Σ∆ modulators. The consequences of a coefficient

error may thus range from an increased noise floor to stability issues in high-order

modulators that are only conditionally stable. In cascaded modulators, which are

usually composed of 1st and 2nd order sections that are unconditionally stable, an

error in branch coefficients may lead to incomplete cancellation of the intermediate

sections quantization noise. This is due to the fact that the digital reconstruction fil-

ter does not match the analog transfer functions that have actually been imple-

mented.

The modelling of these non-idealities is straightforward as it consists of modifying

the gain elements on each branch. It should be noticed, though, that mismatch

depends on the particular implementation of an integrator. Let us take a look at the

general case of Figure 1-11, that displays a simple model of a two-branch integrator

together with a possible switched-capacitor implementation.

Capacitor C1 is shared by the two branches of the integrator so as to reduce the

number of capacitors. This obviously means that an error in capacitor C1 affects

both branches. The model of such an integrator should be better parametrized as

shown in Figure 1-12.

Brought to an extreme, if two integrator branches share the same coefficient, a sin-

gle sampling capacitor may be used and branch mismatch would be totally avoided.
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An error in either the feedback capacitor or in the sampling capacitor would result

only in an integrator gain error.

◆ Capacitor non-linearity

Another non-ideality that affects the capacitors is their non-linearity: the effective

capacitance may depend slightly on the charge stored on the capacitor. This is a

concern for the sampling capacitance and for the feedback capacitance in the first
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integrator. Indeed, such a non-linearity causes harmonic distortion. Nevertheless,

fully-differential implementations greatly mitigate the impact of first order capaci-

tor non-linearity. Anyway, this phenomenon can be relevant if the Σ∆ modulator is

implemented in a fully digital process where no dedicated capacitors are available.

In such a case, MOS capacitors are to be used, which are prone to exhibit non-lin-

earity. Even if good quality MIM (Metal-Insulator-Metal) capacitors are available,

their linearity may be a concern for very high resolution converters.

Non-linearity of sampling capacitors can be approximated by simply adding a poly-

nomial transfer function to each input branch of the integrator. Notice once again

that only the first integrator is relevant to the output harmonic distortion.

◆ Amplifier DC gain

In the ideal z-domain models presented above, the amplifier is considered to have an

infinite DC gain which leads to a lossless integrator. However, real world imple-

mentations impose a limit on the DC gain of the amplifier and hence real integrators

exhibit a pole error

. (1-24)

The effect of integrator pole error, known as integrator leakage, on Σ∆ modulator

performance depends on the chosen architecture. In a single loop modulator of

order L, it causes quantization noise shaped at an order L-1 to leak into the

base-band. The amount of leakage is directly proportional to the pole error. In cas-

caded modulators the impact of integrator leakage can be more severe [42]. The

quantization noise leaking in section n cannot be cancelled by the reconstruction fil-

ter. As a result, the shaping of the noise leaking into the base-band is equal to L’-1,

L’ being the order of the partial cascaded modulator formed by sections 1 to n. For

instance, if the leakage is produced in the first section and this first section is a 2nd

order modulator, the noise leaking into the base-band will be shaped as a first order.

This puts higher requirements on the DC gain of the amplifiers in the first section of

a cascaded modulator than on those of a single-loop modulator. Furthermore, inte-

grator leakage also influences the non-linear dynamics of Σ∆ modulators [29]. For
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instance, it has been shown that it stabilizes limit cycles in 1st order modulators

[30].

A pole error can be included in the z-domain transfer function of the integrator in a

straightforward manner. This pole error can be linked to the amplifier DC gain

through classical circuit analysis. The relationship depends on the actual integrator

implementation but it can be said that the pole error is inversely proportional to the

amplifier’s DC gain.

◆ Amplifier DC gain non-linearity and saturation

Amplifier DC gain is usually a small-signal parameter. That is, the DC gain is

defined as the slope of the amplifier transfer function for a balanced input. However,

the integrator branch coefficients in a Σ∆ modulator are usually scaled to make use

of the major part of the amplifier output range. In other words, the amplifier is not

used only in a small range around zero. As a result, the amplifier DC gain is

input-dependent and this is a cause of distortion. Closely related to the input depen-

dent DC gain is the amplifier saturation. Indeed, saturation can be seen as the level

above which the amplifier DC gain is reduced to zero. If the Σ∆ modulator has been

designed properly and its coefficients scaled, the amplifiers should not saturate.

Otherwise, the integrator output would clip the signal above the amplifier saturation

level and this would introduce distortion, particularly if this clipping occurs in the

first integrator. Notice, however, that integrator clipping (i.e. amplifier saturation) is

also used to put a physical bound to the modulator’s internal states. This phenome-

non enhances the modulator stability when it is subjected to input transients that are

outside its allowed input range.

In the z-domain model, the amplifier input is not available as the amplifier is

embedded in the integrator. However, the amplifier output is the integrator output.

Hence the input-dependent DC gain can be mapped to an output-dependent DC

gain. One way to model the transfer function of an amplifier is to use the hyperbolic

tangent function as,

(1-25)y sat ADC0
x

sat
------- 

 tanh×=
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This would represent an amplifier that saturates at output voltages +/- sat with a

small-signal DC gain of ADC0. In that way, the large signal DC gain can be written

. (1-26)

This expression efficiently relates the DC gain to the output voltage. It can be seen

that the DC gain non-linearity is intimately related to the amplifier saturation volt-

age sat. In order to model the DC gain non-linearity with one more degree freedom,

the actual saturation can be modeled by a saturation block, clipping the integrator

output at +/- sat. The saturation parameter in Eq (1-26) is then replaced by a coeffi-

cient aNL that has to be greater than the actual saturation voltage

. (1-27)

It would also be possible to implement a non-symmetrical DC gain by adding a first

order term to Eq (1-27), though this is usually unnecessary as most Σ∆ modulators

use fully differential structures and are thus inherently symmetrical.

The inclusion of an output-dependent DC gain (i.e. an output-dependent pole error)

in the z-domain behavioral model generates an algebraic loop that can only be

solved iteratively with respect to a convergence criterion. This may slow down the

simulation. The first solution to limit this negative impact is to introduce out-

put-dependent gain only in the first integrator. Indeed, just like with noise, the

non-idealities that occur inside the Σ∆ loop are attenuated by the NTF. The second

solution consists of arbitrarily fixing the number of iterations, assuming that the

approximation is satisfactory. Although this is not a rigorous approach, it is much

easier to implement than the resolution of the algebraic loop. Moreover, it can be

seen that the convergence is quite fast and acceptable results can be obtained in a

small number of iterations.

◆ Amplifier settling

The amplifier used in the integrator is expected to settle properly. However, for large

integrator input signals, the time given to the amplifier to settle properly may be

insufficient, causing a settling error. The impact of the settling error is two-fold. On
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y

sat
------- 
  2

– 
 ×= =

ADC y( ) ADC0 1
y

aNL
---------- 
  2

–
 
 
 

×=
42



SD modulators test paradigm
the one hand, the part of the settling error that is proportional to the input voltage

(this could be the case for a settling error dominated by a poor bandwidth) can be

considered as equivalent to an integrator gain error, just like an error in the value of

the feedback capacitor. On the other hand, the non-linear part of the settling error

causes distortion, just like the non-linear DC gain of the amplifier. Once again, that

distortion is relevant mainly if it occurs in the first integrator.

A first order approximation to include incomplete amplifier settling in a behavioral

model consists of considering the amplifier as having a single pole (which can be

specified as a Gain-Bandwidth product) and a limited output current (i.e. a maxi-

mum Slew-Rate). Higher order approximations could eventually contemplate a

two-pole approximation but the modelling process would be identical: the integrator

output can be calculated as a function of the input through classical circuit analysis.

A mathematical closed form expression is obtained that relates the settling error to

the integrator input. Such an expression can easily be implemented in the behavioral

model.

◆ Quantizer ADC non-linearity

The quantizer in Σ∆ modulators consists of an Analog to Digital Converter followed

by a Digital-to-Analog Converter. The ADC, for latency requirements, is almost

always a FLASH converter, that is, a bank of comparators associated with the

appropriate reference voltages. Such an ADC is prone to exhibit non-linearity but

this has little impact on the modulator performance, whenever monotonicity is

ensured.

◆ Comparator hysteresis

Like any non-ideality that can be referred to the comparator input, hysteresis effects

are further filtered by the NTF and thus have little impact on the modulator perfor-

mance. Anyway, they can easily be included in a behavioral model. In Simulink, a

relay block can be used.
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◆ Comparator uncertainty zone

As comparator offset is not usually of great concern, very simple structures are used

to maximize speed. One of the most used structures is the dynamic latch compara-

tor. Such a comparator is reset before each new comparison but may partially retain

information of the previous comparison. These comparators thus exhibit some

metastability around their threshold. Such an uncertainty zone can easily be mod-

elled by the addition of a small noise source at the comparator input.

◆ DAC non-linearity

Switched-capacitor DACs consist simply of a bank of properly sized capacitors

sampling a reference voltage. Mismatch in capacitor sizes is the main cause of DAC

non-linearity. The consequence of such an implementation is that different DACs

are implemented at each feedback node, and a different non-linearity has thus to be

considered. DAC non linearity can simply be modelled as integrator branch coeffi-

cient mismatch. Once again, the non-linearity of the DAC that enters the first inte-

grator is the most relevant to the modulator output distortion.

The non-idealities can be introduced incrementally in the ideal z-domain model to reach

the required accuracy. The most intuitive way to design such a incremental model is proba-

bly to use Matlab Simulink. The blocks required to build an ideal z-domain model are avail-

able in the standard library and most non-idealities require only a small tailoring of library

blocks. For instance, comparator hysteresis is introduced straightforwardly using a relay

block, while integrator clipping can be modelled using a saturation block. The integrator

transfer function can be implemented as a user-defined Matlab expression derived from cir-

cuit analysis. In order to implement the amplifier DC gain non-linearity, the DC gain has to

be introduced in the integrator transfer function as an additional input. This additional input

allows forming an algebraic loop that requires iterative resolution.

Figure 1-13 represents what could be a Simulink model of a two branch integrator. The

integrator is implemented with the “fsolve” function but the algebraic loop could be broken

as shown in Figure 1-14.
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Figure 1-15 represents the evolution of the maximum Integral Non-Linearity (a defini-

tion can be found in next section) for a 2nd order modulator, as a function of the DC gain

non-linear parameter aNL of the first integrator (the nominal DC gain was set to 3000). The

simulation results are presented for a model resolving the algebraic loop with “fsolve” and

for a model breaking the loop in three iterations. It can be seen that the results match quite

well.

Such a model can be used to explore the design space and provide much insight into the

impact of certain behavioral parameters on performance. Figure 1-16 represents the evolu-

tion of the Signal-to-Noise Ratio of a cascaded 2-1 modulator with OSR=100 as function of

the DC gain of the first integrator. This figure was built simulating a realistic model of the

Figure 1-13: Simulink model of a two branch integrator
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Figure 1-14: Opening the algebraic loop

Figure 1-15: Maximum INL of a 2nd order modulator as function of the 1st amplifier
DC gain non-linearity
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modulator as described above for different value of the DC gain, while maintaining the rest

of the parameters to an acceptable value (from a performance viewpoint).

Similarly, Figure 1-17 displays the evolution of the Signal-to-Noise-and-Distortion

Ratio as a function of the Gain-Bandwidth product (GBW) of the first amplifier. Notice that

a high performance is obtained for any value of the GBW (normalized to the sampling fre-

Figure 1-16: SNR of a 2-1 cascaded modulator as function of the 1st amplifier DC gain
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Figure 1-17: Impact of 1st amplifier Gain-Bandwidth product on the SNDR of a 2-1
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quency) above 5.5, which corresponds to a proper settling. However, a performance peak

singularity can also be observed at a much lower value of GBW=2.7. This is quite

counter-intuitive and it means that the settling error at that point is in some manner internally

compensated by the modulator non-linear dynamics. Both Figure 1-16 and Figure 1-17 are

congruous with analytical studies and the observed trends had already been commented on

in the literature [38].

1 • 2 Σ∆ CONVERTERS TESTING

Σ∆ converters have gained in the last decade a large part of the A/D conversion market.

Initially, they were limited to low-frequency applications, mainly instrumentation and audio

range due to the high oversampling rate that was necessary to achieve good precision. But

the introduction of new architectures and technology scaling have opened the doors to com-

munication applications.This trend is ever increasing as there is much interest in these con-

verters that rely on minimal analog circuitry.

In this section, we will briefly review the main characterization techniques for convert-

ers. The objective is to introduce concepts that will be used throughout the thesis. Indeed,

characterization is none other than an exhaustive version of functional testing, and it is key

to understanding the shortcomings and benefits of any DfT approach.

Metrology is a science in constant evolution, and it cannot be said that the characteriza-

tion of A/D converters is a closed research area. Nevertheless, there has been an effort by the

IEEE to provide a framework in this domain, and two consecutive standards can be said to

define most of the characterization techniques used in the industry [39]. Then, some other

metrics are application specific with dedicated characterization methods [40].

1 • 2 . 1  Performance metrics

An issue that is common to all Σ∆ converters and also to all A/D converters is to define

some metrics that allow the evaluation of their performance. These metrics serve to define

the specifications and the measurements that have to be performed in functional testing.

They can roughly be divided into two sets: the static parameters and the dynamic ones.
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1 • 2 . 1 . 1  Static parameters

These parameters are devoted to the description of the DC transfer function of the con-

verter. An A/D converter translates an analog signal, which is continuous, to a digital repre-

sentation that is discrete. This operation, known as quantization, can be seen as a rounding

function: a real value (continuous) is represented by the closest integer value (discrete). For

an ideal converter, the transitions between two discrete levels are evenly spaced across the

full-scale range and the transfer function takes the form of a regular staircase. But in real

cases, the transitions may be displaced from their ideal location, and the stair widths may

thus vary across the full-scale range.

The metrics that define the quality of the transfer function are thus:

◆ the Integral Non-Linearity (INL), that measures the displacement of the transitions

from their ideal location

◆ the Differential Non-Linearity (DNL), that measures the error committed on the

stair width

Both parameters have to be defined for each possible output code. Typically, only

the maximum (worst-case) INL and DNL is specified. Notice also that DNL and

DNL

INL

Missing code

Gain error

Offset error

Figure 1-18: A/D converter static metrics
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INL are greatly correlated. Indeed, the INL is actually the cumulative sum of the

DNL.

◆ the number of missing codes, as its name indicates, is the number of possible output

codes that are not actually reached for any analog input level within the full-scale

range.

◆ monotonicity: an A/D converter should ensure that its transfer function is monoto-

nous. That means that for any pair of input values, the code corresponding to the

higher one should be greater than or equal to the code of the lower.

◆ the gain error

◆ the offset

1 • 2 . 1 . 2  Dynamic parameters

These parameters are used to describe the non-idealities of a converter for AC input sig-

nals and more precisely for sine-wave input signals. There exist an important number of

metrics that correspond to specific dynamic tests, but we will only present the most impor-

tant ones.

◆ The Signal-to-Noise Ratio: this metric is defined according to

, (1-28)

where Psignal is the input sine-wave power and Pnoise is the power of the random

noise across the converter bandwidth. The noise floor is ultimately limited by the

quantization noise, that is, by design. However, other noise sources will add to the

quantization noise contribution in such a way that the converter will never reach the

ideal value. One unavoidable noise source is thermal noise that is present in every

integrated circuit. A white noise floor is represented in Figure 1-19.

◆ The Total Harmonic Distortion: this metric is defined according to,

, (1-29)
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where P(Ai) is the power of the tone whose frequency is i times the input sinewave

frequency, that is, the power of the ith harmonic.

◆ The Signal-to-Noise and Distortion Ratio (SNDR) is similar to the SNR but adds

the power of the harmonics to the noise power

. (1-30)

◆ The Effective Number Of Bits (ENOB) is a transformation of the SNDR. As said

above, for an ideal converter, the precision is limited only by the quantization noise,

that is, in turn, only defined by the number of quantization steps. The quantization

noise power for an ideal converter of n bits (2n-1 transitions), for an input sine-wave

covering the full-scale is

. (1-31)

This is derived by considering that the quantization error for any output code has a

uniform distribution over the range [-∆/2;∆/2], where ∆=FS/2N is the ideal width of

the quantization step. This approximation does not hold true for an input sinewave.

Nevertheless, if the number of bits is sufficiently high, the sinewave over a given

code range ([-∆/2;∆/2]) can be approximated as a linear segment and the error in

Eq (1-31) is small.

The full-scale sine-wave power is

. (1-32)

Therefore, the maximum achievable SNR reduces to

. (1-33)

The ENOB is defined by inverting this relation using the SNRD instead of the SNR.

In other words, it represents the number of bits that an ideal converter should have

in order to exhibit an SNR equal to the measured SNRD, i.e.,
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. (1-34)

◆ The Spurious-Free Dynamic Range (SFDR): Is defined as the relation between the

highest spur (usually an harmonic of the input signal) and a full-scale tone power.

(1-35)

Assuming that the spur power is proportional to the input tone power (which is a

questionable assumption), it would represent the input signal power limit below

which the generated spurious tones would be indistinguishable from the noise floor.

Though static and dynamic set of metrics represent two different approaches and may

not account for the same effects, there are some relationships between them. For example,

harmonics will appear if the transfer function can be approximated by a polynomial function

(of order greater than 1). Hence, there is a relationship between THD and INL, as the latter is

sensitive to continuous variations in the transfer function. Similarly, there is a relationship

between SNR and DNL, as a random-like variation of quantization steps across the

full-scale range will translate into an increase of quantization noise. Despite these consider-
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Figure 1-19: A/D converter dynamic metrics
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ations, there is no formal equivalence between the two set of metrics. Actually, some

non-idealities such as comparator hysteresis are inherently dynamic and could only be

detected in a dynamic test. Conversely, missing codes may not have a great impact on

dynamic metrics but could be of utmost importance in control applications.

1 • 2 . 2  Determining Σ∆ converters static performance

In most Nyquist-rate ADCs, the conversion is performed on a sample-to-sample basis.

The input signal is sampled at a given instant and that sample is in some way compared to a

voltage reference. The digital output code determines to what fraction of the full-scale the

input sample corresponds. In flash converters, the input sample is compared to a bank of ref-

erences evenly distributed over the full-scale range. In dual-slope converters, the time neces-

sary to discharge a capacitor previously charged at the value of the input sample is measured

by a master clock. There exist a variety of solutions to derive the digital output code, but in

all cases a given output code can be associated with a given input sample. For Σ∆ converters,

however, that is not the case. Indeed, the output of a Σ∆ converter is provided at a low-rate,

but the input is sampled at a high rate. How could be a digital output code associated with a

given input sample? This absence of direct correspondence between a given input sample

and a given output code is even more significant considering a stand-alone Σ∆ modulator.

The adaptive loop of the Σ∆ modulator continuously processes the input signal and the mod-

ulator output at a given instant depends not only on the input sample at that instant but also

on its internal state. That internal state depends on the whole history of the conversion. Actu-

ally, if the same input signal is sent twice to a Σ∆ modulator in identical operating condi-

tions, two different output bit-streams will be obtained. The low-frequency components may

be identical and the output of the decimation filter may be identical, but the actual modulator

output would be different.

Σ∆ modulation breaks the traditional representation of the A/D conversion as a sam-

ple-to-code mapping. This does not mean that the static metrics are useless but that their

interpretation has to be done with care. The monotonicity of Σ∆ converters is ensured by

design. Indeed, Σ∆ modulators can be seen as control loops: Therefore, if the converters

were not monotonous, they could be unstable. The output code of a Σ∆ converter is built by
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the decimation filter from the modulator output bit-stream. Provided that the decimation fil-

ter is well designed and no rounding operation limits its resolution, there should not be miss-

ing codes. DNL does not provide much information but INL could describe general trends in

the transfer function such as polynomial approximations. Anyway, measuring the INL for all

output codes does not make much sense either. As a result, the standard techniques used to

measure the INL and the DNL of ADCs are not adapted to Σ∆ converters. There exist two

main techniques to derive static ADC parameters: The servo-loop and the histogram.

1 • 2 . 2 . 1  The Servo Loop

The converter is forced to oscillate around a

given code transition as shown in Figure 1-20. If

the ADC output is greater than or equal to the ref-

erence code, the ADC input is slightly decreased,

and conversely, if the ADC output is less than the

reference code, the ADC input is slightly

increased. Hence, the ADC input oscillates

around the transition associated with the refer-

ence code. This transition can be further located

by measuring the DC component of the oscillat-

ing waveform at the ADC input.

The slope of the ADC input will define the maximum achievable precision, though that

random noise has to be taken into account. Noise has a dithering effect, so its impact is not

necessarily negative. The IEEE 1241-2000 standard presents a plot of the number of samples

needed to be averaged as a function of the required location precision (i.e. the code edge

standard deviation), for different values of the ratio of the quantizer step size over rms-noise.

Apart from the previously noted concerns about the concept of code transitions in Σ∆

converters, a drawback of this technique is that the algorithm should take into account the

potentially large latency of the decimation filter. It should also be revised to take into

account the influence of noise at high resolution. Indeed, a Σ∆ converter with a nominal res-

olution of 24 bits may have an effective resolution around 20 bits. Trying to locate transi-

tions at 24 bits resolution would imply finding an oscillation buried into a noise that is 16

ADC

Control

Logic

Figure 1-20: Servo-loop diagram
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times larger. Lastly, an exhaustive test of all transitions would require an incredible amount

of time: for resolution above 14 bits the number of codes is very large. Furthermore, in order

to obtain the static transfer function, the increase and decrease rates of the input voltage

should be very slow.

1 • 2 . 2 . 2  Histogram or Code-Density Test

The most used test for determining of static metrics like INL and DNL is without doubt

the histogram test or code density test. The principle of operation is the following. The test

input stimulus is a known (precisely controlled) signal covering the full-scale and exciting

all the possible codes of the ADC. This already implies that care must be taken with coher-

ent sampling. Then, for a given duration of the signal, it is possible to calculate how much

time any given code is excited. Let vtk be the transition to code k. The ADC will output code

k wherever the signal is in the range [vtk, vtk+1]. If the slope of the test signal is approxi-

mately constant over the range [vtk, vtk+1], and is equal to sk, the time spent by the signal on

code k is

, (1-36)

where Nk is the number of times that the signal passes in the range [vtk, vtk+1] during the

total duration T of the test. Notice that the slope of the test signal may not be the same each

time the signal passes through the range [vtk, vtk+1]. Hence, a more general definition should

be used, namely

, (1-37)
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The expected number of occurrence of

code k during test duration T is simply Tkfs,

where fs is the AD sampling frequency. The

number of occurrence for each code is thus

proportional to the corresponding step

width, and the DNL and INL can thus be

retrieved, whenever the input signal is pre-

cisely known. Eq (1-37) is an approximation

and is only valid if the slope is almost con-

stant in the range of the quantization step.

The real operation that should be done is an

inversion of the signal, as can be seen in

Figure 1-21, but this operation cannot be

performed in the general case for any input signal. Notice that the precision of the DNL

measurement will depend on the number of occurrence per code, i.e. on the duration of the

test. The higher the number of occurrence, the finer the code width evaluation. Indeed, if

only two samples are taken for each code, the DNL precision will be 0.5LSB at best. Noise

and jitter effects will further reduce this maximum precision. Hence, the histogram test

method requires a large number of samples per code, which can be prohibitive in the case of

a high precision converter.

The histogram test is usually carried out with a linear slow ramp of controlled slope. In

that case, Nk is equal to 1 and all the sk
i are equal to the ramp slope s. Ideally, all the codes

are of equal width and thus all the numbers of occurrences should be the same. Any excess

or lack in an occurrence number is directly proportional to the code DNL. The input ramp

also exhibits a small symmetrical overdrive such that the two extreme codes are excited dur-

ing more time. This allows one to derive other two static characteristics: gain error and off-

set.

Another widely used signal is the sine-wave. In that case, the slope varies with the code

location, and some calculation has to be done to retrieve the DNL and INL from the devia-

tion of the numbers of code occurrences. Notice that the input sine-waves should also exhibit

some controlled overdrive.

full-range sine wave

overrange sawtooth

Figure 1-21: Sawtooth and sine-wave
density histograms
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On the overdrive part, Eq (1-37) is obviously not valid, but it is easy to calculate the

time spent in overdrive, and thus at the extreme codes.

Recently, another stimulus has been proposed as a good candidate for histogram testing:

the exponential signal [44]. Indeed, the main shortcoming of almost all characterization

techniques is to ensure the specifications of the test signal, that should be superior to that of

the converter under test. Ramp linearity or pure sine waves are difficult to ensure up to 24

bits (which is the resolution of an industrial Σ∆ converter). The idea is thus to use an expo-

nential discharge, which can easily be generated by filtering a voltage step with an RC filter,

as a test stimulus. Actually, the authors propose to use several exponential waveforms such

that the total full-scale is properly covered. They also propose to perform a fitting algorithm

to determine the exact value of the exponential discharge time constant.

1 • 2 . 3  Determining Σ∆ converters dynamic performance

Σ∆ modulators raise a number of particular concerns related to their dynamics charac-

teristics. Quantization noise in Σ∆ modulators usually appears as a spectrally shaped random

noise but in some conditions spurious tones can appear due to internal coupling with the

input signal or even idle tones. Similarly, the quantization noise power in the base-band can

vary with the frequency and amplitude of the signal. In order to cope with the little control of

the Σ∆ modulators non-linear dynamics, the metrics associated with the dynamic character-

istics (THD, SNR, SFDR, etc.) are usually measured and plotted over a broad range of input

conditions. As most dynamic characterization techniques rely on asine-wave input, the met-

rics of interest are measured for several amplitudes and frequencies. A periodic test signal is

thus sent to the converter input and a register of N data points is acquired at the converter

output. Two main analysis techniques exist.

1 • 2 . 3 . 1  Sine-fit

A sine-fit is used to derive the converter mse (Mean Square Error) including dynamic

effects and noise. The test stimulus is a sine-wave and, as its name indicates, the technique

consists of fitting the ADC output to a sine-wave. The error between the best-fit sinewave

and the ADC output is used to calculate the mse. Two important cases have to be considered.
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The first and simplest one is when the input frequency is known precisely. In that case, the

problem reduces to a linear-in-the-parameter regression, as only the amplitude, phase and

offset of the sine-wave have to be determined. This involves only matrix manipulation and

the precision of the mse estimation will basically depend on the number of points used to

realize the fitting and on the precision with which the input frequency is known. This latter

consideration leads us to the second case, when there is no a-priori knowledge of the input

frequency. In that case, several algorithms can be used to determine the best-fit parameters

(including frequency), but it is not a linear regression and the convergence rate of the search

algorithms is difficult to ensure. Hence, this latter case is more rigorous than the former but

requires more processing power and thus more test time.

1 • 2 . 3 . 2  Discrete Fourier Transform (DFT)

The other and almost ubiquitous analysis technique is spectral analysis based on the

Discrete Fourier Transform. As it is the technique best suited to analyzing Σ∆ converters, we

will describe its application in more detail than the previous techniques.

The Fourier transform of a signal s(t) is its exact representation in the frequency domain.

Actually, a signal can be represented as the linear combination of a infinite number of base

functions such as complex exponential waveforms of the form

. (1-38)
The Fourier transform of s(t) is the set of coefficients of the linear combination, that is,

the values of the projection of the signal onto each one of the complex exponential wave-

forms. The transform is usually represented as a function S(f) (or more correctly a distribu-

tion) of the frequency f, as the coefficients are calculated performing the projection in a

generic manner as,

(1-39)

The Fourier transform induces no information loss with respect to the signal specified in

the time domain. In practice the transform can never be performed exactly on a real signal

due to that fact that the signal to be analyzed is only known over a finite number N of evenly
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distributed points. To tackle this problem a simplified version of the Fourier transform, the

Discrete Fourier Transform (DFT), can be calculated as,

(1-40)

where T is the sampling period of the N points.

For Σ∆ modulators, which rely on quantization noise-shaping to obtain their high reso-

lution, the DFT is almost unavoidable. However, the DFT should be applied with care

because the simplicity of interpreting the results contrasts with the subtlety of the underlying

concepts.

The first issue to consider is that performing the DFT over a finite number of points

gives an approximation of the Fourier transform of the signal under study. Actually if N

points are acquired at a frequency facq the outcome of the DFT is the Fourier series of the

periodic signal of period N/facq that best approximates the acquired samples. Most of the

time, however, the acquired signal has not the required period. It may not even be periodic at

all due to noise or spurious components. For that reason spectral leakage occurs. The signal

components at frequencies other than the available frequency bins (kxfacq/N, with k varying

from 0 to N-1) will leak and spread across adjacent bins, making them unobservable. Actu-

ally, the obtained spectrum can be considered as the Fourier transform of an infinite-length

version of the analyzed signal multiplied by a rectangular signal with N ones and an infinite

number of zeros. That signal is called a rectangular window. The multiplication in the

time-domain corresponds to a convolution in the frequency domain. So a spectral line at a

given frequency (a Dirac distribution) in the ideal Fourier transform of the signal will appear

as a version of the rectangular window spectrum centered at the same frequency. More

exactly, what will appear in the FFT output are the samples of the displaced rectangular-win-

dow spectrum that corresponds to the available frequency bins. This is illustrated in Figure

Figure 1-22.

If the spectral line exactly corresponds to one of the FFT bin it means that it can be rep-

resented adequately by a Fourier series of length N. This corresponds to case a) in

Figure 1-22. In this case, the rectangular window spectrum is sampled at its maximum, and

the rest of the samples correspond exactly to the nulls of the window spectrum. However, if

S̃ i2πf( ) sd mT( )e i2πfmT–

m 1=

N

∑=
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the spectral line falls between two FFT bins [case b)], the rectangular window spectrum is

not sampled at its maximum on the main lobe. Part of the missing signal power leaks into

adjacent FFT bins that sample the rectangular window side-lobes.

Coherent sampling is the first technique that is used to limit these undesirable effects. It

consists of carefully selecting the test frequencies such that they correspond as closely as

possible to FFT bins. In practice, this can be implemented if the test signal generator can be

synchronized with the ADC. It can be shown [21] that the test frequencies should be set to a

fraction of the acquisition frequency,

, (1-41)

where N is the number of samples in the acquisition register and J is an integer, prime with

N, that represents the number of test signal periods contained in the register. This choice also

ensures that all the samples are evenly distributed over the test signal period and that no sam-

ple is repeated.

However, it is not always possible to control the test frequencies with sufficient accu-

racy. Similarly, there may be spurious tones in the converter output spectrum at uncontrolled

frequencies. In those cases, a window different from the rectangular one is required. Spectral

leakage occurs because the analyzed signal is not periodic with a period N/facq. The idea

behind windowing is to force the acquired signal to respect the periodicity condition. For

that to be done, the signal has to be multiplied by a function that continuously tends to zero

at its edges. As a result, the power contained in the side-lobes of the window spectrum can
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be greatly reduced. The window has to be chosen such that the leakage of all components

present in the ADC output signal falls below the noise floor and thus does not corrupt spec-

trum observation. The counterpart of such an operation is that the tones present in the output

spectrum are no more represented by a sharp spectral line at one FFT bin. Indeed, the main

lobe of the window is always sampled by a number of adjacent FFT bins that is greater than

one. As a result, frequency resolution is lost. There is a trade-off between frequency resolu-

tion and side-lobe attenuation. Figure 1-23 represents the spectrum of several windows sam-

pled for a 1024-points FFT. Case a) shows how the window would be sampled for a

non-coherent tone that would fall exactly between two FFT bins. Case b) shows a close-up

on the main lobes of the window spectra for a coherent tone. Notice that for case b), there is

one marker per FFT bin.

In order to limit spectral leakage, the authors in [43] proposed to combine sine-fit and

FFT. A sine-fit is performed on the acquired samples in order to evaluate the gain and offset

of the modulator. Then, an FFT is performed on the residue of the sine fit. As the high power

spectral line has been subtracted from the register, the residue contains mainly noise, spuri-

ous components and harmonics. In most cases, these components do not exhibit high power

tones. A simple window or even a rectangular window can be used. The spectral leakage of

these components should be buried below the noise floor. The overall spectrum (what the

authors call pseudo-spectrum) can be reconstituted by manually adding the spectral line cor-

responding to the input signal. The main drawback of this technique is obviously that it

requires the computational effort of both sine-fit and FFT.

The proper application of FFT requires that three parameters be determined: the number

of samples in a register, the number of averaged registers and the window to be applied. The

window type sounds too qualitative and it is useful to divide it into four parameters: the main

lobe width (for instance, 13 FFT bins for the Rife-Vincent window of Figure 1-23), the win-

dow energy, the maximum side-lobe power and the asymptotic side-lobe power evolution.

Figure 1-24 shows how these parameters relate to the measurement objectives and to the

setup constraints through a number of central concepts.

The required frequency resolution is defined by the need for tones discrimination and

affected by setup limitations such as the frequency precision of the signal generator. For a
61



CHAPTER 1
Figure 1-23: a) 1024 points FFT of four windows in the worst case of non-coherent
sampling (signal between two FFT bins) b) Main lobes of the window spectra
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given type of test, a number of tones are expected in the output spectrum. For instance, in an

intermodulation test, the user has to calculate, as a function of the input tone’s frequency, the

expected frequency of the intermodulation and distortion tones. Similarly, expected spurious

tones such as those at 50Hz (or 60Hz) can be taken into account. All of these components

should be correctly discriminated by the FFT in order to perform correct measurements. Fre-

quency resolution is primarily driven by the number of samples in the acquired register but

the window type is also of great importance. Indeed, the main lobe width for an efficient

window (from a leakage viewpoint) like the Rife-Vincent window shown in Figure 1-23 is as

large as 13 FFT bins. This means that the frequency resolution is reduced by a factor 13 with

respect to a rectangular window whose main lobe is only 1-bin wide. In many cases though,

few tones are expected in the output spectrum and the frequency resolution issue can easily

be solved by a judicious choice of the test frequency.

The noise floor is the concept of greatest importance. The power of a random signal

spreads over a given frequency range. For white noise, it spreads uniformly from DC to half

the acquisition frequency (facq/2). What the FFT measures is actually the amount of noise

power in a small bandwidth centered on each FFT bin. Obviously, the more samples are

Objectives:

Tones discrimination

Lowest measurable
tone power

Noise spectral
density resolution

Setup constraints:

Noise power

Stimulus frequency
precision

Input tone power

Expected noise shape

DFT parameters:

Number of samples

Number of averages

Window:

- Main lobe width
- Window energy

- Side lobes power

- Side lobes decay

Central concepts:

Frequency resolution

Noise floor

Noise dispersion

Signal leakage

Noise leakage

Figure 1-24: Relating FFT parameters to test objectives and setup constraints
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acquired the smaller the bandwidth is and the smaller the amount of noise that falls in that

bandwidth. The expected value for a noise bin is,

, (1-42)

where σnoise is the standard deviation of the white noise, N the number of samples in the

acquisition register and Ewin the energy of the applied window. Indeed, the window is

applied to the whole output data, including the noise and influences the effective noise band-

width. The energy of the window is calculated simply from the time-domain samples of the

window (wk) according to

. (1-43)

On the other hand, the noise floor is related to the setup constraints by the actual noise

power in the output data, which should be estimated a-priori. The noise floor has to be set to

a value that enables the observation of the lowest expected tone power. In other words, if a

tone of 90dB below full-scale has to be detectable, the number of samples and the window

energy have to be chosen such that the noise floor of the resulting FFT falls below 90dB.

The noise dispersion should also be taken into account. It can be shown that the random

variable that corresponds to an FFT bin and whose mean value is expressed in Eq (1-42) has

a standard deviation of the same order as its mean value []. As a result, in the representation

of the spectrum in decibels of the Full-scale, random noise appears as a large band that goes

from 12dB above the expected power level down to tens of decibels below. Averaging the

magnitude of the FFT bins for K acquisition registers helps to reduce the standard deviation

of the noise FFT bins by a factor of K0.5. For a significant number of averages, the noise

floor tends to a continuous curve, which would be its ideal representation. Actually, the fol-

lowing equation could be used to derive the FFT parameters from the requirement of the

lowest detectable tone

, (1-44)

X k σnoise
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where Pnoise is the expected noise power of the converter, K the number of averaged registers

and Pspur the power of the minimum spur that has to be detected. Notice that a full-scale

tone is taken as the power reference in Eq (1-44). The last logarithmic term in Eq (1-44)

stands for the dispersion of the noise floor. Figure 1-25 illustrates the contributions to

Eq (1-44).

The dispersion term should be maintained below the variations of the noise spectral den-

sity that have to de detected. For instance, if an increase of 6dB of the noise density due to

flicker noise has to be detected, the noise dispersion term should be lower than 6dB, which

implies averaging K=10 FFT registers. Note that if the actual noise power is higher than

expected, the noise floor of the obtained FFT is increased. As a result, the minimum detect-

able tone is higher. To compensate for this effect, the number of points in the register should

be increased to decrease the noise floor. An extra guard-band may be introduced in Eq (1-44)

in order to account for an unexpected increase in the noise.

Returning to Figure 1-24, the concept of signal leakage has already been explained.

Considering the maximum input tone power and the frequency precision of the signal gener-

ator available, the window should be selected such that the side-lobe power falls below the

noise floor. Notice that if the frequency precision of the generator is better than half the FFT
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bin bandwidth, facq/(2N), the side-lobe power requirements may be relaxed as the window

spectra would not be worst-case sampled. Taking that case to an extreme, if coherent sam-

pling is available in the test setup, no signal leakage occurs.

For Σ∆ converters, however, another leakage concept may have to be taken into account:

noise leakage. Σ∆ converter non-idealities are located mainly in the analog part which is the

Σ∆ modulator. In that sense, performing the FFT on the modulator bit-stream gives more

insight into the operation of the Σ∆ modulator because it is possible to check the correctness

of the noise shaping at high frequencies (beyond the cut-off frequency of the decimation fil-

ter). If the FFT is performed on the output of the decimation filter, a number of samples N

has to be acquired at the filter output frequency (facq) in a high resolution format (for

instance, the filter output of a 24-bit precision filter can be in a 32-bit format). If it is per-

formed on the modulator bit-stream, a number of samples N’ has to be acquired at the sam-

pling frequency of the modulator (which is equal to the filter output frequency multiplied by

the OSR) in a low-precision format (typically one bit). Taking into account that the same

non-idealities have to be detected in the base-band, the same frequency resolution has to be

selected in both cases. Hence, the FFT of the modulator output bit-stream requires OSR

times more points than the acquisition at the filter output. The acquisition time is thus the

same in both cases, and the memory requirements should be of the same order due to the dif-

ference in the samples formats. The counterpart of performing the FFT on the modulator

bit-stream is that it puts more stress on the choice of the window that has to be applied to the

data register. Indeed in most ADCs, the noise spectral distribution is almost flat and its

power is far lower than full-scale signal power. As a result, noise leakage has little or no

impact on the output spectrum. This reasoning is also valid for a Σ∆ converter if data is

acquired at the output of the decimation filter. But if the FFT is performed directly at the

modulator output, the spectral density of the modulator quantization noise is not flat at all

and the leakage of high frequency noise into the modulator base-band could severely corrupt

the FFT analysis. The window has to be chosen not only on the base of the test signal leak-

age but also on the basis of the spectrally-shaped noise leakage. In other words, the perfor-

mance of the window depends on the attenuation of the first side-lobes for signal (or tones)

leakage, and on the asymptotic attenuation for noise leakage. It can be seen in Figure 1-23

how Blackman-Harris and Rife-Vincent window achieve a low side-lobe power. On the
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other hand, Hanning’s window induces more signal leakage but the counterpart is that the

side-lobe power greatly decreases with frequency. This window outperforms the Black-

man-Harris at relatively low frequencies. It may thus be more suitable to avoid high fre-

quency noise of the Σ∆ modulator output bit-stream leaking into the base-band. This may be

particularly true if a combination of a sine-fit and an FFT is performed, as the fundamental

component that is most likely to exhibit visible leakage is removed. In that case, noise leak-

age becomes the dominant component, unless there are high power spurious tones. In order

to choose the window properly, it could be useful to simulate white noise filtered by the the-

oretical Noise-Transfer Function of the modulator and perform an FFT with the candidate

windows. That allows one to check if the shape of the noise-floor in the base-band is higher

than expected.

The main conclusion that arises from this description of characterization techniques is

that whatever the employed method, a test stimulus has to be provided with more accuracy

than the converter to be tested. Achieving a suitable signal source may be a challenging task,

be it from a precision or speed point of view. Moreover, if all the possible codes have to be

tested, the amount of data acquired increases dramatically with the converter precision, at a

rate , where Nf is the number of bits of the converter output word and N its speci-

fied precision. Σ∆ converters for geophysical measurements can be found with a precision as

high as 24 bits, and an output word written in a 32-bit format (that includes some validity

flags). The exhaustive characterization of such a converter would thus require the acquisition

of at least 64Mb of data.

Nf 2
N×
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ADC TESTABILITY SOLUTIONS

Analogue-to-Digital Converters are basic electronic blocks that can be found every-

where. Indeed, since the introduction of digital processing, they have to be used as an inter-

face to our inherently analogue world. Moreover, as have been said earlier, Σ∆ modulators

have been widely used in the industry for almost two decades. Hence, the concern for the

testability of ADCs and in particular for Σ∆ converters is increasing but not new. As a matter

of fact, a large number of DfT solutions can be found in the literature and the goal of this

chapter is to review and classify the most important proposals.

We will try to go from the most general to the most specific. Therefore, we first address

some schemes that tackle problems that are common to Mixed Signal Systems. Next, we

review the DfT proposals that have been designed to test Analogue-to-Digital Converters as

a Black-Box; these schemes also apply to the particular case of Σ∆ converters. Finally, we

will deal with some proposals that are specifically dedicated to Σ∆ converters.



CHAPTER 2
At the end of this chapter, we summarize the different contributions in tabular form, pre-

senting their benefits and shortcomings from a sigma-delta point of view.

2 • 1 GENERAL MIXED-SIGNAL DFT

One of the major objective of Design-for-Test for Mixed-Signal circuits is to enhance

accessibility and observability. Accessibility is the ability to apply a test stimulus at a given

node of the circuit under test. This is of great importance in the case of SoCs, as the compo-

nents primary inputs may not be accessible, which impede even functional testing. Observ-

ability is the ability to read the value of an internal node voltage or branch current. Both

aspects should be contemplated with care to provide solutions that do not affect circuit per-

formance.

Accessibility and observability have been quoted as a critical concern for quite a long

time. That is the reason why the IEEE has extended the digital test bus standard 1149.1 to

mixed-signal systems. This extended test bus is named 1149.4 or more simple “dot 4”. Its

basic scheme is represented in Figure 2-1. Basically, the proposal consists of designing Ana-

log Boundary Modules so as to provide an analog Boundary Scan. In that sense, the voltage

at any node connected to an ABM can be shifted off-chip through the Analog Test Access

Port. The main objective of the IEEE 1149.4 test bus was initially to test chip interconnects,

which are known to be a critical reliability issue. Nevertheless, some room had been man-

aged to enable core testing, as testified by several works [1].

A straightforward approach to enhance accessibility is to use multiplexers to select

between the normal operation input and a test stimulus. That is more or less the technique

that is used in the IEEE 1149.4 test bus to disconnect the ABMs from the core circuit or

from the pads. The problem associated with such an approach is that it introduces an extra

switch in the signal path, and the impact of this switch on performance has to be taken into

account. This puts more stress on the design margins and should thus be avoided. Similarly,

sensing an analog signal that is not the normal circuit output usually requires the use of a

buffer to adapt to a test pin load. The parasitics introduced by this buffer also have to be
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taken into account. In order to cope with these issues, a solution was proposed some years

ago that is called swopamp, for switched-operational amplifier. Many mixed-signal circuits

and systems are based on the switched-capacitor technique. This implies that operational

amplifiers are used to build filters, integrators and most functional macros. The swopamp

solution consists of modifying the operational amplifier such that it is transformed during
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Figure 2-1: IEEE 1149.4 test bus generic scheme
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test mode into a buffer of a test input. Such a modification can be carried out in several ways,

but the key point is that it does not modify the signal path and thus has no impact on the cir-

cuit performance. The only costs associated with that solution is the area overhead and test

control. Such an approach has been successfully used in a Dual Tone Multi Frequency

receiver with innovative test features [46]. In that work, swopamps are used to isolate biquad

filter sections from the preceding sections and to carry the test output signal to the normal

output pad by reconfiguring the following stages into buffers.

2 • 2 GENERIC ADC TEST

In the field of DfT, much effort has been done to develop generic and thus reusable solu-

tions for important macros like Phase-Locked Loops, Opamps and also Analogue-to-Digital

Converters. Due to the great number of possible ADC architectures, generic ADC DfT solu-

tions are normally derived from functional testing. Indeed the only thing that all the possible

ADCs share is the way they are specified, as has been described in Chapter 1. Hence, a solu-

tion to perform an histogram test on-chip would in principle allow one to determine the Inte-

gral Non-Linearity and Differential Non-Linearity for a pipeline converter as well as a

FLASH or Σ∆ converter.

Actually, most of the proposals are aimed at developing BIST schemes, as they provide

the most added value. Nevertheless they seldom contemplate at the same time the two main

aspects of functional BIST: on-chip test stimulus generation and on-chip test evaluation.

2 • 2 . 1  On-chip test stimulus generation

The generation of analogue signals is not a domain reserved to DfT and BIST schemes

and it even constitutes a whole chapter of electronics theory. In particular, many techniques

are dedicated to the elaboration of oscillators (like Colpitts or Wien-bridge oscillator). Nev-

ertheless, a test stimulus generator should also be testable, or at least sufficiently robust to be

sure that it is the circuit under test that is failing and not the test stimulus generator. More-

over, it should also be simple so as to keep its impact on chip area low. This put severe con-
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straints upon the suitable candidates and that is why we review only those generators

specifically dedicated to DfT.

2 • 2 . 1 . 1  Sine-wave generation

Two of the principal test stimuli for converter characterization are single and multi tone

sine-wave signals. It has been seen in Section 1 • 2 . 3 that sine waves are often required to

determine their dynamic characteristics. Nevertheless, the generation of sine wave signals is

not an easy task. The most important advance in the field of sine-wave generation for DfT

has been carried out by the team led by Gordon Roberts [47,48,49]. Their proposals can be

split into two basic schemes. The first one consists of building a sigma-delta digital oscilla-

tor, by embedding a Σ∆ attenuator in a digital resonator, as seen in Figure 2-2 [47]. The

selection of the attenuation coefficient (Ki) defines the oscillation frequency. The digital Σ∆

output bit stream encodes a very precise sine-wave tone (defined by the design of the digital

oscillator). Then, an analogue filter has to be used to attenuate the significant amount of

quantization noise. This scheme has the advantage of being mostly digital and is thus very

robust and testable. However, the scheme is primarily intended for low-speed converters

(and in particular Σ∆ modulators) as the maximum test tone frequency is limited by the Σ∆

oscillator quantization noise. Notice that in the case of Σ∆ modulator test, the analogue filter

associated with the stimulus generator is greatly relaxed, as only the noise within the deci-

mation filter bandwidth is of real importance. Hence, this scheme keeps the area impact low.

The principal limitation of this proposal is that it can only produce single-tone waves.

In [50], Lin and Liu modify the technique so as to generate multi-tone waveforms. The

core of their idea is to use Time Division Multiplexing to accommodate the additional tones.

In order to maintain the same efficiency as the original scheme, the master frequency has to

be raised by a factor M (M being the number of tones). Similarly, the order of the digital Σ∆

modulator that can be seen in the loop in Figure 2-2 also has to be multiplied by a factor M.

Actually, each delay element in the original modulator has to be replaced by M delay ele-

ments. This scheme is thus practical only for a reduced number of tones. The authors also

propose a particular 4th order leapfrog architecture for the digital Σ∆ modulator, arguing that

it requires simple loop coefficients, which is key for a successful VLSI implementation.

With that architecture, the authors show that the output signal for a two-tone waveform
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exhibits an SNR greater than 90dB with high level MATLAB simulations. Notice that for a

two-tone waveform, the modulator order has been raised from 4 to 8.

The other solution proposed by the same team consists of recording in a recycling regis-

ter [48,49] (i.e. a 1 bit shift register whose output is fed back to the input) a portion of a Σ∆

encoded signal. The advantage with respect to the previous proposal is the flexibility of the

encoded signal, as the only a-priori restriction is that the wanted signal be periodic with a

maximum period equal to the length of the register. On the other hand, the drawbacks con-

cern the trade-off between precision and extra area. Indeed, the wider the register, the more

precise the encoded signal and the larger the required silicon area. Nevertheless, if the gener-

ator had to be implemented in a chip with a testable digital part, they also proposed to reuse

the boundary-scan register for the generator shift register. This would provide a potentially
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large register with low overhead. Alternatively, a RAM available on-chip could also be

reused. Notice that it is important to optimize the recorded bit stream to obtain the best

results. The bit-stream recorded in the shift register is a portion of the output bit stream from

a software Σ∆ modulator encoding the wanted test stimulus. Optimization consists of choos-

ing the best performing bit stream portion over the total bit stream and in slightly varying the

software Σ∆ modulator input signal parameters to get the best results in terms of resolution.

Indeed, the SFDR results of a modulator can vary greatly with the input signal amplitude.

These proposals are quite mature, and alternative generation methods for the bit stream have

been shown to improve the obtained signal precision.

In [51] the authors take the idea of Gordon Roberts’team and build a fourth order Σ∆

oscillator in an FPGA to demonstrate the validity of the approach. Their oscillator was

designed to avoid the need for multipliers and required around 6000 gates. They achieved

more than 110 dB dynamic range for a tone at 4 kHz (the modulator master clock was set to

2.5 Mhz).

In turn, [52] presents a prototype of a signal generator that uses the idea of the recycling

register. The authors propose to optimize the performance of the generator (in terms of fre-

quency resolution as well as SFDR and THD) by selecting the proper register length for each

desired signal. The prototype thus implements a programmable-length shift register

(between 100 and 200 bits). Single tones between 10Hz and 1MHz can be obtained with a

SFDR taht is always greater than 42dB, which is quite interesting considering the relatively

small size of the register.

2 • 2 . 1 . 2  Ramp generation

The second most used test stimulus is without doubt the ramp signal. As seen in Section

1 • 2 . 2, a very linear ramp is of interest to determine the INL and DNL using a histogram

(or code-density) test. In [53], the authors reuse the proposal of Roberts that has been

described in previous paragraphs. Indeed, storing of a Σ∆ bit-stream in a recycling register is

not restricted to sine-wave signals. Actually, any periodic signal could, in theory, be encoded

in that way. That is the case of a triangular wave. A triangular wave is not exactly a ramp sig-

nal. Nevertheless, the advantage of the digitally generated signal is that it allows precise

coherent sampling, as the operating frequency of the shift register can be set in an exact rela-
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tion to the converter sampling frequency. Hence, the use of under-sampling may enable one

to build an equivalent slow ramp. It also allows one to select either the increasing or decreas-

ing part of the triangular wave. Anyway, notice that the triangular wave is suitable for histo-

gram test, as the monotonicity of the test stimulus is not mandatory. Indeed, the code density

associated with a triangular wave is the same as that of a slow ramp.

The generation of a ramp stimulus

in an analog fashion may also be suit-

able for BIST applications. Indeed, a

slow ramp can easily be generated

with a current source loaded by a

capacitor. This can simply be imple-

mented in a CMOS technology. Never-

theless, this implementation has to be

done carefully in order to avoid some shortcomings and reach an acceptable precision. In

[54], the authors state that a linearity of 15 bits could be reached in CMOS (taking into

account the linearity of the current source and the capacitor), which would allow the charac-

terization of 12bit converters. However, the linearity of the generated ramp is not the only

important parameter. Indeed, if the generator is targeted at histogram testing, the expected

number of occurrence of each code during an evaluation period has to be precisely con-

trolled. In other word, the ramp slope should be fixed by design. This is very difficult to

achieve in CMOS where the matching of components is good but the absolute value is not so

precise. A variation of 20% in the absolute value of the integrating capacitor would cause a

20% variation in the slope, which would be unacceptable. Hence, the authors propose a sim-

ple adaptive algorithm to correct the slope of the ramp, which operates on the integrating

current. Given the ideal (wanted) slope and a reference voltage, the integration time neces-

sary to reach this reference voltage after initialization can be calculated. If the actual slope is

greater than desired, the reference voltage will be reached earlier and the integrating current

is reduced. Conversely, the integrating current is increased if the reference voltage is reached

too late. The ramp slope can be adjusted to 0.4% of the desired slope in less than 10 cycles.

current mirror

Figure 2-4: Generic scheme of a ramp generator
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In [55], two architectures are discussed. The first one concerns the generation of a slow

ramp and is very similar to that proposed in [54] (without calibration), but the authors point

out that the current is sent to the integrating capacitor and also to the input of the converter

under test. Hence, it may be necessary to introduce a buffer, which in turn requires more

power and limits the achievable linearity and/or output range. The second proposed architec-

ture tackles the issue of generating a “high-speed” triangular waveform. It is actually a relax-

ation oscillator (with two current sources to charge or discharge a capacitor). Notice that the

authors propose to use a capacitor amplifier to reduce the required area. Both architectures

have been implemented in CMOS technology. The first one reached a linearity of 0.03LSB

of a 10 bit ADC for a frequency up to 10kHz, while the second one reached 0.15LSB for a

frequency up to 400kHz.

Paper [56] proposes several architectures that include adaptive algorithms to generate a

ramp stimulus with controlled slope. This paper also discusses possible degradation mecha-

nisms. Moreover, the best two proposed architectures have been implemented and compared

with the results of other work.

A dedicated ramp generator is also proposed in [57]. In this paper, a test interpretation

mechanism is also presented but this aspect will be discussed next. The ramp generator is a

transconductor that is loaded by an integrating capacitor. The slope of the ramp can thus be

adjusted by tuning the voltage input of the transconductor. The authors propose to use an

off-line manual calibration scheme. Two comparators are implemented on chip to detect

when the ramp output is within the input range of the converter under test. By monitoring the

comparator’s output, it is possible to determine the time in which the ramp has covered the

ADC full scale range, and further adjust the transconductor input voltage to obtain the

desired slope. This allows precise synchronization of the ramp to a counter that has a width

of one more bit than the converter under test. Unfortunately, no data is provided in the paper

on the performance of the resulting ramp.

2 • 2 . 1 . 3  Noise generation

Recently, a noise generator has been proposed for ADC testing [58]. The objective is to

obtain a white noise generator, such that a faulty ADC is detected by an increase of the noise

floor. The noise generator consists of a square wave filtered by a simple RC filter. An expo-
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nential shape periodic wave is obtained, that is further randomly sampled, accordingly to the

output of a LFSR (Linear Feedback Shift Register). The necessary hardware is small and

robust. Nevertheless, the white behaviour is limited to a bandwidth of 4 kHz.

2 • 2 . 1 . 4  Exponential generation

In [59], the authors propose an alternative Code Density Test (Histogram test) to deter-

mine static characteristics. Though it is not primarily targeted at BIST schemes, it tackles a

similar issue. Indeed, the authors argue that it is often difficult to provide a sufficiently linear

test stimulus to characterize high-standards converters. Hence, they propose to use several

voltage steps filtered by an RC network to cover the whole ADC full-scale range. The theo-

retical code density can be calculated, just as for a classical histogram test, it only requires

some more computational power for the test evaluation. However, the direct application of

such a characterization scheme to BIST would require a deep study of the implementation

shortcomings and the necessity of calibration.

Actually paper [60] propose two methods to use exponential signals to determine static

linearity. The second one is a curve fitting like in [59] but the first one is a method that deter-

mines INL on a code-by-code basis. In this method, the time constant of the exponential is

first calibrated by measuring the time necessary to reach known intermediate voltages. Then

the ADC gain and offset errors are determined using the times at which the exponential test

signals enters and leaves the ADC conversion range (i.e. the ADC full-scale). At last the INL

at code Cx is determined by measuring the time Tx necessary to reach the code Cx. It can be

calculated by subtracting the value of the exponential at time Tx from the theoretical voltage

corresponding to code Cx. Notice, though, that the exponential signal should be slow in

LFSR

S&H

master clock

Figure 2-5: Noise generator based on a statistical sampler
78



ADC Testability solutions
order to reach a high precision. Furthermore, the fact that the INL has to be determined on a

code-by-code basis greatly limit the applicability of the method to high resolution convert-

ers.

In turn, Roy et al. present in [61] an exponential shaped test stimulus for application in

the well-known Logic-Vision BIST scheme [62]. The idea is to use pulse width modulation

to encode 5 different DC levels digitally. Using an RC network to low-pass filter the digital

waveform, the corresponding DC levels can be retrieved. Alternating the PWM codes as

shown in Figure 2-6, a waveform with exponential steps is obtained. The digital PWM is

proposed to be performed on-chip, while the RC filtering would be done off-chip, with hand

selected resistors and capacitors. This would thus require two extra pins, and a BOST (Built-

Out Self-Test) would be obtained. Note that the RC network has to be external because abso-

lute component value in CMOS technology can exhibit unacceptably large dispersion. For

the proposed BOST scheme, only the settling part of the exponential steps would be used,

which translates to an increase of test time, as the plateau of the steps have to be discarded.

2 • 2 . 2  Test interpretation

Test interpretation and evaluation are almost as important as test stimulus generation.

Indeed, though the mechanisms are known (because they are used for characterization), they

usually cannot be implemented on-chip due to the required memory and processing power.

For instance, a DSP unit can be used to calculate a Fourier transform only if it is already

processed samples

Figure 2-6: Exponential stepped signal equivalent to a ramp

low-pass filter

square signals with varying duty cycles
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available on-chip. Hence, we will focus at this point on the clever solutions that have been

proposed in the literature to implement simplified functional test evaluation.

Among the solutions that focus on reducing the hardware dedicated to test data analysis,

the work of Gordon Roberts’s team can once again be stressed. Indeed, they have proposed

solutions to extract some dynamic parameters in association with their sine-wave generation

mechanism. In [63], they compare three possible solutions. The first one is straightforward.

It comprises the implementation of an FFT engine. Though it provides good precision, it is

not affordable in the majority of cases (if a DSP is not available on-chip). The second one

consists of using standard linear regression to perfrm a sine-fit on the acquired data. The

same master clock is used for the sampling process and the test stimulus generation. The

input frequency is precisely known, which avoids the necessity of using a non-linear four-

parameter search. The precision of the SNR calculation is similar to that obtained using FFT,

but less hardware is required. However, some multiplications need to be performed in real-

time and some memory is also required to tabulate the values of the sine and cosine at the

test stimulus frequency. The third and last proposed solution is to use a digital notch filter to

remove the test signal frequency component and calculate the noise power and a selective

band-pass filter to calculate the signal power. The required hardware to implement this

method is less than for the other two solutions, as no memory is needed to tabulate cosine

values and no real-time multiplication is required. The price to be paid is a small reduction

in SNR precision and that the test time is slightly increased to account for the filter settling

time. Actually, the more selective the filter, the better the SNR precision but the higher the

settling time. Extensions of this work [64] also showed that it was possible to extract har-

monic distortion and inter-modulation distortion with similar digital filtering.

Apart from dynamic testing, some solutions have also been proposed to interpret on-

chip the results of a code density test. One of them is that of De Vries et al. [65]. Their solu-

tion is targeted at a slow ramp code density test. What they propose is to monitor only the

LSB, arguing that a transition between two codes for a slow ramp input is always defined by

a change in the LSB. This is true only if the converter non-linearity is taken into account.

However, if noise (thermal and jitter) variance is significant with respect to the quantization

step, the principal assumption does not hold true and a toggling between adjacent codes can
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be seen at code transitions. The authors propose to use a digital low-pass filter to remove

most of the noise. Then, a simple counter accumulates the number of samples between two

consecutive LSB changes. This gives a measure of the code DNL. Similarly, the DNL values

are accumulated to get the INL for each code. Both measured INL and DNL values are com-

pared directly to an ideal value stored on-chip. If the measured values exceed an allowable

amount, a fail flag is sent as a BIST result. This paper also provides a statistical analysis to

evaluate the expected probability of failed good devices and passed bad devices, as a func-

tion of the counter width (i.e. the number of samples per code).

Wen and Lee have proposed a similar scheme [57]. They use a digitally controlled ramp

with one more bit of resolution than the ADC under test. A transition between two codes is

determined by monitoring the converter LSB. Then, simple INL and DNL detectors are

derived that compare the ADC output with a counter that is synchronized with the input

ramp. The main limitation of the proposed scheme is that it is limited to a precision of 0.5

LSB. On the other hand, only simple logic gates are used, and the area overhead associated

with the detectors is very low. However, the paper does not contemplate possible error mech-

anisms such as noise or input ramp non-linearity.

The work realized at the LIRMM by Michel Renovell’s team is worthy of consideration.

They have done a good job to minimize the hardware necessary to implement an histogram

test. In [66], they first state that the ramp histogram is much more efficient than a sine-wave
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Figure 2-7: On-chip INL and DNL checking by monitoring LSB
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(or other) histogram from a hardware point of view. Indeed, the tabulation of the ideal results

for a linear ramp histogram only requires two words: one for the two extreme codes (that are

more excited due to the designed over-range of the ramp), and one for the intermediate

codes, that all have the same density. Then, in [67,68], they propose a full implementation,

with optimized hardware resources. They propose to decompose the test sequentially, not

only for the type of measurements (gain, offset, DNL and INL) but also for the codes. In

other words, DNL and INL evaluation are carried out on a code by code basis: only one code

is considered per run. They implement the proposed hardware together with a 6bit FLASH

ADC, and obtain a quite reduced 6.7% area overhead. Obviously, this sacrifices much test

time compared to the case where only one run was necessary, because 2N runs are now

required (N being the converter number of bits). Hence, this scheme should be limited to

converters with relatively low resolution. Indeed, the authors point out that a complete test of

a 14bit converter at a sampling frequency of 1MHz would take 5h22mn, which is totally

unaffordable. By contrast, the test of an 8bit converter at a 100MHz sampling frequency

would require only 50ms. Moreover, they conclude this article opening a possible trade-off

between extra hardware and test time. Indeed, a p-after-p code sequence evaluation could be

used instead of code after code evaluation.

Last but not least, Bozena Kaminska’s team has developed a BIST scheme based on the

servo-loop method [69]. In their method, the ADC output is made to oscillate between two

reference codes. A triangular wave is generated by a relaxation oscillator controlled by the

ADC under test output. Actually, a current source charges a capacitor while the ADC output

code is lower than the upper specified code. Once this specified code is reached, another cur-
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Figure 2-8: Generic hardware required to perform an histogram test
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rent source discharges the capacitor until the lower reference code is reached, and so on. The

frequency of oscillation is directly proportional to the voltage difference between the transi-

tions associated with the specified codes. Hence the DNL and INL can easily be derived by

measuring the oscillation frequency. It is worth noticing that it is quite easy to measure a fre-

quency, because any linear filtering will not alter the result whenever the fundamental fre-

quency is preserved. Hence, it is quite easy to ship the test signal out of the chip even in

embedded systems, through buffers and busses, without losing precision on the test result.

Moreover, the influence of white noise can also be averaged out if the frequency is measured

over a sufficiently large number of samples. In the servo-loop method, however, the oscilla-

tion is filtered out and the test output is the DC voltage component of the oscillation, which

has to be measured precisely. This is a fundamental difference, because it allows one to use

quite an imprecise integrator. Indeed, if the oscillations are restricted to adjacent codes and

the ramp is locally linear, the DC component of the oscillation coincides with the average

between the two transition voltages involved. However, the oscillation frequency depends on

the slope of the integrator. Therefore, the global linearity of the integrator is important.

Actually it should be better than the ADC under test.
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2 • 3 MODEL-BASED TEST

One of the main limiting factors for the direct application of functional test to BIST

schemes is the amount of data that has to be acquired and processed. This obviously has an

impact on the processing power required (including memory) and on the test time. However,

test is not the same as characterization and a large number of researchers have postulated

that in some cases good fault coverage could be obtained with a test that is far from being

exhaustive.

2 • 3 . 1  Fundamentals of the model-based approach

The model-based test approach has been developed mainly by Stenbakken and Souders

but other researchers have then followed their path and a large number of papers describe

most of the advantages and drawbacks of this approach [70-74]. The idea consists of build-

ing a parametrized model such that the number of parameters is much lower than the number

of measurement to be performed. Hence, only a subset of measurement is necessary to deter-

mine the parameters and the rest of the measurements can be extrapolated using the model.

The model-based approach relies on the assumption that the performance of a circuit is

correlated with a small number of core parameters. Hence, if one knows these correlations,

the performance evaluation can be performed by determining the core parameters. The set of

correlations between the core parameters and the performance measurements actually forms

the model.

The relation between performance and core parameters can be non-linear. However, a

commonly used method to simplify non-linear problems is to consider that only small varia-

tions occur around the nominal operating point (set by design). Hence, a first order approxi-

mation can lead to sufficiently accurate results. That is the basis of the linear modelling.

Though the concept of model-based test is relatively simple, it implies two different

tasks that have to be detailed:

◆ How to retrieve the model parameters and evaluate the performance

◆ How to determine the model, which implies the determination of the core parame-

ters and their correlations to the performance measurements
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Given a number M of specifications [s] to be tested, the model-based testing approach

assumes that they can be linearly related to a number P of parameters [x]. We can thus write

, (2-1)

where [s0] is the vector of the nominal specification measurements. Matrix [A], of size M*P,

is the linear model of the circuit.

If P is less than M, the system is over-dimensioned and only a subset [sb] of P specifica-

tion measurements would be necessary to determine the model parameters [x].

(2-2)

Once the model parameters are determined, it is easy to determine the specifications that

were not measured through Eq (2-1).

Due to noise considerations and the limited precision of the specification measurements,

it may be necessary to perform the measurements over a set wider than P. The selection of

the number of specifications to be measured and which of all the possible subsets has to be

chosen is an optimization problem.

The most important point of the model-based approach is without doubt the determina-

tion of the model (i.e. matrix [A])

One of the ways to derive an efficient model consists of identifying the mechanisms that

can potentially impact the specifications that have to be tested for. This method is known as

a-priori modeling. Obviously this requires knowledge of the exact circuit architecture and

implementation together with a deep understanding of its functioning. Even more, statistics

on the process variations should also be available, as most parametric failures are due to

unexpected drift of some of these parameters. A systematic approach for the model deriva-

tion would then consist of performing a sensitivity analysis around the normal operating

point. All parameters that impact the specifications would be selected to form the final

model. The main shortcoming of this approach is that the sensitivity analysis is limited to the

parameters that have been identified by the designer. An unidentified degradation mecha-

nism may thus produce test escapes.

On the other hand, the model can also be derived in an empirical manner. From a statis-

tically significant set of devices, an empirical model is retrieved by singular value decompo-

s A x s0+=

sb Ab x sb0 x⇒+ Ab
1– sb sb0– 
 = =
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sition. The number of devices that have to be characterized fully to generate the model put a

fundamental limit on the maximum achievable model order. Let S be the matrix of M raws

and P columns representing the measurements performed on the set of P devices. Each col-

umn correspond to one device. Let also S0 be the vector average of the P columns of S. ∆S is

the matrix obtained by subtracting S0 from each column of S. Model A is obtained by singu-

lar value decomposition of ∆S, namely

. (2-3)
Matrix D is the matrix that contains the singular values of ∆S. Though A and S0 will

form the model corresponding to Eq (2-1), the singular values of ∆S also serve to optimize

the model order. Indeed, A and V are unitary matrices that just define a projection from the

space defined by the set of specifications S to the space defined by the eigenvectors corre-

sponding to the singular values of D. Hence, all the information about the sensitivity of the

specifications to the model parameters is contained in matrix D. The lowest singular values

correspond to parameters that influence the specifications to a lower extent. Hence, a possi-

ble optimization of the model order would consist in selecting only the parameters whose

singular value are above the variations related to measurement noise. In terms of the model,

it would consist of selecting the columns of A that correspond to the set of selected singular

values. The model quality is determined by a lack-of-fit figure of merit.

The main advantage of such an approach is that it can easily be generalized as the meth-

odology does not require any particular knowledge of the circuit under test. That is why it is

called blind modelling. However, the modelling method still implicitly assumes that the vari-

ations are small around an ideal operating point. By contrast with the sensitivity analysis

approach, the empirical modelling provides no insight into the validity range of the linear

assumption.

Nevertheless, in [70], Stenbakken and Souders built a model for a 13-bit ADC out of the

exhaustive INL measurements of 50 devices. Thanks to that model, they managed to predict

the INL of 77 unknown devices by measuring the INL at only 64 codes (out of 8192), with a

maximum error of 0.08 LSB.

∆S ADV
T

=
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2 • 3 . 2  An application of the model-based approach to BIST

A model-based BIST scheme that is worth of mention is without doubt the one proposed

by Roy and Sunter [62]. Accordingly to Stenbakken, it could be classified as a-priori model-

ling. Indeed, it consists of considering the ADC transfer function as a third order polyno-

mial. This is a very coarse assumption, but these researchers showed that it was a valid

assumption for most of high-resolution Σ∆ modulators. Based upon this assumption, they

developed a very simple test to determine the polynomial parameters. As seen in Figure 2-10

a ramp stimulus is used as an input and the ADC output is integrated over each of the four

quarters that divide the time necessary to reach the ADC full-scale. Only four signatures

have to be processed with low speed arithmetic to retrieve the polynomial parameters or the

related gain error, offset, 2nd and 3rd order distortion.

One may wonder how a model as simple as a 3rd order polynomial could reliably repre-

sent the rich behaviour of Σ∆ modulators, but the fact is that this BIST scheme is actually

commercialized and used in the industry. The authors propose a very simple test to retrieve

the coefficients of the third order polynomial, which is none other than model parameter

identification. It consists of submitting the ADC under test to a ramp input covering the full-

scale, and accumulating the output samples over four regions dividing the full-scale. Four

signatures, S0, S1, S2 and S3 are thus obtained, which would correspond to four measure-

ments, and simple arithmetic is then used to retrieve performance specifications such as

gain, offset, 2nd harmonic amplitude and 3rd harmonic amplitude.

-n/2 -n/4 0 n/4 n/2

S0 S1 S2 S3

x

y

y = b0 + b1x + b2x2 + b3x3
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Figure 2-10: Test with a 3rd order polynomial model
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Let the polynomial representing the transfer function be

. (2-4)

The authors demonstrate that the coefficients of the polynomial can be written as a func-

tion of the signatures

(2-5)

The relationship between the model parameters (the bis) and the performed measure-

ments is linear and is written in a matrix format, according to the previous sub-section. From

the model parameters, performance specifications can be retrieved. Indeed, the third order

polynomial transfer function leads to

(2-6)
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The reader should notice that the relationships between the harmonic amplitudes and the

model parameters are not linear. Nevertheless, if we take first order approximations on the

right hand side of Eq (2-6), we can write everything according to the model-based formalism

as

. (2-7)

Matrix A could be calculated explicitly from Eq (2-5) and Eq (2-6) but it would require

some matrix inversion. However, the reader should notice that the relationships already

available correspond to those that are necessary to perform the test. Indeed, the subset of

measurements actually performed is {S0,S1,S2,S3}; this can be mapped onto the intermediate

step {B0,B1,B2,B3}. This step corresponds to equation Eq (2-2) in previous sub-section

Then, matrix A is used to map the model parameters back onto the measurement space

(according to Eq (2-1)) but more specifically onto the unknown subset {offset, gain, Aharm2,

Aharm3}.

Hence, the conclusions of this example are twofold:

◆ Ad-hoc tests other than direct specification measurements can be designed to

retrieve the model parameters in a simple and reliable way (i.e. the tests signatures

have a simple relationship with the parameters)

◆ The validity range of the linear approximation relating the tests signatures and the

model parameters can be improved by the use of ad-hoc tests. Even more, once the

behavioral parameters have been identified, the relationship between the model

parameters and the performance specifications does not need to be linear anymore.
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2 • 4 Σ∆ SPECIFIC TESTS

We have described in the previous section some DfT techniques that apply to black-box

ADCs and that can thus be considered for Σ∆ modulators. However, the case of Σ∆ modula-

tors in somewhat particular in the sense that a Σ∆ ADC consists of a Σ∆ modulator followed

by a decimation filter. It is a very peculiar structure that was built specifically to take advan-

tage of the major robustness of digital circuitry. Hence, an important part of the conversion

job is realized by the digital filter and the modulator in itself requires relatively few compo-

nents. Considering the Σ∆ ADC as a black box is possibly not the optimum solution. It could

be possible to test the digital filter using well-known DfT schemes, and to test the modulator

as a stand alone part.

Despite the attractiveness of dedicated test solutions for Σ∆ modulators, only a few

papers can be found in the literature.

One of the first papers [75] that tried to take advantage of the Σ∆ modulator structure

takes as an example a double-loop bandpass modulator. The authors propose to reconfigure

the modulator in test mode as shown in Figure 2-11. The two loops of the modulator are split

and the two resonators are reconfigured in a unity gain feedback loop. The test consists of

sending an identical test stimulus (typically a sine-wave) to the two resonators and compare

their output, that should be identical. This comparison is carried out re-using the modulator

comparator: the two resonator outputs are subtracted and compared with the tolerance win-

dow (defined by two DC levels) in a sequential manner (with one level on the rising edge of

the clock and with the other on the falling edge). A fault analysis considering single shorts,

stuck-open and stuck-on faults in the switches as well as 50 to 200% deviations in the capac-

itor values was carried out and showed that the fault coverage depended on the tolerance

window but converged to 100% for small window. A shortcoming of this technique, how-

ever, is that global parametric defects or even soft defects may be difficult to detect. Indeed,

if a defect affects the two resonators in the same way, the comparison will always be good

but the modulator may deviate from its specifications. On the other hand, this test is very

simple, can be performed with any input signal, and does not require extra hardware apart

from some control logic.
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In [76], The authors focus on the detection of integrator leakage in a second-order Σ∆

modulator. Indeed, integrator leakage is an important concern in Σ∆ modulators and mostly

in cascaded ones. Integrator leakage is directly related to the DC gain of the amplifier used

to build the loop integrators, and is thus likely to be affected by faults occurring in the ampli-

fiers. The interest of their proposal is that they use as a test stimulus a pseudorandom digital

sequence that is sent to the modulator through its feedback DAC. This avoids the use of a

precise test stimulus and enables cheap on-chip signal generation. On the other hand, the test

response analyser requires an exhaustive exploration of the frequency-domain response so as

to determine the spectrum regions that are most sensitive to leakage.

The same authors made another interesting proposal, focusing on the stimulus genera-

tion [77]. They argued that the test stimulus generation scheme proposed in [48] could be

used for Σ∆ modulators without the need for any anti-aliasing filter. They proposed to use a

stored bit-stream of the same order as the modulator under test and to send it to the modula-

tor through its feedback DAC but with an attenuation coefficient. Hence, the power spectrum

is shifted down for both the encoded sine-wave and the input bit-stream quantization noise.

The consequence is that the input quantization noise should be buried in the output quantiza-

tion noise at the output and thus enable a classical spectral analysis. A shortcoming of this
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approach may be that the dynamic behaviour of the modulator is not the same for a continu-

ous input signal as for a digital sequence, so that the results of the THD test may be biased.

In [78] a similar idea is followed, as can be seen in Figure 2-13 that shows the BIST

setup. The test stimulus is a sine-wave encoded in a Σ∆ bit-stream of one order higher than

the modulator under test and stored in a recycling register (a 3rd order bit-stream is used in

the paper to test a 2nd order modulator). The test stimulus is sent to the modulator through a

dedicated one-bit DAC that provides a 1/4 attenuation with respect to the feedback DAC.

Figure 2-12: Input and output of the modulator under test
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The goal of this attenuation is not to obtain a lower noise base-band like in [77] but to avoid

integrator saturation due to the presence of high power quantization noise in the test signal

together with the test sine-wave. Apart from the stimulus generation, a clever sine-fitting

algorithm is proposed that makes use of the available decimation filter. The decimation filter

has to be designed with one order more than what would in principle be necessary, has to

work at twice the modulator frequency and uses two extra bits for internal calculations. This

makes it possible, by use of time multiplexing to process in parallel the modulator output

bit-stream and the delayed test signal. The sine-fitting algorithm is then simplified due to the

fact that the modulator output signal can be compared with the corresponding in-phase pure

reference signal. After gain and offset corrections, the SFDR is extracted. The method shows

good results in simulation and is able to detect most faults. However, the fact that the test

stimulus contains a significant amount of quantization noise limit the capability to detect

correctly detect faults that produce distortion.

In [79], the authors propose to apply the concept of Oscillation-Based Test to Σ∆ modu-

lators. Indeed, they argue that a modulator contains the elements necessary to make a sus-

tainable oscillator: the loop filter and a non-linear element (the comparator and the feedback

DAC) to control the oscillation amplitude. Hence, the area overhead due to the application of

OBT should be minimum. Nevertheless, high level simulations showed that the oscillator

built out directly from the Σ∆ modulator was easily locking into limit-cycle behaviors, that

masked the presence of errors. Indeed, the very principle of OBT is to detect faults in the cir-

cuit through the deviation of the oscillation frequency and/or amplitude from the nominal

(expected) one. Hence, if the Σ∆ oscillator locks into a limit cycle, the oscillation frequency

and amplitude may remain the same over a non-negligible range of operating conditions. In

other words, the same oscillation could be produced for different values of capacitor ratios.

To solve this issue, the authors determined that it was necessary to add some elements so as

to transform the filtering function, as can be seen in Figure 2-14.

By doing so, the resulting oscillator is much more immune to limit cycles and the sensi-

tivity to circuit faults is recovered. However, one concern with OBT in general is that it is

mostly devoted to the detection of catastrophic faults in the switches or parametric faults in

the capacitor ratios. That could be sufficient in some cases where the spot defect model can
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fully apply. In more complex situations where the environmental stress conditions have to be

taken into account, some other kind of faults would appear. Furthermore, in most sub-

micron processes, the spot defect model may not be sufficient to describe all the possible

shortcomings that can affect analog designs. For instance, the performance of some Σ∆ mod-

ulators is greatly related to the DC gain of the amplifiers, which could in turn be affected by

a wide variety of process variations. These kinds of parametric faults are unlikely to be

detected by OBT.

De Venuto et al. proposed in [80] to use an alternative input point to test Σ∆ modulators.

The intention is to inject a test signal at the input of the modulator quantizer. This test signal

is processed by the modulator just like the quantization noise. In that sense, the authors

argue that they can determine the modulator Noise-Transfer Function accurately. Although it

is true that many defects or non-idealities can affect the modulator noise-transfer function

and should thus be detected, other are intrinsically related to the input signal. The best exam-

ple is given by those defects that cause harmonic distortion such as non-linear settling of the

fist integrator. Such a defect would not be detected by the proposed method. Similarly, it is

worth wondering if the input of a test signal at that point significantly alters the non-linear

dynamics of the modulator under test. In particular, much care should be taken for high

order modulators to ensure that they are not driven into instability. Nevertheless, the main

advantage of the approach is that it is applicable, in principle, to any modulator architecture.

In [81], a divide-and-conquer approach is proposed by the author to detect the main deg-

radation mechanisms in high-resolution cascaded Σ∆ modulators while relaxing test require-
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Figure 2-14: OBT applied to a 2nd order modulator
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ments. The main idea is that the performance of the modulator relies principally on the

behaviour of the first integrator. Hence, it is proposed to test this integrator by reconfiguring

it as an amplifier. Furthermore, the rest of the modulator is reconfigured to form a lower-

order modulator and converts the error signal obtained from the first integrator (reconverted

in an amplifier). Guidelines are given in the paper to build signatures related to the DC gain

and the settling of the first integrator but are not explicitly justified. In the same paper, a

description is given of the design of a prototype that includes interesting DfT features: buff-

ers are added at the outputs of the integrators to provide monitoring and OTAs are replaced

by swopamps to enable modulator reconfiguration and test signal injection at internal nodes.

Electrical simulations show that these features can be implemented without much impact on

block specifications.

Partial results of the work developed in this thesis have already been published [83-90].

Table I: summary of test techniques applied to Σ∆ modulators

Pros. Cons.

Characterization

Static parameters:
Histogram
Servo-loop

Gives access to gain and offset
errors, INL and DNL

Exhaustive characterization
requires a large amount of time
INL and DNL should be related to
transitions in Σ∆ modulators
Requires the input of a precise stim-
ulus

Dynamic parameters:
Sine-fit
FFT

Provide important datasheet
specifications (SNR, THD,
ENOB, …)

Requires complex DSP
Requires the input of a precise stim-
ulus

Functional Test

Roberts [63-64] Provides a solution to precise
on-chip stimulus generation
Digital filter solution to relax
data analysis

Requires a DSP on-chip
The area overhead associated with
stimulus generation may be large
The re-use of on-chip resources
makes concurrent test of other SoC
parts difficult
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Ong [77] The test stimulus is an unfil-
tered Σ∆ digital sequence

The test signature aspect is not
solved
The potential effect of unfiltered
high-frequency noise in the input on
the result validity is not addressed

Rolindez [78] The test stimulus is an unfil-
tered Σ∆ digital sequence
A sine-fit is performed on-chip
by adapting the decimation fil-
ter

The test sequence cannot use the
same DAC as the modulator
Some defects do not affect the
SNDR obtained with digital
sequences in the same way as with
sine-waves

Defect-oriented Test

Reconfiguration [75] No extra hardware is required
Any input signal can be used

Requires a strong reconfiguration of
the modulator.
May be difficult to generalize to
other architectures.
The calculation of test coverage for
any input is difficult to perform

OBT [79] No test stimulus is required
The data analysis is generic as
the signatures are always
amplitude and frequency
A good methodology has been
developed to apply the solution
to any architecture with relative
effort

The calculation of test coverage for
faults other than capacitor ratio
errors is difficult

Noise Transfer Function
[80]

The test stimulus does not
have to be as precise as the
modulator
The methodology is applicable
to any modulator

The defect coverage may be low as
some non-idealities do not impact
the Noise-transfer Function
The validity of the approach should
be better demonstrated

Pseudo-random [76] The input is digital and rela-
tively cheap to produce on-chip

The validity of the heuristic model
obtained through simulation is
questionable
Potential fault masking
Only integrator leakage is
addressed

Divide-and-Conquer [81] Relax test requirements by
focusing on building blocks

Does not provide justification for the
proposed test signatures.

Model-based Test

Table I: summary of test techniques applied to Σ∆ modulators
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Model-based test
Standard approach [70-
73]

Relaxes the number of
required measurements
A good methodology exists.

The model is linear and performs
well for small variations but may be
limited for other defects.
The methodology is based on stan-
dard specification measurements: it
requires a precise stimulus and a
DSP.

Ad-Hoc Model-based
BIST [61-62]

The test stimulus can be par-
tially generated on-chip.
The data analysis is
very simple and can be per-
formed on-chip.
Important specifications can be
derived

The model is taken a-priori and not
justified: its validity range may be
questionable.
Only four parameters are obtained:

gain, offset, 2nd order distortion and

3rd order distortion.
The test stimulus generation still
requires off-chip components

Design-based BIST [83-
90]

The test stimulus is digital
The test requires few
resources and simple modula-
tor modifications
The test signatures can be
used for silicon-debug
The test strategy can easily be
integrated in the design flow
The model is a validated-by-
design behavioral model
The validity has been proven

for cascaded modulators of 1st

and 2nd order sections

Research is still necessary to test
more behavioral parameters.
The extension of the approach to
other modulators would require fur-
ther research.

Table I: summary of test techniques applied to Σ∆ modulators
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hapter 3C

THE PROPOSED TEST APPROACH

In this chapter the principles of our test methodology for Σ∆ converters will be pre-

sented. The first section describes the test proposal, its philosophy, what motivates the

approach and also discusses its particular implications. The second, in turn, is more practical

and details the method followed to reach the defined purposes. It also settles the common

framework necessary for a good understanding of the detailed test descriptions that will be

presented in the next two chapters.



CHAPTER 3
3 • 1 DESCRIPTION OF THE IDEA

Analog-to-Digital converters are becoming more and more difficult to characterize, as

their resolution and sampling frequency increase at a steady rate. In particular, for those

based on Σ∆ modulation, the main shortcoming for functional test is the complexity of per-

formance measurements. Indeed, Σ∆ converters commonly reach high resolutions (up to 24

bits), which impose the use of the highest resolution test stimuli and reference voltages and

huge data acquisition and processing. Innovative solutions are thus required.

Our goal is to determine the main characteristics of the Σ∆ modulators building blocks.

In that sense, our proposal can be seen as a particular case of model-based test, which has

been seen to offer a high potential for test cost reduction. Instead of a linear model built from

a small set of devices, we simply use a block-level behavioural model. Similarly, the pro-

posal can be seen as a “divide-and-conquer” approach, although we will see later that the

modulator is not physically divided in building blocks during test. Another way to present it

is to speak of “design-based test” as in [82], because the parameters that we want to deter-

mine are precisely block-level “design parameters”.

3 • 1 . 1  Motivations

To illustrate the idea behind the proposal, let us consider Figure 3-1, where a design

flow and different test flows are represented. For linear circuits, analytical functions that

relate the circuit performance to transistor parameters can usually be calculated manually or

with symbolic analysis tools. The design space can thus be explored efficiently to find the

optima of a design cost function. Due to the nonlinear feedback no such relations can be

found for Σ∆ modulators. Indeed, the non-linear dynamics of Σ∆ modulators make analyti-

cal studies overwhelmingly complex. No closed-form expression can thus be derived that

relates performance figures like THD or SNR to design parameters. On the other hand, elec-

trical simulations of a complete Σ∆ modulator are far too long to allow design-space explo-

ration. Hence, designers have been forced to build behavioral models in a variety of high

level languages like Matlab (and its Simulink extension) [35, 24], VHDL-AMS, and even

standard VHDL [36], etc. These models decompose modulators into functional macros that
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take into account most of the effects that are known to influence performance [38]. The

validity of the model for test purpose is thus ensured by the fact that it is used precisely to

explore the design space over a wide range of values. Furthermore, the model elaboration

does not represent any extra cost for the test approach.

From a structural test viewpoint, the behavioral parameters are related to the different

macros (i.e. building blocks) that are used to describe the model: integrators, comparators,

switches... They are the design variables that the designer is used to managing. The test is

thus closely linked to design and the test outcome is directly meaningful to the designer.

Testing circuit macros has the advantage of providing some insight into the circuit failure

mechanisms. By providing fault diagnosis at the macro level, such a test approach can also

be useful for silicon debug.

From a functional test viewpoint, determination of the behavioral parameters that char-

acterize performance degradation mechanisms would allow one to test the modulator perfor-

mance indirectly. The relation between behavioral model parameters and performance may
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Figure 3-1: Behavioural model in the design and test flow
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be non-linear and quite complex. Nevertheless, it is usually well-known and well-understood

by the designer. The success of a test based on a model depends on the level of confidence

associated with it. Hence, the quality of the behavioral model is of utmost importance as it

will set a higher limit on the achievable confidence in the test results.

3 • 1 . 2  Implications of the approach

3 • 1 . 2 . 1  The link with performance

As a matter of fact, our test proposal define the pass-fail region in the test signature

space. What we intend is that the test signature space should be equivalent to the design vari-

able space (i.e. the behavioural parameter space). However, for the majority of circuits, the

design space is not equivalent to the performance space: the performance associated with a

particular design point can be determined but a particular performance point cannot be asso-

ciated with a unique design point.

As a result, the pass-fail region defined on the test signature space can be mapped onto

the design space and onto the performance space, but the specifications (which can be seen

as pass-fail limits in the performance space) cannot necessarily be mapped onto a unique

region ofthe design space and consequently on the test signature space. This is illustrated in

Figure 3-2.

On the other hand, the actual design is carried out in the design space and what defines

both the final performance and the nominal test signatures is the point that has been selected

in the design space, as seen in Figure 3-2. As a result, it makes sense to define the test limits

in the design space close to the selected design point, because it corresponds to what has

actually been fabricated. By testing the main block characteristics, we can ensure that the

circuit conforms to what has been designed (which means that it is likely to be defect-free).

A functional test considers the performance specifications as the test pass-fail limits. It

will thus accept any circuit in the valid design space, even if it is far from what has been

effectively designed. This will limit the yield escapes as all good performers are accepted

but it may represent a reliability issue.
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Τhese concerns are particularly justified for Σ∆ modulator as their performance exhibit a

very non-linear relation with respect to some behavioral parameters. For instance, it can be

seen in Figure 3-3 that under certain conditions, the SNDR of a Σ∆ modulator could exhibit

a singularity peak for a given value of amplifier gain-bandwidth product. If the SNDR spec-

ification is 90 dB, it can be seen that the valid design space comprises the singularity peak.

Obviously, a designer would never select the design point at the singularity. In turn, he

would select a point in a larger region with lower sensistivity, and provide some guard-band.

By testing the amplifier GBW (directly or indirectly), it is possible to check if the modulator

is in the desired region. In turn, a functional test of the SNDR would accept the modulator

located at the singularity peak.

Figure 3-2: Relation between design space, performance space and test signature
space
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3 • 1 . 2 . 2  The link with defects

In the previous sub-section, we have dealt with the capability of the test to infer if the

performance meet the specifications. This is obviously a functional test viewpoint. Neverthe-

less, the test proposal can also be considered from a defect-oriented viewpoint. In that case,

we have to question the ability of the behavioral model to be at a level of abstraction that is

sufficiently low to represent the defect-induced faults accurately.

The behavioral model has been designed so as to take into account most of the parame-

ters that influence the performance of the circuit. It can be assumed that any physical defect

that will impact the circuit performance should also express itself at the behavioral level.

Notice that this is an implication and not an equivalence: there may be physical defects that

have an expression at the behavioral level but do not affect the circuit performance. In an

attempt to bring IFA (Inductive Fault Analysis [14,13]) to analog and mixed-signal circuits,

Mani Soma argues in [15] that the only way to handle parametric defects in analog circuits is

to gather them into fault classes related to the functionality of the basic building blocks. Oth-

erwise, the fault dictionary that should be simulated would be far too long. This naturally

leads to behavioral model-based test.

Figure 3-3: Impact of 1st amplifier Gain-Bandwidth product on the SNDR of a 2-1 cas-
caded Σ∆ modulator
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However, we should consider what could be the reasons for missing some defects that

have an impact on performance, and we should contemplate them in the definition of the test

signature in order to minimize this defect masking:

◆ The behavioral model is incomplete. This point meets the considerations in the pre-

vious section about the model quality.

◆ The defect breaks the signal flow. If the tests are designed exclusively to devise the

macro parameters, they may not detect a failure in the signal flow that would corrupt

the results. However, such defects are likely to be catastrophic, such that very sim-

ple test could be added to check coarse functionality.

◆ The defect alters a block such that it does not correspond to its macro model. Once

again, such defects are likely to be catastrophic and easily detectable, as they affect

the integrity of the model.

◆ The defect increases the complexity of a block. This would be a subtle failure mech-

anism, that would change the operation of a block slightly while maintaining its

coarse behavior. For instance, one can imagine a defect that alter the compensation

of an amplifier. If the amplifier was modeled by a single pole approximation, the

defect could put the circuit out of the validity range of the behavioral model, while

producing acceptable functional results.

3 • 1 . 2 . 3  The way to determine the block parameters

Another important issue is the type of tests to be performed. In the linear modelling

approach discussed in the previous chapter, the tests performed on the device were consid-

ered as a subset of the whole set of specifications. The model, in some way, depicts the cor-

relations that exist between the specifications and aims at reducing redundancy. For instance,

for an ADC, only some transitions are characterized and the model estimates the maximum

value of INL and DNL. In the case of design-based test, however, the aim is to determine the

parameters of the main building blocks which in turn allow one to extrapolate the circuit per-

formance. Hence, the tests performed on the device may be completely different from classi-

cal specification tests, being tailored to determine block parameters. This obviously add an

important degree of freedom to the approach, which has the potential to bring important ben-

efits in term of test cost. The downside is that those additional tests cannot be provided using
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a systematic approach. They have to be invented and this requires a deep understanding of

operation of the behavioral model. For instance, as was pointed out in Section 2 • 3 . 2, Roy

and Sunter propose in [62] a technique that requires one to generate only four simple signa-

tures to derive important parameters such as gain, offset, second and third harmonic distor-

tion.

The use of a behavioural model for test purposes should not be restricted to functional

testing. What we expect is to consider the behavioral model as a vehicle to enhance circuit

testability, not only from a production test viewpoint. The designer should study the possi-

bility of modifying the circuit so as to enable innovative tests that could allow one to deter-

mine the model parameters accurately and simply. The circuit is no longer considered as a

black-box.

3 • 2 THE PROPOSED METHOD

The aim of this section is to establish the basics for the next two chapters that will

describe the proposed digital test set in detail.

Almost as important as the test philosophy is the manner in which to carry it out. It

would be useless to develop a model-based test where determination of the model parame-

ters would be as costly as direct characterization of the converter. In the following, the main

issues and trade-offs regarding low-cost test derivation are discussed.

3 • 2 . 1  Tests constraints

Production test-time is an important parameter in the cost equation associated with a

product, and many papers have focused on reducing it. Nevertheless, other costs are relevant,

such as diagnosis cost, in-field test cost, high precision ATE investment, etc. In order to

tackle these issues, we decided to restrict the tests to those that would be good candidates for

a BIST implementation. This obviously requires simple test stimulus and simple test inter-

pretation. Moreover, another constraint is to minimize any modifications of the modulator

topology so that the test solutions can be included easily in the existing design flows. Hence,

our test constraints can be summarized as:
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◆ digital test stimulus

◆ simple signature generation

◆ stimulate the whole modulator signal path

◆ maintain the modulator topology and the integrity of the building blocks

Figure 3-4 shows a schematic of a generic Σ∆ modulator. Whatever the exact implemen-

tation of the loop filter, the principle of operation is always the same: a coarse quantization is

performed and the quantized signal is fed back to the input through a DAC. The loop filter

shapes the quantization noise out of the baseband so that it can be filtered out. In many

cases, the quantizer has only one bit of resolution; it is actually a single comparator. The

associated feedback DAC consists only of switches that sample the full-scale reference volt-

ages. Hence, we foresee the possibility of using the feedback DAC to send a digital test stim-

ulus to the modulator. An obvious drawback of such a test stimulus is its very low resolution,

but it has two advantages that may overweigh it. The first is that it allows digital interfacing,

so that a precise analog signal generator is not needed for the test. This opens the door to the

use of digital ATE and also to interfacing to an IEEE 1149.1 test bus in cases where the mod-

ulator is embedded in a complex circuit such as SoC. The second advantage is that the stim-

ulus sent to the modulator exactly matches the full-scale reference voltages so that the

modulator output bitstream can be directly related to the digital test stimulus (sent to the

DAC), enabling precise relative measurements. This means that if the reference voltage

exhibits a slow variation in time (with respect to the modulator sampling frequency), the test

stimulus exactly matches this drift, so that the measurements are valid while the levels

remain in the acceptable range of operation.

In

Out

H(z)

G(z)

ADC DAC

Figure 3-4: Generic representation of a Σ∆ modulator
107



CHAPTER 3
In order to facilitate interpretation of the test results, the generation of the output signa-

tures has to be simple and low-cost. Although Σ∆ modulators are usually used in conjunc-

tion with a decimation filter, its nature and specifications may vary to a great extent. Even

more, at some stage of its fabrication, the Σ∆ modulator may not be associated with a filter.

Some Σ∆ modulators are shipped as ADC converters with embedded decimation filters but

many times the modulator is shipped as a single part and the filtering is performed in another

chip. Hence, in order to extend the test capability beyond board level (system) test or in-field

test, we should not rely on the decimation filter to carry out the test. Our proposal is based on

the use of simple counters and possibly low-speed arithmetic to perform most of the signa-

ture generation. Obviously, in a partial BIST approach, the signature generation could be

realized in software within the ATE.

Finaly, an important constraint that we imposed on ourselves was to limit the impact of

the DfT modifications on the circuit topology. Indeed, the industry is often reluctant to mod-

ify parts that have been proven good. In that sense, DfT solutions requiring a profound mod-

ification of the circuit are often discarded. The DfT adaptation has to be seen as an add-on

feature that can easily be adapted to known design flows and even to IP blocks (i.e. the addi-

tion of buffers, new analog connections, new topologies, new amplifier structures, etc...

should be avoided). As a consequence we focused on modifying the circuitry to the least

extent, and if possible always on the digital side, acting on the switch controls.

With these three guidelines (constraints), a low-cost and fully-digital DfT solution for

Σ∆ modulators could be designed, with little or no adverse impact on performance.

3 • 2 . 2  Test description

In 1991, Schreier and Snelgrove published a very interesting paper entitled: “Σ∆ modu-

lation is a mapping” [32], arguing that the relation between the input and the output can be

seen as a projection. Extrapolating this sentence from a structural test point of view we can

write: “Σ∆ modulation should be a mapping”. We thus form the hypothesis that defects

could alter this mapping. Summarizing the idea, the test development consists of finding a

suitable digital input sequence and the modulator operating conditions such that the average
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of the output bitstream is sensitive to the behavioral parameter under test and an efficient sig-

nature can be built.

The digital tests that will be described in the nest two chapters can be implemented

using the setup of Figure 3-5. The test stimuli are digital and can be generated on-chip or by

a digital tester. Those digital stimuli are then sent to the modulator under test through the

feedback DAC during the sampling phase. During the integrating phase, the feedback DAC

is driven by the modulator output, as usual. That time-multiplexed use of the DAC is sym-

bolized in Figure 3-5 by an extra input. During test mode, the modulator analog input is dis-

abled.

As a general test signature, we propose the result of accumulating a certain number of

samples, and subtraction of the input and output sequences. This requires only few logic

gates and an up-down counter. However, the reader should notice that the test decision has

necessarily to be taken in the model parameter space. Indeed, the calculation of explicit per-

formance figures would require simulation of the behavioral model. For silicon-debug pur-

poses, the behavioral signatures should be shifted off-chip. But for test purpose, we will

show that tolerance windows can be designed for each behavioral signature.
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The different tests will thus be described according to three points:

◆ Definition of the digital input sequence.

For each proposed test, the nature of the digital test stimulus will be detailed.

◆ Modification of the modulator operating conditions

The modifications required for each test will be defined.

◆ Elaboration of the test signature

The elaboration of the test signature will be described and its relation to the behav-

ioural parameters will be demonstrated.

3 • 2 . 3  Application range

As was said in Chapter 1, high order single-stage modulators usually exhibit stability

issues and they require architectures that are more complex than the direct implementation

of Figure 3-6. Indeed, such a straightforward implementation is likely to lead to situations

where the integrator outputs become unbounded or rise to unpractical levels. Moreover,

although they may exhibit a stable range of operation, the analytical determination of such a

stability range is cumbersome.

For that reason, cascaded modulators are and have been widely used to implement high

order modulators. The stages usually comprise 2nd and 1st order modulators, mainly because

these modulators are unconditionally stable and their architecture is simple.

In our behavioral-model-based test approach, we aim to determine behavioral parame-

ters using simple and reusable tests. In that sense, we focus our research mainly on 2nd and

1st order modulators, because the results could be used for an entire cascaded modulator.
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Figure 3-6: Direct extension of the feedback structure to modulators of order higher
than 2
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The proposed test approach
Indeed, the different stages can be disconnected and tested in a parallel manner, as seen in

Figure 3-7.

Moreover, a 2nd order modulator can easily be reconfigured as a 1st order modulator to

enhance its testability, as shown in Figure 3-8. This is of particular interest when the tests

target defects in the second integrator of the Σ∆ modulator, as will be seen in the following

chapters. In that way, the tests developed for 1st order modulators can be used to test defects

in the second integrator of the reconfigured 2nd order modulators.

Whenever possible, we try to extend the results obtained to higher order architectures.

But the decomposition principle described above, that enables one to test for defects in the

integrators situated deeper in the Σ∆ loop, cannot be generalized for any architecture.
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Figure 3-7: Parallel testing of a cascaded Σ∆ modulator
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Indeed, high order architectures usually include some local feedback or feedforward paths

that may impede the reconfiguration of the modulators into lower order ones.

3 • 2 . 4  Normalization issues

Up to now, we have been saying that the chosen test stimulus is a digital sequence. Nev-

ertheless, the standard input of a Σ∆ modulator is analog and not digital. Actually, the digital

test sequence has to be converted to analog by a Digital-to-Analog Converter (a DAC).

Many Σ∆ modulators use a single-bit quantizer in the feedback loop, and hence the feedback

signal is generated by a single-bit DAC that consists only of a couple of switches that sample

two reference voltages. These two reference voltages (Vref and -Vref in a differential imple-

mentation) define the modulator Full-Scale.

This apparent simplicity leads to some confusion between the digital sequence - which

has two logical levels: 0 and 1 - and its analog version, at the output of the DAC - which also

has two levels: Vref and -Vref. The reader should thus be aware that when we consider digital

sequences as test stimulus, we implicitly override the Digital to Analog conversion of the

sequence. Actually, the mathematical description of the tests is based on the commonly used

z-domain representation of Σ∆ modulators. Figure 3-9 shows the example of a second order

modulator.

Notice that in this representation, the quantizer is sketched as a unique block that gath-

ers both the coarse ADC and the feedback DAC. This obviously reinforces the confusion

Figure 3-9: Discrete-time representation of a 2nd order Σ∆ modulator
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The proposed test approach
between digital and analog sequences because the output of the z-domain model, quoted Y,

is analog. Hence, in what follows, we will refer to the sequences as their representation in

the analog discrete-time domain (the z-domain), unless it is explicitly specified otherwise.

Whether the digital test sequence is sent to the modulator through an extra 1-bit DAC or re-

using the modulator feedback DAC will be discussed in the following chapter.

This consideration leads us to another important aspect of the common mathematical

framework which is normalization. As was said above, the two reference levels used by the

feedback DAC further define the modulator Full-Scale. Indeed, the input of the modulator

cannot be higher than the maximum feedback signal, otherwise the stability of the structure

would be compromised. Though it would be possible to describe the modulator using real

analog levels, it is easier to normalize all the internal levels such that all modulators can be

described in a similar way. The convention in that case consists of normalizing Vref to 1.

Hence, the input signal has to remain in the range [-1;1] and the normalized Full-Scale is

thus equal to 2. Notice that our digital sequences, in their normalized analog representation,

use two levels: 1 and -1. Similarly, in order to describe the modulator in the frequency

domain we will use a normalized frequency of 1. Hence, dynamic parameters like bandwidth

and slew-rate will be expressed relatively to that normalized frequency.
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hapter 4C

TEST FOR STATIC PARAMETER DETERMINATION

In this chapter, several tests for the static behaviour of the integrators in a Σ∆ modulator

are described. Actually, the tests proposed in this chapter address the determination of the

integrator leakage and the non-linearity of the amplifier DC gain.

The guidelines given in Chapter 3 have been followed in most of the cases, but the

exceptions will be specified. In each case, the impact on the performance of the parameter of

interest is discussed. The test description is sustained by a theoretical justification and fol-

lowed by a validation process through simulation.

The next chapter is built on the same pattern and will be devoted to the tests proposed

for determining dynamic behavioural parameters.



CHAPTER 4
4 • 1 INTEGRATOR LEAKAGE

In the discrete-time domain, the operation realized by an integrator is a cumulative sum:

the output at instant n is the sum of the output at instant n-1 and the input sample at instant

n-1 or n, depending on wether it is a delaying integrator or not. To perform this sum, the

integrator output at instant n-1 has to be memorized until instant n. Ideally, this analog mem-

ory function is lossless and the transfer function of the delaying integrator can be written as

. (4-1)

For a non-delaying integrator, the numerator in Eq (4-1) would be 1.

In real cases, the integrator output cannot be held exactly and an systematic error is

introduced: only a fraction p (close to one) of the ideal voltage is available at instant n. This

effect, known as integrator leakage, modifies the integrator transfer function such that a pole

error is introduced. Thus,

. (4-2)

In a switched-capacitor implementation, integrator leakage is produced by the finite DC

gain of the operational amplifier. The lower the DC gain, the higher the leakage. Indeed, a

simple study of the integrator in Figure 4-1 shows that

. (4-3)
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Test for static parameter determination
Hence, any physical defect or environmental condition that may affect the amplifier DC

gain will automatically have an adverse impact on integrator leakage.

4 • 1 . 1  Impact on modulator performance

The impact of integrator leakage on the performance of a Σ∆ modulator depends on the

Over-Sampling Ratio (OSR) and on the modulator architecture. Integrator leakage changes

the quantization noise shaping produced by the Σ∆ loop. Actually, for a Lth order sin-

gle-stage modulator, the output should be of the form

, (4-4)

where X is the input signal and E is the quantization noise introduced by the low-resolution

quantizer. In a traditional approximation, this quantization noise is considered as a uniform

white noise over the range [-∆/2;∆/2] where ∆ is the quantization step. In the presence of

leakage in one integrator, this shaping becomes

, (4-5)

which can also be written,

(4-6)

Therefore, the modulator output contains the shaped quantization noise plus a contribu-

tion of the quantization noise shaped to order L-1, and scaled by the factor ∆p=1-p intro-

duced in Eq (4-3).

This improperly shaped noise is said to have leaked into the base-band of the Σ∆ con-

verter. Hence, the performance degradation depends on the amount of leakage: the higher ∆p

the higher the excess noise. But it also depends on the converter OSR. For low oversampling

ratios, the contribution of the Lth order noise may still dominate over the (L-1)th order noise.

However, for high OSRs, the (L-1)th order noise is likely to dominate the total noise, limit-

ing the theoretical SNR. This is graphically illustrated in Figure 4-2. The quantization noise

of a 3rd order modulator with a leaky integrator is represented. It can be seen that, at high

frequencies, the quantization noise follows a 3rd order shape (i.e. the straight line of

60dB/decade in the figure) while at lower frequencies, a 2nd order noise appears (i.e. a

straight line of 40dB/decade). A corner frequency can be defined at the intersection of these
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CHAPTER 4
straight lines. If the OSR of the Σ∆ converter is set such that cut-off frequency of the decima-

tion filter is higher than the corner frequency, integrator leakage will have little impact on the

SNR as the dominant noise contribution is the 3rd order noise, as expected. In turn, if the

OSR is set such that the filter cut-off frequency is lower than the corner frequency, the actual

SNR of the obtained modulator may be significantly lower than expected. The corner fre-

quency is more descriptive than rigorous as the noise spectral density should be integrated in

the signal band, but it still gives a good overview of the impact of integrator leakage.

Actually, it can be shown [41] that, to a first order approximation, the performance deg-

radation should not exceed 3dB if the amplifier DC gain is greater than the OSR. That is a

coarse rule of thumb but it gives a good insight into the leakage requirements for single stage

Σ∆ modulators. A more detailed description of the problem can be found in [38, 42] that

comes up with a generic closed form of the excess noise in dB

(4-7)
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Test for static parameter determination
where M is the OSR of the modulator.

This result stands for single stage modulators. For cascaded modulators, on the other

hand, the integrator leakage has a more important impact. Indeed, the reconstruction of the

signal assumes that no leakage is present and the reconstruction error introduces more

uncanceled noise. Let us recall the generic expression of the reconstruction filter described

in Section 1 • 1 . 4 . 2, namely

(4-8)

with,

(4-9)

Considering that an integrator is leaky in stage f, Eq (4-8) has to be modified as

. (4-10)

In the case of single stage modulators, the quantization noise leaking into the base-band

was shaped by an order L-1 and scaled by a factor ∆p. In the case of cascaded modulators,

the quantization noise leaking into the base-band is also scaled by a factor ∆p but shaped by

an order

, (4-11)

where f is the stage that contains the leaky integrator. Clearly, the leakage appearing in the

first stage of a cascade modulator will degrade the performance to a greater extent than the
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CHAPTER 4
leakage appearing in further stages. Indeed, if the leakage appears in the first stage, the quan-

tization error leaking into the base-band is of the form

. (4-12)

As cascaded modulators are used to avoid stability issues for high order Σ∆ modulators,

they usually rely on unconditionally stable stages, which are 2nd and 1st order Σ∆ modula-

tors. From an integrator leakage point of view, it is important to maximize the shaping order

of the leaking noise, which is equivalent to maximizing L1. That is why a second order mod-

ulators is usually used in the first stage of a cascaded modulator.

The reader should notice that we have considered only one leaky integrator for both sin-

gle-stage and cascaded modulators. In the case that we need to consider several leaky inte-

grators, which could be interesting for modelling global defects, the different contributions

should be summed and cross terms in the expressions of the form

(4-13)

should be considered. Notice however that the terms involving more than one ∆p scaling are

unlikely to dominate the quantization noise unless the DC gain of the amplifier is very low.

Provided that we know the way in which the leakage modifies the quantization noise

shaping, it is possible to take this shaping modification into account in the reconstruction fil-

ter so as to eliminate the noise excess due to the reconstruction error. This means that the

integrator leakage can be calibrated in cascaded modulators. However, such a calibration

requires that the value of the pole error ∆p be evaluated. If such a calibration is carried out,

the modulator performance degradation due to leakage can be improved up to the level of an

equivalent single stage modulator with leakage, that is

. (4-14)

Another unwanted effect associated with integrator leakage is that of limit cycles. Limit

cycles are periodic sequences that are stabilized by integrator leakage such that they remain

unchanged for a small range around the DC level corresponding to their mean value. It is

shown in [30] that, for a 1st order modulator, the widest of these limit-cycle ranges is the one

that corresponds to the limit cycle of mean value 0, that is a [1 -1 1 -1 1 -1 1 -1 ...] output
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Test for static parameter determination
bit-stream. Actually, this limit cycle is shown to be stable for input DC values x (normalized

to full-scale) in the range

(4-15)

4 • 1 . 2  Proposed tests for leakage detection1

Although it may not seem natural, we begin with the case of 2nd order Σ∆ modulators

instead of 1st order modulators. The reason is that, despite its architectural simplicity, the

behaviour of a first order modulator is difficult to study. Indeed most analytical studies of Σ∆

modulators are based on a linearization of the non-linear element: the coarse quantizer. In

that approximation, the quantizer is replaced by an additive noise source modelling the

quantization error. This noise source is assumed to be independent of the input signal, uni-

formly distributed across the feedback DAC quantization step and with a white spectrum.

However, Bennett demonstrated in [20], that such an approximation is valid only under a

number of conditions:

◆ The input does not overload the modulator

◆ The quantizer step is small

◆ The joint probability density function of the input signal at different sample time is

smooth

These conditions are almost never fulfilled for any practical Σ∆ modulator, but the point

is that for order higher than 2, the quantization noise can be considered sufficiently random

and sufficiently white such that the linearization of the quantizer give at least an insight into

the expected performance. However, the correlation between the input signal and the quanti-

zation noise in 1st order modulators is too strong to allow the use of the linear approxima-

tion.

1. Here, a brief description of each test is provided. Theoretical justifications will

be given in next sub-section

∆p–
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4 • 1 . 2 . 1  Second order modulator

Figure 4-3 shows the proposed test structure. The input sequence corresponds to signal

X and the output bitstream to signal Y. Following what was said in previous chapter, we can

describe the test as follows (a theoretical demonstration will be provided further):

◆ Digital input sequence: a periodic sequence of mean value Q that is different

from 0.

Considering that a digital sequence is described as its analog version, accordingly to

what was said in previous chapter, the mean value of a sequence of period L can be

written as,

(4-16)

For example, a digital input sequence [1 1 1 0] would have an analog representation

of the form [1 1 1 -1] and thus a mean value of Q=1/2

◆ Modifications of the modulator operating conditions: the normal input is disabled

and the digital input is enabled. It has been said in previous chapter that the digital

input is obtained by re-using the feedback DAC during both the sampling and the

integrating phase. This test input is symbolized by a multiplexer in Figure 4-3, con-

sidering the test sequence as the analog equivalent of the digital sequence.

Figure 4-3: Diagram of the proposed test for first integrator leakage in a second-order
Σ∆ modulator

+ +
--

X Yz-1

1- p1 z-1

z-1

1- p2 z-1
g1

g1*

g2

g2*

Digital

Output bitstream

+ -

Σ Signature

Modulator Under Test

input

Nominal
input

Digital sequence

Q
1
L
--- xi

i 1=

L

∑
 
 
 

=

122



Test for static parameter determination
◆ Test signature: it is the sum over a number N of samples of the difference between

the input sequence and the output bitstream. For a 2nd order modulator it is given by,

(4-17)

where ∆p1 is the pole error of the first integrator as defined in Eq (4-3).

Actually, an input-referred offset o would modify the signature output

(4-18)

To get rid of it, it is possible to run a second acquisition with a sequence of mean value

-Q (i.e. the opposite of the first sequence), giving a test signature,

(4-19)

The final result can be obtained by subtracting the second signature from the first:

(4-20)

There is no a-priori restriction on the input sequence, except that it must be different

from 0. Actually, it should be maximized in order to get the best sensitivity of the signature

to the integrator leakage. We will see in the following that signal range considerations com-

pel us to restrict the mean value of the sequence to less than 0.7. Hence, we propose to use a

short sequence with Q=2/3. Such a sequence is of the form [1 1 1 1 1 -1].

4 • 1 . 2 . 2  Multibit first order modulator

As was said before, linearizing the coarse quantizer in the case of a 1st order modulator

does not makes much sense. Indeed, the quantization error is strongly correlated to the input

signal, which breaks one of the fundamental conditions stated by Bennett in applying the lin-

ear approximation.

However, in the case of multibit 1st order modulators, the multibit quantization helps to

decorrelate the quantization error from the input signal. Hence, a test similar to that for a 2nd

order modulator can be implemented for these modulators as follows:
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◆ Digital input sequence: a periodic sequence of mean value Q greater than one half

of the quantizer step ∆DAC.

(4-21)

The quantizer step can be calculated from the number of bits LDAC of the quantizer,

as,

(4-22)

◆ Modifications of the modulator operating conditions: the normal input is disabled

and the digital input is enabled.

◆ Test signature: it is the sum over a number N of samples of the difference between

the input sequence and the output bitstream. It will have the form,

. (4-23)

As for the case of a 2nd order modulator, the impact of an eventual input-referred offset

on the signature can be compensated. For two acquisitions with digital input sequences of

mean value Q and -Q, two signatures s1 and s2, respectively, are obtained. The final signa-

ture would be,

, (4-24)

where ∆p is the integrator pole error.

The reader should notice that while the input stimulus is a digital sequence and thus

exhibits only two levels (1 and -1), the output bitstream comes from a multibit quantizer and

in our normalized representation is thus multi-valued (with a number 2m of levels, m being

the number of bits of the quantizer). This does not have theoretical implications but has an

impact on the implementation of the signature analyzer. This will be discussed in a posterior

chapter.
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4 • 1 . 2 . 3  Single-bit first-order modulator

For single-bit 1st order modulators, the quantizer linearization does not hold anymore.

Actually, Schreier and Temes [32] showed that a 1st order Σ∆ modulation is a mapping, i.e. a

projection. The main implication of this in our case is that if a digital sequence is used as a

test stimulus, the modulator output will follow that sequence. This effect is even strength-

ened by integrator leakage, which means that we will see no difference between the modula-

tor output mean value and the input sequence mean value.

What we propose is thus to modify the modulator during the test mode by adding an

extra delay in the digital part of the feedback path, as shown in Figure 4-4. The rest of the

procedure is similar to the one described for a second order modulator. Theoretical justifica-

tion will be provided further.

◆ Digital input sequence: we limit the digital test sequences to periodic sequences of

period L and of the form,

(4-25)

with a number L-1 of 1s and one -1 (conversely of -1s and 1). The sequence period

L must be strictly higher than 5. This implies that the magnitude of its mean value Q

is greater than 3/5.

Figure 4-4: Diagram of the proposed test for first integrator leakage in a first-order sin-
gle-bit Σ∆ modulator
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◆ Modifications of the modulator operating conditions: the normal input is disabled

and the digital input is enabled. An extra delay is added in the feedback loop.

◆ Signature elaboration: it is the sum over a number N of samples of the difference

between the input sequence and the output bitstream.

(4-26)

Here again, performing two acquisitions s1 an s2 with opposite sequences allows to get

rid of an eventual input-referred offset. The final signature is,

(4-27)

An alternative to the test described above is to use an input sequence that is similar to

the one described above, but where the -1 (conversely the 1) is replaced by a 0. This oblige

us to deviate from the constraints set in Chapter 3 as the 0 is not an available output of the

feedback DAC. Nevertheless, we will see in Chapter 6 that such a modification can easily be

implemented. The advantage, on the other hand, is that the extra delay in the feedback loop

is no longer necessary. In that case, the result for two acquisitions with opposite sequences

takes the form,

(4-28)

In this case, L has to be strictly higher than 2 (i.e. Q>0.5).

4 • 1 . 2 . 4  Extension to modulators of order greater than 2

In the case of modulators of order higher than 2, it is likely that the quantization error

issufficiently decorrelated from the input signal that the quantizer linearization give a good

result for the modulator behavior. Actually, there are no alternative analytical methodology

to study the frequency response of a high order modulator.

Hence, we suggest that the test proposed for a second order modulator could be valid to

determine integrator leakage in high order modulators. Integrator leakage modifies the quan-
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Test for static parameter determination
tization noise shaping NTF(z) such that the noise in the baseband of the modulator increase.

Due to the Σ∆ modulation loop, the Signal Transfer Function STF(z) is related to NTF(z).

Hence a change in NTF(z) induces a change in STF(z). The underlying assumption in the

proposed test is that there is a deviation in the modulator output mean value from the input

mean value. In terms of the frequency domain, it means that the limit of STF(z) when z tends

to 1 is a function of integrator leakage, i.e.

(4-29)

We should make a Taylor series expansionof the function f and see which integrator

leakage(s) (if any) modify the STF to a first order.

Our first guess, extrapolating the results for the second order modulator, is that only the

first integrator leakage will impact the mean value of the output. However, the application of

this test requires the study of the particular architecture and no general conclusion can be

drawn on its applicability.

4 • 1 . 3  Leakage test theoretical justification

This sub-section presents analytical proof for the signatures proposed above as well as

for the restrictions that may have been put on either the test sequence or the modulator oper-

ating conditions.

4 • 1 . 3 . 1  Second order modulator

The goal of this section is to establish the relationship between the signature and the loss

of the first integrator. For this, we will make use of a linearized model of the modulator.

Despite the fact that this model fails to represent all the effects observed in the modulator

behavior, we will verify by simulation that it gives sufficient insight in our case.

Let us consider the discrete-time domain

modulator model of Figure 4-3. For the ana-

lytical study, the quantizer is linearized and

replaced by a gain element and zero mean

additive noise, as can be shown in Figure 4-5.

STF z( )
z 1→
lim f ∆ p1 … ∆ pi … ∆ pL, ,, ,( )=

+

E

k

Figure 4-5: Quantizer linear model
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For a more detailed study, the reader should refer to the work of Ardalan et al. [33].

From this model we obtain

(4-30)

In the ideal case, the integrators have no loss and thus p1=p2=1. Therefore, in order to

fit the second order ideal behaviour, that is,

(4-31)

we must ensure by design that

(4-32)

One possible solution is g1=g2=g*1=g*2=0.5, as presented in [26], which leads k=4.

The counter output is the sum of the modulator output over N samples. By interpreting

Eq (4-30) in the time domain, and noticing that

(4-33)

we obtain, using Eq (4-32),

1 z
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Test for static parameter determination
(4-34)

Here, we have introduced ∆p1 and ∆p2 that stand for (1-p1) and (1-p2) respectively.

The previous equation can be greatly reduced if we notice that

(4-35)

if N is a multiple of the input sequence period. Moreover, for N large, the term

(4-36)

should be bounded, as the mean value of the error term is zero.

The remaining terms on the right hand side of Eq (4-34) are also bounded, and indepen-

dent of N. Thus, if we consider that ∆p1=∆p2=0 for these terms, then Eq (4-34) reduces to,

. (4-37)

If ∆p1 and ∆p2 are small, we obtain

. (4-38)

Therefore, the signature is directly sensitive to the integrator loss, as was stated in

Eq (4-16). The theoretical basis of the proposed test is thus justified. Notice that the inclu-

sion of an input-referred offset has been obviated for the sake of brevity.
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The precision on the determination of ∆p1 is limited by the quantization noise terms e in

Eq (4-37). Taking into account the input referred offset cancellation the following expres-

sion is obtained,

(4-39)

where the terms ei are random variables representing the quantization noise. Assuming that

the quantization noise is gaussian-like,

(4-40)

and the sum of eight quantization noise terms is also gaussian-like with,

(4-41)

The term FS stands for the modulator Full-Scale which, in our case, is equal to 2 as the

feedback levels are normalized to 1 and -1.

The integrator leakage can be determined within a confidence interval of , and

hence, from Eq (4-39) and Eq (4-41), we can write

(4-42)

From a test viewpoint, it is important to determine the number of points that have to be

summed to detect unexpected leakage. This can be done using Eq (4-42). Let us assume that

the nominal expected leakage is,

. (4-43)

The leakage begins to be detected when the term 4NQ∆p1 in Eq (4-39) is greater than

the 3σ error. Thus,

(4-44)

The number of samples required to detect the expected leakage given by Eq (4-43) will

be
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Test for static parameter determination
(4-45)

For a 60dB nominal DC gain and a 0.5 integrator gain, a test with the proposed [1 1 1 1

1 -1] sequence would require two acquisitions of 3690 samples. Notice that these samples

are acquired at the modulator bitstream speed.

Notice that the above demonstration has been carried out supposing that the second

order modulator has been designed to fulfill the ideal 2nd order noise shaping of Eq (4-31).

However, optimization considerations may lead designers to use branch coefficients in the

integrators that do not lead to the ideal 2nd order shaping. For instance, if coefficient g1 and

g1* of Figure 4-3 are not made equal, it modifies the gain of the modulator. Programmable

gains are sometimes implemented to adapt the input signal to the modulator full-scale. Nev-

ertheless, it can be shown that the proposed test always leads to a signature that is sensitive

to the first integrator leakage. Considering the generic diagram of Figure 4-3 and a linearized

quantizer with effective gain k, it can be written

(4-46)

The leakage signature senses how the modulator output deviates from the input on aver-

age. Hence taking the limit of Eq (4-46) when z tends to 1, we obtain,

(4-47)

where,

(4-48)

Considering that the integrators pole errors are small, a first order Taylor development

leads to

. (4-49)
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It can be seen that the modulator gain is actually g1*/g1, and hence the test signature

should be modified as

. (4-50)

Notice that the main term of the signature is independent of the quantizer’s effective

gain, which is quite interesting as this parameter can only be determined by simulation in

most cases.

4 • 1 . 3 . 2  First order multibit modulator

Supposing that the quantizer linear approximation can be used, the discrete-time model

depicted in Figure 4-6 is obtained. Notice that the effective gain of a multibit quantizer is

one, that is, it is equal to the quantizer actual gain.

We can write

. (4-51)

Using the same considerations as for a second order modulator, we obtain

, (4-52)

where N, the number of summed samples, is a multiple of the input sequence period.

In the case of low integrator leakage, ∆p is small and the test signature can be written as

. (4-53)
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Figure 4-6: z-domain representation of a linearized first-order multibit Σ∆ modulator
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Test for static parameter determination
Therefore, the signature is directly sensitive to the integrator loss. The theoretical basis

of the proposed test is thus justified. Notice that the inclusion of an input-referred offset has

been obviated for the sake of brevity.

Like in the case of the 2nd order modulator, the precision of the leakage determination is

driven by the quantization noise terms in Eq (4-52). We can thus repeat a similar study.

Taking into account the input referred offset cancellation, we have an expression of the

form

, (4-54)

where the terms ei are random variables representing the quantization noise. Assuming that

the quantization noise is gaussian-like, with

, (4-55)

we have that the sum of eight quantization noise terms is also gaussian-like, with

. (4-56)

Let us recall that the term ∆DAC stands for the quantizer step, which in our case is

equal to

, (4-57)

where LDAC is the number of bits of the quantizer.

Hence, the integrator leakage can be determined within a confidence interval of ,

(4-58)

Let us now justify the limitation on the input sequence mean value. It has been shown in

[32] that 1st order Σ∆ modulation is a projection. This means that the modulator response to

a digital sequence is the same digital sequence. This can be demonstrated through the behav-

ioral equation of the modulator

, (4-59)
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where Quant represents the quantization function, x is the input sequence and u is the inte-

grator output. The term Quant(un) corresponds to the modulator output yn.

We want to solve Eq (4-59) in the particular case where x is a digital sequence. In this

case, it can be written that

. (4-60)

An obvious solution to Eq (4-59) is

, (4-61)

where α is such that

, (4-62)

which is equivalent to

(4-63)

∆DAC being the quantizer step.

By replacing the uis using Eq (4-61) in Eq (4-59), the solution is easily verified. The

integrator output strictly follows the input sequence with a one-sample delay. The term α

accounts for the integrator initial condition. The modulator output yn=Quant(un)=xn-1 fol-

lows the input, as was stated in [32]. In the presence of integrator leakage, however, this

behavior is slightly altered. Indeed, the leakage can be seen as a small perturbation that tends

to push the integrator output (denoted U in Figure 4-6) towards zero. The modulator output

will follow the input while Quant(un)=xn-1. This condition is not fulfilled when the decrease

due to integrator leakage is such that un excites a transition other than the two extreme ones.

Nevertheless, it can be shown that in some cases this condition is never broken and the out-

put always follows the input, losing any sensitivity to integrator leakage.

While the pattern is maintained, Quant(un)=xn-1 and the integrator output can be

expressed as

(4-64)

Therefore, if the input sequence x has a period of L samples, the decay over one period

can be expressed as

Quant xn( ) xn=
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2
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Test for static parameter determination
(4-65)

The terms βj can be calculated exclusively from the input sequence. It can thus be seen

that the integrator leakage actually pushes the integrator output towards zero through the

term pL, but the actual decay also depends on β. Actually, β can counteract the effect of pL. If

β is positive for a negative un, there may be a stable solution U such that,

(4-66)

For that solution to be stable, it must satisfy Eq (4-62), that is,

(4-67)

In order to ease the interpretation for any sequence, the study can be restricted for values

of p close to 1 (small leakage). Then, by taking p=1-∆p, we obtain

(4-68)

In this case, the condition for the output sequence to follow the input sequence

(Eq (4-67)) becomes

. (4-69)

Notice that for a one-bit quantizer ∆DAC=2 and the stability condition is always fulfilled,

meaning that for any input sequence, the output will always follow the input. That is consis-

tent with the result of [32].
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4 • 1 . 3 . 3  First order single-bit modulator

In the case of a single-bit modulator, the linear model does not apply in any way and its

behavior is better described by non-linear dynamics. As was seen in the case of the multibit

modulator study, if a digital sequence is applied at the input of a single-bit 1st order

modulator its output bitstream follows the input, whatever the value of the integrator

leakage. This effect has been described in [32] and is verified using Eq (4-69). Therefore the

mean value of the modulator output will follow the mean value of the input sequence for any

value of the integrator leakage. And the test that can be applied to 2nd order modulators is

thus insensitive to leakage for 1st order single-bit modulators.

Conceptually, it seems that the feedback is too tight to allow any deviation from the

input sequence. As the first order modulator under normal operating conditions is very

robust to non-idealities, what we propose is to relax the feedback and bring the modulator

out of its normal operation, in over-range. For this to be done, we have to include an extra

delay in the feedback path.

Then, the same procedure is used to evaluate the integrator leakage. A sequence with a

non-zero mean value is fed to the modulator, and the mean value of the output bitstream

depends on the integrator leakage. Nevertheless, the reasoning to derive this relation is not as

simple as for the second order modulator as the linear model cannot be used. Actually, the

mean value of the output bitstream turns out to be a complex non-linear function of the inte-

grator leakage. Fortunately, a Taylor development of this function for a small leakage will

simplify its evaluation.

The reasoning that has to be followed to derive the relation between the integrator leak-

age and the output bit stream mean value is similar to the one that was carried out to derive

the validity range of input sequences in the case of a multibit modulator. In the ideal case of

an integrator with no leakage, the output bitstream of the modified modulator is periodic and

its mean value is equal to the input sequence mean value. Moreover, the integrator output un

follows a periodic pattern on three levels,

(4-70)u γ
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2–
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Test for static parameter determination
If the integrator is leaky, a decay will be superimposed to that pattern, just like in the

case of the multibit modulator.

However, in the case of the multibit modulator it was possible to solve the modulator

equation for finding the output pattern. But when an extra delay is introduced in the feed-

back loop, it becomes very difficult to derive a general solution for any input sequence.

Therefore, we limit our study to sequences of the form L-1 “1s” and 1 “-1”. For such

sequences, it can be shown, doing a case analysis in the time domain, that the integrator out-

put follows a fixed pattern. This case study has been carried out using the difference equa-

tion that represents the modified modulator of Figure 4-7:

(4-71)

For instance, consider a [1 1 1 1 1 -1] input sequence for six cases of the modulator ini-

tial state. The modulator initial state is defined by the integrator output at instant 0 and the

sign of the integrator output at instant -1. This case study is represented in Figure 4-8.

Extrapolating these six cases, it can be seen that the integrator output locks into a fixed pat-

tern after few periods of the input sequence.

The integrator pattern for a generic input sequence is thus of the form shown in

Figure 4-9. This pattern period (of length 2L) begins with L samples at a central level γ that

is strictly positive and less than 2. The 2 next samples are at γ-2 and are thus negative. The

following sample brings the integrator output back to the central level γ and the remaining

L-3 samples are at level γ+2. The modulator output is equal to the sign of the integrator out-

put, yn=sign(un), and consists of L “1s”, 2 “-1s” and L-2 “1s”. The modulator output mean

value is thus (L-2)/L, which is equal to the input sequence mean value Q.

Figure 4-7: z-domain representation of a first-order single-bit Σ∆ modulator with an ex-
tra delay in the feedback path.
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X -1 1 1 1 1 1 -1 1 1 1 1 1 -1 1 1 1 1 1 -1

U / γ γ γ γ γ γ γ−2 γ−2 γ γ+2 γ+2 γ+2 γ γ γ γ γ γ

Y 1 1 1 -1 1 1 1 1 1 -1 1 1 1 1 1 -1 1 1 1

Modulator pattern period

a)

b)

c)

Figure 4-8: Time-domain case study for a [1 1 1 1 1 -1] input sequence
a) initial condition: 0<u0=γ<2 and sgn(u-1)=1;
b) initial condition: 0<u0=γ<2 and sgn(u-1)=-1;
c) initial condition: -2<u0=γ-2<0 and sgn(u-1)=-1;
d) initial condition: -2<u0=γ-2<0 and sgn(u-1)=1;
e) initial condition: 2<u0=γ+2<4 and sgn(u-1)=1;
f) initial condition: 2<u0=γ+2<4 and sgn(u-1)=-1;

X -1 1 1 1 1 1 -1 1

U / γ γ+2 γ+2 γ+2 γ+2 γ+2 γ

Y -1 1 1 1 1 1 1 1

X -1 1 1 1 1 1 -1 1

U / γ−2 γ γ+2 γ+2 γ+2 γ+2 γ

Y -1 -1 1 1 1 1 1 1

X -1 1 1 1 1 1 -1 1

U / γ−2 γ−2 γ γ+2 γ+2 γ+2 γ

Y 1 -1 -1 1 1 1 1 1

X -1 1 1 1 1 1 -1 1

U / γ+2 γ+2 γ+2 γ+2 γ+2 γ+2 γ

Y 1 1 1 1 1 1 1 1

X -1 1 1 1 1 1 -1 1 1 1 1 1 1 -1 1

U / γ+2 γ+4 γ+4 γ+4 γ+4 γ+4 γ+2 γ+2 γ+2 γ+2 γ+2 γ+2 γ+2 γ

Y -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d)

e)

f)
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Test for static parameter determination
For a leaky integrator, a small decay perturbs the ideal pattern. If this decay is sufficient

to make the central level γ cross zero, the pattern is broken and the modulator output is mod-

ified. When the central level crosses zero, the integrator output exhibits transitions of the

form shown in Figure 4-10. This transition (of length L) brings the central level (γ in

Figure 4-9) back to 2, and the integrator output enters in a new cycle of decaying patterns.

The first two samples of this transition are close to zero but negative. The third sample is

close to 2 and the following L-3 samples are close to 4. Then the modulator output during

the transition is 2 “-1s” and L-2 “1s” and its mean value is (L-4)/L.
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Figure 4-9: Pattern followed by the integrator output
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Figure 4-10: Transition pattern for the case of a leaky integrator
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Thus, the counter output measuring the deviation of the output bitstream from the input

bitstream can be written as

, (4-72)

where Ntran is the number of transitions over the record length N. In order to calculate Ntran

explicitly, the number of pattern periods necessary for the central level to decay from 2 to 0

must be found.

Let u2jL be the integrator output at the beginning of a pattern period. From the z-domain

model of Figure 4-4, it can be shown that the integrator output at the beginning of the next

pattern period will be

(4-73)

If α compensates for the decay due to the term pL, the modulator can lock into a stable

pattern, just as has been seen for the multibit 1st order modulator. This occurs if the solution

U of the equation

(4-74)

is of the right sign. As uj2L must correspond to a positive output, the lock condition can be

written

. (4-75)

By taking the limit of this value when p tends to 1, it becomes

. (4-76)

Therefore, in order to get sensitivity to integrator leakage, that is, for the modulator not

to lock into a fixed pattern, a sequence of length greater than 5 should be used.

If umid is the value of the medium level just after a transition, the integrator output after

k pattern periods is

. (4-77)
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Test for static parameter determination
Actually, the transition will bring the central level to a value umid that is slightly lower

than 2. This level can be calculated, taking into account the fact that the first point in the

transition in Figure 4-9 is zero. It becomes

. (4-78)

Then, the number of pattern periods between two transitions is the solution of u2kL=0,

which is, using Eq (4-77)

. (4-79)

Therefore, Ntran can be written as

(4-80)

taking into account the fact that the pattern period has a length of 2L samples and a transition

of L samples. The counter output can thus be written explicitly using Eq (4-79) and

Eq (4-80) as

(4-81)

This is a strongly non-linear function of p, but it can be simplified, assuming that

∆p=1-p is small. In this case,

(4-82)

Here again, if a small input-referred offset is present at the modulator input, the result

will be modified slightly. Actually, the offset contribution has to be taken into account in the

calculation of α in Eq (4-73). If off is the input referred offset, we obtain

(4-83)

This new α has thus to be considered in Eq (4-79). Nevertheless, some care must be

taken if the offset compensates the decay. Taking a close look at the lock condition (consid-
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ering the new α in the unequality of Eq (4-75)), a domain (off, p) may exist where the modu-

lator output locks to the input sequence. Over this domain, the term in the logarithm of the

numerator in Eq (4-79) would become negative. This is not numerically valid and Eq (4-79)

does not make sense either. Indeed, if the modulator output locks to the input sequence, there

are no transitions. Mathematically, k tends to infinity and the counter output to zero. That is

consistent with what was said, as the output locks into the fixed pattern which has a same

mean value as the input.

If the input referred offset is sufficiently small, one can still use a first order approxima-

tion

(4-84)

Here again, performing two acquisitions s1 and s2 with two opposite sequences will

allow one to compensate for the offset, and we should thus have

(4-85)

and also

(4-86)

A drawback of this method is that, as two opposite sequences are used, the input

referred offset will tend to compensate the leakage effect for one of the two. Thus, the linear-

ity of the counter output may be severely compromised. Another solution could be to calcu-

late the parameters using two sequences of different lengths (L1 and L2) but of the same sign,

providing that their mean values have a sign opposite to the offset. In that case, the strong

non-linearity does not occur, and we obtain

(4-87)
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Test for static parameter determination
. (4-88)

Considering Eq (4-72), the precision of the leakage evaluation is determined by the

number of sensed transitions. Suppose that the leakage produces a transition every 1000

samples, the same number of transitions will be sensed if N+1 samples are acquired as if

N+999 samples are acquired. This rounding operation is neglected to achieve the linearized

signature of Eq (4-85). For small leakages and no input-referred offset, this rounding opera-

tion is thus the major precision-limiting factor. If we consider that an error of 1 sensed tran-

sition can occur, we can thus re-write Eq (4-85) taking into account the error

(4-89)

An alternative has also been introduced in Section 4 • 1 . 2 . 3 that consists in using test

sequences of the form [1 1 1 1 ... 1 0] (and [-1 -1 - 1 ... -1 0] to cancel input referred offset)

of period L. It has been said that for such sequences, it is not necessary to add a delay in the

feedback path of the modulator. A case analysis in the time domain shows that the modulator

output for an ideal integrator is periodic of period 2L with a number 2L-1 of “1” and 1 “-1”.

Such a case analysis can be seen in Figure 4-11 where a [1 1 0] input sequence is considered

for 3 values of the integrator initial condition. Extrapolating these three cases, it can be seen

how the integrator output (and consequently the modulator output) settles into a periodic

pattern after a few periods of the input sequence. The integrator output pattern period for a

generic sequence of L-1 “1” and one 0 is represented in Figure 4-12.

Integrator leakage superimposes a decay on the global pattern. At a given instant, the

maximum level γ+1 becomes less than 1. At the next 0 input, the integrator output becomes

negative and a transition occurs. The form of the transition can be seen in Figure 4-13. After

such a transition, the integrator output locks back into a pattern with γ=1.

The same demonstration synopsis as for the case of a conventional sequence and an

extra delay in the feedback path can be followed:
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X 1 1 0 1 1 0 1 1 0 1 1
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Modulator pattern period
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c)

Figure 4-11: Time-domain case analysis. a) integrator initial condition 0<γ<1; b) inte-
grator initial condition 1<γ+1<2; c) integrator initial condition -1<γ−1<0
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Figure 4-12: Pattern followed by the integrator output
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Test for static parameter determination
i) the decay due to integrator leakage is calculated over one period of the integrator pat-

tern.

ii) The number of pattern periods necessary to bring the central level γ from 1 (just after

a transition) to 0 (just at the transition) is calculated

iii) The number of transitions in an acquisition register is evaluated which gives the

expected signature

Indeed, the modulator output mean value over one period of the pattern is equal to

(L-1)/L, which equals the input sequence mean value. The modulator output mean value over

a transition is, in turn, (L-2)/L. Hence, the test signature is equal to

, (4-90)

where Ntran is the number of transitions that occur during the acquisition. Following the

above described synopsis, we obtain

(4-91)

In order to suppress partially the impact of the offset, another acquisition is performed

with the opposite sequence and the difference between the two signatures can be calculated

as

. (4-92)

Similarly to what was said for the regular sequences (with no zero), the results from two

acquisitions with different sequences (of length L1 and L2 respectively) can be combined to

avoid the potential non-linearity related to the offset. The result obtained is similar to

Eq (4-87):

(4-93)
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4 • 2 LEAKAGE TEST VALIDATION THROUGH SIMULATION

In this sub-section, we will provide a proof-of-concept for the previously proposed tests

and check the validity of the assumptions realized in the theoretical analysis. Hence, we will

simulate the z-domain models of the modulators using the MATLAB Simulink tool. The

only non-ideal defects contemplated in the simulations presented here are the integrator

leakages.

A more realistic approach is carried-out in a later chapter, considering complex

behavioural models and simultaneous variations of the behavioural parameters of interest.

4 • 2 . 1  Second order modulator

◆ Variation with the input sequence mean value

We simulated 200 sequences with different mean value, for 3 values of ∆p1 (0, 0.05 and

0.1). The sequences were determined by choosing a random rational number and determin-

ing the corresponding sequence with the euclidian algorithm [30]. The reason for this is that

this algorithm gives the most homogeneous periodic sequence, that is optimum to maintain

the integrator output excursion as limited as possible (notice that these sequences correspond

to the limit cycle of a first order Σ∆ modulator with a input DC value equal to our rational

number Q). In this case p2 was arbitrary fixed at 1. Moreover, for each point in the simula-

tion, the initial conditions of the integrators were chosen randomly. The signature should

ideally be computed over a number of samples multiple of the input sequence period in order

to avoid any bias in the signature, as stated in Eq (4-35).

However it is not practical to compare the different signatures on the same figure for dif-

ferent number of acquired samples. Hence, the output bitstream was summed up over 5000

samples for all sequences.

Figure 4-14 represents the test signature versus the mean value of the input sequence. It

appears clearly that the test signature exhibit a linear relationship with the input sequence

mean value.The slope of this relation clearly depends on the integrator leakage. This is what

we will show with the next simulations.
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Test for static parameter determination
◆ Variation with the leakage

In order to verify the relationship between the first integrator leakage and the signature,

we simulated 20 acquisitions over 6000 points, linearly sweeping the pole error ∆p1 from 0

to 0.05. The input sequence mean value is Q=2/3. Notice that ∆p1=0.05 corresponds, accord-

ing to Eq (4-3), to an amplifier DC gain of only 20dB.

Figure 4-15 represents the signature output as a function of the pole error ∆p1. The cross

markers correspond to the 20 simulated acquisitions. The red line corresponds to the

expected signature, accordingly to Eq (4-38). It can be seen that the simulated signatures

match very well the expected ones if the integrator leakage remains low (i.e. for small ∆p),

but deviates from the linear curve for higher leakages. This can be explained easily taking a

look at the orange line that represents the expected signature before Taylor linearization of

Eq (4-37). It can be seen that the simulated signatures perfectly match that curve, which

means that the deviation actually comes from a second order effect.

Figure 4-16 represents the same thing as Figure 4-15 but in this case, the second integra-

tor leakage was set to ∆p2=0.05. Once again it can be seen that the simulated signatures

Figure 4-14: Test signature output as a function of the input sequence mean value
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Figure 4-15: Test signature output as a function of the first integrator leakage (∆p2=0)
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Test for static parameter determination
match very well the expected ones if the integrator leakage remains low (i.e. for small ∆p).

For higher leakages, the signature deviates slightly from the expected one. Notice however

that the simulated signatures do not match the non-linear curve of Eq (4-38) as well as for

Figure 4-15. This is due to the fact that the linearization of the quantizer is an approximation

that still show its limits for second order modulators. Hence, we can justify those differences

by a non-linear dynamic behaviour. In any case, it should be stressed that this slight differ-

ences do not produce a major deviation from the linear signature. On the contrary, the simu-

lated signatures are closer to the linear signature than in the case of Figure 4-15.

In order to illustrate the “strange” non-linear dynamics of the 2nd modulator, take a look

at Figure 4-17. It represents the evolution of the output bitstream spectrum with time for an

input sequence [1 1 -1]. This figure was obtained acquiring 60000 samples of the output bit-

stream of a second-order modulator with ∆p1=10-5 and ∆p2=0.0666. Then the 60000 sam-

ples were divided in 1024 evenly-spaced registers of 512 points and the FFT was calculated

for each register. Hence, in Figure 4-17, the horizontal axis represents the register index (i.e.

the time) and the vertical axis represents the FFT frequency bin. The height of the FFT bin

associated to a color ranging from the red for the highest tones to the blue for the lowest

tones. A curious diagram is obtained that seems to indicate that the modulator output toggles

Figure 4-17: Evolution in time of the output bitstream spectrum for a [1 1 -1]
input sequence
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between well-defined periodic sequences. Indeed, it can be seen that for the time index from

500 to 700 approximately, the sequence has a well defined period of fs/3 as two tones (in

red) clearly appear at fs/3 and 2fs/3 (fs being the modulator sampling frequency that corre-

sponds to bin 512). However at time index 100, the period of the sequence seems to be fs/9.

The evolution from one sequence to another seems to correspond to a kind of chaotic behav-

ior.

◆ Variation with the number of points

In Figure 4-18, we represent the evolution of the signature as a function of the number

of acquired points, in order to verify the evaluation error. For that we simulated a modulator

with ∆p1=10-3 and ∆p2=0 with a Q=2/3 input sequence. It is not necessary to repeat the

acquisition for several number of points. Instead, we perform only one acquisition over a

large number of points (100000) and vary the number of points for the signature computa-

tion by taking into account only the first N points of the 100000 acquired points.

We represent the mean value of the difference between the input and the output of the

modulator instead of its sum. By doing so, the central result does not depends on the number

of acquired points and the evaluation error is more readable. Actually, accordingly to

Eq (4-42), the expected curve should follow,

(4-94)

Figure 4-18 shows the evolution of the alternative signature defined above with the num-

ber of acquired samples. Notice that the signatures were computed for values of N multiple

of 96, which are multiple of 6 as required. Together with the simulation results, we represent

the expected center value and the associated confidence interval of Eq (4-94). It appears

clearly that the measurement error lies in between the calculated upper and lower bounds.

s∗ 4Q∆ p1
6
N
---- 2

3
---±=
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4 • 2 . 2  Multibit first-order modulator

◆ Variation with the input sequence mean value, verification of the Q limit

The condition Eq (4-21) can be better understood by taking a look at Figure 4-19 and

4-20. Two modulators with 2-bit and 3-bit quantizers have been simulated over 5000 points

for 200 input sequences with different mean value. The signature of Eq (4-24) is represented

versus the mean value of the input sequence for three values of integrator leakage, namely

∆p=0.1, 0.05 and 0. It can easily be seen that the three curves collapse to the leakage-free

case for small input sequence mean values. This verifies the theory that the output bitstream

follows the input sequence for sequences that respect the lock condition of Eq (4-21).

Actually, it can be seen that the limit value correspond to =2/3 and 2/7 respectively, as

expected.

Moreover, it appears that when the lock condition is not fulfilled, the signature is

sensitive to the integrator leakage. The quantizer linearization approximation shows its limit

for a multibit first order modulator, in particular for low-resolution quantizers (this is

Figure 4-18: Evolution of the evaluation error with the number of samples.
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Figure 4-19: Test signature output as a function of the input sequence mean value,
for a 2-bit modulator
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Figure 4-20: Test signature output as a function of the input sequence mean value,
for a 3-bits modulator
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Test for static parameter determination
coherent with Bennett conditions [20]). Hence, it seems that apart from the quantization

noise error, the proposed signature will be limited by a systematic error of the form,

, (4-95)
where f(Q) is a non-linear function of the input sequence mean value, which is much less

than unity.

◆ Variation with the leakage

In order to verify the relationship between the first integrator leakage and the signature,

we simulated 20 acquisitions over 6000 points, linearly sweeping the pole error ∆p from 0 to

0.05.

Figure 4-21 and 4-22 represent the signature output as a function of the pole error ∆p,

for a 3-bit quantizer and a 2-bit quantizer, respectively. The cross markers correspond to the

20 simulated acquisition. The red line corresponds to the signature predicted by Eq (4-24). It

can be seen that the simulated signatures match the expected ones very well if the integrator

leakage remains low (i.e. for small ∆p), but deviates from the linear curve for higher leak-

err 2Nf Q( )∆p=

Figure 4-21: Test signature output as a function of the integrator leakage (∆p) for a
3-bit first-order modulator
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ages. This can be partially explained by taking a look at the orange curve that represents the

expected signature before Taylor linearization of Eq (4-52). It can be seen that the simulated

signatures match that curve better. However, this expected non-linearity is not sufficient to

explain the deviation. The remaining deviation is due to the error introduced in Eq (4-95)

that manifests itself as a slope error for the signature, as was pointed out above. In accor-

dance to what can be seen in Figure 4-19 and Figure 4-20, this slope error is more important

for the lower quantizer resolution.

◆ Variation with the number of points

Figure 4-23 depicts the evolution of the signature as a function of the number of

acquired points. Once again, a 2-bit and a 3-bit first-order modulator were simulated, with

∆p=0.995. The input sequence was set to Q=2/3. The red line represents the expected signa-

ture according to Eq (4-24). It can be seen that, as we quoted above, the expected signature

overestimates the actual signature. This puts an upper limit on the achievable precision.

Indeed if the signature is used to evaluate ∆p, the increase of the number of points will help

to reduce the noise related error but not the systematic error. Fortunately, this systematic

Figure 4-22: Test signature output as a function of the integrator leakage (∆p) for a
2-bit first-order modulator

0 0.01 0.02 0.03 0.04 0.05 0.06
0

500

1000

1500

2000

2500

Integrator pole error ∆p

a
c
q
u
ir
e
d
 s

ig
n
a
tu

re
+ simulations

linear signature
non-linear theoretical signature
154



Test for static parameter determination
error is not fixed but is proportional to the leakage ∆p, as stated in Eq (4-95). Hence, we can

say that the leakage can be determined within a relative precision. This relative precision

depends on the mean value of the input sequence and the resolution of the coarse quantizer.

Figure 4-24 shows a set of curves that represent the evolution of this relative error as a func-

tion of the input sequence, for quantizers with a number of bits from 2 to 4. It appears that

the relative error is lower for high test sequence mean values and for the higher number of

bits. Actually, if the input sequence mean value is higher than 0.7, the relative error is lower

than 10%, even for a 2-bit quantizer.

If we aim only at detecting the nominal pole error and not at measuring it, the number of

points to be acquired has to be calculated such that the signature rise just above the random

noise. In that case, the relative measurement error is just below 100%. Hence, from a test

viewpoint, this relative error limit is not relevant. If this scheme is used to measure the inte-

grator leakage for calibration purposes, however, this error may affect the results. Anyway, if

the sequence is properly chosen, the leakage can be determined with a relative error lower

than 10%, which should rise significant improvement on the calibrated modulator.

Figure 4-23: Test signature as a function of the number of acquired points for a 3-bit
quantizer and a 2-bit quantizer
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4 • 2 . 3  Single-bit first-order modulator

◆ Verification of the pattern

The objective of these first simulations is to verify that the pattern depicted in Figure 4-9

and 4-10 are produced in simulations. For that, we simulated a first-order single-bit modula-

tor for different values of leakage. It is important to remember that a restriction was put on

the type of input sequences (see Eq (4-25)).

Figure 4-25 represents the evolution of the integrator output for a sequence of L=6, for

pole errors ∆p=0, ∆p=0.001, and ∆p=0.005. It shows that the integrator output actually suf-

fers a decay that leads to periodic transitions, as explained in section 4 • 1 . 3 . 3. The decay

is a function of the integrator leakage, such that more transitions occur for higher ∆p. A

zoom over the pattern period for the three cases shows that the leakage does not change the

periodic pattern, which corresponds to Figure 4-9. Another zoom on the transitions shows

that the pattern predicted in Figure 4-10 is also respected.

Figure 4-24: Relative error on the measurement of ∆p as a function of the input se-
quence mean value Q.
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◆ Variation with the input sequence period

To produce Figure 4-26, we simulated a modulator over 10000 points for different val-

ues of the input sequence period and for three values of the integrator leakage, namely

∆p=0.001, 0.005 and 0.01. The solid line stands for the expected signature computed accord-

ingly to Eq (4-26) for every case while the markers are the simulated signatures. The lock

condition of Eq (4-76) is verified, as the signature is zero for sequences of period L less than

5. For sequences with L greater than 5, the signature is sensitive to leakage.

◆ Variation with the leakage

The variation of the signature as a function of the integrator leakage can be seen in

Figure 4-27 and 4-28 for an input sequence of periods L=6 and L=11, respectively. The num-

Figure 4-25: Integrator output, for a 1st order single-bit modulator.
a) leakage-free modulator: global view, zoom on the pattern
b) ∆p=0.001: global view, zoom on the pattern, zoom on the transition
c) ∆p=0.005: global view, zoom on the pattern, zoom on the transition
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Figure 4-26: Test signature versus test sequence period L, for a 1st order single-bit
modulator.
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Figure 4-27: Test signature versus integrator leakage, for an input sequence of L=6
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Test for static parameter determination
ber of acquired points was set to N=6600. The solid red curves represent the expected linear

signature of Eq (4-26) while the orange curves represent the non-linear function predicted

by Eq (4-81). It can be seen that the linear approximation leads to good results for small ∆p

(i.e. low leakages) and the matching is very good with the non-linear function. However, it

seems likely that the evaluation error associated to the linear approximation dominate over

the quantization noise.

◆ Variation with the number of points

In Figure 4-29, we represent the evolution of the signature as a function of the number

of acquired points. For that we simulated a modulator with ∆p=10-3 with a L=7 input

sequence. It is not necessary to repeat the acquisition for several number of points. Instead,

we perform only one acquisition over a large number of points (100000) and vary the num-

ber of points for the signature computation by taking into account only the first N points of

the 100000 acquired points.
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We represent the mean value of the difference between the input and the output of the

modulator instead of its sum. By doing so, the central result does not depends on the number

of acquired points and the evaluation error is more readable. Actually, accordingly to

Eq (4-89), the expected curve should follow,

(4-96)

Figure 4-29 shows the evolution of the alternative signature defined above with the num-

ber of acquired samples. Notice that the signatures were computed for values of N multiple

of 70, which are multiple of L=7 as required. Together with the simulation results, we repre-

sent the expected center value (in green) and the associated confidence interval (in red) of

Eq (4-96). The measurement error corresponds the calculated bounds to a reasonable extent.

◆ Impact of the offset

It was explained in sub-section 4 • 1 . 3 . 3 that an input-referred offset can modify the

expected signature. In order to compensate for such an offset, we proposed to use two oppo-

site sequences and to subtract the two obtained signatures such as to eliminate the linear part

of the offset contribution, just as in the case of a second-order modulator. However, the

Figure 4-29: Evolution of the evaluation error with the number of samples.
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Test for static parameter determination
impact of an input referred offset on the signature is not linear when leakage is present, as it

modifies the lock condition (see Eq (4-75) and Eq (4-83)). This translates into the fact that

the offset can compensate for the decay due to leakage such that the signature is no longer

proportional to leakage but is equal to zero. This can be seen in Figure 4-30 which shows the

same simulation as Figure 4-27 but with the introduction of an input-referred offset of 0.003.

Moreover, a second acquisition was run with the opposite sequence, and the opposite of the

obtained signature is also represented. It appears that a positive offset can compensate for

the decay and provokes the unwanted “plateau” in the signature only for sequences with a

positive mean value. Hence, when the signature is computed using Eq (4-27) (subtracting

the result obtained for a positive sequence and its opposite) the plateau is converted in a

region with a slope of half the expected value. This can be seen in Figure 4-30 as the black

(average) curve represents this signature. Notice that the individual signatures obtained for

the positive sequence and its opposite have been multiplied by two so that they can be repre-

sented on the same scale as the combined signature in Figure 4-30. As the offset is not

known a-priori, it can be said that the test will exhibit a 50% relative error in the worst case

Figure 4-30: Test signature versus integrator leakage, for an input sequence of L=6
and its opposite, and an input-referred offset of 0.003.
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(i.e. the leakage is evaluated to one half of what it actually is). This can appear as a very lim-

iting factor, but from a detection point of view it is not that critical. Indeed, it can lead one to

underestimate the leakage by 50% which is equivalent to overestimating the amplifier DC

gain by 6dB. It is unlikely that such a deviation in the DC gain would be critical for the per-

formance of the modulator.

In order to circumvent the issue of the input-referred offset, a second signature was pro-

posed in Eq (4-87). Figure 4-31 represents that signature, computed for input sequences of

period L=6 and L=11, respectively, versus the integrator leakage. This figure has been lim-

ited to the region where the plateau could be seen. Each acquisition was performed over

66000 points in order to let the non-linearities dominate the evaluation error. Indeed, it can

be seen that for the higher values of the pole error ∆p, the signature exhibits a quite non-lin-

ear behaviour. This has to be related to the steps that could be seen in Figure 4-27 and 4-28,

as this alternative signature is a combination of such curves for two different test sequences.

Moreover, we can also see that the input-referred offset impact is not totally suppressed for

that alternative. Despite the fact that globally, the linearity for this signature is better than for

than for the previous one, the offset still manifests itself as a slope error with respect to the

Figure 4-31: Second test signature versus integrator leakage, for input sequences of
L=6 and L=11, with and without an input-referred offset of 0.003.
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Test for static parameter determination
expected signature. In that sense, the worst case relative precision on the determination of

the pole error ∆p can be estimated to be around 15% for the 0.003 offset in Figure 4-31.

4 • 2 . 4  Alternative test for the leakage of a 1st order single-bit modulator

Another test has been proposed for the integrator leakage of a 1st order single-bit modu-

lator in Section 4 • 1 . 2 . 3. It is very similar to the previous one. Actually, it only differs in

that the input sequence is of the form [1 1 1 .. 0] instead of [1 1 1 .. -1]. With this modifica-

tion, we have shown that no extra-delay is required in the feedback loop. The same valida-

tion flow is thus followed.

◆ Verification of the pattern

The objective of these first simulations is to verify that the pattern depicted in

Figure 4-12 and 4-13 are followed in simulations. For that, we simulated a first-order sin-

gle-bit modulator for different values of leakage.

Figure 4-32 represents the evolution of the integrator output for a sequence of L=4 (i.e.

[1 1 1 0]), with pole errors ∆p=0, ∆p=0.001 and ∆p=0.005. It shows that the integrator out-

put actually suffers a decay that leads to periodic transitions The decay is a function of the

integrator leakage, such that more transitions occur for higher values of ∆p. A zoom over the

pattern period for the three cases shows that the leakage does not change the periodic pat-

tern, which corresponds to Figure 4-12. Another zoom on the transitions shows that the pat-

tern predicted in Figure 4-13 is also respected.

◆ Variation with the input sequence period

To produce Figure 4-33, we simulated a modulator over 10000 points for different val-

ues of the input sequence period and for three values of the integrator leakage, namely

∆p=0.001, 0.005 and 0.01. The solid curve represents the expected signature computed

according to Eq (4-28) for every case while the markers are the simulated signatures.
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◆ Variation with the leakage

The variation of the signature as a function of the integrator leakage can be seen in

Figure 4-34 and 4-35 for input sequences of periods L=4 and L=7 respectively. The number

of acquired points was set to N=10000. The solid red curves represent the expected linear

signature of Eq (4-28) while the orange curves represent the non-linear function predicted

by Eq (4-91). Note that the linear approximation leads to good results for small ∆p (i.e. low

leakages) and the matching is very good with the non-linear function. The linear approxima-

tion is valid for small leakages because the steps of the non-linear function are smaller than

the error associated with the quantization noise. However, the evaluation error associ-

ated with the linear approximation dominate over the quantization noise for large values of
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Test for static parameter determination
Figure 4-33: Alternative test signature versus test sequence period L, for a 1st order
single-bit modulator.
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leakage. The worst case error due to non-linearity is around 15%, which is equivalent to a

1.4dB error in the estimation of the amplifier’s DC gain.

◆ Variation with the number of points

In Figure 4-36, the evolution of the signature as a function of the number of acquired

points is represented. For that we simulated a modulator with ∆p=10-3 with a L=4 input

sequence. It is not necessary to repeat the acquisition for several number of points. Instead,

we perform only one acquisition over a large number of points (100000) and vary the num-

ber of points for the signature computation by taking into account only the first N points of

the 100000 acquired points.

We represent the mean value of the difference between the input and the output of the

modulator instead of its sum. By doing so, the central result does not depends on the number

of acquired points and the evaluation error is more readable. Actually, accordingly to

Eq (4-28), the expected curve should follow

. (4-97)
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Test for static parameter determination
Figure 4-36 shows the evolution of the alternative signature defined above with the num-

ber of acquired samples. Together with the simulation results, we represent the expected

center value (in green) and the associated confidence interval (in red) of Eq (4-97). The mea-

surement error corresponds with the calculated bounds.

◆ Impact of the offset

As the mechanism underlying the two proposed leakage tests is very similar, an

input-referred offset also causes the same kind of non-linear phenomenon that has been

described above. In order to illustrate this effect, a simulation was performed varying the

integrator leakage for a 1st order modulator with an input-referred offset of 0.3% of the

full-scale. The alternative test was performed with a [1 1 1 1 0] (L=5) sequence and its oppo-

site ([-1 -1 -1 -1 0]) over N=10000 samples.

Figure 4-37 is constructed in the same manner as Figure 4-30 and the results are very

similar. The input-referred offset can compensate for the leakage-related decay of the inte-

grator output for one of the two sequences (the positive sequence for a positive offset). This

corresponds to the “plateau” that appears on the blue curve of Figure 4-37: the signature is

equal to zero over a range of pole errors.

Figure 4-36: Evolution of the evaluation error with the number of samples.
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CHAPTER 4
4 • 3 AMPLIFIER NON-LINEAR DC GAIN

We said in a previous section that the amplifier finite DC gain generates a pole error in

the integrator and modifies the Noise Transfer Function such that some quantization noise

leaks into the modulator baseband. Though this is the main limitation related to the amplifier

gain, it is not unique. Indeed, in real implementations, the DC gain of an amplifier is given as

the value of the derivative of its DC transfer function for a half-scale input (a zero input in a

differential implementation). Nevertheless, this small-signal value of DC gain is not constant

over the whole output range. This is particularly true with newer processes, which tend to

reduce the supply voltage and consequently the usable linear range.

One of the functions that can be used to represent the transfer function of an amplifier is

the hyperbolic tangent. Indeed, such a function presents a linear shape close to zero but var-

ies continuously up to the saturations levels. We could write y the relationship between the

DC output of an amplifier and a DC input x as
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Test for static parameter determination
, (4-98)

where ADC0 is the specified DC gain for a zero input and sat is the saturation level of the

amplifier.

The DC gain over the whole signal range can thus be written as

. (4-99)

Instead of expressing it as a function of the input voltage, whose range is very limited, it

is usually expressed as a function of the amplifier output. We obtain the following relation

. (4-100)

It appears that parameter sat (the saturation level) drives the non-linearity of the ampli-

fier DC gain.

In real implementations, the amplifier gain may not be accurately modelled by the

hyperbolic tangent function, and the variation of the DC gain may be driven by more factors

than just the saturation level. However, it is not possible to contemplate all the possibilities

for gain variation. Hence, we decided to model DC gain non-linearity as

. (4-101)

where the parameter sat has been replaced by another coefficient, namely aNL. This allows

us to decorrelate the DC gain non-linearity from the effective saturation of the integrator.

Notice that, for convergence issues in simulations, the integrator saturation sat should be

strictly lower than the non-linear coefficient aNL. Indeed, clipping the integrator output to

 ensures that the DC gain calculated using Eq (4-101) is always greater than zero.

4 • 3 . 1  Impact on the modulator performance

The major impact of amplifier non-linear DC gain occurs for the first integrator. Indeed,

for others integrators in the modulator, the integrator output is normally quite decorrelated

from the input signal. Hence, for these integrators, the impact of amplifier DC gain non-lin-

earity can be seen as slight increase in the integrator pole error, due to the fact that the effec-

tive amplifier DC gain has to be considered instead of the DC gain for a zero output.
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Nevertheless, such a modification will only increase quantization noise leakage slightly.

Indeed, the effective gain will be mainly determined by the DC gain at a zero output in most

cases. In other words, if the DC gain for a zero output of the amplifier is high, its non-linear-

ity will not be noticeable.

On the other hand, the first integrator output is still strongly correlated with the input

signal. As a consequence, the error associated with the amplifier gain at an instant n is corre-

lated with the input signal value at an instant n. This produces distortion. In [38], a study of

the distortion generated by a non-linear DC gain is reported. Assuming that a single-stage

modulator of order L exhibits an ideal transfer function, we have

. (4-102)

The first integrator input can be written

, (4-103)

and the first integrator output as

(4-104)

Considering that the modulator input X is a sine-wave of amplitude A and a small fre-

quency fb with respect to the modulator sampling frequency fs, we can consider the behav-

iour of the modulator when z tends to 1. Taking a first order Taylor series expansion of z-1

leads to more manageable expressions

(4-105)

Neglecting the quantization error, we obtain,
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Test for static parameter determination
(4-106)

These expressions show the low frequency content of the integrator input and output

when a sine-wave is applied to the ideal modulator. These results can be used as the base to

calculate the harmonic contents of the integrator referred to its input. Indeed, we can con-

sider the gain non-linearity as a perturbation of the ideal results and thus use the expressions

Eq (4-106) to determine the fundamental frequency components. Considering the integrator

of Figure 4-1 as an example, the difference equation can be written

. (4-107)

Assuming that the amplifier gain A is high, this reduces to

. (4-108)

Furthermore, taking into account that the non-linearity of the DC gain is small in

Eq (4-101), we obtain,

(4-109)

For a slow sine-wave input, we can approximate u(n-1) to u(n) and calculate the har-

monic content of the integrator output using Eq (4-106). The perturbed integrator output can

thus be written

(4-110)

It appears that a third order harmonic is created by the non-linear DC gain of the ampli-

fier. When referred to the modulator input, the amplitude of this harmonic can be written as
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, (4-111)

whenever 2πfb/fs<<1.

In the case of a 2nd order modulator like that proposed by Boser and Wooley in [26],

which is widely used as a first stage in cascaded modulators and for which b=0.5, the third

harmonic amplitude associated with a half-scale (A=0.5) input sine-wave reduces to

. (4-112)

4 • 3 . 2  Description of the proposed test

The test that we propose to check the linearity of the amplifier DC gain is valid for the

first integrator of a second order Σ∆ modulators. Second order modulators are usually pre-

ferred as a first stage in cascaded modulators because of their lower leakage requirements.

The non-linearity of the DC gain has a significant impact on the modulator performance

only for the first integrator. Therefore, a test for DC gain non-linearity for first order modula-

tor is not of much relevance in practice.

The proposed test is similar to what was done to test integrator leakage. Actually, it

relies on performing two leakage tests with sequences with different mean value and check-

ing if the two obtained signatures are proportional.

The test can thus be described as follows:

◆ Digital input sequences: apply two periodic sequences of mean value Q1 and Q2,

different from 0.

◆ Modifications of the modulator operating conditions: the normal input is disabled

and the digital input is enabled

◆ Signature elaboration: this is the relation between the sums over a number N of

samples of the difference between the input sequence and the output bitstream for

the two sequences.
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(4-113)

where ∆p is the pole error of the first integrator, as defined in Eq (4-3)

Here again, an input referred offset can compromise the results and two more acquisi-

tions can be performed with sequences of mean value -Q1 and -Q2. In this case we obtain

(4-114)

It should be noticed that this test is redundant with the leakage test. Hence, we can con-

sider that the leakage test already provides the results for the sequence of mean value Q1 and

only one other sequence has to be used.

The signature proposed above requires that we perform a division. This division does

not have to be performed at modulator speed and could thus be carried out at a relatively low

cost. However, if it is desirable to avoid this division, an alternative test signature can be

used

(4-115)

However, this alternative signature is proportional to both the nominal DC gain (through

the term ∆p) and its non-linearity (through the difference between the terms f(aNL,Qi)).
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Hence, if there is a non linearity, its magnitude may not be correctly estimated if the nominal

DC gain is not determined a-priori with sufficient precision. This means that, in order to

evaluate DC gain non-linearity, the real (measured) integrator leakage has to be taken into

account in Eq (4-115) and not only the expected one. On the other hand, this is congruent

with the functional impact of the DC gain non-linearity: the magnitude of the distortion

induced by a given DC gain non-linearity (aNL) greatly depends on the nominal DC gain,

according to Eq (4-112).

The multiplication by the coefficient Q1/Q2 in Eq (4-115) can be handled very simply if:

i) the sequences are chosen such that Q1/Q2 is a power of two, ii) the acquisitions for

sequence Q2 and Q1 are performed over different numbers of points such that,

(4-116)

With this modification, the multiplication becomes unnecessary.

4 • 3 . 3  Theoretical justification

Equation (4-20) shows that the signature for a leakage test is proportional to the mean

value of the input sequence. Nevertheless, we will see that the integrator output mean value

is proportional to the input sequence mean value. As a consequence, the effective DC gain of

the amplifier is a function of the input sequence mean value. This means that the effective

integrator leakage depends on the input sequence mean value

. (4-117)
Let us consider the first integrator in a modulator of order L. This integrator has a gain b

and its associated amplifier DC gain is defined by Eq (4-101). Let U be the integrator output.

The error that is produced at the output of the integrator due to the finite (non-linear)

gain of the amplifier can be written as

. (4-118)

The average of the error due to integrator leakage referred to the modulator input, can be

written as

N 2
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, (4-119)

where pdf(u) is the probability density function of the integrator output.

We have seen above that for low frequency input signals and neglecting the quantization

error, we can write

. (4-120)
We can assume that for a digital input sequence, this relation still holds true for the

low-frequency part of the signal. Hence, we have

(4-121)
which defines the relation between the integrator output average and the input sequence

mean value. This shows the consistency with the results found for the integrator leakage in

the previous section. Indeed, if there is no non-linearity (aNL is infinite), the average input

referred error reduces to,

. (4-122)

For a second order modulator with b=0.5, and for the definition of the pole error in

Eq (4-3), we obtain

. (4-123)

This average error is equal to the average of the difference between the modulator input

and its output.

On the other hand, in the case that non-linearity is present, this input referred error can-

not be calculated without a knowledge of the probability density function of the integrator

output (pdf(u)). Even if such a function were known, the integral in Eq (4-119) may not be

calculated explicitly. Hence, it is not straightforward to evaluate the value of aNL, and we

recommend designing the test (i.e. to choose the required number of samples to be acquired)

according to high-level simulation results.
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In order to simplify the problem, an equivalent DC gain could be used to evaluate the

expected signature. For instance, we can consider that the modulator behaves as if its DC

gain were constant and equal to its actual value for the mean of the integrator output, that is,

. (4-124)

In that case, we would have

, (4-125)

and the test signature would reduce to

. (4-126)

Nevertheless, simulations show that this approximation clearly underestimates the

impact of the non-linearity on the signature. This is easily understood by taking a closer look

at Eq (4-119). Let us consider that pdf(u) is symmetrical around its mean value. The effec-

tive gain cannot be chosen as the gain value at the mean integrator output because the part of

the pdf above the mean value is weighted by an error more important than the part of the pdf

below the mean value. Hence, the worst-case effective gain could be chosen as the gain

value for an integrator output above its mean value

(4-127)

Simulations show that a value of δ of 0.6 gives quite good matching.

4 • 4 VALIDATION OF NON-LINEAR DC GAIN TEST THROUGH SIMULATIONS

In order to illustrate the influence of non-linear amplifier DC gain on the Σ∆ modulator

behaviour, we realized a first simulation similar to that of Figure 4-14. A 2nd order Σ∆ mod-
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Test for static parameter determination
ulator was simulated over N=10000 points each for 100 different input sequences whose

mean value cover the modulator full-scale [-1;1]. These 100 simulations were carried out for

3 values (1,2,3) of the parameter aNL that define the non-linear amplifier DC gain.

Figure 4-38 represents the sum over the 10000 simulated points of the difference between

the modulator output bit-stream and the input sequence, against the input sequence mean

value.

It appears that, for a high value of aNL, the modulator behaves as if the DC gain were

linear and the difference between the output bit-stream and the input sequence average is a

straight line related to the integrator leakage, as in Figure 4-14. Lower values of aNL corre-

spond to more non-linear DC gains and are seen to blend the straight line for higher values

of input sequence mean values. This behaviour is as expected as higher input sequence mean

values cause higher average integrator output mean value and thus lower effective amplifier

DC gain.

The test signature in Eq (4-114) was designed to be independent of the value of the

amplifier nominal DC gain. To validate this signature, the previous simulation is not suffi-

Figure 4-38: Sum of difference between the modulator output and the input se-
quence, for 3 values of the DC gain non-linear parameter aNL
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cient. Instead, the test as described in section 4 • 3 . 2 has to be carried out. That is what was

done to elaborate Figure 4-39. Four input sequences were considered with mean values

Q1=1/3 and Q2=2/3 and their opposite, respectively. For each input sequence, 200000 points

were acquired and finally the signature was computed as specified in Eq (4-114). The swept

parameter is aNL which defines the non-linearity of the amplifier non-linear DC gain. Fur-

thermore, the simulations were carried out for 3 values of the nominal DC gain 40dB, 50dB

and 60dB.

The three curves obtained are superposed, so the first obvious result is that the signature

is independent of the nominal DC gain, as expected. The only difference resides in the fact

that the same number of points have been acquired for the three cases so the signature is

more noisy for the higher values of the nominal DC gain. This is easily understood referring

to section 4 • 1 . 3 . 1. For higher nominal DC gain, the sum of the difference between the

input sequence and the modulator output is lower than for lower ones, but is still affected by

the same quantization error range. Hence, the relative precision is lower. One way to avoid

that undesirable effect is to perform the acquisition of a higher number of points for higher

values of the nominal DC gain.

Figure 4-39: Proposed test signature as function of the DC gain non-linear parameter
aNL for 3 values of the nominal DC gain.
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Test for static parameter determination
Finally, the precision of the signature as a function of the number of samples is depicted

in Figure 4-40. Two simulations were realized over 400000 points for a modulator with

aNL=3 and a nominal DC gain of 40dB and 60dB respectively, using the same input

sequences as above. Then, the signature was calculated for a subset of the output samples.

Figure 4-40 represents the signature as a function of the length of the subset. It is clearly

Figure 4-40: Proposed test signature as a function of the number of acquired points.
a) for a nominal DC gain of 40dB
b) for a nominal DC gain of 60dB
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seen that the precision of the signature improves with the number of points and follows the

trend that could be expected considering the influence of quantization error in Eq (4-114).

That expected trend is represented in Figure 4-40 by the two green curves.

Figure 4-41 represents the signature obtained for the lowest gain of Figure 4-39, and

superposes the analytical closed forms proposed in the previous sub-section. It appears that

calculating the signature using an equivalent gain at the mean integrator output (i.e. using

(4-126)) clearly underestimates the impact of DC gain non-linearity on the proposed signa-

ture. Conversely, the modification proposed in (4-127) leads to more accurate results. Nev-

ertheless, the signature deviation is also underestimated for important non-linearities (i.e. for

small aNL).

Figure 4-41: Proposed test signature as function of the DC gain non-linear parameter
aNL
a) acquired signature
b) calculated signature with (4-126)
c) calculated signature with (4-127) and δ=0.6.
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hapter 5C

TEST FOR INTEGRATOR DYNAMICS

In this chapter, several tests for the dynamic behaviour of the integrators in a Σ∆ modu-

lator will be described. Actually, the tests proposed in this chapter aim at the determination

of the settling error, considering its linear and non-linear part. We use only two behavioural

parameters (the Slew-Rate and GBW) to model the integrator at a high level. However these

two parameters may not be sufficient to take into account the complexity of the integrator

dynamics, including when it is defective. The settling error, on the other hand, is a concept

that is independent of modelling and is thus better suited as a target for the proposed tests

than the explicit behavioural parameters.

The guidelines given in Chapter 3 have been followed in most of the cases, but the

exceptions will be specified. In each case, the test description is sustained by a theoretical

justification and followed by a validation process through simulation.

At the end of the chapter the reader will find a summary of all the tests proposed in this

chapter and in the previous one, followed by a discussion of the overall test set based upon
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the simulation of the complete behavioural model of a 2-1 cascaded Σ∆ modulator. The aim

of this simulation is to validate the approach and to show how the test set can detect the tar-

geted parametric faults even when multiple faults are involved. Furthermore, it will show

how the test pass/fail limits can be selected as a function of the test objectives.

5 • 1 DETERMINATION OF AMPLIFIER SETTLING ERRORS

Until now, we have considered only parameters related to static behaviour. Indeed, inte-

grator leakage is related to the amplifier DC gain. This DC gain and its nonlinearity do not

depends on the operating frequency. Nevertheless, Σ∆ modulators are inherently dynamic

devices. Actually, their strength comes from the use of a high frequency of operation

together with oversampling. Hence, it is legitimate to think that the dynamic properties of

the building blocks will play an important role. In particular, the settling of the amplifiers

used to build the integrators may be affected by defects in the circuit.

A commonly used approximation to study the behaviour of a modulator with non-ideal

settling is the one-pole approximation together with a maximum output current limitation

for the amplifier. In that case, the settling of the amplifier is determined by two parameters:

its Gain-Bandwidth product and its Slew-Rate, labelled GBW and SR in the following. As

was said in Chapter 3, these parameters are normalized to a sampling frequency of 1. In

order to interpret the results in a real-world case, we must consider,

(5-1)

where SR* and GBW* are the real world Slew-Rate and Gain-BandWidth product, and fs is

the real sampling frequency. Parameters SR and GBW are the normalized (nondimensional)

Slew-Rate and Gain-BandWidth product.

Let us take a look at the SC integrator in Figure 5-1

Let Vi be the voltage stored on capacitor C1 at time 0, and Vo the integrator output at the

end of the integrating phase, i.e. at time Ts/2. Three regions of operation can be considered:

SR∗ SR f s×=

GBW∗ GBW f s×=
f s

1
T s
------=
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Test for integrator dynamics
◆ In the first region, the input voltage is sufficiently small such that the amplifier does

not slew. The settling is determined only by the GBW and is exponential shaped.

This can be written as

. (5-2)

The first part of the equation sets the limits of the considered region and the second

part makes explicit the integrator output. It is easily seen that the settling error is

proportional to the input voltage.

◆ In the second region, the input voltage is so high that the amplifier slews over the

whole integrating phase.

(5-3)

Such a settling error is clearly non-linear, as the integrator output does not depend

on the exact value of the input voltage.

◆ The last region is the intermediate zone between the previously described ones. The

amplifier begins to slew but manages to return to the exponential settling at some

point.

ADC
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Figure 5-1: Switched-capacitor integrator scheme
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(5-4)

In that case, the settling error is also non-linear.

The previous three equations simplify the settling behaviour. For more realistic simula-

tions, the amplifier finite DC gain and output impedance should be taken into account as

well as parasitic and load capacitances. However this analysis gives sufficient insight to

understand the impact of settling error on performance, as well as the operating principle of

the proposed tests.

5 • 1 . 1  Impact on the modulator performance

As can be seen from Eq (5-2), (5-3) and (5-4), the settling errors affect the update of the

integrator. In that sense, it can be considered as a modification of the integrator gain. If the

amplifier never slews, Eq (5-2) is always valid and this gain modification is independent of

the input. However, in most cases, the amplifier slews for some input samples and the gain

modification becomes non-linear. Hence, in general, the settling error can be seen as the

superposition of a linear part and a non-linear part. The first one causes a change in the noise

shaping function, while the second is a source of distortion.

5 • 1 . 1 . 1  Linear settling error

It is difficult to derive the impact on performance of the linear part of the settling error

because it depends mainly on the integrator architecture. Indeed, as we have said above, the

linear part of the settling error can be considered as an error in the integrator gain. Hence, for

a single-bit first-order modulator, it has absolutely no impact on performance. Indeed, a

modification of the integrator gain with respect to the nominal value only scales the modula-

tor output but does not change its sign. As the quantizer senses the sign of the integrator out-

put, the modulator output bitstream remains unchanged. A second order modulator is not

1
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Test for integrator dynamics
very sensitive to the first integrator gain either. Nevertheless, things change for cascaded

modulators, that rely on the digital cancellation of all but the last stage quantization noise.

Indeed, such a cancellation requires knowledge of the exact noise and signal transfer func-

tion of the different stages. A deviation from the nominal value would cause the noise can-

cellation unit to perform incorrectly and some noise shaped to an order lower than the

overall modulator would leak into the baseband. In order to demonstrate this, we simulated a

2-1 cascade modulator as shown in Figure 5-2 and varied the first integrator gain (b1) from

0.4 to 0.6. Notice that this would correspond to a 20% settling error which is very high. The

input signal was a sine-wave with an amplitude of half the modulator full-scale.

Figure 5-3 shows the Signal to Noise and Distortion Ratio (SNRD) of the modulator for

three value of the OSR: 32, 64 and 128. In each case, the modulator bitstream was filtered by

a 4th order Chebytchev filter before decimation.

It can be seen that a variation of the integrator gain around its nominal value degrades

the resulting SNRD, specially for a high OSR.

5 • 1 . 1 . 2  Non-linear settling error

The non-linear part of the settling error, however, causes more than an increase of the

noise floor in the baseband of the modulator. Indeed, there is a strong correlation between

the analog input value and the settling error. Nevertheless, it is not straightforward to refer

Figure 5-2: Diagram of a 2-1 cascade modulator
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the settling error to the input of the modulator because the settling error applies to the inte-

grator input, which is the difference between the modulator input and its output bitstream.

Nevertheless, a common approximation for the study of Σ∆ modulators is to consider

that they use a high oversampling ratio and an anti-aliasing filter at its input, such that the

input signal varies slowly with respect to the sampling frequency. In that sense, it is possible

to reduce the study of Σ∆ modulators to DC input.

Let us suppose a DC input level v. Assuming that the modulator behaviour is close to

ideal, the mean value of its output bitstream should be equal (or very close to) v. Hence, we

can deduce the probability of occurrence of levels 1 and -1 in the output bitstream:

(5-5)

Hence, for a modulator input v, the integrator input oscillates between level v+1 and v-1,

with the probability of occurrence

(5-6)
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Test for integrator dynamics
The average settling error associated with level v and referred to the modulator input can

thus be written

(5-7)

The terms erv+1 and erv-1 are the settling errors associated with integrator input levels

v+1 and v-1 respectively. These terms can be calculated analytically using Eq (5-2), (5-3)

and (5-4).

Hence, we have obtained a DC approximation of the converter transfer function

(5-8)

This function can further be used to evaluate a-priori the expected distortion.

Figure 5-4 represents the evolution of the expected SNDR (Signal to Noise and Distor-

tion Ratio) with the amplitude of the input sine-wave. It was built by distorting sine-waves of

different amplitude using the transfer function of Eq (5-8) calculated for a GBW of 5 and

four different values of the Slew-Rate (3.6, 4.35, 5.1, 5.85). Then random Gaussian noise

(with σ=4.10-6) was added to the distorted sine-wave so as to emulate the converter quanti-

zation noise and an FFT was realized in order to calculate the SNDR. This figure shows how

the distortion reduces the SNRD for high input amplitudes. Moreover, the degradation is
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Figure 5-4: SNDR versus input sinewave amplitude, for different values of SR
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clearly seen to depend on the SR. As an illustration, Figure 5-5 represents the input referred

settling error for the 4 simulated values of the SR and a GBW of 5.

In order to give a deeper insight into the impact of the settling error on modulator per-

formance, we represent in Figure 5-6 the obtained SNRD over a grid of SR (from 4 to 7) and

GBW (from 1 to 6) values, for four different amplitudes (0.9, 0.7, 0.5 and 0.1). Here again, a

random Gaussian noise (with σ=4.10-6) was added to the distorted sine-wave so as to emu-

late the converter quantization noise. It can be seen that the impact of the settling error on

performance varies with the input amplitude. The acceptable SR/GBW region for an input

amplitude of 0.5 is wider than the acceptable SR/GBW region for a 0.9 amplitude. Hence,

the designer has to choose the SR and GBW values so as to optimize the performance/cost

for a given amplitude. Indeed, Σ∆ modulators are often designed such that the maximum

SNDR is achieved for amplitudes well below full-scale.

Figure 5-5: Input referred settling error versus DC input level (normalized to Full-Scale)
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Test for integrator dynamics
5 • 1 . 2  Description of the proposed test

5 • 1 . 2 . 1  Overall settling error

This test aims to determine the settling error of the first integrator of a Σ∆ modulator, for

an integrator input level equal to 2. An input level equal to 2 is obtained when the input sam-

ple is equal to 1 and the feedback signal (i.e. the modulator output) is equal to -1. It is impor-

tant to recall that this level 2 is normalized as explained in Chapter 3. Hence, in order to

interpret it in the analog world, is should be multiplied by Vref. Moreover, this implicitly

opens the door to another degree of freedom for the test: it can be realized for various refer-

ence voltage. In that case, the test allows one to determine the settling error associated with

level 2, but that level 2 corresponds to different voltages in the real world implementation.

Another degree of freedom for this test is the master clock frequency. By varying the fre-

quency, it is possible to check the evolution of the settling error.
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Figure 5-6: SNRD variation as a function of Slew-Rate and Gain-BandWidth product
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We can describe the test as follows:

◆ Digital input sequence: any digital periodic sequence. Its mean value can be cho-

sen as 0, so as to avoid the influence of integrator leakage.

◆ Modifications of the modulator operating conditions: the normal input is dis-

abled and the digital input is enabled. The clocking of the modulator is modified

such that when the input sample is 1 (or conversely -1), the sampling and integrating

phases last k times as long as when the input sample is -1 (or conversely 1). This is

illustrated in Figure 5-7 for k=2.

The implementation of such a feature will be detailed in the next chapter.

◆ Signature elaboration: it is based on the probability of occurrence of the levels 2

and -2 at the integrator input. Hence, the signature requires the acquisition of the

number of occurrences of level 2 and level -2, for a test over N samples. An input

level equal to 2 is obtained when the input sample is equal to 1 and the feedback sig-

nal (i.e. the modulator output) is equal to -1. And an input level equal to -2 is

obtained when the input sample is equal to -1 and the feedback signal (i.e. the mod-

ulator output) is equal to 1. Let the number of occurrence of level 2 be

, (5-9)

and the number of occurrence of level -2 be

. (5-10)

time
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Figure 5-7: Modification of the modulator clocking
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The signature can be written as

(5-11)

where er2 is the settling error associated with level 2.

An input-referred offset could modify the signature output. To get rid of this, it is possi-

ble to run a second acquisition quoted with a star symbol (*) in order to differentiate it from

the first acquisition. For that second acquisition, another sequence can be used (or not), but

the required difference is on the clocking modification: for that second acquisition, the sam-

pling and integrating phases instead last twice as long for a -1 input level as for a 1 input

level. In that case, the signature can be written as

. (5-12)

In the case that the two acquisitions are made over the same number of points, an obvi-

ous simplification comes from N=N*, as N and N* disappear from the equation.

. (5-13)

5 • 1 . 2 . 2  Non-linear settling error

With this test, we aim at determining the non-linear part of the settling error, which has

been shown to be a source of non-linearity. For that we propose a test to evaluate the quan-

tity

, (5-14)

which is the difference between the settling error associated with a level 2 at the first integra-

tor input and two times the settling error associated with a level 1.

According to what was said in Sub-section 1.1, we can describe the test as follows:
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◆ Input sequence: The test sequence has to use only 1 (conversely -1) and 0 levels.

For instance, it could be [1 1 0 1 0 0 1] or [0 -1 -1 0 -1]. Hence, it requires a modifi-

cation of the DAC during the test so as to manage three levels (1, 0 and -1).

◆ Modifications of the modulator operating conditions: the normal input is dis-

abled and the digital input is enabled.

◆ Signature elaboration: it is based on the probability of occurrence of the levels 2

(conversely -2) at the integrator input. Hence, the signature requires the acquisition

of the number of occurrences of level 2 and level -2, for a test over N samples. An

input level equal to 2 is obtained when the input sample is equal to 1 and the feed-

back signal (i.e. the modulator output) is equal to -1. And an input level equal to -2

is obtained when the input sample is equal to -1 and the feedback signal (i.e. the

modulator output) is equal to 1. The non-linear part of the settling error can be mea-

sured as

. (5-15)

An input-referred offset could modify the proposed signature. However, its contribution

can be removed by running a second acquisition (labelled with a *) using the opposite input

sequence. For instance, if a [1 0] sequence is used for the first acquisition, a [-1 0] has to be

used for the second acquisition. In that case, we have

. (5-16)

5 • 1 . 3  Theoretical justification

5 • 1 . 3 . 1  Overall settling error

The theoretical justification of the proposed test relies on the fact that the settling error is

a function of the integrator input. Hence, it is possible to consider the average of the settling

errors as a DC perturbation on the modulator input. We thus have to consider the integrator

erNL
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i 1=

N

∑
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-------------------------------=
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N
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N

∑–

N 2 N∗ 2–+
------------------------------------------------------------------------------------=
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Test for integrator dynamics
input node. Since a digital sequence is used as atest stimulus and the feedback signal is the

modulator output bit-stream, the integrator input sees only three levels, associated with three

settling errors.

(5-17)

Level 2 occurs when the test sequence input sample (xi) is a 1 and the feedback sample

(i.e. the modulator output yi) is a -1. Level 0 occurs when the input sample and output sam-

ple are equal. Level -2 occurs when the test sequence input sample (xi) is a -1 and the feed-

back sample (yi) is a 1.

The error associated with level 0 is 0 because the integrator output does not change, and

the error due to -2 is assumed to be the opposite of the error associated with 2 due to the

symmetry of the fully differential implementations.

The mean value of the integrator input is, by definition,

, (5-18)

where pdf(i) is the probability density function of the integrator input and i the integrator

input.

The three levels at the integrator input (2, 0 and -2) can be associated with probabilities

of occurrence (P2, P0 and P-2 respectively). The probability density function pdf(i) reduces

to a distribution of the form

, (5-19)

where δ is the Dirac distribution.

So the average of the integrator input simplifies to

. (5-20)

If an input-referred offset and settling error are present, the actual input levels are

slightly modified and the integrator input average becomes

, (5-21)

where off is an input-referred offset.

2
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er2
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The feedback loop of a Σ∆ modulator tends to force the integrator input towards zero.

Hence, using Eq (5-17) and Eq (5-21), we can write

. (5-22)

Assuming a small offset, this can be automatically fulfilled for any input sequence by

taking P(2)=P(-2). In other words, the settling errors do not modify the DC behaviour of the

modulator under test. This is due to the fact that the errors for 2 and -2 are opposite. Hence,

if the probability of occurrence of levels 2 and -2 are equal, the average errors cancel each

other. In order to retrieve sensitivity from these errors, the error symmetry (i.e.

er(2)=-er(-2)) has to be broken.

To do so, we propose to modify the clocking control such that the sampling duration is

set by the input level. If the input sample is 1, the sample is processed in k master clock peri-

ods instead of 1 clock period. Therefore, the settling error associated with level 2 is greatly

reduced and can be approximated to 0 as the integrator has much more time to settle prop-

erly. Thus, Eq (5-21) becomes

. (5-23)

By definition, the first term in Eq (5-23) corresponds to the input sequence mean value

minus the output bitstream mean value:

. (5-24)

Conversely, we can choose to use k periods for level -2 instead of for level 2. This case

will be denoted by “*”. For the same input sequence we obtain,

, (5-25)

with

. (5-26)

By combining Eq (5-23) to Eq (5-26) and taking into account that er*2=-er-2, the offset

contribution can be removed. Hence, the settling error can be written as

. (5-27)

For a sum over N or N* samples, let Nx or Nx* be the number of occurrence of x, it fol-

lows that

I 2 er2+( ) P2 P 2––( ) off+ 0= =

I 2 P2 P 2––( ) P 2– er 2– off+ + 0= =
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Test for integrator dynamics
. (5-28)

The error on the measurement performed through Eq (5-27) is determined mainly by the

numerical error in the numerator and the value of the denominator. Let us consider that the

counts Nx and Nx* are realized with precision. The real settling error can thus be written

as

. (5-29)

Hence, we can see that a key parameter concerning the measurement precision is

(N-2+N2*). Unlike for the evaluation of integrator leakage, it is difficult to relate the preci-

sion to the number of acquired points N. Indeed, it seems obvious that for a given sequence,

the term (N-2+N2*) is proportional to N, but its exact value depends on the input sequence

and on the modulator output. Hence, it is likely to vary with the input-referred offset and the

settling error. Nevertheless, it would be interesting to evaluate a-priori (N-2+N2*) for two

reasons. The first one, as explained above, is that it would allow one to estimate the number

of points (N) required to reach a given precision. And the second reason, which puts stronger

requirements on the precision of the evaluation of (N-2+N2*), is that it allows one to com-

pute an alternative signature that does not require any division. Let Ne be the a-priori estima-

tor of (N-2+N2*). Then we would have

. (5-30)

Notice that this alternative signature is less precise than the signature in Eq (5-27),

because it is based on the approximation of the term (N-2+N2*) by Ne. This will contribute

as a relative error on the evaluated settling error

. (5-31)

In the case of first-order single-bit modulators, it can be calculated in the nominal case:

without offset and with no settling error. Indeed, we have verified in Chapter 4 that the mod-

ulator output follows the input when the latter is a digital sequence. We have, using Eq (5-2),
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. (5-32)

Hence, using Eq (5-9), we have

. (5-33)

So the expected values of N2 and N-2* are proportional to the number of transitions from

-1 to 1 in the input sequence. For a periodic sequence, the number of transitions from -1 to 1

is equal to the number of transitions from 1 to -1. The number of transitions for a sequence

of period L can be written as,

, (5-34)

and the term of interest can thus be written as,

. (5-35)

Ideally, for a first order modulator we should thus choose a [1 -1] test sequence.

Nevertheless, it is known that this sequence is the natural limit cycle associated with

zero and that integrator leakage makes it stable over a range of DC input levels around zero.

As the settling error can be considered as an input-referred perturbation, it is possible that

integrator leakage will make it undetectable. Nevertheless, if integrator leakage is previously

tested, there should be no restriction on such a simple sequence.

For a second order modulator, however, we have found no direct relation between the

input sequence and the term (N-2+N2*). Simulations should thus be performed in order to

find the sequences that maximize (N-2+N2*).

If it is key to reach a given precision, the test can be designed such that samples are

acquired until (N-2+N2*) reaches the required value. The drawback of such an approach is

that the uncertainty is transferred to the test time (i.e. the number of acquired samples N).

Another solution may consist of using a random zero-mean input sequence. With such a

sequence, the modulator output at instant n should not be correlated to the input sample at
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Test for integrator dynamics
instant n and the probability of occurrence of level 2 (conversely -2) should be close to 1/4 as

there are 4 combinations for the pair (input sample, output sample). Thus we would have

. (5-36)

Notice that if the input sequence is truly random, and the offset and settling errors

remain small, the convergence of the term (N-2+N2*) to Ne also improves with the number

of acquired samples. More concretely, we should consider the integrator input I as a random

variable of a stochastic process. The probability density function (distribution) of Ik (the

value of I at instant k) can be written

(5-37)

Let Lk be the random variable defined as the occurrence of level 2 at the integrator input.

Variable Lk is equal to 1 when Ik is equal to 2 and to 0 otherwise. We have the probability

density function of Lk,

. (5-38)

The estimator Ne of the term (N-2+N2*) can be written as

. (5-39)

As the random variables are mutually independent, we have,

. (5-40)

In order to take into account the different uncertainties, the simple signature proposed in

Eq (5-30) can be written as

(5-41)

The error on the measurement of the settling error for a random input sequence and

using Eq (5-41) (i.e., the simplified evaluation) is thus,

(5-42)
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5 • 1 . 3 . 2  Non-linear settling error

The justification of the test for the non-linear part of the settling error is based on the

same considerations as for the overall settling error. For an input sequence with only 1s and

0s, the integrator input sees four levels and their associated settling errors:

(5-43)

Hence, in the presence of an input referred offset (off), the integrator input mean value

can be written:

. (5-44)

Moreover, by definition, we have

. (5-45)

Taking into account the simplifications on the settling errors in Eq (5-43), Eq (5-44)

reduces to

. (5-46)

Due to the Σ∆ modulator feedback loop, the integrator input mean value is forced to

zero. Moreover, we can assume that, if the input referred offset and the settling error are

small, the output bitstream mean value is very close to the input sequence mean value.

Hence, in a first order approximation we can write

. (5-47)

Then, Eq (5-46)further reduces to

. (5-48)

If a second acquisition (quoted with a *) is performed with the opposite input sequence,

we also have

. (5-49)
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Test for integrator dynamics
Considering the simplifications on the settling errors in Eq (5-43), and combining these

results with Eq (5-48), we obtain,

. (5-50)

For two acquisitions over N samples, this can be written more explicitly as Eq (5-16).

Similarly to what has been said for the evaluation of the overall settling error, the main issue

is the determination of the measurement precision, which depends strongly on the denomi-

nator term (N*-2+N2). Here again, if we were able to get a sufficiently precise estimator Ne

of the denominator, we could build a simpler signature for the test

. (5-51)

Using random input sequences with only 0s and 1s (conversely -1s), the expected mean

value and standard dispersion of Ne can be calculated similarly to what was done in the pre-

vious sub-section. Notice that if the probability of having a 0 or a 1 at the input is the same

(1/2), the mean value of the random input sequence is 1/2. Hence, if the input referred errors

are small, the mean value of the modulator output bitstream is also 1/2. Hence we have the

following

. (5-52)

Defining the variables Lk as in the previous sub-section, we obtain

. (5-53)
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In order to take into account the different uncertainties, the simple signature proposed in

Eq (5-51) can be made more concrete as follows,

. (5-54)

Hence, the uncertainty for the non-linear part of the settling error is,

(5-55)

It may also be possible to find an estimator Ne of the term (N*-2+N2) in the case of

deterministic sequences, but it is not an obvious problem.

5 • 2 VALIDATION OF SETTLING ERROR TESTS THROUGH SIMULATION

5 • 2 . 1  Overall settling error

In order to validate the test proposed to determine the first amplifier settling error, a

more complex model than the one presented in Figure 5-2 has to be used. Hence, we devel-

oped a simple amplifier model using standard Simulink blocks that implement Eq (5-2),

(5-3) and (5-4).

◆ Variation with the Slew-Rate and the GBW

In this first set of simulations, we intend to show that the settling error measured through

Eq (5-13) corresponds to the settling error expected for an input level of 2 and predicted by

Eq (5-2), (5-3) and (5-4).

For that, we simulated a 1st and a 2nd order modulator over a grid of Slew-Rate and

GBW. For each point of the grid, the expected settling error was calculated and two acquisi-

tions over N=10000 points were run as explained in test description to obtain the measured

settling error. The swept range for the GBW was the same for the 1st and 2nd order modula-

tor: from 0.8 to 4. In turn, the range for the SR was 3.6 to 8 for the first order and 1.8 to 4 for

the second order modulator. This change is due to the fact that the first integrator gain in the
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Test for integrator dynamics
2nd order modulator is set to 0.5, while it is set to 1 in the first order modulator. In both

cases, the input sequence [1 1 -1 1 -1 -1] was used.

The results can be seen in Figure 5-8, which represents the measured settling errors and

the difference with the expected (calculated) one, for both a 1st order modulator and a 2nd

order modulator. It can be seen that the measured settling error is very similar for the first

and second order modulators, which could be expected as the settling error is a characteristic

of the amplifier. The difference between the measured and the calculated settling errors is

represented with the same scale on the Z axis as the measured settling error itself. This

allows one to verify easily that the matching is good between the calculated and measured
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settling errors. Moreover, we have divided the SR/GBW grid in four quarters (for the sake of

readability) and the maximum difference over each quarter is quoted on the figure. It is

expressed as a percentage of the level (i.e. 2).

It can be seen that the precision of

the proposed evaluation decreases

slightly for the regions that present a

high settling error. This is due to the

fact that the settling error associated

with the level processed in k samples

is not negligible for those regions. For

the simulations of Figure 5-8, k was

set to 2. Figure 5-9 shows the differ-

ence between the calculated and mea-

sured settling errors in the case of a 1st order Σ∆ modulator with k=4. The differences

between the measured settling error and the calculated settling error actually improve with k.

◆ Variation with the input stimulus

In the following, we intend to demonstrate the usefulness of the different signatures that

have been proposed. To do so, we decided to drop the 3D representation of the settling error

over a grid of SR and GBW value. For the sake of clarity, we prefer to represent the evolu-

tion of the settling error with the SR for 3 different values of the GBW, namely 1, 2 and 4.

Figure 5-10 shows the simulation results for a [1 1 -1 1 -1 -1] input sequence and a first

order modulator. The solid curve corresponds to the calculated settling error, the circle

markers to the error calculated with the originally proposed signature (Eq (5-13)) and the

cross markers to the error calculated with the denominator approximation (using Eq (5-30)).

For that input sequence, the estimator of (N-2+N2*) is, according to Eq (5-35), Ne=2N/3. It

can be seen that the exact formula matches perfectly with the expected values (as was seen

in the previous point). The matching of the alternative signature, based on the denominator

approximation, is also very good for small settling errors. Larger settling errors are slightly

overestimated, but that should not be critical from a test point of view.
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Test for integrator dynamics
Figure 5-11 shows the same for a [1 -1] input sequence. For that sequence, the expected

estimator of (N-2+N2*) is Ne=N. Here the matching is very good for the two signatures.

Finally, Figure 5-12 presents the results for a random input sequence. The expected esti-

mator of (N-2+N2*) is Ne=N/2. In that case, the matching is similar to what was obtained in

the case of the [1 1 -1 1 -1 -1] input sequence.

The following three figures represent the same results for a 2nd order Σ∆ modulator. It

can be seen clearly that the estimator Ne for deterministic sequences is not valid as the differ-

ence between the evaluated and the calculated error is high for both the [1 1 -1 1 -1 -1] and

the [1 -1] input sequences. This could be expected as the estimator Ne was calculated assum-

ing first order behaviour (i.e. that the modulator output bitstream follows the input

sequence). The results appear to be better for the alternative signature with a [1 1 -1 1 -1 -1]

sequence than with a [1 -1] sequence, but we could not find any reason for that. Hence, if the

test sequence is a periodic sequence, the alternative signature should not be used for a 2nd

order modulator. On the other hand, the results drawn for a random sequence still hold true,

as the matching is seen to be good for the two proposed signatures in Figure 5-12

.
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Figure 5-10: First order modulator settling error evaluation for a [1 1 -1 1 -1 -1] input
sequence.
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Figure 5-11: First order modulator settling error evaluation for a [1 -1] input sequence.
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Figure 5-12: First order modulator settling error evaluation for a random input se-
quence.

GBW=1

GBW=2

GBW=4

+

o

calculated error

evaluated error (exact formula)

evaluated error
(denominator approximation)
204



Test for integrator dynamics
Figure 5-13: Second order modulator settling error evaluation for a [1 -1] input se-
quence.

GBW=1

GBW=2

GBW=4

+

o

calculated error

evaluated error (exact formula)

evaluated error
(denominator approximation)

1.5 2 2.5 3 3.5 4
–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0

Slew–Rate SR

S
e
tt
lin

g
 E

rr
o
r

2 2.5 3 3.5 4
–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0

Slew–Rate SR

S
e
tt
lin

g
 E

rr
o
r

Figure 5-14: Second order modulator settling error evaluation for a [1 1 -1 1 -1 -1] input
sequence.
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◆ Variation with the number of points

The objective of this last set of simulations is to check the evolution of the precision of

the settling error evaluation with the number of points, for the proposed alternatives. For a

1st order modulator with SR=4 and GBW=3, three simulations were carried out over

N=240000 points, for a [1 -1], a [1 1 -1], and a random input sequence. Figure 5-16 repre-

sents the evolution of the measured settling errors with the number of points. For each

sequence, two settling errors were computed: the complete one (using Eq (5-27)) and the

simplified one (using Eq (5-30)). On the figure is also represented the exact settling error

and the confidence intervals, as calculated using Eq (5-29) and (5-42), for the complete eval-

uation and the simplified evaluation, in the case of the random input sequence. It can be seen

that the results for the complete evaluation fit perfectly within the expected confidence inter-

val for all three input sequences. In the case of the [1 1 -1] input sequence, however, the sim-

plified evaluation signature seems to converge toward a value that is below the lower limit of

the confidence interval. It is likely that the term Ne has been overestimated. On the other

hand, the results for the simplified evaluation for a [1 -1] input sequence exactly fit the ones
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Figure 5-15: Second order modulator settling error evaluation for a random input se-
quence.
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Test for integrator dynamics
for the complete evaluation, which means that the denominator term (N-2+N2*) in Eq (5-35)

perfectly matches the expected Ne=N. Finally, the simplified evaluation for a random input

sequence performs as expected. Indeed the results lie within the confidence interval calcu-

lated for a random sequence.

Figure 5-17 presents the results for a second order modulator. In that case, the simplified

evaluation is only carried out for the random sequence, as we could not derive the estimator

Ne of the term (N-2+N2*) for deterministic sequences. Moreover, the calculation of the con-

fidence interval is also based on that estimator. That is why it is represented as a dotted curve

for the [1 -1] and the [1 1 -1] sequences. It can be seen that the complete evaluation of the

settling error gives good results. The calculated confidence interval is respected for the ran-

dom sequence. However, it can be seen that the confidence interval for the [1 -1] sequence

expected settling error

confidence interval
for the complete evaluation

confidence interval
for the simplified evaluation

Figure 5-16: First order modulator settling error evaluation versus the number of ac-
quired points
a) for a [1 -1] input sequence
b) for a [1 1 -1] input sequence
c) for a random input sequence
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does not hold true. This means that the term (N-2+N2*) can vary by a non-negligible amount

with respect to N. In any case, the precision is good as the Y axis presents a very reduced

range around the expected error.

5 • 2 . 2  Non-linear part of the settling error

◆ Variation with the Slew-Rate and GBW

The simulation performed here is similar to the one performed for the elaboration of

Figure 5-8. A first-order and a second-order modulator are simulated over a grid of SR and

GBW values, and the proposed test of the non-linear part of the settling error is applied.

expected settling error

confidence interval
for the complete evaluation

confidence interval
for the simplified evaluation

Figure 5-17: Second order modulator settling error evaluation versus the number of
acquired points
a) for a [1 -1] input sequence
b) for a [1 1 -1] input sequence
c) for a random input sequence
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Test for integrator dynamics
Each acquisition was performed over N=10000 samples for random input sequences having

only 1s and 0s or only -1s and 0s.

Figure 5-18 represents the measured non-linear settling error, using the complete mea-

surement of Eq (5-16), and its difference with the calculated one (er2-2er1, using Eq (5-2),

(5-3) and (5-4)), for both the first-order and the second-order modulators. Moreover, the

SR/GBW grid has been divided into four quarters and the maximum difference over each

quarter is quoted on the figure. It can be seen that a low error results from the proposed com-

plete measurement. The maximum error is found for the highest values of the settling error.

This is due to the fact that the approximation of Eq (5-47) stands for small values of the set-

tling error. The results are very similar for the first-order and second-order modulators, as

expected.

Figure 5-18: Evaluated non-linear settling error and its difference with the calculated
non-linear settling error
a) for a first order modulator
b) for a second order modulator
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◆ Variation with the number of points

Similarly to what was done for the overall settling error, Figure 5-19 presents the evolu-

tion of the measured non-linear settling error with the number of acquired points, for a

first-order and a second-order modulator. In both cases, the test was carried out for a [1 0]

sequence, a [1 1 0] sequence and a random (between levels 1 and 0) sequence. The figures

display the calculated settling error as a solid red curve and the evaluated settling error as a

blue solid curve. In the case of the random sequence, the markers stand for the simplified

evaluation that corresponds to Eq (5-55). Moreover, the confidence intervals have also been

represented for the random sequence. In the case of the deterministic sequences (both [1 0]

and [1 1 0]) we also represented by a dotted curve the confidence interval calculated for a

random sequence in order to simplify the comparisons.

It can be seen that, for the first-order modulator, the evaluation with deterministic

sequences provides good results, that are comparable to (and even better than) those

obtained for a random sequence. For this latter, it can be noted that the results fit within the

calculated confidence intervals. On the other hand, for a second order modulator, the deter-

ministic sequences give poorer results than the random sequence. Anyway, the precision is

seen to be good, as the excursion on the Y axis is still small.
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expected settling error

confidence interval
for the complete evaluation

confidence interval
for the simplified evaluation

Figure 5-19: First and second order modulator settling error evaluation versus the
number of acquired points
a) for a random input sequence
b) for a [1 -1] input sequence
c) for a [1 1 -1] input sequence

for the random sequence
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5 • 3 TESTS SUMMARY

In this chapter and the previous one, a number of tests have been proposed that target

important behavioural parameters. Moreover, in some cases several test alternatives have

been proposed for a given parameter as they offer different benefits and drawback.

The purpose of this section is to present in a table the most important information in

order to facilitate the comprehension of the test set as a whole. Up to now, the tests have

been considered individually as each is designed to target a different effect: integrator leak-

age, settling, etc. However, the approach described in Chapter 3 aims to determine most of

the behavioural parameters to make sure that a modulator is defect-free. The different tests

have thus to be considered as a test set.

As a matter of fact, if all the proposed tests are applied to a given modulator, the results

will likely be correlated; on the one hand because several test target the same parameters as

said before, and on the other hand because a catastrophic failure that cause the modulator to

saturate will obviously fail all the tests. However, there is one particular case that has to be

treated because the correlation it introduces between settling and leakage is intrinsic.

5 • 3 . 1  Test correction

Before proceeding with the test summary, a correction has to be introduced to one of the

tests. In Section 5 • 1 . 2 . 2 it has been proposed to use a sequence with only 1s and 0s (or

conversely -1s and 0s) instead of 1s and -1s. The purpose of this test is to test the non-linear

part of the settling error.

However, a sequence composed only by 1s and 0s cannot have a zero mean value, mak-

ing the test signature sensitive to integrator leakage. Actually, it was proposed in Chapter 4

to use a sequence with L-1 1s and one 0 as an alternative to the leakage test for a 1st order

modulator in order to avoid the introduction of an extra delay in the feedback loop. It

appears clearly that there is a conflict between the tests that may lead to undesirable fault

masking.
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Test for integrator dynamics
Fortunately, it is possible to circumvent this issue. Indeed, if the test is first performed at

half the nominal clock frequency, it can be considered that the settling error is negligible.

Hence, the test signature only contains the contribution of integrator leakage (at least to a

first order approximation). Then if the test is performed at the nominal clock frequency, the

deviation of the signature from the results obtained at the half-frequency account for the set-

tling error contribution. Let us consider the test for a 2nd order modulator. Four signatures

are obtained for the four acquisitions,

(5-56)

As was seen previously, Q is the mean value of the test sequence, ∆p is the pole error of

the integrator under test, off is its input-referred offset, er2 is the settling error associated

with a 2 integrator input and er1 is the settling error associated with a 1 integrator input. N2

is the number of occurrence of a 2 integrator input (i.e the input sample is a 1 and the feed-

back sample is a -1) and N*
-2 is, conversely, the number of occurrence of a -2 integrator

input (i.e. the input sample is a -1 and the feedback sample is a 1). The combinations of

interest are thus

(5-57)

The only change with respect to the results obtained previously is that the absolute

uncertainty on the settling error measurement has increased.

Hence, for the test with a deterministic sequence with only 1s (alternatively -1s) and 0s

(that requires the evaluation of the number of occurrences of level 2 (-2) at the integrator

input), the non-linear settling error signature (previously Eq (5-16)) becomes
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, (5-58)

where N2 is the number of occurrences of a level 2 at the integrator input during the acquisi-

tion with a positive sequence at full-speed (corresponding to s1fs) and N*
2 is the number of

occurrences of a level -2 at the integrator input during the acquisition with a negative

sequence at full-speed (corresponding to s2fs).

Similarly, for the test with pseudorandom sequences with only 1s (alternatively -1s) and

0s, the simplified signature (previously Eq (5-54)) becomes

. (5-59)

5 • 3 . 2  Test list

In the following table, we summarize the characteristics of all the tests proposed in the

thesis. This section is replicated in the floating appendix A, in order to facilitate referencing.

To avoid redundancy in the test comments, we recall to the reader that in the majority of

cases, the test sequence is a digital sequence composed by 1s (corresponding to logic 1s) and

-1s (corresponding to logic 0s). Some tests use sequences with analog 0s (and must thus use

two bits to define the test sequence) but these cases will be specified in the table.

Similarly, most tests use two acquisitions to get rid of the impact of possible

input-referred offsets. The test signature for each acquisition is the difference between the

test sequence (x) and the modulator output bit-stream (y) accumulated over N samples. The

final signature is taken as the difference between the result for the two acquisitions,

(5-60)

In some cases, a slightly more complex signature has to be generated but these particular

cases are also specified in the table.
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Table I: Test summary

nº type signature
equation

ref.

1 leakage test for 2nd

order

(4-20)
page 123

Stimulus: Any sequence of non-zero mean value Q (-Q).
Comments: The influence of DC gain non-linearity may be noticed for the highest mean values.

2 leakage test for 2nd

order

(4-20)
page 123

Stimulus: A sequence with analog 0s of mean value Q (-Q).
Comments: This test has to be run at half the nominal clock frequency to avoid settling errors.

3 leakage test for 1st

order single-bit

(4-27)
page 126

Stimulus: A digital sequence of length L with L-1 1s and only one -1, and its opposite. L must be
greater than 5.
Comments: An extra delay has to be introduced in the feedback loop. The offset may cause a strong
non-linearity for either the positive or negative sequence, leading to a relative error on the leakage
evaluation.

4 leakage test for 1st

order single-bit

(4-87)
page 142

Stimulus: Two digital sequences of length L1 and L2, with L-1 1s and only one -1, and their oppo-
sites. L1 and L2 must be greater than 5.
Signature: The input/output difference accumulated over N samples. The sign of the offset has to be
determined. The results obtained for the two sequences of opposite signs to the offset are combined
Comments: An extra delay has to be introduced in the feedback loop. The obtained signature has
lower sensitivity than the previous test

5 leakage test for 1st

order single-bit

(4-28)
page 126
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Stimulus: A digital sequence of length L with L-1 1s and only one 0, and its opposite. L must be
greater than 2. The test must be carried out at half the sampling frequency to avoid settling errors.
Comments: Analog 0s are used in the sequence. It is the same test as nº 3 but no extra delay has to
be introduced in the feedback loop. The offset may cause a strong non-linearity for either the positive
or negative sequence, leading to a relative error on the leakage evaluation.

6 leakage test for 1st

order single-bit

(4-93)
page 145

Stimulus: Two digital sequences of length L1 and L2, with L-1 1s and only one 0, and their opposites.
L1 and L2 must be greater than 2. The test must be carried out at half the sampling frequency to avoid
settling errors.
Signature: The input/output difference accumulated over N samples. The sign of the offset has to be
determined. The results obtained for the two sequences of opposite signs to the offset are combined
Comments: The obtained signature has a lower sensitivity than the previous test

7 leakage test for 1st

order multi-bit

(4-24)
page 124

Stimulus: A sequence of mean value Q greater than half the quantizer step and its opposite.
Comments: It is recommended to use a mean value significantly greater than half the quantizer step.

8 DC gain non-linearity

test for 2nd order

(4-114)
page 173

Stimulus: Two sequences of non-zero mean value Q1 and Q2 and their opposites.
Signature: It is the ratio of the leakage test signatures
Comments: The same test as nº 1 is performed with two sequences. For a small mean value the
result is proportional to the nominal DC gain while for a high mean value it is sensitive to DC gain
non-linearity. The value of the signature is only sensitive to the non-linearity of the DC gain but not its
uncertainty.

Table I: Test summary

nº type signature
equation

ref.
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9 DC gain non-linearity

test for 2nd order

(4-115)
page 173

Stimulus: Two sequences of non-zero mean value Q1 and Q2 and their opposites.
Signature: It is the scaled difference between the leakage test signatures.
Comments: This signature does not requires a division but is function of the nominal DC gain and
not only of its non-linearity.

10 overall settling error
test for any modula-
tor

(5-13)
page 191

Stimulus: A sequence of zero mean value. The period of the clock reference is doubled for a 1 input

sample during the 1st acquisition and for a 0 input sample during the 2nd acquisition (*).
Signature: Apart from the accumulated input/output difference, the number of occurrences of a level
-2 (alternatively 2) at the integrator input has also to be acquired.

11 overall settling error
test for any modula-
tor

(5-41)
page 197

Stimulus: A pseudorandom sequence of zero mean value. The period of the clock reference is dou-

bled for a 1 input sample during the 1st acquisition and for a 0 input sample during the 2nd acquisition
(*).
Comments: The use of a pseudorandom sequence allows one to estimate a-priori the number of
occurrences of a level -2 (alternatively 2) at the integrator input as being equal to N/4. The signature
is thus much simpler but this approximation leads to an additional (small) relative error.

12 non-linear settling
error test for any
modulator

(5-58)
page 214

Stimulus: A sequence with only 1s and analog 0s and its opposite. The clocking does not have to be
modified as function of the input. Two more acquisitions have to be performed at half the nominal fre-
quency.
Signature: Apart from the accumulated input/output difference, the number of occurrences of a level
2 (alternatively -2) at the integrator input has also to be acquired.
Comments: As the input sequence is not of zero mean value, the influence of the leakage has to be
suppressed. For this reason the acquisitions are also performed at half the nominal frequency.

Table I: Test summary

nº type signature
equation

ref.
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5 • 4 TEST SET SIMULATION

At this point, the proposed tests have been validated individually. For that purpose, all

the behavioural parameters other than those directly involved in the tests were set to their

ideal values. Nevertheless, it is legitimate to wonder if defects or drifts could alter more than

one parameter significantly at a time, and if the proposed tests would be affected.

Ideally, a multi-dimensional analysis should be performed for each test, varying all the

behavioural parameters over a large range but with a step that is sufficiently fine to distin-

guish meaningful variations. This would require a large number of simulations, which

makes this approach prohibitive.

One of the benefits of the proposed approach is that it introduces much flexibility in the

test design. This allows us to tailor the test as a function of the application need. On the other

hand, such flexibility makes validation of the approach difficult. In this section, we perform

a Monte-Carlo simulation at a behavioural level. This allows us to simulate a fairly large

number of tests and to try several test set configurations. Let us make a brief summary of the

tasks that are carried out in order to clarify what we intend with the simulation:

13 non-linear settling
error test for any
modulator

(5-59)
page 214

Stimulus: A pseudorandom sequence with only 1s and analog 0s, and its opposite. The clocking
does not have to be modified as a function of the input. Two more acquisitions have to be performed
at half the nominal frequency.
Comments: The use of a pseudorandom sequence allows one to estimate as N/8 the number of
occurrences of a level -2 (alternatively 2) at the integrator input. The signature is thus much simpler
but this approximation leads to an additional (small) relative error.

Table I: Test summary

nº type signature
equation

ref.

s s1 fs
s2 fs

–( ) s1 f s 2⁄
s2 f s 2⁄

–( )–

N
4
---- erNL 8

3
4
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=
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◆ Design of the demonstrator: a modulator architecture is selected and its behavioural

parameters are selected in order to reach a given resolution. Guard bands are taken

and a nominal variation range is defined for each parameter.

◆ Individual test design: a number of tests are proposed that cover the different pro-

posals of the thesis. For each of these tests, the number of acquired points and the

test pass/fail limit have to be defined.

◆ Test set selection: provided that some tests in the list are redundant (see Table I or

Appendix A) and taking into account their specificities, several test sets can be

defined.

◆ Fault simulation: A number of faults are simulated in a Monte-Carlo fashion. The

results for the different test configurations can then be compared.

5 • 4 . 1  Modulator “design”

A 2-1 cascaded modulator like the one shown in Figure 5-20 has been chosen to perform

the Monte-Carlo simulation. The first stage is a 2nd order single-bit modulator like the one

proposed in [24] and the second stage is a 1st order 3-bit modulator.

For this architecture, the reconstruction filter is of the form

. (5-61)

Figure 5-20: Diagram of a 2-1 cascade modulator
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Indeed, it is easily shown that such a reconstruction provides a noise shaping of third

order as

(5-62)

Notice that the final quantization error E2 is the quantization error of the second stage

and its associated power is thus

(5-63)

We decided to set the oversampling ratio arbitrarily to 64. Hence, analytical calculation

based on the above considerations tell us that the ideal resolution of the modulator should be

around 16.5 bits for an ideal implementation.

As our goal is not to design a modulator for a real implementation but to give support to

the validation of the proposed test set, we decided to choose adequate behavioural parame-

ters by design-space exploration rather than detailed analytical calculations.

A number of 1000 simulations were performed varying the different parameters over a

broad range and the obtained ENOB was calculated in each case for a half-scale input

sine-wave. Then, the reduced set of the modulators that have an ENOB higher than a given

target - say 15 bits - is isolated. The values of the behavioural parameters for this reduced set

are retrieved; this provides the valid design space. Furthermore, the cloud of points of the

ENOB versus any behavioural parameter can be represented, which gives an indication of

the trend of the relationship between the parameter and ENOB. This information allows us

to select a design point in the valid design space with some guard-band.

For instance, in our case, Figure 5-21 represents the ENOB against the 2nd amplifier DC

gain. The upper limit of the cloud of points clearly indicates that lower DC gains limit the

ENOB of the modulator. However, above a certain limit the impact of the DC gain becomes

smaller than the quantization noise. Hence, the nominal DC gain for the 2nd amplifier has to

be chosen, with some guard-band, in the range where the ENOB is not sensitive to its value.

In Figure 5-21, it can be seen that a DC gain above 54 dB should be sufficient to reach an

ENOB of 15.5bit. A DC gain of 65dB may thus provide a safe guard-band. The same can be

done with the rest of parameters. Notice that considering the cloud of points on a single
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Test for integrator dynamics
dimension may be misleading. Indeed, the impact of some behavioural parameters cannot be

considered without another. For instance, the pair Slew-Rate/GBW defines the settling of an

amplifier and several couples may lead to a satisfactory result. In other words, it cannot be

said that a given value of Slew-Rate is adequate without knowing the value of the GBW.

This is illustrated in Figure 5-22 where the cloud of points of the ENOB is represented in

three dimensions, versus the Slew-Rate and GBW of the first amplifier. The red circle mark-

ers emphasize the modulators (i.e. points of the cloud) having an ENOB greater than 15. On

the X/Y view of the cloud of points, it can be seen that the red markers define a validity zone

for the couple (SR/GBW) that is not a square: improving the Slew-Rate allows to relax the

GBW and vice-versa. These types of trade-offs are very familiar to designers.

With the purpose of fault simulation in mind, we defined three variation ranges for each

behavioural parameter:

◆ Nominal range

During the design of a Σ∆ modulator, the characteristics of the analog macros (the

behavioural parameters) are chosen in a zone where the simulated performance is

Figure 5-21: Cloud of points of the design space exploration representing the ob-
tained ENOB versus the 2nd amplifier DC gain
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the desired one but also where the sensitivity to the variation of the parameters is

reasonably small. For instance, it has been seen in Figure 1-17 that there may be

singularities in the design space where performance reaches a very pronounced but

very localized peak. It is not convenient to choose such a point for the actual design

as any perturbation is likely to bring the modulator out of specifications. Actually,

some guard-bands have to be considered in the choice of the design point to account

for nominal process variations that will unavoidably translate into small variations

of the behavioural parameters. Obviously, a skilled designer always tries to maxi-

mize the guard bands within the constraints of an area and power budget.

This last consideration is of importance from a test viewpoint, as will be seen fur-

ther. Indeed, it means that a parameter variation larger than the the process corner

(thus a parametric defect) may still lead to a modulator within the guard-band of the

correct design-space. Such a modulator would perform correctly despite being

defective.

◆ Parametric range

In real-world applications, and in particular in harsh-environments, it is possible

that the circuit will be used outside its certified operating conditions. As a result, the

Figure 5-22: Cloud of points of the design space exploration representing the ob-
tained ENOB versus the 1st amplifier Slew-Rate and Gain-Bandwidth
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Test for integrator dynamics
behavioral parameters may be brought out of the nominal variation range. Corner

simulations are performed during design to account for the worst case of process

variations combined with temperature range and supply conditions. However, it is

likely that if the operating conditions (temperature, supply voltage or both) are set

slightly out of the expected range, circuit operation will still be maintained though

performance may be affected. Hence, we define a parametric variation range for the

behavioral parameters that extend the nominal range out of the design guard-bands.

Notice that we have taken the example of a global temperature or supply drift to jus-

tify the introduction of the parametric range of variation but this does not mean that

parametric variations are necessarily global. Indeed, a spot defect that would short

the gate voltage of a p-type cascode transistor to ground may produce only a small

parametric deviation in an amplifier.

◆ Drastic variation range

A drastic variation range is also defined for each behavioural parameter to emulate

the effects of possible “catastrophic” defects. The word catastrophic is in quotation

marks because it is usually associated with catastrophic faults that significantly

impact circuit performance or even functionality. Nevertheless, what we intend to

consider here are defects that severely impact the analog macros of the modulator.

However, as will be seen later, this does not mean that the induced fault need to be

necessarily considered as a functional catastrophic fault for the modulator.

The three selected variation ranges for each parameter are displayed in Table II. Notice

that dimensional parameters (like for instance the Slew-Rate) are normalized to the modula-

tor Full-Scale and/or sampling frequency.

Further simulations of nominal modulators show that the ENOB obtained for a

half-scale input sine-wave varies between 15.2 and 15.5 bits, which means that the selected

guard-bands effectively provide a slight resolution improvement over the 15 bit target.
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Table II: Behavioural parameters variation ranges

parameters
nominal
range

parametric
range

drastic
range

1st amplifier DC gain
A1 (dB)

[65;68] [40;60] [5;30]

1st integrator coefficient
b1

1/4 +/- 0.1% 1/4 +/- 0.1% 1/4 +/-[20;40]%

1st amplifier Gain-Bandwidth product
GBW1 (dB)

[6;6.2] [3;4.5] [0.5;2.5]

1st amplifier Slew-Rate
SR1 (dB)

[6.5;6.7] [3;4.5] [0.5;2.5]

1st amplifier input-referred noise
Vn1

[1;2].10-5 [10-5 ;10-4] [1;6].10-4

1st amplifier feedback capacitance
Cf1 (pF)

10 +/- 20% [1 ; 10] [0.1 ; 1]

1st amplifier clipping value
sat1

[3 ;3.2] [1;3] [0.5;1]

1st amplifier DC gain non-linearity
aNL1

[8;9.5] [2.5;8] [1;2]

1st integrator offset
o1

+/- 0.1% +/- 0.2% +/- [5;10]%

2nd amplifier DC gain
A2 (dB)

[65;68] [40;60] [5;30]

2nd integrator direct coefficient
b2

1/3 +/- 0.1% 1/3 +/- 0.1% 1/3 +/-[20;40]%

2nd integrator feedback coefficient
bb2

3/4 +/- 0.1% 3/4 +/- 0.1% 3/4 +/-[20;40]%

2nd amplifier Gain-Bandwidth prod-
uct
GBW2 (dB)

[5;5.2] [2.5;4.5] [0.5;2]

2nd amplifier Slew-Rate
SR2 (dB)

[6;6.2] [3;5] [0.5;2]

2nd amplifier input-referred noise
Vn2

[1;2].10-5 [10-5 ;10-4] [1;6].10-4
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2nd amplifier feedback capacitance
Cf2 (pF)

1 +/- 20% [0.1 ; 1] [0.01 ; 0.1]

2nd amplifier clipping value
sat2

[3 ;3.2] [1;3] [0.5;1]

2nd amplifier DC gain non-linearity
aNL2

[8;9.5] [2.5;8] [1;2]

2nd integrator offset
o2

+/- 0.1% +/- 0.2% +/- [5;10]%

3rd amplifier DC gain
A3 (dB)

[40;43] [10;30] [5;10]

3rd integrator coefficient
b3

1/4 +/- 0.1% 1/4 +/- 0.1% 1/4 +/-[20;40]%

3rd amplifier Gain-Bandwidth product
GBW3

[4;4.2] [2;3] [0.5;1]

3rd amplifier Slew-Rate
SR3 (dB)

[6.5;6.7] [3;4.5] [0.5;2.5]

3rd amplifier input-referred noise
Vn3

[1;2].10-5 [10-5 ;10-4] [1;6].10-4

3rd amplifier feedback capacitance
Cf3

0.1 +/- 20% [0.01 ; 0.1] [0.001 ; 0.01]

3rd amplifier clipping value
sat3

[2 ;2.3] [1.2;2.2] [0.5;1]

3rd amplifier DC gain non-linearity
aNL3

[4;4.5] [2.5;4] [1;2]

3rd integrator offset
o3

+/- 0.1% +/- 0.2% +/- [5;10]%

Table II: Behavioural parameters variation ranges

parameters
nominal
range

parametric
range

drastic
range
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5 • 4 . 2  Individual test design

A large number of tests will be applied to this modulator in order to cover most of our

proposals:

◆ Test 1: 1st amplifier leakage test with a Q=1/5 sequence [1 -1 1 -1 1] (nº1 in Table I)

◆ Test 2: 1st amplifier leakage test with a Q=3/4 sequence [1 1 1 1 1 1 1 -1] (nº1 in

Table I)

◆ Test 3: 1st amplifier leakage test with a Q=2/3 sequence [1 1 0] (nº2 in Table I)

◆ Test 4: 2nd amplifier leakage test with a Q=2/3 sequence [1 1 1 1 1 -1] (nº3 in

Table I)

◆ Test 5: 2nd amplifier leakage test with a Q=3/4 sequence [1 1 1 1 1 1 1 -1] (nº3 in

Table I)

◆ Test 6: 2nd amplifier leakage test with a Q=2/3 sequence [1 1 0] (nº5 in Table I)

◆ Test 7: 2nd amplifier leakage test with a Q=4/5 sequence [1 1 1 1 0] (nº5 in Table I)

◆ Test 8: 3rd amplifier leakage test with a Q=2/3 sequence [1 1 1 1 1 -1] (nº7 in

Table I)

◆ Test 9: 1st integrator settling error test with a deterministic sequence [1 1 -1 1 -1 -1]

(nº10 in Table I)

◆ Test 10: 1st integrator settling error test with a pseudorandom sequence (nº11 in

Table I)

◆ Test 11: 1st integrator non-linear settling error test with a Q=2/3 sequence [1 1 0]

(nº12 in Table I)

◆ Test 12: 2nd integrator settling error test with a deterministic sequence [1 1 -1 1 -1

-1] (nº10 in Table I)

◆ Test 13: 2nd integrator settling error test with a pseudorandom sequence (nº11 in

Table I)

◆ Test 14: 2nd integrator non-linear settling error test with a Q=2/3 sequence [1 1 0]

(nº12 in Table I)
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◆ Test 15: 3rd integrator settling error test with a deterministic sequence [1 1 -1 1 -1

-1] (nº10 in Table I)

◆ Test 16: 3rd integrator settling error test with a pseudorandom sequence (nº11 in

Table I)

◆ Test 17: 3rd integrator non-linear settling error test with a Q=2/3 sequence [1 1 0]

(nº12 in Table I)

◆ Test 18: 2nd amplifier leakage test (nº4 in Table I), combining the results from test 4

and test 5

◆ Test 19: 2nd amplifier leakage test (nº6 in Table I), combining the results from test 6

and test 7

◆ Test 20: DC gain non-linearity of the 1st amplifier (nº8 in Table I), combining the

results from test 1 and test 2

◆ Test 21: DC gain non-linearity of the 1st amplifier (nº9 in Table I), combining the

results from test 1 and test 2

Apart from these tests, a functional test is also applied that consists of measuring the

ENOB obtained for a half-scale input sine-wave.

The next thing to be done is to select the number of points of the acquisition for each

one of the proposed tests together with the pass-fail limit. In order to select these two related

parameters, two different criteria can be followed: The defect-oriented criteria and the per-

formance-oriented criteria.

5 • 4 . 2 . 1  Defect-oriented criteria

The defect-oriented approach relies on the fact that the manufactured modulators should

always fit within the bounds defined by process corners. In that sense, anything outside nor-

mal process variation should be considered as a defect. This can seem severe because some

of these defects may not cause any significant performance degradation. However, two

things must be pointed out. If a parameter is outside the process corners it means that some-

thing has gone wrong and this is a potential reliability issue. Furthermore, for a mature man-
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ufacturing process the yield should be high, which means that the probability of such small

deviations is reduced. In that sense, what could be considered as yield escapes from a perfor-

mance viewpoint should remain limited.

In order to design the tests with the defect-oriented criteria, the number of points and the

pass/fail limit should be taken such that the signature for the worst-case parameter within the

nominal range should be above the associated confidence interval.

Let us take an example. We want to test the leakage of the first integrator with an input

sequence of mean value Q=1/5. According to what was said in the previous chapter, and tak-

ing into account the fact that the first stage of the modulator does not lead to an ideal 2nd

order function, the signature of the leakage test should be (refer to Eq (4-49))

(5-64)

Taking into account the fact that integrator leakage, in our behavioural model, is related

to the amplifier DC gain in the form

, (5-65)

the number of samples required to get a signature above 6 (more than the uncertainty) for the

lowest nominal DC gain (i.e. 65dB) is,

(5-66)

In this case, the test pass/fail limit should be set to 6+5=11 such that no modulator

within the nominal range can be discarded by the test. However, the test designer may

require a more selective test. Indeed, due to the +/- 5 uncertainty on the signature, an ampli-

fier with a gain of only 57dB may pass the test. Indeed, we have

. (5-67)

In our case, we opted to perform the test over 24000 points in order to get more preci-

sion. The new test limit is then, for the worst-case DC gain in the nominal range,
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(5-68)

With this new limit we can calculate simply that only an amplifier with a gain above

62dB may pass the test.

The number of samples and nominal pass-fail limits for each test could be calculated

analytically as described above. However, we have seen that it is not possible to derive a

closed analytical expression for the test of the non-linear DC gain of the 1st amplifier. To cir-

cumvent this issue, we applied the test flow to several modulators within the nominal range

with a number of acquired samples deliberately large for each test. With the results in hand,

it is possible to scale down the number of points in the same proportion as the signature. For

instance, if a signature of 200 is obtained for an acquisition over 100000 points, the test

could be performed over 10000 points to obtain a signature of 20 that would be sufficient for

test purposes.

Criteria other than the measurement precision also influence the choice of the number of

samples. For instance, as was proposed in Eq (4-115), the non-linearity of the DC gain could

be tested as the scaled difference between leakage signatures for two different input mean

values. As was proposed, this scaling can be performed at no cost whenever since

(5-69)

Similarly, in the case of the leakage test for a first order modulator, we proposed in

Eq (4-87) to combine the results obtained from two different sequences to obtain a signature

whose linearity would not be affected by an input referred offset. This signature requires that

the acquisitions realized with the different sequences be performed on the same number of

samples.

The selected number of points and test limits can be found in Table III.

5 • 4 . 2 . 2  Performance-oriented criteria

Even if it may or may not be significant in a real manufacturing procees (such concern is

beyond the scope of this thesis), the defect-oriented criteria do sacrifice functional yield for

reliability. Indeed, some functionally correct modulators may be discarded because some of
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their behavioural parameters are outside of the nominal expected range but still within the

valid design space. This is possible because guard-bands were taken for the choice of the

nominal parameters. Such a deviation is a potential reliability issue but at the time of the test

it gives a good performance. Some would thus argue that discarding these modulators is los-

ing yield and thus money.

It is possible to change the focus of the test proposal in order to obtain more perfor-

mance-oriented results. Indeed, the number of points and the test limits may be chosen

according to the valid design space instead of the nominal variation range.

For our purpose, we decided to keep the same number of points for each test and only to

relax the test limits according to the performance-oriented criteria. In that way the results of

the test set simulation, as will be seen further, can be processed simply for the two criteria by

comparing the obtained set of signatures to either set of limits.

In order to determine the performance-oriented signatures we considered from the 1000

simulated modulators only the subset of those that have an ENOB higher than 15bits. The

maximum signatures obtained for this subset are taken as new performance-oriented test

limits. These test limits are also quoted in Table III.

Table III:  Test limits

Test
Number of

acquired points
Defect-oriented

Test limit

Performance-or
iented Test

limit

1 24000 24 82

2 9600 26 86

3 100000 286 1104

4 19200 46 9802

5 19200 44 12802

6 18000 26 54

7 18000 28 74

8 1200 29 1600

9 100000 2.3 10-4 0.016
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The last four lines in Table III do not show the number of points because these tests

re-use the results obtained for other acquisition. Similarly, the number of points for test 3 is

unusually large because such an acquisition with a [1 1 0] sequence at half the clock fre-

quency is also necessary for test 11.

5 • 4 . 2 . 3  Comments on the optimization of the test limits

Relaxing the test limits on all the parameters at a time clearly opens the door to test

escapes. Indeed, the performance-oriented limits are set to the maximum value reached by

the signatures for the set of good-performing modulators. This is equivalent to considering

the impact of the different parameters on performance individually, which is a best-case

approach. Let us take a simple example. Consider that a given modulator with a first ampli-

fier DC gain of 60dB reaches 15 bits and another modulator with a 2nd amplifier slew-rate of

3 also reach 15 bits. This does not imply that a modulator with both a first amplifier DC gain

of 60dB and a 2nd amplifier slew-rate of 3 both reach 15bits.

10 100000 16 798

11 100000 2.8 10-4 0.014

12 100000 7.1 10-4 0.15

13 100000 32 7270

14 100000 4.8 10-4 0.14

15 10000 0.11 19992

16 10000 492 19998

17 10000 0.11 2.3

18 / 12 192

19 / 6 10

20 / 1.25 3.8

21 / 4 62

Table III:  Test limits

Test
Number of

acquired points
Defect-oriented

Test limit

Performance-or
iented Test

limit
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To be rigorous, some correlations should be introduced between the signatures to make

the final pass-fail decision. These correlations would intend to match the surface of the valid

design space in the behavioural parameters space. Such correlation could be determined as

proposed in [92] but this would definitely complicate the approach.

We do not have this problem with the test based on the nominal limits. The reason is that

the parameters’nominal variations can be seen as a small n-dimensional perturbation box

around the nominal design point, with n being the number of behavioural parameters. Due to

the design guard-bands, it can be assumed that this box fits entirely within the valid design

space.

Following the same image, the way we have selected the performance-oriented test lim-

its is equivalent to selecting the smallest box that contains the valid design space. A better

solution would consists of finding the largest box that fits within the design space, minimiz-

ing the number of poor performers that pass the test, while also minimizing the number of

good performers that fail the test. Unfortunately, there is not an obvious solution to this

problem. As a matter of fact, Figure 5-23 displays a small diagram that helps understand that

such a solution is not unique.

Figure 5-23: Test box versus valid design space
a) the test box contains the valid design space
b) and c) the test box is contained in the valid design space
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Depending on the application, there may be a trade-off between test escapes and func-

tional modulators overkill. A interesting path for further research would be to study the opti-

mization of the pass-fail limit for all the parameters.

5 • 4 . 3  Test flow selection

As was said previously, some of the tests introduced above are redundant because they

target the same behavioural parameters. Alternative tests were introduced to offer more flex-

ibility to the test designers mainly in terms of implementation. Hence, we will consider sev-

eral test flows.

5 • 4 . 3 . 1  The complete test flow

One of the objective of fault simulation is to verify how the proposed test set behaves

when more than one parameter is varied at a time. Hence, we will primarily consider the

behaviour of the set of 21 tests proposed above.

5 • 4 . 3 . 2  Test flow with no analog 0s

Some of the proposed tests require the introduction of analog 0s in the test sequence.

This implies a modification of the DAC to implement this capability and requires that the

test sequence is defined by two bits. If such a modification is not desired, a test flow can be

considered that target all the proposed parameters but with purely digital sequences:

◆ Test 1: 1st amplifier leakage test with a Q=1/5 sequence [1 -1 1 -1 1] (nº1 in Table I)

◆ Test 2: 1st amplifier leakage test with a Q=3/4 sequence [1 1 1 1 1 1 1 -1] (nº1 in

Table I)

◆ Test 4: 2nd amplifier leakage test with a Q=2/3 sequence [1 1 1 1 1 -1] (nº3 in

Table I)

◆ Test 8: 3rd amplifier leakage test with a Q=2/3 sequence [1 1 1 1 1 -1] (nº7 in

Table I)

◆ Test 9: 1st integrator settling error test with a deterministic sequence [1 1 -1 1 -1 -1]

(nº10 in Table I)
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◆ Test 12: 2nd integrator settling error test with a deterministic sequence [1 1 -1 1 -1

-1] (nº10 in Table I)

◆ Test 15: 3rd integrator settling error test with a deterministic sequence [1 1 -1 1 -1

-1] (nº10 in Table I)

◆ Test 20: DC gain non-linearity of the 1st amplifier (nº8 in Table I), combining the

results from test 1 and test 2

5 • 4 . 3 . 3  Test flow with simple counter signatures

Some tests require the computation of “complex” signatures that need a divider. This

may not be practical for full-BIST on-chip implementation. Hence, we will also consider a

test flow that does not require such divisions:

◆ Test 1: 1st amplifier leakage test with a Q=1/5 sequence [1 -1 1 -1 1] (nº1 in Table I)

◆ Test 2: 1st amplifier leakage test with a Q=3/4 sequence [1 1 1 1 1 1 1 -1] (nº1 in

Table I)

◆ Test 4: 2nd amplifier leakage test with a Q=2/3 sequence [1 1 1 1 1 -1] (nº3 in

Table I)

◆ Test 8: 3rd amplifier leakage test with a Q=2/3 sequence [1 1 1 1 1 -1] (nº7 in

Table I)

◆ Test 10: 1st integrator settling error test with a pseudorandom sequence (nº11 in

Table I)

◆ Test 13: 2nd integrator settling error test with a pseudorandom sequence (nº11 in

Table I)

◆ Test 16: 3rd integrator settling error test with a pseudorandom sequence (nº11 in

Table I)

◆ Test 21: DC gain non-linearity of the 1st amplifier (nº9 in Table I), combining the

results from test 1 and test 2
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5 • 4 . 3 . 4  Test flow with no input-dependent clocking

The overall settling error tests that have been proposed require that the reference clock

of the modulator be modified as a function of the input sample. Indeed, the reference clock

period should be doubled for the 1 input samples (alternatively the -1s). We will show in the

next chapter how this can be done on-chip at a reasonable cost but in any case, the designer

may want to avoid such modification. The following test set substitutes the non-linear set-

tling error tests by the overall settling error tests. As those tests require sequences with ana-

log 0s, the leakage test that makes use of analog 0s has also been preferred for the 2nd

integrator. This avoids the introduction of an extra delay in the feedback loop. The test flow

is as follows:

◆ Test 1: 1st amplifier leakage test with a Q=1/5 sequence [1 -1 1 -1 1] (nº1 in Table I)

◆ Test 2: 1st amplifier leakage test with a Q=3/4 sequence [1 1 1 1 1 1 1 -1] (nº1 in

Table I)

◆ Test 6: 2nd amplifier leakage test with a Q=2/3 sequence [1 1 0] (nº5 in Table I)

◆ Test 8: 3rd amplifier leakage test with a Q=2/3 sequence [1 1 1 1 1 -1] (nº7 in

Table I)

◆ Test 11: 1st integrator non-linear settling error test with a Q=2/3 sequence [1 1 0]

(nº12 in Table I)

◆ Test 14: 2nd integrator non-linear settling error test with a Q=2/3 sequence [1 1 0]

(nº12 in Table I)

◆ Test 17: 3rd integrator non-linear settling error test with a Q=2/3 sequence [1 1 0]

(nº12 in Table I)

◆ Test 21: DC gain non-linearity of the 1st amplifier (nº9 in Table I), combining the

results from test 1 and test 2

5 • 4 . 3 . 5  Comments on test flow optimization

Similar to what was said for the selection of the test limits, it would be interesting to

study the optimization of the test flow. A rigorous approach to test flow optimization is a

Ph.D. subject in itself [93]. Moreover, optimization must be done with respect to a given cost
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function that has to be minimized. The construction of the cost function is not necessarily

straightforward. Test metrics such as test escapes and yield loss should be considered, as

well as the test resources requirements, the test time, etc.

As an example, a simple algorithm such as the one depicted in Figure 5-24 may be used.

However, such an algorithm cannot be carried out during the design phase because it would

require a prohibitive number of realistic fault simulations. It would make more sense to

implement such an optimization algorithm for the production line.

add a test to the flow

calculate the cost function

has it improved?

Is there another test in the
test flow that targets the

same parameter?

replace the old test by the new
test

calculate the cost function

has it improved?

discard the old test

discard the new test

Y

N

Y

validate the addition of the
new test to the test flow

N

Y

N

Figure 5-24: Ad-hoc test flow optimization algorithm
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5 • 4 . 4  Fault simulation

5 • 4 . 4 . 1  Definition of the simulation

In many design flows, Monte-Carlo simulation is performed to evaluate the impact of

mismatch and/or process variations on a circuit. For such simulation, statistics have to be

provided by the foundry that reasonably match the distribution of the parameters measured

in a production environment. However, what we propose is not to make a realistic

Monte-Carlo simulation. Indeed, this would make little sense as it would be realistic only for

a given implementation. In turn, we will define a kind of Monte-Carlo simulation at behav-

ioral level and see how the proposed test set behaves.

It would be possible to vary all the behavioural parameters independently and over a

broad range, like we did for exploring the design space. However, such an option would lead

to a wide majority of the modulators having more than one parameter outside their nominal

range. Our behavioural model of the modulator is defined by 26 behavioural parameters in

total. Assuming that we define a broad variation range for each parameter and that the nomi-

nal range represents 50% of this range, the probability to obtain a nominal modulator would

be

. (5-70)
Instead, we opted to define an ad-hoc fault list, associating a probability of occurrence to

each fault. For that, as was seen in Table II, three variation ranges have been defined for each

behavioural parameter.

It is neither possible nor desirable to make a realistic fault simulation at a behavioural

level. It is not possible because a realistic fault simulation would require one to extract fault

classes and statistics from layout level tools or silicon failure analysis. Furthermore, it is not

desirable for our purpose because realistic faults may not cover all the cases that we want to

study. Indeed, in a realistic manufacturing process, it is likely that the yield may be quite

high. This means that the parameters of the large majority of the modulators are within their

nominal variation range. A number of modulators would also present catastrophic defects

(like opens and shorts) that would be easily detected by the proposed test set but also by a

P 0.5
26

1.5 10
8–×= =
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relaxed functional test. For our validation purpose, we concentrate mostly on those modula-

tors that present parametric failures. For that, we defined four equally-probable categories:

◆ Nominal: All the parameters are selected within the nominal range.

◆ Global parametric drift: One or more parameters of the three integrators are selected

in the parametric range. For instance, the three DC gains, the three slew-rates or the

three pairs clipping-value/DC gain non-linearity. The rest of the behavioural param-

eters are selected in the nominal range. A total of 9 equally-probable combinations

were considered.

◆ Local parametric drift: One or more parameters of one of the three integrators are

selected in the parametric range. The rest of the behavioural parameters are selected

in the nominal range. A total of 36 equally-probable combinations were considered

(around 12 for each amplifier).

◆ Drastic drift: One or more parameters of one of the three integrators are selected in

the drastic variation range. The rest of the behavioural parameters are selected in the

nominal range. A total of 42 equally-probable combinations were considered.

One thousand modulators were simulated in a MonteCarlo way, randomly selecting one

category and then one fault type within this category.

5 • 4 . 4 . 2  Test metrics

Let us clarify the different metrics that we will use to illustrate the test results. First of

all, we define defect-oriented metrics. For this, take a look at Figure 5-25.

◆ The test escapes ratio is defined as the number of defective modulators that are tar-

geted by the test set and that unexpectedly pass the test over the total number of

defective modulators that are targeted by the test set.

. (5-71)

◆ The total test escapes ratio is defined as the number of defective modulators that

pass the test (both expectedly and unexpectedly) over the number of defective mod-

ulators.

N 5
N 1 N 5+
---------------------
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. (5-72)

◆ The yield escapes ratio is defined as the number of nominal modulators that fail

the test over the number of nominal modulators.

. (5-73)

◆ The test added value is defined as the number of defective modulators that are not

targeted by the test set and that unexpectedly fail the test over the total number of

defective modulators that are not targeted by the test set.

. (5-74)

Similarly, we define two performance-oriented metrics:

◆ The good performers rejection ratio is defined as the number of modulators with

more than 15 effective bits that fail the test over the total number of modulators with

more than 15 effective bits.

Figure 5-25: Diagram of the test results partitioning.

fail

pass

1000 modulators

nominal modulators

defective modulators

targeted by the test set

not targeted by the test set

nominal modulators

defective modulators

targeted by the test set

not targeted by the test set

(N1)

(N2)

(N3)

(N4)

(N5)

(N6)

N 5 N 6+

N 1 N 2 N 5 N 6+ + +
-------------------------------------------------

N 3
N 3 N 4+
---------------------

N 2
N 2 N 6+
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◆ The poor performers acceptation ratio is defined as the number of modulators

with less than 15 effective bits that pass the test over the total number of modulators

with less than 15 effective bits.

Notice that the values obtained for these metrics should not be used to extrapolate quan-

titative conclusions because the probabilities of occurence of the different defects are arbi-

trary and not realistic. Nevertheless, our purpose is to uncover interesting qualitative trends.

5 • 4 . 4 . 3  Results for the complete test flow with the defect-oriented criteria

After applying the 21 tests to the 1000 modulators with the test limits proposed in the

second column of Table III, a number of 450 modulators have passed the test set and 550

have failed. Figure 5-26 shows the histogram of the ENOB obtained for the 1000 modulators

together with the histogram of the ENOB of the modulators that have passed the test set.

Two conclusions can be drawn from this graph. The most striking is possibly that many

good performers have been discarded by the proposed test set. The good performers rejec-

tion ratio is of 28%. Another is that all bad performers have been discarded and few poor

Figure 5-26: Histograms of the ENOB obtained for the 1000 simulated modulators and
for the subset of the modulators that passed the test set
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performers have been accepted: 13 in the 14bit bin (i.e. 14<ENOB<15), 7in the 13bit bin, 2

in the 12bit bin and 7 in the 11bit bin. The poor-performers acceptation ratio is of 6.9%.

These effects can easily be explained by the fact that we are looking at a defect-oriented

test through the prism of a functional gradation. The histogram of the ENOB is a functional

measurement so Figure 5-26 implicitly pre-suppose a correlation between the results of the

test proposal and the results of the functional test. This correlation obviously exists but is not

total.

Many good performers have been discarded because they actually present a parametric

drift that is higher than what was expected for a nominal variation. In other words these parts

are defective. Nevertheless, defective parts even with strong parametric deviations may still

be in the design-space of valid modulators, as was explained above. This is specially true if

large design guard-bands had been taken. Notice that the large number of good performers

that have been discarded may not be realistic: the fault simulation that we have performed

has generated a fairly large number of modulators with small parametric drifts. More con-

cretely, only 6% of the modulators with more than 15 effective bits that have failed the test

correspond to modulators that exhibit a drift in the first integrator. This is not surprising as it

is well known that the errors introduced in the integrators located further in the loop are par-

tially shaped to high frequencies. As a result, the first integrator has the highest requirements

while further integrators are more relaxed and are thus very likely designed with large

guard-bands. 29% of the modulators with more than 15 effective bits that have failed the test

correspond to modulators that present amplifier(s) DC gain non-linearity higher than the

nominal. Once again, it can be said that the nominal range for this parameter was designed

with a lot of margin.

On the other hand, the poor performers that have been accepted correspond to parameter

deviations that are not contemplated by our proposal. More concretely, 5 of the 21 poor per-

formers that have passed the test are modulators that present deviations in the integrator

branch coefficients. The rest corresponds to excess thermal noise in the amplifiers.

If we want to evaluate the test set results with more defect-oriented metrics, we can say

several things.
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First of all, it can be verified that none of the nominal modulators has been discarded.

The yield escapes ratio is 0. This is of utmost importance because it means that the test set

does not impact the yield.

If only the subset of faults that are targeted by the proposed test set is considered, it can

be seen that the test set detected 93.7% of the faults. The remaining 6.3% of test escapes

ratio correspond to parametric drifts of the first amplifier DC gain non-linearity. Moreover

these drifts do not significantly impact performance because the ENOB obtained for the

modulators that correspond to these 6.3% is greater than 15bits. This means that the pro-

posed tests are not accurate enough to detect such small variations. One solution could be to

perform the tests over a larger number of samples. To verify this assumption, one of the

test-escape modulators was re-simulated performing test 1 and test 2 with ten times more

points (240000 and 64000 respectively). The signature obtained for test 21 (calculated from

the results of test 1 and 2) is 18 while the same signature computed for a nominal modulator

leads to a result of 7. Hence, it can be concluded that the test for DC gain non-linearity

should have been performed over a larger number of points in order to detect small paramet-

ric deviations outside the nominal range.

Hence, it can be concluded that the test performs as expected even when several param-

eters are varied at a time.

Some defects that were not targeted by the test set are also detected. It is legitimate to

think that the proposed digital tests, that rely on the proper functioning of Σ∆ modulation,

are likely to detect catastrophic faults even if they are not directly caused by one of the

parameters that are targeted. As a matter of fact, it can be seen in Figure 5-26 that the test set

discarded all the faulty modulators with an ENOB below 11 bits. Among these discarded

modulators, some correspond to faults that were not expected to be detected. To be more

precise, 22.4% of the faults that were not directly targeted by the test set have been detected

(i.e. the test added value ratio is 22.4%). 80% of these 22.4% correspond, as expected, to

drastic variation of some parameters (mainly branch coefficients, noise figures and 2nd and

3rd amplifier clipping value) and 20% correspond to parametric variations.
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5 • 4 . 4 . 4  Results for the complete test flow with the performance-oriented criteria

For the performance oriented criteria, the obtained signatures are compared with the

limits of the 3rd column of Table III. From these limits, it can already be said that the third

integrator settling does not influence in a large extent the performance of the overall modula-

tor. Indeed, the functional limits for tests 15, 16, 17 are very high and practically all the

modulators will pass such tests.

Figure 5-27 is the same as Figure 5-26 but for the results obtained with the perfor-

mance-oriented test limits. It can be seen how no good performers have been discarded with

the new test limits (i.e. the good performers rejection ratio is 0). On the other hand, the num-

ber of poor performers that pass the test is significantly increased: 34 instead of 13 in the

14bit bin (i.e. 14<ENOB<15), 22 instead of 7 in the 13bit bin, 43 instead of 2 in the 12bit bin

and 7 in the 11bit bin. The poor performers acceptation ratio has increased to 25.3%. 63% of

these poor performers correspond to parameters that were explicitly targeted by the pro-

posed tests. This observation must be related to the way in which we selected the test limits

for the performance-oriented criteria. Indeed these test limits were set to the maximum sig-

nature obtained for modulators with an ENOB higher than 15bits, which corresponds to case

Figure 5-27: Histograms of the ENOB obtained for the 1000 simulated modulators and
for the subset of the modulators that passed the test set with performance-oriented
limits
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a) in Figure 5-23. Moreover the relationship between a given parameter and the performance

may not be monotonous. For instance, a modulator with an amplifier of GBW=2 may give

an ENOB of 15.5 bits while another with a GBW=3, which is in principle better, may give

an ENOB of 14.6dB. If we set the settling error test limit to admit the first modulator it is

likely that the second one will also pass the test.

As was said in section 5 • 4 . 2 . 3, it may be more judicious to select the test limits at an

intermediate point between the defect-oriented criteria and the performance-oriented crite-

ria. As an illustration of this concern, Figure 5-28 represents the evolution of the test escapes

ratio, the good performers rejection ratio and the poor performers acceptation ratio as a func-

tion of the test limit. For all the parameters a relative deviation between the defect-oriented

limit and the performance oriented limit was considered. The choice of an optimum point

depends on the application-related cost function.

Figure 5-28: Evolution of two test metrics as function of the test limits:
- the test escapes ratio
- the good performers rejection ratio
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5 • 4 . 4 . 5  Results for the other test flows

We also applied the reduced test flows proposed in section 5 • 4 . 3 to the 1000 simulated

modulators. Table IV gives a summary of the metrics obtained for the different test flows

with the two criteria for the test limits (defect-oriented and performance-oriented).

First of all, it is important to note that the figures in the table must be considered taking

into account the type of fault simulation that has been carried out. The test escapes ratio can

seem unusually large with the performance oriented criteria, but this is because many defec-

tive devices are actually good performers. Similarly, the number of poor performers

accepted is also fairly large because the fault simulation was designed to produce many

parametric faults. Particularly relevant is the fact that none of the test flows discards nominal

modulators.

In the same column that gives the test escapes ratio we have quoted the minimum and

the average ENOB of the modulators that correspond to these test escapes. The same has

been done in the column that gives the poor performers acceptation ratio. Notice that these

figures do not have the same meaning

The poor performers that passed the test include modulators that have defects that are

not explicitly targeted by the proposed tests. What we intend to show is that the different test

sets are able to detect all the catastrophic failures, even if they do not correspond to a tar-

geted parameter. This is possible because all the proposed tests rely on a proper functioning

of the Σ∆ modulation. Indeed, it can be seen that for all the test sets with the defect-oriented

criteria, the worst modulator that passed the test has an ENOB of 11.2bits and the average

ENOB of these poor performers is 13.5bits.

The test escapes correspond to modulators that could have been detected by the test set

because they exhibit a deviation in one of the targeted parameters. Hence, what we indirectly

intend to show with the associated ENOB figures is that these modulators have not been

detected because the deviations are small and have little impact on the modulator. As a mat-

ter of fact, it can be seen that, for all but one of the proposed test flows with the defect-ori-

ented criteria, the test escapes correspond to good performers. This means that these

undetected defects are defects that effectively stand within the design guard-bands. These

defects may possibly be detected by increasing the precision of the related tests (i.e. the
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number of acquired points). This assumption has been verified in a particular case in section

5 • 4 . 4 . 3, for a defect that affected the DC gain non-linearity of the 1st amplifier.

For the test flow with no input-dependent clock modification, though, one of the test

escapes has an ENOB of 12.9bits. A detailed scrutiny of the results show that this modulator

has a drastic variation in the GBW of the 2nd amplifier. In principle, such a defect should be

detected by the settling error test of the 2nd amplifier. However, as the test flow does not

make use of input-dependent clocking, the selected settling error test was test 14 (nº12 in

Table I). This test target the non-linear part of the settling error and is thus not totally equiv-

alent to the overall settling error test. In the majority of cases, a defect in the amplifier set-

tling is very likely to cause a non-linear settling error. However, for this particular test

escape, the defect only affected the GBW while maintaining a high Slew-rate. As a result,

the settling error is mostly linear even if it is much slower than nominal (see Eq (5-2)).

Hence, we can say that this particular test escape could be expected. The rest of the test

escapes for this test flow all have an ENOB above 15bits, like the other test flows.

From the rest of the figures given in the table, we can conclude that all the test flows per-

form in a similar way. This demonstrates that the different test proposals for a given parame-

ter are self-consistent.
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Table IV: Summary of test flow results
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nominal complete 0% 25.2% 6.3%
15.1 / 15.4

22.4% 28% 6.9%
11.2 / 13.5

nominal no analog 0s 0% 28.3% 9.6%
15.1 / 15.4

19.9% 24.3% 7.2%
11.2 / 13.5

nominal simple
signatures

0% 28.1% 9.4%
15.1 / 15.4

19.9% 24.6% 7.4%
11.2 / 13.5

nominal no
input-depen-
dent clocking

0% 26.3% 6.6%
12.9 / 15.4

19.4% 27% 7.4%
11.2 / 13.5

perf. complete 0% 57.8% 43.1%
12.3 / 14.8

1.5% 0% 25.3%
11.2 / 13.4

perf. no analog 0s 0% 65% 52.9%
8.2 / 14.4

1.5% 0% 38%
8.2 / 13.1

perf. simple
signatures

0% 65% 52.9%
8.2 / 14.4

1.5% 0% 38%
8.2 / 13.1

perf. no
input-depen-
dent clocking

0% 58.6% 44.2%
12.3 / 14.8

1.5% 0% 26.8%
11.2 / 13.4
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PRACTICAL IMPLEMENTATION CONCERNS

In many cases, Design-for-Testability proposals that can be found in the literature put

much emphasis on their high fault coverage or on the accuracy of their performance mea-

surements. Others also focus on test time reduction. However, a very important aspect that is

sometimes overlooked is that of practical implementation. Moreover, many techniques that

claim to be BIST schemes are indeed only partial BIST in the sense that only data process-

ing or test stimulus generation is carried out on-chip. In other cases, the implementation is

technically possible but the extra area dedicated to test hardware is larger than the circuit

under test. Finally, some proposals do not consider how sensitive the test hardware could be

to defects and how this could impact yield

This chapter will thus address practical concerns with respect to the tests proposed in the

two previous chapters. Despite the fact that implementation is often considered as secondary

in many proposals, it is precisely in that aspect that our proposal unveils most of its poten-

tial. Indeed, we will show how both test stimulus generation and test data analysis can be
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carried out on-chip with robust and low-cost circuitry. However, we do not pretend to pro-

vide a unique solution because the optimum implementation will always depend on the

architecture and the application. Instead, we will sketch general guidelines for the most crit-

ical points.

6 • 1 THE TEST STIMULUS

The proposed test stimuli are digital sequences that are then converted to analog by

either re-using or replicating the feedback DAC (possibly with some modification) as will be

seen later. The analog sequence seen by the modulator under test are thus two-valued and

they are either periodic (with a short period) or pseudo-random. In any cases they remain

within the modulator full-scale.

6 • 1 . 1  Stability considerations

The first consideration that should be made with respect to the use of a test stimulus

concerns the stability of the modulators. Σ∆ modulators are designed to process slowly vary-

ing inputs and most stability studies have been performed assuming DC inputs. It is far from

straightforward to determine how a modulator behaves when submitted to a digital

sequence.

As our tests apply only to 1st and 2nd order modulators, stability concerns are indeed

much relaxed. Modulators of 1st order are known to be unconditionally stable for any input

that does not overload the modulator (i.e. for any input within the modulator’s full-scale).

Hence, using test sequences whose mean value remains strictly below the full-scale should

be sufficient. In principle, this is equivalent to saying that anything except an “all 1” (or “all

-1”) sequence can be used. Nevertheless, some guard-band should be taken to accommodate

an eventual input-referred offset.

Modulators of 2nd order are not unconditionally stable. An example of a non-overload-

ing input that drives a 2nd order modulator into instability is given in [24]. Fortunately, it

was proven in [25] that 2nd order modulators are stable for any input that can be represented

as a finite sum of sine-waves. Being periodic sequences, our test stimuli can thus be repre-
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sented as a Fourier series in the discrete-time domain, that is to say a finite sum of

sine-waves.

There is thus no conceptual impeachment to the use of digital sequences in both 1st and

2nd order modulators. Anyway, some care should be taken with practical limitations. Stabil-

ity implies that the output of the integrator(s) remains bounded, but the exact value of this

bound is important in practical implementation as integrator output swing is limited. The

integrator output excursion during the test mode should thus remain similar to the expected

output swing under normal operation. As was said in Chapter 1, the calculation of these-

bounds has concentrated much research effort even for DC inputs. We thus decided to limit

our verification to simulation. There is an exception which is the case of the leakage test for

1st order single-bit modulators. Indeed, in Section 4 • 1 . 3 . 2 we have shown that the inte-

grator output varies between -2 and 4 for a positive sequence, and between -4 and 2 for a

negative sequence. Under normal operation, the output of the integrator should remain

between -2 and 2 for any non-overloading input. This difference is due to the inclusion of an

the additional delay in the feedback path during test mode. Notice that the alternative test

proposed in Section 4 • 1 . 2 . 3 uses a 0 instead of a -1 and does not require additional delay

in the feedback path. In this case, the integrator excursion during test mode is the same as

during normal operation.

For the rest of the cases, it can be shown by simulation that test sequences tend to force

higher internal states at the integrator output than the equivalent DC levels. As an example,

Figures 6-1 and 6-2 show the maximum value reached by the first integrator output for both

a DC input and a digital sequence, as a function of their mean values. The simulated modu-

lator in Figure 6-1 is ideal and second-order with the structure proposed in [26]; it uses sin-

gle branch integrators with a 0.5 gain. We will refer to it as modulator A. The simulated

modulator in Figure 6-2 uses a single branch integrator with a 0.25 gain as a first integrator

and a two branch integrator of gains 1/3 for the signal branch and 0.25 for the feedback

branch. This modulator was proposed in [24]. We will refer to it as modulator B. This modu-

lator does not exactly fulfill the conditions for an ideal 2nd order modulator because its coef-

ficients have been rounded to small fractions for implementation purposes. Linearizing the
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Figure 6-1: Maximum integrator outputs as a function of modulator A input

–1 –0.5 0 0.5 1
0

1

2

3

4

5

6

input mean value

in
te

g
ra

to
r 

m
a
x
im

u
m

 o
u
tp

u
t

1st integrator, DC level
1st integrator, sequence
2nd integrator, DC level
2nd integrator, sequence

+

o

*

0.7- 0.7

2.6

1.8

Figure 6-2: Maximum integrator outputs as a function of modulator B input
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quantizer as explained in Chapter 1, the difference equation that governs the modulator can

be written as

(6-1)

The effective gain k of the quantizer settles to about 16/3. However, the leakage signa-

ture does not depend to first order on the quantizer’s effective gain. Considering that the

leakage signature senses the average of the output minus the input, we have

, (6-2)

where Q is the input sequence mean value, that is,

(6-3)

For modulator A, note that the integrator outputs reach values close to 1.8 for DC levels

below 0.7. In turn, if digital sequences are used as the inputs, the integrator outputs reach

values close to 2.6 (44% higher than with DC levels). For modulator B, the integrator out-

puts reach 1.2 for DC inputs below 0.8 while they reach 1.6 for digital sequences with mean

value below 0.8 (20% higher than with DC levels).

Thus, we conclude that the use of digital sequences lead to internal states that are higher

than the states reached by the modulator during normal operation in a proportion that

depends on the architecture. Fortunately, several solutions can be proposed to cope with this.

6 • 1 . 1 . 1  Addressing the test requirements during design

The test of the modulator with digital sequences must be considered during the design

phase and the modulator appropriately scaled for both test and normal operation. This solu-

tion is the most interesting but introduces new trade-offs in particular for the design of the

first integrator (which usually is the most demanding). A straightforward solution would

consist of selecting the modulator full-scale in order to accommodate properly the modula-

tor’s internal states within the amplifier’s output range during test mode. Selecting a lower
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full-scale has other implications than its effects during test mode: it relaxes settling and lin-

earity requirements for the amplifier but increases the noise requirements.

During normal operation it is desired that the internal states remain within the linear

range of the amplifier. However, the linearity requirements for the output range may be

relaxed significantly during test mode. As the output range of the amplifier is not limited to

its linear range, this extra non-linear part of the output range may be sufficient to accommo-

date the test-mode requirement and provide satisfactory results. It should thus be verified

during the design phase if it is really necessary to modify the amplifier for test purposes.

Let us illustrate this with an example. Consider that we have in our libraries an amplifier

with a 5V supply and a linear differential output range of 6V such that its DC gain at 0V is

60dB, and its DC gain at 3V (and -3V) is 57dB. In principle, during the design of the modu-

lator, the full-scale will be chosen as large as possible such that the integrator state remains

entirely in the linear part of the amplifier output range for normal operation. Taking a look at

Figure 6-1, modulator A could be designed with a differential full-scale of [-1.5V; 1.5V]

such that DC inputs within 70% of the full-scale do not suffer distortion. In the case of mod-

ulator B (see Figure 6-2), in turn, selecting a full-scale of [-2.5V; 2.5V] would allow to pro-

cess DC inputs up to 0.8 without significant distortion. With such limits, it could be thought

that tests with digital sequences could not be performed with the nominal full-scale. Never-

theless, some care has to be taken because the amplifier output range is not limited to its lin-

ear part. Actually, the amplifier mentioned above is likely to clip at the supply rail, which

represents a clipping at +/-5V differential. The strong non-linearity of the amplifier charac-

teristic above the nominal linear output range may or may not affect the results of the pro-

posed tests and high level simulations should thus be performed to take the adequate

decision.

The full-scale of modulator A is set to 3V while the full-scale of modulator B is set to

5V. Hence, normalizing the model parameters to a [-1;1] full-scale we have the parameters

in Table I
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Figures 6-3 and 6-4 represent the signature of the first integrator leakage test for the

modulators described above. In both cases, we can see that the simulated signature is quite

close to the expected one for input sequences with mean values far from the modulator

full-scale. More precisely, it can be seen that the simulated signature deviates from the

expected one for mean values above 0.5 for modulator A and above 0.7 for modulator B. On

the other hand, this phenomenon has already been described in Chapter 4 and is actually the

basis of the test for the non-linearity of the first amplifier DC gain. Hence, it can be con-

Table I: normalization of the amplifier parameters

parameters modulator A modulator B

Full-scale 1 1

amplifier gain 60dB 60dB

Clipping value 5/1.5=3.333 5/2.5=2

DC gain non-linearity aNL 2.83 1.70

Figure 6-3: Modulator A 1st integrator leakage signature as a function of the mean
value of the input sequence
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CHAPTER 6
cluded that the leakage test as well as the DC gain non-linearity test could be performed for

these two modulator examples without any particular modification.

Similarly, Figures 6-5 and 6-6 show the settling error signature obtained using Eq (5-13)

(see test 10 in appendix A) by varying the slew-rate of the amplifier for a fixed value of the

GBW. Furthermore, the test was carried out using 3 pseudorandom sequences generated by

Linear Feedback Shift Registers (LFSR) of three different lengths. It can be seen that for

both modulators, the measured settling error closely matches the expected one and that there

is no significant difference between the 3 LFSRs (actually the results are superimposed).

6 • 1 . 1 . 2  Changing the full-scale in test mode

As was said above, a straightforward solution would be to use a smaller full-scale to

accommodate the larger excursion of internal states when using digital sequences. If the

resulting design trade-offs are not acceptable for normal operation, the modulator full-scale

may be decreased during test only. This is an interesting solution if the voltage references

are set externally. Otherwise, the impact of an on-chip voltage scaling should be evaluated.

–1 –0.5 0 0.5 1
–80

–30

20

70

100

input sequence mean value

le
a
k
a
g
e
 t
e
s
t 
s
ig

n
a
tu

re

Figure 6-4: Modulator B 1st integrator leakage signature as a function of input se-
quence mean value

expected signature

simulated signature
256



Practical implementation concerns
Figure 6-5: Modulator A settling error signature as a function of the 1st integrator
Slew-rate.
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Figure 6-6: Modulator B settling error signature as a function of the 1st integrator
Slew-rate.
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Once again, this would make the noise contribution more significant during test mode. As

the proposed tests are all based on DC measurements, this could be solved by a major aver-

aging if necessary. Reducing modulator full-scale has no impact on the leakage tests but

things are different for the DC gain non-linearity (that has much to do with the integrator

output range) and the settling error. Indeed, if the full-scale is reduced the requirements on

these two parameters are lower. There is thus a trade-off between test sensitivity and the

value of the internal states, that can be resolved for every particular architecture through

high-level simulations.

6 • 1 . 1 . 3  Coefficient scaling in test mode

Acting on the modulator coefficients also varies the internal states. Hence the modulator

coefficients could be modified during test mode. This solution should obviously be contem-

plated during the design phase, as it would require the inclusion of extra switches to discon-

nect (or) some unit capacitors in test mode. How to properly modify the modulator should be

studied is each case.

For instance, the modulator with 0.5 integrator gains proposed above (modulator A),

could be modified during test mode such that the first integrator has a gain of 0.25 (one half

of the nominal gain). This could be done by disconnecting one half of the sampling capaci-

tor. The obtained modulator would not have a second order transfer function. Simulations

show that the quantizer effective gain settles to approximately 8/3. The modified transfer

function would become

. (6-4)

Nevertheless, it can be shown that the leakage signature of the first integrator would be

of the form

, (6-5)

for a test performed with sequences with mean values Q and -Q.

As seen in Figure 6-7, the maximum output reached by the integrators is much reduced

for the modified modulator compared with the nominal case of Figure 6-1. Actually, the
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maximum integrator output reached for digital sequences in the modified modulator is below

the maximum output reached by DC levels in the nominal modulator: in particular, it is

below 1.3 for mean values in the range [-0.7; 0.7].

Figure 6-8 shows the signature of the leakage test as a function of the mean value of the

input sequence , for modulator A but with a clipping value set to 1.6 instead of 3.3 according

to Table I. The same test is performed for the modulator with and without the scaling of the

first integrator gain. It appears clearly that the leakage signature follows the expected one

over a larger range of sequences for the scaled modulator than for the nominal one.

In conclusion, the use of digital sequences as test stimuli does not cause instability in 1st

or 2nd order modulators but may increase the requirements on the output range of the ampli-

fier. Nevertheless, we have shown that neither integrator clipping nor DC gain non-linearity

affect the leakage test results significantly for input sequences with a small input mean value

and that the deviation of the signature for higher mean values may allow one to test for these

effects. Similarly, it appears that the settling error test can be performed correctly without

modifications. Anyway, the proposed tests should be simulated (at high level) for any partic-
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function of the input sequence mean value
a) 1st integrator with the nominal 0.5 gain
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ular architecture and implementation in order to see whether it is necessary or not to intro-

duce integrator gain scaling or full-scale reduction during test mode.

6 • 1 . 2  Input sequence generation

The on-chip generation of the test stimuli also has to be addressed.In order to test the

amplifier DC gain, the digital periodic sequence can be stored in a recycling register, which

will require a number of memory elements equal to the sequence period. For instance, a test

sequence [1 1 1 1 1 -1] would require a 6-bit register. The stimulus for testing the amplifier

settling errors is a pseudo-random sequence. It could be generated by a LFSR [91]. An m-bit

register provides a repeating random sequence of length 2m-1. That sequence has a system-

atic offset of 1/(2m-1). The most important characteristic of the pseudo-random sequence is

that the correlation of three consecutive samples should be close zero. Hence, a relatively

small LFSR could be used, which opens the door to the reuse of the recycling register, as

seen in Figure 6-9. The control signal c allows the user to select between the periodic and

the pseudo-random signal. If more than one sequence is desired, multiplexers could be used

to add or remove the required number of latches from the register. Nevertheless, the same

feedback cannot be used for any register length to generate pseudorandom sequences.

Figure 6-9 shows a possible feedback configuration for a six-bit register. However, other reg-

ister lengths may require more than 1 XOR gate and the XOR input location (called the tap

location) may also vary. For instance, a 12-bit LFSR requires at least 4 XOR gates. A

generic implementation would be that of Figure 6-10. An XOR gate is associated with each

Figure 6-9: Test sequence generator.
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latch but can be enabled or disabled. Indeed, if parameter ai is set to 0 the XOR gate i is

bypassed. For a given register length L, there is usually more than one feedback configura-

tion (ai combination) that gives a pseudorandom sequence of maximum length 2L-1. Table II

shows the valid ai combinations for some register length. Notice that for each combination

of ai that appear in the table, the combination of aL-i ‘s is also valid.

Table II: LFSR feedback configuration for maximum length sequences

register length L feedback coefficients that are set to 1

3 a2(1 XOR gate)

4 a3 (1 XOR gate)

5 a3 (1 XOR gate)
a2, a3, a4 (3 XOR gates)
a1, a3, a4

6 a5(1 XOR gate)
a1, a4 a5 (3 XOR gates)
a2, a3 a5

7 a4 (1 XOR gate)
a4, a5, a6 (3 XOR gates)
a2, a5, a6

a2, a4, a6

a1, a4, a6

a3, a4, a5

a2, a3, a4, a5, a6 (5 XOR gates)
a1, a2, a4, a5, a6

... ...

a1 a2 a3 a4 a5 a6

Figure 6-10: Generic LFSR
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If the LFSR has been correctly designed to reach a maximum length pseudo-random

sequence, any initialization is valid except an all-zero.

In order to demonstrate that pseudorandom sequences can be used efficiently to generate

the settling error signature, a 2nd order modulator is simulated using as input the pseudoran-

dom sequence produced by a LFSR. The length of the LFSR is varied from 4 to 12, taking in

each case a feedback configuration that ensures a maximum length sequence. For each

LFSR length, the settling error test is performed 100 times on the modulator, randomly vary-

ing the modulator behavioral parameters (1st and 2nd amplifier DC gain, slew-rate, band-

width...). According to the settling error test proposed in Section 5 • 1 . 3 . 1 (and

corresponding to test 11 in Appendix A), a random sequence is used because it enables one

to estimate a priori the probability of the occurrence of level 2 at the input of the first inte-

grator. This allows one to infer the settling error directly from the deviation of the output

bit-stream average from the input sequence average. Hence, Figure 6-11 represents the error

(in %) produced by the a-priori estimation of the number of occurrences of a level 2 at the

Figure 6-11: Estimation error of the number of occurrences of level 2, as a function
of the LFSR length
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integrator input, as a function of the LFSR length. Actually, what is represented is the mean

value of the error for the 100 cases simulated for each LFSR length, together with the 3σ

interval. Note that the error remains below 7% in any case. Notice also that the error on the

estimation of the number of occurrence of a level 2 at the integrator input translates to a rel-

ative error on the evaluation of the settling error. It can be easily assumed that determining

the settling error with a 7% precision should be sufficient for most tests. It is thus likely that

the use of a LFSR will not be the limiting factor for a settling error test, at least for small val-

ues of the settling error. This is corroborated by simulating a settling error test with a 5-bit

LFSR, varying the 1st amplifier slew-rate. Figure 6-12 a) shows the settling error evaluated

through Eq (5-13) which, at first sight, perfectly matches the settling error calculated analyt-

ically. Figure 6-12 b), in turn, shows the relative error produced by the proposed evaluation.

It appears clearly that the error remains below 7% except when settling errors are very small

and the measurement error is dominated by quantization noise.

Provided that the input sequence is conceptually similar to the modulator feedback sig-

nal, it has similar requirements in terms of synchronization. More concretely, it should be

ensured that the input sequence does not vary during the clock phase(s) where it is sensed

(this will be addressed further). The best option possibly consists of adding an edge-trig-

gered D-latch that will sample and hold the input test sequence according to the relevant

internal clock edge.

In any case, it is clear that in the case that the test sequences were generated on-chip, the

required hardware will only represent a few logic gates. In particular, it is interesting to com-

pare our requirements with those of the work proposed in [48]. In order to generate a multi-

tone sine-wave, the authors propose to store a portion of a Σ∆ modulator bit-stream in a

recycling register and filter the digital signal issued by a well-designed return-to-zero differ-

ential buffer. Even without considering the analog filter, the authors had to use a 1024-bit

register to obtain a signal with 60dB of SFDR. Our proposal requires two orders of magni-

tude less hardware, considering only the digital part.

Such a small digital circuit is undoubtedly more robust than the circuit under test but for

high reliability applications, the small size of the used register would even permit the use of

TMR (Triple Modular Redundancy) without a large impact in terms of area.
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Figure 6-12: Test of the settling error
a) evaluated settling error
b) evaluation relative error
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6 • 2 THE RESPONSE ANALYSER

The implementation of the response analyser depends on the level of integration which

is required. As was commented above, the proposed test set can be seen as a solution that

enables the use of low-cost digital tester. In that sense, the modulator output bit-stream can

be acquired and processed in software to build the test signatures. At a higher-level of inte-

gration, the signature can be computed on-chip but shifted out for test decision. This could

be the case for a modulator embedded within a SoC, where an on-chip micro controller

could be used to take the test decision. Finally, the signature could be computed on-chip and

compared to a pass-fail limit stored in an on-chip register.

6 • 2 . 1  Signature counters

The signature elaboration consists of summing the input sequence and subtracting the

output over a given number of samples. Hence, it only requires an up/down counter and

some logic gates, as shown in Figure 6-13. A multiplexer can also be introduced to invert the

inputs of the signature analyser. The proposed tests require that two acquisitions be per-

formed in order to cancel input-referred offsets. Subtracting the two signatures can be done

using a single counter and simply inverting its inputs.

The sizing of the counter has to be considered with care. Indeed, it is possible to evalu-

ate what should be the final value of the counter as a function of the worst case that must be

measured. For instance, a leakage test could be designed so as to obtain a signature of 10 in

the nominal case. Let us say that this nominal case corresponds to an 80dB amplifier gain. If

the counter is sized to 100, the signature will saturate for amplifier gains below 60dB

However, the input-referred offset has to be taken into account as it may saturate the

counter before the end of the evaluation. This issue can be circumvented by implementing a

modulo counter. In that case, the size of the counter has to be set higher than the worst-case

signature. This would be an adequate choice whenever the worst case can be defined with

great confidence. In the case depicted above, a modulo 128 counter may be used. The nomi-

nal counter output would be 10 and the counter output for a 60dB gain would be 100. How-
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ever, a defect causing a DC gain of 725 (57.2 dB) would give an output counter of 10, being

wrongly interpreted as an 80dB gain. The modulo counter solution is thus prone to fault

masking.

It may thus be more judicious to implement a saturating counter and set its length

according to the maximum allowable offset. If an offset representing 10% of the full-scale is

allowable and a given test requires the acquisition of 100000 points, a 14 bit counter would

be adequate.

Notice that a unique counter may be used if all the tests are implemented sequentially. In

that case, the counter has to be sized according to the most demanding case. Nevertheless, in

cascaded modulators it may be interesting to test the different stages in parallel in order to

save test time. In that case, one counter per stage should be implemented.

In the case that the settling error tests are implemented with deterministic sequences, it

has been shown that it is necessary to acquire the number of occurrences of a level -2 (or

level 2 for the second acquisition) at the integrator input. A level -2 occurs at instant n at the

integrator input if and only if the input sequence sample at instant n is a -1 (a digital 0) and

the modulator output a 1 (a digital 1). Hence, the counter necessary to acquire this number of

occurrence could be implemented as in Figure 6-14. The length of this counter can be set to

handle a maximum final count of N, where N is the number of acquired points. Indeed, the

integrator input has zero mean. This implies that, for one acquisition, the number of occur-

rence of level -2 cannot be greater than N/2. Similarly, for the second acquisition (necessary

to get rid of the input-referred offset), the number of occurrence of level 2 cannot be greater

than N/2. Hence, the final value of the counter at the end of the two acquisition cannot be

greater than N. Notice that this is the worst case as it supposes that the number of occur-

rences of a level 0 is null, which is highly improbable.

up

down
counter

output bit-stream (y)

input sequence (x)

Figure 6-13: Hardware required for the signatures
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Notice that the leakage test for a multi-bit modulator requires us to implement an accu-

mulator with a multibit input instead of a counter. This obviously requires more hardware

than for a single-bit modulator. Moreover, the summing operation has to be realized at the

modulator’s speed and a combinational implementation is thus likely.

6 • 2 . 2  Using a decimation filter

Our aim has been to design simple digital tests for Σ∆ modulators, with the goal of

being as general as possible. From the architectural point of view, the proposed tests are

valid for any cascade of 1st and 2nd order sections. Research is still necessary to extend the

tests to generic architectures. However, the proposal is not limited by the actual usage of the

modulator. The digital tests were designed with cost-effectiveness in mind. The objective

was to provide a full-BIST implementation that would be suitable even for stand-alone Σ∆

modulators, which is the most demanding case as the test hardware has to be compared with

the modulator alone.

Nevertheless, for Σ∆ converters (that gather a Σ∆ modulator and a decimation filter), the

resources available on-chip may be exploited for test purpose. Indeed, it has been repeated

throughout the manuscript that the test are designed such that the signatures sense the devia-

tion of the output bit-stream mean value from the input sequence mean value. Hence, as the

mean value of the input sequence is known a-priori, all the relevant information is present in

the DC component of the output bit-stream. The task realized by the signature up/down

counters is nothing more than filtering the quantization noise and tones in the output

bit-stream to isolate the DC components. For instance, it has been pointed out in Section 4 •

1 . 3 . 1 that the number of acquired points should be ideally chosen such that it is a multiple

of the input sequence length, in order to minimize the signature error. The reason for this can

+ incremental counter
output bit-stream (y)

input sequence (x)

Figure 6-14: Counter of level 2 (-2) number of occurrences at the integrator input

invert
268



Practical implementation concerns
be easily interpreted in the frequency domain. The operation realized by the counter is actu-

ally a sinc (cardinal sinus) filtering, which takes the following form in the z-domain,

, (6-6)

where N is the number of averaged points.

If N is chosen such that it is a multiple of the selected test sequence period, it implies

that the sinc filter implemented by the counter has zeros at all multiples of the input

sequence fundamental frequency. Hence, the contribution of the input sequence harmonics

in the test signature are efficiently filtered.

This new frequency-domain focus on the signature leads to a natural question: if the

goal of the counter is mainly to remove the quantization noise, would not it be more efficient

to use the converter decimation filter? Indeed, the decimation filter is designed specifically to

remove the modulator quantization noise. It is likely that it performs the desired filtering

operation better than a first order filter (i.e. a counter).

The only drawback is that the decimation filter is usually not programmable and is not

optimized for any input sequence period. This is a particular concern for low OSR, as it is

possible that the fundamental frequency of the test sequence fall into the base-band. One

solution to this issue could be to add a first order filter at the decimation filter output that

would take the average of the required number of samples. For example, if the input

sequence is of length 6, the number of filter output samples to be averaged could be 6 (or any

multiple of 6).

Whether the decimation filter is adequate or not to build signature is a matter of the

required sensitivity of the output bit-stream DC component. Let us take an example. The

leakage test signature for an ideal second order modulator is

. (6-7)

This signature can be interpreted in terms of DC components. Assuming that the deci-

mation filter is good enough to isolate the DC level of the modulator output bit-stream, the

filter output can be written as
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(6-8)

where Q is the mean value of the input sequence. The condition for the filter output to be

sensitive to leakage is thus that the term 2Q∆p1 in Eq (6-8) be greater than one effective

LSB. If the decimation filter is designed such that an effective resolution of ENOB-bit is

obtained, the condition can be written as

. (6-9)

For an ideal decimation filter and an ideal 2nd order single-bit modulator, the theoretical

effective ENOB can be calculated as

, (6-10)

where OSR is the over-sampling ratio. This gives an measure of the minimum integrator

leakage that could be detected for a given OSR

. (6-11)

Furthermore, the amount of quantization noise that leaks into the baseband for a given

leakage can be calculated as

. (6-12)

Hence, the minimum detectable leakage corresponds to a noise degradation of

. (6-13)

According to expressions Eq (6-11) and Eq (6-12), we can say that for larger OSR the

resolution of the Σ∆ converter increase. As a result, integrator leakage can be detected with

more precision. On the other hand a given pole error results in a greater SNR loss for higher

OSR. Eq (6-13) allows us to conclude that the benefits of a large OSR for the leakage test

overweigh the major SNR loss for an given pole error. Nevertheless, for a low OSR such as

16, the decimation filter should be sufficient to detect leakage that would cause a 0.03dB

SNR loss with an input sequence whose mean value is Q=0.5.
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This was verified by simulation. Figure 6-15 shows the signatures obtained by simula-

tion of a second order modulator as a function of the first integrator pole error, for an OSR of

80 and for an OSR of 512. We see clearly that the results for an OSR of 512 almost perfectly

match the expected signature that is represented by the solid curve on the figure. In turn, the

results for an OSR of 80 exhibit more dispersion.

Figure 6-16 shows the evolution of this dispersion as a function of the OSR. Note that

increasing the OSR drastically reduces the dispersion and thus allows us to detect smaller

pole errors.

For a cascaded modulator of order L, with a second order modulator as the first stage,

the quantization noise leaking into the baseband due to a pole error in the first integrator can

be calculated as

, (6-14)

where ∆1 and ∆n are the quantizer step of the first and last stage, respectively; d is a factor

greater than unity that depends on the cascaded architecture.

Figure 6-15: Leakage test signature for two OSR values
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Hence, in the case of a cascaded modulator, the SNR loss associated with the minimum

detectable leakage is

. (6-15)

Here, things are different than for a 2nd order modulator alone. Indeed Eq (6-15) shows

that the SNR loss associated with the minimum detectable pole error will increase with the

OSR if the order of the cascaded modulator is higher than 3.

For instance, taking d=2, Q=0.5 and ∆1 = ∆n= 1, we see that the SNR loss associated

with the minimum detectable pole error with the decimation filter at OSR=16 would be

0.25dB for a 3rd order modulator, 4.7dB for a 4th order, and 18dB for a 5th order. Hence, we

conclude that the detection of pole errors that have a significant impact on performance in a

cascaded modulator of order higher than 4 would require more filtering than the one pro-

vided by the decimation filter. This may be done by simply averaging some words at the fil-

ter output.

Figure 6-16: Leakage test signature dispersion as a function of the OSR
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In any case, the interest of re-using the decimation filter not only resides in hardware

savings but also in test time reduction, as much fewer samples are necessary to reach a given

precision with the decimation filter than by simply averaging the output bit-stream. Let us

consider the brief example of a simple 2nd order modulator with a 3rd order comb filter. A

comb filter of order n can be seen as a cascade of n moving-average blocks. The length of

the window on which the average is performed defines the cut-off frequency. If fs is the oper-

ating frequency of the filter, a running average of k samples corresponds to a cut-off fre-

quency of fc=fs/2k. In order to properly settle, such a filter requires n*k samples. Indeed, k

input samples are needed to perform a running average. Hence, each one of the n stages

introduces a latency of k samples. For our example, the comb filter is of 3rd order and has to

cut at a frequency of fc=fs/(2OSR). It thus requires 3OSR samples to settle properly and to

obtain a valid signature.

Equation (6-11) gives the expression of the minimum detectable pole error with the dec-

imation filter. The question is how many samples would be needed to detect such a pole

error with a simple counter. If we do not consider quantization noise for the sake of simplic-

ity, the minimum detectable signature would be equal to 2. Hence, the number of acquired

samples should be such that

. (6-16)

Introducing Eq (6-11), we find that the number of samples required to detect ∆pmin with

a counter is

. (6-17)

It can be verified easily that the test time required using the decimation filter is lower

than that of the counter for any OSR above 6 (which means almost in any case). The reader

should not conclude, though, that the use of a counter is significantly worse than the decima-

tion filter. Indeed, the settling time of the decimation filter is a fixed quantity while the num-

ber of samples averaged by a dedicated counter can be tuned. If the test only requires the

detection of a pole error equal to 10 times ∆pmin, the number of averaged samples can be

divided by 10 while the settling time of the filter will remain unchanged.
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Concerning the settling error test, it can in principle benefit from the decimation filter in

the same way as the leakage test. However two important things have to be taken into

account. If the test is carried out using a deterministic sequence with a short period, it is still

necessary to implement a counter to acquire the number of occurrence of level 2 (or -2) at

the integrator input. Indeed the decimation filter only provides the numerator of Eq (5-13).

Another important aspect to take into account is that the decimation filter has to be driven by

the same modified clock as the modulator; otherwise the bits at the modulator output that

coincides with a level 2 (or -2) at the input of the integrator would be counted twice in the

signature. That constraint, though, does not represent much of an issue.

Unlike for integrator leakage, it is difficult to assess if a given decimation filter is suffi-

cient to detect the minimum settling error that would have an impact on performance.

It has been shown in Section 5 • 1 . 1 . 2 that the first integrator settling error can be

referred to the modulator input and translates into a distortion term. The expression of the

INL as a function of the DC input v is

(6-18)

where er(x) is the integrator settling error for an input x. One might expect that the maxi-

mum INL should be obtained for the maximum integrator settling error but this is not the

case. The settling error for an integrator input of 2 is the highest, but the probability of

occurrence of a level 2 at the integrator input tends to zero. Actually, experience says that the

INL curve of Σ∆ modulators is usually close to a 3rd order polynomial. The location of its

maximum and minimum depend on the modulator but a value of 2/3 of the full-scale is a

good example. In this case, the maximum INL could be evaluated as

. (6-19)

To a first approximation, it can be assumed that the integrator settling error associated

with a -1/3 integrator input level is order(s) of magnitude smaller than the settling error asso-

ciated with a 5/3 input level.

For a settling error test performed with a random input sequence, we have seen that the

signature was of the form

. (6-20)
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If the same test is performed using the decimation filter to sense the DC component

deviation in the output bit-stream, the equivalent signature would be

. (6-21)

This equivalent signature would be obtained with a precision of 1 effective LSB.

It can be seen that

. (6-22)

If the INL is high enough to impact the ADC, it implies that the maximum INL should

be greater than 1 effective LSB. In this case, the decimation filter would be sufficient to per-

form the settling error test.

6 • 2 . 3  Additional manipulations

In most cases, the best option would probably be to ship the signature counter values

off-chip and process the results to make the test decision. The counter values would not have

to be shipped at the modulator full-speed and therefore this operation would thus not be

demanding at all for a simple data analyzer. Furthermore, such an option allows one to have

in hand the signatures that are proportional to the different behavioural parameters and make

some kind of “analog” test decision. Indeed, it is not the same to obtain a leakage signature

for the third amplifier that is greater than the nominal test limit in 1 count than to obtain a

leakage signature that saturates the counter.

If the test decision has to be implemented on-chip, it will require more hardware. If the

settling error tests are carried out with a deterministic sequence, it has been seen in Section 5

• 1 . 3 . 1 that a rigorous evaluation requires the division of two counter results (see for

instance Eq (5-13)). Implementing a high-speed divider may require an important amount of

hardware. However, that is not the case here as the operation is carried out on the counter

results after the acquisition. Therefore, it does not have to be realized at full-speed and a

sequential implementation is thus much more interesting. For a full-BIST implementation, it

is also necessary to store the pass-fail limits for the selected tests in on-chip registers and to

compare the resulting signatures in order to generate the corresponding test results.
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6 • 3 THE MODULATOR MODIFICATIONS

The proposed digital test set can be contemplated at different level of integration. In a

full-BIST approach, both the stimulus generator and the signature analyzer should be imple-

mented on-chip. In a partial BIST approach, only one of the two would be implemented

on-chip. Another possibility would be to use a low-cost digital ATE that would perform both

operations; in this case it would not be a BIST at all. But in all these cases, some modifica-

tions of the Σ∆ modulator would have to be performed to enable the digital tests. These mod-

ifications, as explained in chapter 3, should not substantially alter the modulator design flow.

The proper modification of the Σ∆ modulator has to consider three basic points:

◆ disabling the integrator’s nominal input

◆ enabling a digital test input, and

◆ modifying integrator branch coefficient if required

We will try to address these points separately but it will quickly appear to the reader that

the modifications should be considered as a whole during the design phase, considering the

unavoidable trade-off between simplicity and efficiency.

6 • 3 . 1  Modifying the switch control

In order to use a digital input to test the modulator, the regular input has to de disabled

during test mode. This can be performed easily with a AND gate and a configuration bit, or

even with a simple multiplexer, as shown in Figure 6-17, where φ1 represents the sampling

phase and cfg is the configuration signal that enables the input.

It could be argued that such a modification is undesirable because clock gating induces

an increase of jitter noise. However, this is irrelevant in our case for two reasons. Σ∆ modu-

lators work at a high sampling rate but their input signal bandwidth is usually much lower

than this frequency (by the factor OSR). As a result, the jitter associated with the modulator

clock is usually small enough when referred to the maximum input signal frequency. Actu-

ally, for an input sine-wave of amplitude A and frequency fb, the power of the jitter noise in

the modulator base-band can be written
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, (6-23)

where σt is the jitter standard deviation (in s). Considering the worst-case of a full-scale

sine-wave of maximum allowable frequency fb=fs/2/OSR, and expressing the jitter standard

deviation as a fraction of the modulator clock period σt=σj/fs, we find that

. (6-24)

It appears clearly that jitter is an issue only for high-speed applications that require the

design of a modulator with low OSR and high operating frequency, for which a low σj is dif-

ficult to obtain.

What is more important is that the input switches that are gated are not those that define

the sampling instant. Indeed, a common practice consists of opening the switch that con-

nects the sampling capacitor to the amplifier virtual ground slightly before the input switch,

as represented in Figure 6-18. This is done to minimize the effects of charge injection. As a

result, the sampled voltage is the input voltage at the falling edge of the virtual ground

switch control. In any case, the additional AND gate only adds an extra delay with respect to

this falling edge and thus goes in the right direction. The only limitation is to ensure that the

delay introduced by the gate is less than the non-overlapping inter-phase.
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When applied to the second integrator in a second order modulator, the modification of

the integrator input switch control allows one to reconfigure the second order modulator into

a first order modulator. In that way, the second integrator can be tested using the tests devel-

oped for first order modulators.

While the study of the proposed test has been limited to 2nd and 1st order modulators

(and their combinations in cascaded modulators), the concept may also apply to higher order

modulators. The different integrators in the loop may be tested by reconfiguring the modula-

tor in a lower order. However, the reconfiguration and its impact on the test should be stud-

ied with care because higher order modulators usually introduce some kind of local

feedback or feedforward loops that may not be easily disabled.

6 • 3 . 2  Reusing or replicating the DAC

Once the nominal input of the modulator is disabled, it is necessary to enable the digital

test input. In order to input a digital sequence to the Σ∆ modulator, be it periodic or

pseudo-random, a single-bit DAC has to be used. Depending on the integrator topology, it is

possible to replicate the DAC to substitute the nominal input or to re-use the feedback DAC

during the sampling phase.

Figure 6-18: Integrator input switch - clock gating effects
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6 • 3 . 2 . 1  Peculiarity of the single-bit DAC

As a matter of fact, a single-bit DAC for switched-capacitor circuits is actually a simple

multiplexer that connects either a positive reference voltage or a negative reference voltage

to the output node, as seen in Figure 6-19. Such a DAC could be connected to any input of

the different integrator topologies. However, it appears that the DAC switches and the inte-

grator input switches are connected in series, which is not optimum for passive sampling. It

is thus usual practice to combine the multiplexer operation of the DAC with the function of

the integrator switch, as illustrated in Figure 6-20 (Notice that the single-ended implementa-

tion is represented for the sake of simplicity without loss of generality). We will see how this

modification can be further extended for test purposes.

6 • 3 . 2 . 2  Single-branch integrator

For a single-branch integrator, it appears obvious from Figure 6-21 that replicating the

DAC to replace the nominal input or re-using the feedback DAC during both phases is func-

tionally equivalent.

During normal operation, the input voltage is sampled on the input capacitor during φ1

while the feedback value is sent to the integrator during the integrating phase φ2. In test

mode, the nominal input is disabled so the DAC could be replicated to replace the nominal

input, as in Figure 6-21 a), or simply re-used during phase φ1 as seen in Figure 6-21 b). This

latter solution implies a modification of the DAC controls so that the DAC is driven by the

test sequence during φ1 and by the feedback during φ2. Replicating the DAC is possibly the

simplest solution from a design viewpoint but may be slightly more expensive if large

switches are required to provide proper settling. On the other hand, re-using the DAC during

both phases requires that some care be taken with the timing of switch controls as more

DAC

Vrefp

Vrefn

Y

out
outY

Figure 6-19: Single-bit DAC implementation
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clock gating is required. The observations with respect to clock gating for disabling the

nominal input also stand for the DAC modification.

6 • 3 . 2 . 3  Double-branch integrator

Things are different for a double-branch integrator. Indeed, the nominal path is affected

by a different coefficient than the feedback path. Even if the two branches are designed with

the same capacitor, mismatch will inevitably lead to coefficient differences. If the DAC is

replicated to play the role of the nominal input, as in Figure 6-22 a), the gain error between

the two branches will lower the precision of leakage tests. Indeed, the gain error would man-
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Figure 6-20: a) direct connection of the feedback DAC to the integrator
b) combination of the DAC with the integrator input switch
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ifest itself in the leakage test signature in the same way as integrator leakage, leading to fault

masking. The settling error test would not be significantly affected. Conceptually, the inte-

grator would not see only three levels (-2, 0 and 2) but four, as the multiplicity of level 0

would be suppressed (-a-b -a+b a-b a+b, with a<b). In any case, the settling error associated

with levels a-b and b-a could be considered negligible with respect to the other two cases.

Hence applying the test without modification would yield the settling error associated with

level a+b.
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Figure 6-21: Digital sequence input for a single-branch integrator
a) DAC replication
b) DAC re-use
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Figure 6-22: Digital sequence input for a double-branch integrator
a) DAC replication at the input branch
b) DAC re-use at the feedback branch
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Another solution consists of using only one branch during the test mode and either reus-

ing or replicating the feedback DAC at the feedback capacitor, as seen in case b) of

Figure 6-22. In this case, the leakage test could be performed without ther capacitor match-

ing problem.On the other hand, the modified transfer function of the integrator must be taken

into account for the signature calculation.

Mixing the two approaches to allow the test sequence to be input in either of the two

branches would allow one to test for branch coefficient errors. However, we will let this pos-

sibility be studied in future work.

6 • 3 . 2 . 4  Double-sampling integrator

More care has to be taken if the double-branch integrator makes use of double-sampling.

Double-sampling is used to relax the capacitor values in fully-differential implementations,

as seen in Figure 6-23. As they are used during both phases, their values have to be divided

by two to implement the same coefficient as in a single-sampling case.

According to Figure 6-23, the z-domain transfer function of the integrator can be written

. (6-25)

Consider Y in this equation as the DAC output and not as its digital input.

To input the digital test sequence, one solution consists of disabling the double-sampling

on the feedback path and driving the DAC with the test sequence during one of the two

phases, as seen in Figure 6-24. This may be valid for the leakage test but some care has to be

taken as disabling the double-sampling reduces the effective gain of the integrator. During

test mode, the transfer function of the integrator of Figure 6-24 becomes

. (6-26)

The transfer function of the modulator during test mode would thus have to be re-calcu-

lated. On the other hand, we have seen that such a modification should be favorable with

respect to the integrator output excursion.

In order to avoid the previously commented gain mismatch error between the two

branches, an alternative approach consist of using the two branches for both the test
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sequence and the feedback, as seen in Figure 6-25. In this figure, this is done by adding an

extra signal switch that puts the two capacitors in parallel. In order to avoid switches in

series, another solution would consists of replicating the DAC at the nominal input branch

and enabling it only during test mode. As a matter of fact, such a modification would also

modify the transfer function of the modulator by effectively averaging the two branch coeffi-

cients. Indeed, for the integrator of Figure 6-25 and during test mode the transfer function

becomes

. (6-27)
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Figure 6-24: Disabling double-sampling to input a digital sequence
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6 • 3 . 2 . 5  Other architectures

Apart from those already described, there exist other integrator architectures as:

◆ For instance, an integrator can implement a mix of single/double sampling.

◆ Dynamic Element Matching is sometimes used either to randomize or modulate

unit capacitor mismatch and to provide effective matching when two (or more) dif-

ferent branch coefficients are required.
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Figure 6-25: Disabling double sampling and connecting both input capacitors.
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Practical implementation concerns
◆ The integrator may use a chopped amplifier or correlated double-sampling to avoid

an offset. In this case, it would be unnecessary to perform two acquisitions for each

test as the offset should be cancelled by design.

Each architecture may require a particular treatment, but the guidelines depicted for the

most general cases above should help to find a convenient solution.

6 • 3 . 2 . 6  DAC control implementation

In the previous case studies, DAC switches have been represented as being driven by

combinational logic, that involved static configuration signals as well as dynamic signals

such as clock phases or digital sequences (the test sequence and the modulator output

bit-stream).

In addition to the timing concerns related to clock gating that were discussed in Section

6 • 3 . 1, there are still some points of interest:

◆ The configuration signal cfg is used to select either the nominal configuration,

where the DAC is driven only by the modulator output bit-stream, or the test config-

uration. Hence, it may be interesting to implement such an OR function with trans-

mission gates, that is to say using a multiplexer.

◆ The clock phases φ1 and φ2 are non-overlapping. This can lead to some simplifica-

tions as they will never be at 1 at the same time. For instance, it is possible to imple-

ment a wired-OR function.

These possibilities are illustrated in Figure 6-26 which represents an example of

alternative DAC control implemented with transmission gates.

Figure 6-26: Implementation of DAC control with transmission gates
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CHAPTER 6
◆ The digital sequences have to be properly synchronized. For the modulator output

bitstream Y, this is almost straightforward as it usually comes out of a latch that is

properly clocked by the modulator phases. However, it must be ensured that the

input sequence that drives the DAC does not change in the middle of the active

phase (either φ1 or φ2). If the test sequence is generated on-chip, this synchroniza-

tion may be obtained by design. However, if it is generated by an off-chip pattern

generator, the test sequence should be properly sampled and held (by an edge-trig-

gered D-latch for example).

6 • 3 . 2 . 7  Insert zeros in the test sequence

In some test proposals is the previous two chapters, it is necessary to use sequences that

introduce an analog zero. Hence a 3-level DAC has to be built instead of a 2-level DAC. For-

tunately, most Σ∆ modulator are fully-differential and generating an accurate zero is not a

difficult task: the analog ground can simply be sampled by the two branches. The control of

the DAC would also have to be modified and the test sequence should be defined with two

bits. Figure 6-27 shows an example where the -1/1 sequence is defined by the digital SEQ

signal as above and the zero “insertion” is controlled by the digital Z signal. It can easily be

seen that the Z signal has priority on the SEQ signal, meaning that when Z is set to 1, the

DAC outputs a zero, whatever the value of SEQ.

Figure 6-27: Example of implementation of a 3-level test DAC
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Practical implementation concerns
6 • 3 . 3  Integrator gain scaling

It has been pointed out at the beginning of this chapter that the use of digital sequences

as test stimuli may require us to scale down the integrator(s) coefficients in order to avoid

integrator clipping. In two-branches integrators with double-sampling, we have seen that

disabling double-sampling would effectively divide the integrator gain by two. However, it

may be necessary to introduce more flexibility in the choice of the coefficients. A solution

also has to be provided for other integrator topologies.

In order to provide good capacitor matching, large capacitors are usually built as an

array of identical unit capacitors. Branch coefficient are thus built as fractions of unit capac-

itors. For instance, if the integrating capacitor is composed of 6 unit capacitors, the sampling

capacitor of the first branch of 3 unit capacitors and the sampling capacitor of the second

branch of 2 unit capacitor, the first branch coefficient is 1/2 (3/6) and the second branch

coefficient is 1/3 (2/6).

A straightforward solution to branch coefficient down-scaling consists of disconnecting

part of the sampling capacitors during test mode. For that to be done, an additional switch

could be implemented in series with the unit capacitor that has to be disconnected. Another

solution would consist of implementing the sampling capacitor as two branches instead of

one. These two solutions are represented in Figure 6-28. When the configuration bit (cfg) is

set to 0, the gain of the integrator is scaled by a factor 3/4. The first solution (case b) is

undoubtedly the simplest. However, the extra switches that are introduced in series with the

conventional switches may put additional requirements on the settling during normal opera-

tion. In many cases, though, this should not be an issue as the settling bottleneck is much

more on the side of the amplifier than on the side of the passive sampling. For demanding

cases, the second solution (case c) would give better results as it does not require one to put

switches in series. The downside is increased complexity because of the logic gates that have

to be introduced and the doubling of the input switches. Notice, though, that the design has

to be treated as two-branches. The width of the sampling switches can thus be scaled-down

with respect to the original one-branch configuration.

Downscaling branch coefficients may solve the output range issue during the test mode

but it appears that, in most cases, it requires one to modify the original design further than
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simple switch control modifications. Furthermore, some capacitors are not used (and thus

not tested) during the test. In that sense, branch coefficient downscaling should be consid-

ered as the last option unless it relies on a double-sampling reconfiguration.

6 • 3 . 4  Altering the clock phases

For the settling error test that was proposed in Chapter 5, we require that the sampling

and integrating phases are modified on a sample basis, as a function of the integrator input.

More concretely, the duration of the phases must last twice as much as the nominal for a

level 2 (or alternatively -2) at the integrator input.

Level 2 occurs at the integrator input if and only if the input sample is 1 and the feed-

back sample (i.e. the modulator output sample) is -1. Hence, the modulator clock should be

Xp

Xn

Yp

Yn

Figure 6-28: a) single-branch integrator;
b) gain scaling by simple capacitor disconnection;
c) gain scaling by reconfiguration into a two-branch integrator.
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Practical implementation concerns
modified when such a case is detected. The drawback of this approach is that it requires one

to detect the modulator output and generate the correct phases on-the-go. For high operating

frequencies this may be troublesome. Fortunately, the scheme can be modified slightly in

order to alter the clock phases as a function of the input sequence alone. Indeed, if the phase

duration is doubled for all input samples equal to 1, it will necessarily be doubled for a level

2 at the integrator input. It will also be doubled for the level 0 that corresponds to the combi-

nation of a 1 input and a 1 feedback. However, the settling error for a level 0 is negligible

with respect to the settling error for a level 2, so the doubling of the clock phases for this

combination will not have any effect on the signature.

Thanks to this slight correction, the settling error tests can be performed with a simple

digital ATE without the need for clocking modifications, as shown in Figure 6-29. Σ∆ mod-

ulators necessarily implement a non-overlapping phase generator that ensures the correct

synchronization of the different switches. This generator relies on an input reference clock

that is provided externally. It is possible to calculate a-priori the modification of the refer-

ence clock timing in order to provide the correct phase duration as a function of the digital

Figure 6-29: Generation of the modulator sampling and integrating phases
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input sample. In Figure 6-29, the reference clock and the test sequence are generated for a 1

0 1 1 0 0 sequence. For an 1 input sample the duration of the reference clock period is dou-

bled (and thus equal to two ATE master clock periods) while for a 0 input sample it remains

equal to one ATE sequence period.

On the other hand, if the digital tests are to be implemented in a full-BIST scheme, the

input sequence, and the sampling and integrating phases φ1* and φ2* have to be generated

on-chip. Figure 6-30 shows how they could be generated using a Finite-State-Machine

(FSM). A digital multiplexer allows one to select between 3 modes. For the normal opera-

tion mode, a zero is sent to the input of the FSM and the phases φ1* and φ2* are independent

of the input sequence. For the first test mode, the opposite of the stored sequence is sent to

the FSM such that the phases duration is doubled when the input sample is 1. Finally, for the

second test mode, the stored sequence is sent to the FSM and the phases duration is doubled

when the input sample is a -1 (i.e. a logic 0). As a matter of fact, the FSM presented in

Figure 6-30 is nothing other than an input-dependent frequency divider.

1 0 1 1

input 0

FSM

sequence
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clock

clock

f1/f1
* f2/f2

*

b0 b1

reset

reference

shift

clock

2 bit
counter

ctrl

ctrl
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Figure 6-30: Generation of the modulator sampling and integrating phases
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Practical implementation concerns
This chapter has provided guidelines for the implementation of the test proposal,

addressing issues that the designer would meet for its inclusion in a wide variety of cases.

The key message of this chapter is that the modifications of the modulator by themselves

only concern the control logic for some switches that are not critical for timing. The only

extra analog hardware that may be required for test purposes is signal switches (in the case

that a three-level DAC had to be introduced, or if the feedback DAC had to be replicated),

which will not alter either the performance or the robustness of the modulator. The number

of additional logic gates, even including test sequence and signature generation is also insig-

nificant.
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hapter 7C

PROTOTYPE AND EXPERIMENTAL RESULTS

The principal goal of this chapter is to present experimental verification of the proposed

test set. For that, a 2-1 cascaded modulator with a sampling clock at 2MHz has been

designed and implemented in a AMS 0.35µm CMOS technology for a 3.3V supply.

In the first part of the chapter, the design of the prototype is presented as a particular

case of the guidelines provided in previous chapters. Then several experimental results are

presented which demonstrate that the proposed test set behaves as expected



CHAPTER 7
7 • 1 PROTOTYPE DESIGN

In order to validate the test proposal, the 2-1 cascaded modulator shown in Figure 7-1

has been chosen. This architecture presents the possibility to re-use the same 0.5 gain inte-

grator. The resulting modulator is not optimized in terms of power because the second and

third integrators have less demanding requirements than the first and could be scaled down.

On the other hand, re-use of the integrator has no impact on the test strategy and is not

required by the test. Apart from the obvious savings in design time, re-using the same inte-

grator also allows us to verify the consistency of the test results for the three integrators. The

first stage is thus a single-bit 2nd order modulator like the one proposed by Boser and

Wooley in [26]. The second stage is a 1st order single-bit modulator with an integrator gain

of 0.5.

In cascaded modulators, the additional stages usually digitize the quantization error of

the previous stage. However, this implies that we reconstruct such a quantization error taking

into account the quantizer effective gain. Such a reconstruction forces one to use an integra-

tor with at least two branches. As we wanted to re-use the same single-branch integrator as

in the first stage, we decided to digitize the input of the first stage quantizer instead of the

quantization error. As a result, it can be shown that for the architecture of Figure 7-1 the

required reconstruction filter is

, (7-1)

where Y1 and Y2 are the output bit-stream of the first and second stage respectively. With

such a filter, the modulator output corresponds to

. (7-2)
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Prototype and experimental results
Figure 7-1: 2-1 cascaded Σ∆ modulator
a) z-domain representation
b) switched-capacitor implementation

0.5 z-1

1-z-1

0.5 z-1

1-z-1

0.5 z-1

1-z-1

Y1

Y2

C1
C2

Y1

Y2

C1
C2

C1
C2

b)

a)

V
re

fp

V
re

fn

V
re

fp

V
re

fn

V
re

fp

V
re

fn
V

re
fp

V
re

fn

V
re

fp

V
re

fn

V
re

fp

V
re

fn

Y1 Y1 Y1 Y1

Y2 Y2

Y1 Y1 Y1 Y1

Y2 Y2

A

B

C

D

E

F

G

H

I

J

K

L

297



CHAPTER 7
7 • 1 . 1  Amplifier design: The “fault” injection mechanisms

In order to validate the test and to demonstrate the sensitivity of the proposed signatures

to the chosen behavioural parameters, we implement mechanisms that emulate parametric

faults.

The proposed tests target parameters that are related to the amplifier. Therefore, we

decided to implement an amplifier with tuning inputs that can vary its characteristics. The

selected architecture was the folded cascoded amplifier with two tuning inputs shown in

Figure 7-2. In this figure the aspect ratios of the different transistors are shown as well as the

currents for a balanced input. The first tuning input (Vtweak1) controls the bias current of the

first stage differential pair through I1, while the second one (Vtweak2) controls the extra cur-

rent injected in the folded cascoded stage through I2.

As a fully-differential amplifier, this requires common-mode feedback. For the sake of

simplicity, a classical switched-capacitor network was used. In steady-state, the voltage of

the common-mode feedback node Vbias should match the reference voltage Vref.

Under nominal conditions, that is, when Vtweak1 and Vtweak2 are set to 2.23V, the

supply voltage to 3.3V and the temperature to 25ºC, the amplifier performance is as dis-

in+ in-

out-
out+

Vbias Vref

Vtweak2Vtweak1

Figure 7-2: Schematics of the amplifier with parametric fault injection mechanism-
through Vtweak1 and Vtweak2
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Prototype and experimental results
played in the second column of Table I. In the same table are also displayed the results

obtained in the worst corner cases:

◆ worst-speed (supply=3V, T=85ºC)

◆ worst-power (supply=3.6V, T=-20ºC)

◆ worst-zero (supply=3.3V, T=25ºC)

◆ worst-one (supply=3.3V, T=25ºC)

Monte-Carlo simulation also showed that the maximum offset should be 5mV.

These performance parameters of the amplifier vary over a broad range with the two

tuning voltages, Vtweak1 and Vtweak2. This can be seen in Figure 7-3 which shows the varia-

tion of the amplifier DC gain, gain-bandwidth product and slew-rate as functions of the tun-

ing voltages. Roughly speaking, we can say that varying Vtweak2 mostly influences the

amplifier DC gain while varying Vtweak1 mostly affects the amplifier dynamics (i.e. the

GBW and SR). For Figure 7-4 the two tuning inputs were set to the same voltage and that

voltage was varied from 1.7V to 2.6V; hence, this corresponds to the parameter values on the

diagonals of Figure 7-3.

Although the inclusion of the tuning inputs require 6 additional pads in the prototype (2

for each amplifier), these pads are necessary only to validate the tests but they do not form

part of the test hardware requirements.

Table I: amplifier behavioural parameters at the process corners
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DC gain 83dB 97dB 58dB 70dB 88dB

Gain-Bandwidth 78MHz 8MHz 210MHz 106MHz 58MHz

Slew-rate 82V/µs 54V/µs 208V/µs 110V/µs 70V/µs

Output range at
half DC gain

+/- 1.71V +/- 1.52V +/- 1.65V +/- 1.55V +/- 1.82V
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Figure 7-3: Iso-levels of amplifier parameters when varying the two tuning inputs

Figure 7-4: Amplifier characteristics versus tuning voltage for Vtweak1=Vtweak2
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Prototype and experimental results
7 • 1 . 2  The integrator

The integrator that is re-used across the modulator is depicted in Figure 7-5. It is a sin-

gle-branch integrator that implements a gain of 0.5. The value of the unit capacitor was

0.4pF. The input capacitors use 2 unit capacitors and the feedback capacitors use 4 unit

capacitors. All the switches are CMOS. Their resistance varies in the range 2-8.8kΩ for DC

operating points varying between 0.65V and 2.65V, which represents twice the modulator

full-scale. In the worst-speed corner, the maximum resistance increases up to 18kΩ. In the

worst case, the RC passive sampling time constant, considering two switches in series with

the input capacitor, is close to 30ns, which is one eighth of the sampling duration (one half

of a period of 2MHz clock).

For the single-branch fully differential architecture, the thermal noise contribution

related to sampling can be written as

. (7-3)

Considering a OSR of 50 and a Full-Scale of +/- 1V, this leads to a maximum SNR

slightly greater than 16bits.

If we consider the contributions of the amplifier referred noise, we find that the total

input-referred thermal noise would lead to a maximum SNR of about 15bits (for the same

OSR and Full-Scale).
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Figure 7-5: Single-branch integrator
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Figure 7-6: Integrator response to an input pulse, for 3 values of the tuning voltages
a) full-scale representation
b) close-up on the step edge
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Prototype and experimental results
In order to see the effects of the amplifier tuning voltages at the integrator level,

Figure 7-6 shows the transient response of the integrator to an impulse. This transient

response was obtained from post-layout simulation. For an ideal integrator, the response

should be a perfect step, but due to leakage the step exhibits a small decay. The integrator

pole error can be measured from the slope of this decay. As could be expected, it can be seen

that the decay and the integrator settling vary with the tuning voltage. For the two highest

value of the tuning voltages (Vtweak1=Vtweak2=2.23V or 2.5V), the difference in slope cannot

be distinguished on the figure but can be measured. Conversely, the decay for the lowest tun-

ing voltages can easily be appreciated on Figure 7-6 case a). On the other hand, it can be

seen on Figure 7-6 case b) that the settling of the integrator is slower for the highest value of

the tuning voltages. In particular, it can be seen how the Slew-Rate has decreased. For the

two lowest values, only small settling differences can be appreciated in the figure.

7 • 1 . 3  The phase generator

Four phases and their inverses are used to drive the integrators properly. The two main

non-overlapping phases φ1 and φ2 define the sampling instants. Two additional phases φ1d

and φ2d are also generated which differ from φ1 and φ2 in having a slightly delayed falling

edge. These are used to disconnect the front-end switches slightly after the switches that are

connected to the amplifier input. In that way, the latter are the switches that define the effec-

tive sampling instants, and signal-dependent charge injection is minimized. The clock gener-

ator is represented in Figure 7-7.

Figure 7-7: Non-overlapping phase generator
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7 • 1 . 4  The comparator

The comparator is a simple dynamic latch, as represented in Figure 7-8, since its offset

is not critical for proper operation of the modulator. Actually, the main consequence of the

comparator offset is that it will shift by the same amount the mean value of the preceding

integrator output. Taking into account that the variations of the integrator output remain

unchanged, the comparator offset can slightly modify the output range requirements. Fol-

lowing the comparator, a D-latch cell samples and holds the data such that the feedback is

provided with the correct delay.

Monte-Carlo simulations show that the maximum (3σ) offset is lower than 60mV, which

is sufficiently low to be tolerated by the output range of the integrator.

7 • 1 . 5  The DfT modification

For the design of our prototype, it was preferred to generate the test sequences and the

signature off-chip. This gives much more flexibility for validation purpose than implement-

ing a limited number of on-chip sequences and fixed-length counters.

The possibility to introduce an analog zero in the test sequence was also added to the

prototype and two test pads are thus required to define the sequence. The output bit-streams

of the two stages are readily accessible as the reconstruction filter is also implemented in

in- in+

Figure 7-8: Comparator schematics
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Prototype and experimental results
software. Hence, the test signatures can also be computed off-chip as both the test sequence

and the output bit-stream are available.

Figure 7-9 illustrates how the reference input-dependent clock can be pre-calculated in

software, as was commented in the previous chapter. The tests can thus be carried out with

simple digital equipment; the only additional requirements are the modulator switching

modifications.

7 • 1 . 5 . 1  Disabling nominal input and enabling digital test input

In order to send a sequence to the first integrator, switch A in Figure 7-1 (or Figure 7-5)

is kept open and switch B is kept closed. Notice that for our prototype we decided not to

implement the sampling function of switch B within the DAC. Hence, the DAC multiplexer

will be in series with switch B.

This modification is implemented by simple logic gates:

. (7-4)

A control signal en1 is needed to select the operating mode. Similarly, a digital sequence

can be sent to the second integrator by maintaining switch E (in Figure 7-1) open and switch

F closed (another control signal en2 is needed). Notice that, by doing so, the first stage is

reconfigured as a 1st order modulator for test purposes. The case of the second stage (i.e. the

third integrator) is identical and a control signal en3 is introduced. As the switches used are

CMOS, they need the control signal and its inverse so a NAND gate and an inverter are used

for both switches, as shown in Figure 7-10.

Figure 7-9: Generation of the modulator sampling and integrating phases

non-overlapping input-dependent phases

ATE on-chip

Input sequence

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Reference clock

1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0
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B φ2d en1⋅=
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7 • 1 . 5 . 2  The Digital-to-Analog converter

The DAC controls also have to be modified. For the modulator without test features, the

DAC would be a simple multiplexer driven by the modulator output bit-stream. As it was

desired to build a prototype that is as flexible as possible, the DAC was modified to imple-

ment a number of possibilities that go beyond those that are strictly required for the pro-

posed test validation. First of all, the DAC has three levels in order to insert zeros in the

sequence. During the sampling phase, the DAC is driven by a digital test sequence. During

the feedback phase, the DAC is controlled by one of the following:

◆ the corresponding stage output bit-stream (Y1 for the first stage and Y2 for the sec-

ond stage),

◆ a delayed version of this output bit-stream (further noted dYi),

◆ the other stage output bit-stream (Y2 for the first stage and Y3 for the second stage),

◆ a digital test sequence (that is composed by two bits SEQ and Z)

Two configuration bits (Fsel0,1) are thus necessary to select the proper feedback mode.

Figure 7-11 represents the positive branch of the modified DAC. The modulator is fully dif-

Figure 7-10: Modification of the integrator switch control to enable the test input
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Prototype and experimental results
ferential and the negative branch is easily deduced from the positive one: only the positive

reference voltage Vrefp and the negative reference voltage Vrefn have to be inverted. The

logic equations that control the switches can be written as,

(7-5)

Vrefp

Vrefn

Y1

φ2

Y2

Z

SEQ

GNDA

DAC outp

φ2

φ1 φ1

φ2 φ2

φ1 φ1

φ2 φ2

φ1 φ1

dY1

Y1

Y2

Z

SEQ

dY1

Z

Y1

Y2

Z

SEQ

dY1

Y1

Y2

Z

SEQ

dY1

C2

MOS

C2

MOS

C2

MOS

C2

MOS

C2

MOS

C2

MOS

Figure 7-11: Positive branch of the DAC modified for test purpose
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 
 
 
 
 
 
 
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V refn

SEQ Z•( ) Fsel0 Fsel1••

… dY 1( ) Fsel0 Fsel1••+
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… Y 1( ) Fsel0 Fsel1••+ 
 
 
 
 
 
 
 
 
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A multiplexer driven by two configuration bits is

used to select the correct feedback. Transmission

gates can be used because the control signals are

static. Due to the fact that φ1 and φ2 are non-overlap-

ping phases, the main OR operation in Eq (7-5)

could be implemented as a wired-OR thanks to

C2MOS cells that also provide the proper synchroni-

zation of the DAC switches. As can be seen in

Figure 7-12, the value of the direct signal (i.e. the test

sequence) is sampled and held at the rising edge of

φ1 while the value of the feedback signal is sampled and held at the rising edge of φ2. In

order to make sure that two of the three DAC switches will never be closed at the same time,

NOR gates with crossed outputs are used.

7 • 1 . 5 . 3  The configuration register

In our prototype, nine static controls, one to select a digital input (en1,2,3) and two to

select the feedback mode for each of the three integrators (Fsel0_1,2,3, Fsel1_1,2,3), are thus

necessary to control the operating modes. These are stored in a register in order to save

test-dedicated pads. Two pads are used for the signal that enables register writing and for the

serial register input. This register is represented in Figure 7-13

Actually, the prototype was designed to be as flexible as possible, but only a few config-

urations are of interest for the validation purpose of this thesis. A summary of configurations

is given in Table II.

Figure 7-12: C2MOS cell details
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Figure 7-13: Test configuration register
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In this table, the wildcard ? is used to indicate that the value of this configuration bit is

not a concern for the purpose that is quoted for that configuration. As can be seen, it is possi-

ble to make some test in parallel, such as for instance testing the 3rd integrator (i.e. the sec-

ond stage) in parallel with the 1st or the 2nd integrator. Figure 7-15 shows how the Σ∆

modulator would be configured to test for integrator leakage in the 1st integrator and the 3rd

one. The parts in gray show the paths that are disabled during test mode.

Only the last line in Table II concerns an “odd” configuration. The possibility to select

the “other stage” bit-stream for the feedback allows us to reconfigure the 2nd and 3rd integra-

tor into a second-order modulator (for test purpose only). This possibility is illustrated in

Figure 7-14.

Table II: Useful configuration register combinations

en
1

F
se

l0
_1

F
se

l1
_1

en
2

F
se

l0
_2

F
se

l1
_2

en
3

F
se

l0
_3

F
se

l1
_3

configuration purpose

1 0 0 1 0 0 1 0 0 nominal Σ∆ modulator operation

0 0 0 1 0 0 ? ? ? leakage or settling test for the 1st integra-
tor

? ? ? 1 0 1 ? ? ? leakage or settling test for the 2nd integra-
tor (an extra delay is introduced in the
feedback)

? ? ? ? ? ? 0 0 1 leakage or settling test for the 3rd integra-
tor (an extra delay is introduced in the
feedback)

? ? ? 0 0 0 ? ? ? settling test for the 2nd integrator, or leak-
age test using sequences with zeros

? ? ? ? ? ? 0 0 0 settling test for the 3rd integrator, or leak-
age test using sequences with zeros

? ? ? 0 1 0 0 0 0 reconfigures the 2nd and 3rd integrators

into a 2nd order modulator for either leak-
age or settling test of the 2nd integrator
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Figure 7-14: The Σ∆ modulator reconfigured such that the 2nd and 3rd integrators

form a 2nd order modulator
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7 • 1 . 6  Prototype layout and floor-planning

The prototype has been laid out following the recommended guidelines for mixed-signal

circuits. Purely analog parts are separated from mixed-signal and digital parts by the capaci-

tor array. The outer paths in the digital buses were set to the digital ground to provide good

shielding and the routing of digital lines was done with care.

Figure 7-15: The Σ∆ modulator reconfigured to test the leakage of the 1st and 3rd inte-
grators in parallel
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Figure 7-16 shows a diagram of the chip floor-planning and Figure 7-17 a microphotog-

raphy of the chip. The core area is 400µm x 500µm. Notice that three different polarization

rings were used to avoid supply noise in critical analog sections.

A description of the different pins can be found in Table III. Notice that the 6 pins that

correspond to the tuning voltage are not a requirement of the test method. They are used in

our prototype for validation purpose. As we decided to provide the digital input internally, 4

pins are dedicated to test: the configuration register input (REG_IN), the write enable

(WRITE), and the two pins that are used to define the test sequence (SEQ and XZ).

Figure 7-16: Chip floorplanning
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Table III: Pin description

Pin name Description

VSSA Analog negative power supply (0V)

VREFP Positive reference voltage for the modulator Full-Scale (2.15V typ.)

VREFN Negative reference voltage for the modulator Full-Scale (1.15V typ.)

GNDA Mid-scale (Common-mode) reference voltage (1.65V typ.)

IN+ Modulator conventional input, positive branch

IN- Modulator conventional input, negative branch

Vtweak1_1 1st tuning voltage (Vtweak1) for the 1st amplifier

Vtweak2_1 2nd tuning voltage (Vtweak2) for the 1st amplifier

Vtweak1_2 1st tuning voltage (Vtweak1) for the 2nd amplifier

Vtweak2_2 2nd tuning voltage (Vtweak2) for the 2nd amplifier

Vtweak1_3 1st tuning voltage (Vtweak1) for the 3rd amplifier

Vtweak2_3 2nd tuning voltage (Vtweak2) for the 3rd amplifier

VDDA Analog positive power supply (3.3V typ.)

VSSM Mixed-signal negative power supply (0V typ.)

VDDM Mixed-signal positive power supply (3.3V typ.)

VSSD Digital negative power supply (0V typ.)

Y1 First stage (2nd order section) output bit-stream

Y2 Second stage (1st order section) output bit-stream

SEQ Test sequence: a logic 1 sends an analog 1 and a logic 0 sends an
analog -1

XZ Negated of the zero insertion: a logic 1 has no effect, a logic 0 inserts
an analog 0 in the sequence, overriding the SEQ signal

CLK_IN Master clock at 2MHz typ.

REG_IN Configuration register serial input

WRITE Register write enable

VDDD Digital positive power supply (3.3V typ.)
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7 • 2 PROTOTYPE TESTING

Due to the modularity of the prototype and the wide range of possibilities offered by the

test proposals, it would be an arduous task to make an exhaustive validation varying all the

possible parameters:

◆ which integrator is tested

◆ which mean value is chosen for the input sequence

◆ insert zeros or not

◆ vary the two tuning voltages

◆ modify the full-scale of the modulator

◆ modify the operating frequency

Hence, we will try to present the most significant results in order to illustrate the differ-

ent proposals.

7 • 2 . 1  The test setup

An HP 16500 was used to provide the test sequences, the reference clock and to pro-

gram the on-chip register that defines the modulator configuration. A LaCroy WaveSurfer

434 digital oscilloscope was used to acquire the output bit-streams of the two stages. The

Figure 7-17: Stripped silicon photography
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reconstruction filter was emulated in MATLAB. A Tektronix differential oscillator was used

as the regular input of the converter.

7 • 2 . 2  Nominal performance

Figure 7-18 shows the Signal-to-Noise-and-Distortion Ratio (SNDR) of the prototype

versus the input sine-wave amplitude, for a tuning voltage set at its nominal value of 2.23V

and an Over-Sampling Ratio (OSR) of 50. The prototype reaches 13.8 Effective Number Of

Bits (ENOB) for an Over-Sampling Ratio (OSR) of 50. This is approximately 0.4 bits below

the ENOB for an ideal modulator. For higher OSR, the resolution improvement is limited by

the thermal noise floor of the test setup.

Figures 7-19, 7-20 and 7-21 are examples of the measured output spectra for three dif-

ferent input amplitudes. The gray rectangles in the figures denote the parts of the spectra

above the cut-off frequency defined by the OSR that are not considered in the SNDR calcu-

lation. For each of these figures, a high performance Rife-Vincent window was used to avoid

spectral leakage because coherent sampling was not possible for this test setup. It can be

seen how the quantization noise is shaped by the 3rd order function. However, for

Figure 7-18: SNDR versus input sine-wave amplitude, for an OSR of 50
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Figure 7-19: Nominal Σ∆ output spectrum for a 1mVrms input sine-wave

10
–5

10
–4

10
–3

10
–2

10
–1

–140

–120

–100

–80

–60

–40

–20

0

normalized frequency

p
o
w

e
r 

in
 d

B
OSR=50 filtered out

Figure 7-20: Nominal Σ∆ output spectrum for a 550mVrms input sine-wave (i.e. 78% of
full-scale)
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Figure 7-21 (the 650 mV rms amplitude), note that the modulator overloads, leading to a sig-

nificant amount of distortion and an alteration of the noise shaping. This is not surprising

because the internal states of the 2nd order modulator that composes the first stage begin to

increase greatly for inputs above approximately 70% of the full-scale (this could be seen in

Figure 6-1 of previous chapter).

7 • 2 . 3  Leakage tests

7 • 2 . 3 . 1  Signature inspection

First of all, let us verify that the test signature behaves as expected, at least in a qualita-

tive manner. For that, a sequence of the form [1 1 1 1 1 1 -1] (and its opposite), with mean

value 2/3 (-2/3 respectively), was applied to the modulator. According to Table II, the test

configuration register was set at 000100001, which means that the first and third integrators

are tested in parallel, as show in Figure 7-15. The tests that are carried out correspond, in the

test summary of appendix A, to test 1 for the 1st integrator and test 3 for the 3rd integrator. A

Figure 7-21: Nominal Σ∆ output spectrum for a 650mVrms input sine-wave (i.e. 92% of
full-scale)
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total of 40000 samples of the input sequence and the output bit-streams (from both stages)

were acquired for each run (i.e. for the positive sequence and its opposite).

Figure 7-22 a) shows the cumulative sum of the difference between the input sequence

and the output bit-stream for the first stage. Note how the deviation between the input and

the output accumulates linearly with time as expected. In part b) of the figure, the two acqui-

sitions are combined to separate the contribution of the offset and the leakage.

For the test of the 1st integrator leakage, not much more information than the linearity of

the signature with time can be drawn from visual inspection. For the 3rd integrator, in turn,

things are different. The same concept of signature linearity can be verified, as seen in

Figure 7-23. Moreover, the leakage test for first order modulators relies on a deterministic

pattern at the integrator output and by extension at the modulator output. It has been seen in

Section 4 • 1 . 3 . 3 that when a 1st order modulator (with an extra delay in the feedback

loop) is submitted to a sequence of period L with only one -1 (or alternatively only one 1),

the output pattern should be of period 2L with 2(L-1) consecutive 1s (alternatively -1) and 2

consecutive -1s. This can be verified experimentally as illustrated in Figure 7-24 that repre-

sents a portion of the output bit-stream for two different input sequences. We verified that

this pattern was maintained throughout the acquisition, anywhere between two transitions. It

has been seen that integrators’leakage induces a decay in the integrator output patterns that

in turn leads to transitions that break the output bit-stream pattern. Such transitions should

also follow a given behaviour. Such behaviour was derived in Figure 4-10 where we showed

that these transitions introduce a +2 in the cumulative sum of the input/output difference.

Actually, Eq (4-72) stated that the leakage signature at the end of the acquisition was equal

to 2 multiplied by the number of transitions observed during the acquisition.

Such a transition in the bit-stream is represented in Figure 7-25, and corresponds to

experimental data for an input sequence of mean value 2/3. It can be seen that the transition

behaviour is not exactly the one that was expected. However, noise was not taken into

account during the theoretical analysis, which can explain the observed difference. Further-

more, what is important is that the transition, even if it has a different shape than expected

still induces a +2 count in the cumulative sum of the input/output difference. Once again,

this could be verified for all the transitions across the acquisition. This can be expected from
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Figure 7-23 a), as each step in the cumulative sum corresponds to a transition. It appears

clearly that the height of the step is always the same: +2.

Figure 7-22: Evolution with time for the leakage test of the first integrator
a) cumulative sum of the input/output difference
b) offset and leakage signatures
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7 • 2 . 3 . 2  Signature precision

Another thing that can be done to verify if the signatures behave as expected is to check

its variability with time. Indeed, the measurement uncertainty for the test of the first integra-

tor leakage in a 2nd order modulator has been derived in Eq (4-20) (and is also quoted for

Figure 7-23: Evolution with time for the leakage test of the third integrator
a) cumulative sum of the input/output difference
b) offset and leakage signatures
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test 1 in the test summary of Appendix A). Hence, if we divide the signature by the number

of acquired points, we obtain

. (7-6)

Figure 7-24: Output pattern for the leakage test of the 3rd integrator,
a)for a 2/3 input sequence.
b) for a 7/9 input sequence
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The evolution of the measurement uncertainty with the number of samples can easily be

verified experimentally. Actually, Figure 7-26 shows the evolution of the leakage signature

(divided by the number of samples) with the number of samples. For that, a leakage test was

performed for the first integrator, with an input sequence of mean value Q=1/5. Two acquisi-

tions were performed (with the 1/5 sequence and its opposite) over 40000 samples. More-

Figure 7-25: Leakage-induced transition in the output bit-stream and its influence on
the test signature

0 10 20 30 40 50 60 70 80 90 100

–1

1

–1

1

sample

0 10 20 30 40 50 60 70 80 90 100
–4

–3

–2

–1

0

1

2

sample

Σ
(S

e
q

–
Y

)

SEQ

Y

cumulative sum

+2
322



Prototype and experimental results
over, the tuning voltage Vtweak2 in the first amplifier was set to 1.8V in order to induce a

higher leakage and to show that the signature precision is valid even for a leakage higher

than the nominal value. To construct Figure 7-26, the leakage signature was calculated for

the first N points and divided by N. Then, the confidence interval as calculated in Eq (7-6) is

also represented, considering the final value at N=40000 as the reference. Note that the sig-

nature fits perfectly within the expected bounds.

Similarly, the same can be obtained for the 2nd and the 3rd integrator (that is to say a

leakage test for a 1st order modulator). Dividing the test signature by the number of acquired

points we have

. (7-7)

This evolution is shown in Figure 7-27 for the 2nd integrator using a sequence of mean

value Q=2/3 and, as for the first integrator, the obtained signatures fit between the expected

bounds.

Figure 7-26: Evolution of the 1st integrator leakage signature as function of the
number of points
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7 • 2 . 3 . 3  Parametric fault injection

Ideally, it would be better to perform the test by a systematic exploration of the 6-dimen-

sional space defined by the 2 tuning voltages for the three amplifiers. However, this would be

a hugely time-consuming task. Hence, in order to emulate parametric drifts, the tuning

inputs of the three amplifiers were all set to the same voltage and that voltage was varied.

This, in principle, should be sufficient to illustrate the variation of the leakage signatures

with the tuning voltage or, in other words, to check the sensitivity of the tests to parametric

drifts.

Figure 7-28 shows the integrator pole error as a function of the tuning voltage. The solid

curve depicts electrical simulation results for the typical mean process corner (TM). It was

obtained by simulating the integrator response to an impulse stimulus. Integrator pole error

is extracted form the decaying step output. The results obtained for the other corners are dis-

played using dashed curves. On the same figure are represented the pole errors extracted

from the obtained signatures. Pole errors were calculated from Eq (4-20) for the first integra-

tor (i.e. for the 2nd order modulator leakage test) and from Eq (4-27) for the third amplifier

(i.e. for the 1st order modulator leakage test). The tests were performed with an input
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sequence of mean value Q=2/3 and its opposite. It was said above that the period M of the

test sequence for a 1st order modulator has to be strictly greater than 5. The sequence of

mean value Q=2/3 ([1 1 1 1 1 -1]) fulfils this criterion.

Note that the experimental results in the two cases exhibit good matching, which means

that the 1st and the 3rd integrators behave in the same manner with respect to the tuning volt-

age. It also means that the leakage test for the first integrator is not strongly affected by the

non-idealities in the 2nd integrator. More importantly, it demonstrates that the test effectively

sense a deviation of the integrator pole. Indeed, it is very unlikely that the tests for the sec-

ond order modulator and the first order modulator would give comparable results if they

were failing. From the figure, it can also be seen how experimental measurements slightly

overestimate the pole error with respect to simulation results of the typical process corner.

Nevertheless, simulations of the integrator in the other process corners show that the experi-

mental results fit within the possible variation range.

What is more important than the exact value of the pole error is that the signature exhibit

the same trend as simulations over most of the tuning range. For all corners, it can be seen

how the pole error increases significantly for lower values of the tuning voltages. It is also

the case for the pole error extracted from experimental data that closely matches the electri-
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cal simulation results over the tuning range [1.7 ; 2.2]V. It appears that for tuning voltages in

the range [2.2 ; 2.35]V, the leakage measured experimentally is slightly higher than the

expected trend. In this range, the DC gain of the amplifier reaches high values, greater than

80dB. A plausible cause is that for such high values of the amplifier DC gain, the integrator

pole error is not dominated by the finite DC gain but by other effects such as charge injec-

tion.

Finally, we see that the trend of the pole error is predicted correctly up to a tuning volt-

age of 2.5V approximately. For higher values of the tuning voltage (superior to 2.5V), the

results of the 1st and 3rd amplifier do not match with simulations. This is due to the fact that

for these tuning voltages, the modulator presents very large settling errors that adversely

affect the leakage signatures, as will be seen in Section 7 • 2 . 5.

7 • 2 . 3 . 4  Relation to functional test

In order to relate the test proposal to conventional functional test, the Signal to Noise

Ratio (SNR) of the entire 3rd order modulator was also measured for an input sine-wave cov-

ering 70% of the full-scale, under the same tuning voltage conditions that were used for the

leakage tests.

It can be seen in Figure 7-29 that the SNR does not vary with the tuning voltage, while

the leakage signature for the first amplifier exhibits important variations. At first sight, one

could be tempted to conclude that the proposed tests are useless because they detect devia-

tions that do not affect performance. Several considerations can be objected to this assertion.

The first one is that leakage does have an impact on the noise present in the modulator

output spectrum. It is a well-know effect that cannot be denied. However, in the particular

case of our prototype, the result is that the output spectrum presents a relatively high level of

thermal noise. This noise can be due to unexpected noise levels within the circuit but also to

the test setup. In particular, the test board that is used is a simple through-hole board and not

a multi-layer PCB, which would be more desirable. Whatever the reason, the fact is that for

an OSR lower than 50, the measured SNR would be dominated by the thermal noise level

and the benefits of 3rd order noise shaping would be lost. A leakage in the 1st or 2nd integra-

tor leads to extra noise in the base-band shaped at first order. If there were no thermal noise
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(or if it were significantly lower), it would be possible simply to increase the OSR until the

1st order leakage noise dominate the 3rd order quantization noise. However, as the thermal

noise is not shaped, increasing the OSR even increase its importance with respect to leakage

noise. For the effects of the integrator leakage to be noticed as an SNR decreases, the leaking

noise has to be greater than that thermal noise. In other words, a pole error is effectively

Figure 7-29: Correlation between the first integrator leakage signature and the
measured modulator SNR
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CHAPTER 7
detected by our tests but the tuning range is not adapted to generate a sufficiently high pole

error to observe the leaking noise.

In order to confirm this assumption, let us study the pole error that would be necessary

to observe a degradation of the SNR. The SNR can be written as follows

, (7-8)

where A is the sine-wave amplitude, PQ the 3rd order quantization noise, Pth the thermal

noise power and Pleak the leakage noise power. Let us consider that the leakage power is

negligible when the tuning voltages Vtweak1 and Vtweak2 are at their nominal value (2.23V).

Hence, by measuring the SNR for the nominal tuning voltages, it is possible to determine

PQ+Pth.

Moreover, the power of the 1st order noise leaking into the base-band can be expressed

as a function of the pole error as,

, (7-9)

where ∆ is the quantizer step, ∆p the integrator pole error, and OSR the oversampling ratio.

Figure 7-30 represents the expected SNR for our prototype (taking into account the ther-

mal noise) as a function of the integrator pole error, for a sine wave covering 70% of the

full-scale. According to Figure 7-28, the maximum pole error obtained for

Vtweak1=Vtweak2=1.7V is approximately 2x10-3 (which corresponds to a DC gain of approx-

imately 50dB ). For this pole error, it can be verified in Figure 7-30 that almost no SNR deg-

radation is expected. However, if we were able to increase the pole error by a factor 10, we

should observe a degradation of about 7dB.

In any case, as was said in Chapter 3 and repeated several times across the thesis, the

primary focus of the test proposal is defect-oriented. Hence, we can say that our test can

detect a small pole error with a much higher precision than a functional test. Even if the pole

error does not impact the performance, if it is higher than what could be expected for normal

process variations, it represents the signature of a defect that could be a reliability issue as its

effects could increase with temperature or other operating conditions.
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Finally, as was proposed in Section 5 • 4 . 2 . 2, it may be desired to give a more perfor-

mance-oriented focus to the test. In that sense, the test limit could be set to a value such that

the good performers are accepted. For instance, the maximum leakage signature obtained for

the 1st integrator for Vtweak1=Vtweak2=1.7V is 222. Hence, it may be possible to set the leak-

age test limit to, say, 250. Going even further, it would be possible to perform the acquisi-

tions over only 4000 points instead of 40000 and to set the test limit to 25.

7 • 2 . 4  Non-linear DC gain tests

The leakage signature for the first integrator is expected to be dependent on the DC gain

non-linearity of the corresponding amplifier. This is the basis of the test that was proposed in

Section 4 • 3. It was said and verified by simulation that for sequences with a high mean

value, the effects of the amplifier limited output range would be more significant than for

sequences with a lower mean value. This translates into the fact that the leakage signatures

should be higher for higher sequence mean values, while for lower sequence mean values

the result of the leakage test is not altered and corresponds to the amplifier DC gain.

Figure 7-30: Expected SNR variation for the prototype as function of the first inte-
grator pole error
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The tuning inputs introduced in the amplifier do not allow one to impact directly the

amplifier output range in a controllable manner. Hence it is not easy to validate the DC gain

non-linearity test by varying the tuning voltages of the amplifier. Nevertheless, the tuning

voltage Vtweak2 does impact the DC gain and hence it will greatly influence the precision of

the DC gain non-linearity test. Indeed, the test signature relies on comparing the leakage test

results for two different input sequences. For the same number of acquired points, a lower

DC gain leads to a higher leakage signature and thus the possible difference between two

sequences is more likely to be detected. This is illustrated in Figure 7-31 that plots the

results of the DC gain non-linearity test, as specified in Eq (4-114) (and corresponds to test 8

in the test summary of Appendix A). For this test, two sequences of mean values 1/3 and 2/3

were used. Hence, for a perfectly linear DC gain, the expected ratio between the two leakage

signatures should be 0.5. Furthermore, the modulator full-scale was set to V in order to

amplify the DC gain non-linearity. The figure also displays the confidence interval associ-

ated with the signature ratio. It was calculated considering a error on the individual leak-

age test signatures. It can be seen that this confidence interval is much smaller for lower

Figure 7-31: Measured 1st integrator DC gain non-linearity signature, as a function of
the tuning voltage Vtweak2.
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Prototype and experimental results
values of Vtweak2, which corresponds to lower DC gains. Furthermore, the measured ratio is

always below 0.5 which means that a non-linearity has been detected.

As was said above, the tuning voltages of the amplifier do not allow to vary the DC gain

non-linearity without varying the DC gain itself. Fortunately, the prototype offer the possi-

bility to set the modulator Full-Scale externally. Obviously this will not change the “real”

linearity of the amplifier gain, but the output of the integrators (i.e. the modulator internal

states) will effectively depend on the full-scale reference. All the theoretical analysis that has

been carried out relies on the fact that everything is normalized to the modulator full-scale,

as explained at the end of Chapter 3. Hence, varying the Full-Scale is formally equivalent,

from a test viewpoint, to varying all the related parameters in an inverse proportion. For

instance, if we change the full-scale by 20% and set it to +/- 1.2V instead of +/-1V, the nor-

malized Slew-Rate is scaled by -20%, as well as the DC gain non-linearity parameter aNL.

Hence, in order to validate experimentally the idea behind the DC gain non-linearity

test, we performed leakage tests for several input sequences and for three values of the mod-

ulator Full-Scale: +/- 1V, 1.2V and 1.4V. We also set the tuning voltage Vtweak2 of the first

amplifier to 1.8V in order to induce higher leakage and to obtain higher precision on the sig-

nature for 40000 points which is our acquisition limit. Figure 7-32 shows the results

obtained. It can be seen that for a sequence with a small mean value (1/5), the leakage signa-

ture is the same (within the normal measurement uncertainty) for the three values of the

modulator Full-Scale. This demonstrates the first point of our test proposal: the non-linearity

of the DC gain is not stimulated by small sequences and the leakage result corresponds to

the small-signal DC gain. As the small-signal DC gain is independent of the Full-Scale, the

results are identical in the three cases. Starting from this observation, the value of the leak-

age signature for a perfectly linear DC gain has been extrapolated for the rest of the

sequences (taking into account that the signature for a zero-mean input sequence has to be

zero). This has been done in order to ease comparison. Indeed, it can be seen how, for the

three sequences with highest mean values, the leakage signature is above the “lin-

ear-DC-gain” line, as expected. Moreover, the higher the Full-Scale, the higher the devia-

tion.
331



CHAPTER 7
7 • 2 . 5  Settling error tests

7 • 2 . 5 . 1  Comparison of the test signatures

In order to test for settling errors, a digital sequence (ideally of mean value 0 to avoid

leakage impact) is sent to the modulator. For the first acquisition the clock period is doubled

for a 1 input sample and for the second acquisition it is doubled for a -1 input sample. Using

the two acquisitions to get rid of input-referred offsets, the deviation of the output bit-stream

(y) from the input (x) mean value accumulated over N samples can be written

. (7-10)

Two tests were proposed that rely on this principle:

◆ If a deterministic sequence is used, parameters N2 and N*
-2 have to be measured

explicitly because they cannot be known a-priori (this corresponds to test 10 in the

test summary of Appendix A).

1/5 1/3 1/2 2/3 9/11
0

100

200

300

400

500

600

700

input sequence mean value Q

le
a
k
a
g
e
 s

ig
n
a
tu

re

FS=1.4V
FS=1.2V
FS=1V
expected linear signature
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Prototype and experimental results
◆ If a pseudorandom sequence is used, it has been shown that only a small relative

error is committed by taking parameters N2 and N*
-2 equal to N/4 (this corresponds

to test 11 in the test summary of Appendix A).

Let us see how these two proposals behave experimentally. Figure 7-33 displays the

evolution of the accumulated input/output deviation (s in Eq (7-10)) with the number of

points obtained for a deterministic sequence of period [1 1 -1 1 -1 -1] and for a pseudoran-

dom sequence. Case a) corresponds to the test of the first integrator (i.e. to a 2nd order mod-

ulator) and case b) to the third integrator (i.e. to a 1st order modulator). The acquisitions

were performed over 20000 samples and all the tuning voltages were set to 2.5V in order to

force a small settling error.

In all cases it can be seen that deviation is clearly sensed. There is also a difference

between the slope obtained for the random sequence and for the deterministic sequence,

which can be explained by the explicit value of parameters N2 and N*
-2 for each case.

Another thing that is worth noticing is that the signatures obtained for the 1st integrator

look more noisy than the signatures obtained for the 3rd integrator. This can be explained by

the fact demonstrated in [32] that 1st order Σ∆ modulation is a mapping. Ideally, when the

input of a 1st order Σ∆ modulator is a digital sequence, the modulator output strictly follows

the input. In the case of Figure 7-33 b), the settling error accumulates at the integrator out-

put. While the accumulated value is two small to change the sign of the modulator output,

the mapping is respected and the output follows the test sequence for a deterministic

sequence as well as for a pseudo-random sequence. In turn, when the accumulated value is

large enough, it introduces a difference in the output bit-stream which corresponds to a step

in the signatures depicted in the figure.

Figure 7-34 shows the evaluated settling error in the same cases. For the deterministic

sequence, the number of occurrences of level 2 (alternatively -2) at the integrator input was

measured. Remember that a level 2 occurs at the integrator input when the modulator input

sample is a 1 and the feedback sample (i.e. the modulator output sample) is a -1. The settling

error was evaluated as proposed in Eq (5-13). Conversely, for the pseudorandom test

sequence, the parameters N2 and N*
-2 equal to N/4=5000 instead of explicitly measuring

them. The evaluated settling error is thus the accumulated input/output difference divided by
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Figure 7-33: Input/output accumulated difference measured for
a) the settling error test of the first integrator (i.e. a 2nd order modulator)
b) the settling error test of the third integrator (i.e. a 1st order modulator)
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a)

b)

Figure 7-34: Evaluated settling error measured for
a) the settling error test of the first integrator (i.e. a 2nd order modulator)
b) the settling error test of the third integrator (i.e. a 1st order modulator)
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N/2=10000. Together with the curves, the confidence interval is also represented. It is calcu-

lated for the case of a pseudo-random test sequence, considering Eq (5-42).

It can be seen that the results match perfectly for both tests in both cases (the 1st and 2nd

order modulator). Furthermore, the evaluated settling error is of the same order for the dif-

ferent integrators: -0.31% for the first integrators and -0.35% for the third. This is another

piece of evidence that everything is working properly as the integrators are identical and

their amplifiers are submitted to the same tuning voltages.

7 • 2 . 5 . 2  Parametric fault injection

When the tuning voltage were varied to inject parametric drifts in Section 7 • 2 . 3 . 3,

settling error tests were also performed at the same time as leakage tests. The input sequence

for these tests was a deterministic sequence of period [1 1 -1 1 -1 -1] and mean value 0. Two

acquisitions were performed for each value of the tuning voltage: one doubling the reference

clock period for the 1 input samples and the other doubling the reference clock period for the

0 input samples. Hence, the settling error was calculated using Eq (5-13).

Figure 7-35 shows the results obtained. The first thing to notice is that the results

obtained for the 1st integrator (with the test for a 2nd order modulator) almost perfectly

match those obtained for the 3rd integrator (with the test for a 1st order modulator). It can be

seen that the measured settling error is very small on most of the tuning voltage range but

abruptly increases for voltages above 2.5V. This coincides perfectly with the value above

which the leakage signatures showed important mismatch in Figure 7-28.

The close-up on the range [2.4V ; 2.6V] allows to have a better view of the results. It can

be seen that the settling error evaluated through the proposed tests is very close to the typical

process corner simulations. Actually the observed difference could simply be explained by

either process variation or mismatch.

7 • 2 . 5 . 3  Relation to functional test

In order to relate the proposal to conventional functional test, the Total Harmonic Dis-

tortion (THD) of the entire 3rd order modulator was also measured for an input sine-wave

covering 70% of the full-scale in the same tuning voltage conditions that were used for the
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settling error tests. Figure 7-36 displays in parallel the value of the measured first integrator

settling error and the measured THD. It can be seen that there is a strong correlation between

both, as expected. It is well known that the first integrator greatly influences the performance

of the overall modulator. We can say that the proposed test is sufficiently sensitive to detect a

settling error that produces a THD below 90dB. Indeed, the settling error at the 2.5V tuning

Figure 7-35: Measured (markers) and simulated (solid and dasshed curves) settling
errors
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voltage is clearly detected while the THD at the same value is still 90dB. Taking a look at

Figure 7-6 b), it can be seen from electrical simulations that the settling of the integrator for

a 2.5V tuning voltage is significantly altered with respect to nominal (in particular the

slew-rate) but still seems to settle correctly. This consideration is in line with the results

observed for the proposed test and the THD.

In our opinion, what is even more important is that the proposed tests maintain the same

accuracy for all the integrators. This means that out-of-bounds settling errors can be detected

in inner integrators while such defects would be undetectable by conventional functional

tests.
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Figure 7-36: Correlation between the measured first integrator settling error and
the measured modulator THD
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onclusionsC

A design-based test approach has been applied to Σ∆ modulators, and a number of tests

have been proposed that target important design-parameters of Σ∆ modulators. The

approach has been validated through extensive simulation and also experimentally with data

obtained from an integrated prototype.

The different tests have been designed to meet low-cost and flexibility requirements.

The main characteristics of our approach are:

◆ All the tests are fully digital. This is an important advantage per-se. It allows the use

of digital-only test resources (a low-cost digital tester could be used), which may

enable massive parallel testing. It also facilitates the test of embedded parts (for

instance, in SoCs) as digital signals are much easier to manage than their analog

counterparts.

◆ The stimuli generation and the signature elaboration require little extra hardware,

which makes the approach a perfect candidate for BIST. This permits cost-effective

in-field test. The proposal can also be used to interface the modulator test with stan-

dard board-level test resources such as the IEEE 1149.1 test bus.



CONCLUSIONS
◆ Few modifications are required to the modulator and these mainly affect switch con-

trols. This is a key point as the test-related circuitry is undoubtedly more robust than

the circuit under test. This is an advantage for applications where in-field test is

mandatory and has to give reliable results. Harsh-environment applications, such as

spatial or geothermal applications, are good examples.

From the application of the proposed test set, the following conclusions can be drawn:

◆ Testing the main characteristics of the device building blocks has been shown to

enhance defect coverage with respect to functional testing. Indeed, the test proposal

not only allows the detection of parametric drifts that can affect the performance but

also the detection of defects that represent a reliability issue but do not translate

directly into a performance degradation.

◆ The approach provides an important degree of freedom in the choice of the test lim-

its. These limits can be chosen to closely match the expected bounds of the nominal

variations, leading to a selective defect-oriented test. Alternatively, they can be set

much closer to the frontiers of the valid design space so as to minimize the number

of good performers rejected. Yield/Test optimization is thus possible, when the test

limits are put within the design guard-bands.

◆ The test is closely linked to the Σ∆ modulator design. As behavioural models are

widely used during the design flow, they can be fruitfully used for test purpose.

◆ Another benefit of this approach is that the test outcome provides valuable informa-

tion on the building blocks behaviour and represents an added-value for fault-loca-

tion, fault-diagnosis and silicon-debug in general.
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◆ The tests that have been designed rely on proper Σ∆ modulation and stimulate the

entire signal path. We have shown that they are suitable for detecting catastrophic

defects even if they affect blocks that are not the test primary target.

◆ The approach offers the test designer a large degree of flexibilty. Several test alter-

natives were proposed for various parameters that have different implications in

terms of hardware and modulator modifications. This is a valuable degree of free-

dom for the designer to optimize test costs.
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ppendix AA

TEST SUMMARY

In the following table, we summarize the characteristics of all the tests proposed in the

thesis. To avoid redundancy in the test comments, we recall to the reader that in the majority

of cases, the test sequence is a digital sequence comprising 1s (corresponding to logic 1s)

and -1s (corresponding to logic 0s). Some tests use sequences with analog 0s (and must thus

use two bits to define the test sequence) but these cases will be specified in the table.

Similarly, most tests use two acquisitions to eliminate the impact of possible input-

referred offsets. The test signature for each acquisition is the difference between the test

sequence (x) and the modulator output bit-stream (y) accumulated over N samples. The final

signature is taken as the difference between the results for the two acquisitions

. (7-1)

In some cases, a slightly more complex signature has to be generated but these particular

cases are also specified in the table.

s s1 s2– xi yi–
i 1=
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Table I: Test summary

nº type signature
equation

ref.

1 leakage test for 2nd

order

(4-20)
p. 123

Stimulus: Any sequence of non-zero mean value Q (-Q).
Comments: The influence of DC gain non-linearity may be noticed for the highest mean values.

2 leakage test for 2nd

order

(4-20)
p. 123

Stimulus: A sequence with analog 0s of mean value Q (-Q).
Comments:  This test has to be run at half the nominal clock frequency to avoid settling errors.

3 leakage test for 1st

order single-bit

(4-27)
p. 126

Stimulus: A digital sequence of length L with L-1 1s and only one -1, and its opposite. L must be
greater than 5.
Comments: An extra delay has to be introduced in the feedback loop. The offset may cause a strong
non-linearity for either the positive or negative sequence, leading to a relative error on the leakage
evaluation.

4 leakage test for 1st

order signle-bit

(4-87)
p. 142

Stimulus: Two digital sequences of length L1 and L2,  with L-1 1s and only one -1, and their oppo-
sites. L1 and L2 must be greater than 5.
Signature: The input/output difference accumulated over N samples. The sign of the offset has to be
determined. The results obtained for the two sequences of opposite signs to the offset are combined
Comments: An extra delay has to be introduced in the feedback loop. The obtained signature has
lower sensitivity than the previous test

5 leakage test for 1st

order single-bit

(4-28)
p. 126
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Test summary
Stimulus: A digital sequence of length L with L-1 1s and only one 0, and its opposite. L must be
greater than 2. The test must be carried out at half the sampling frequency to avoid settling errors.
Comments: Analog 0s are used in the sequence. It is the same test as nº 3 but no extra delay has to
be introduced in the feedback loop. The offset may cause a strong non-linearity for either the positive
or negative sequence, leading to a relative error on the leakage evaluation.

6 leakage test for 1st

order single-bit

(4-93)
p. 145

Stimulus: Two digital sequences of length L1 and L2, with L-1 1s and only one 0, and their opposites.
L1 and L2 must be greater than 2. The test must be carried out at half the sampling frequency to avoid
settling errors.
Signature: The input/output difference accumulated over N samples. The sign of the offset has to be
determined. The results obtained for the two sequences of opposite signs to the offset are combined
Comments: The obtained signature has a lower sensitivity than the previous test

7 leakage test for 1st

order multi-bit

(4-24)
p. 124

Stimulus: A sequence of mean value Q superior to half the quantizer step and its opposite.
Comments: It is recommended to use a mean value significantly greater than half the quantizer step.

8 DC gain non-linearity

test for 2nd order

(4-114)
p. 173

Stimulus: Two sequences of non-zero mean value Q1 and Q2 and their opposite.
Signature: It is the ratio of the leakage test signatures
Comments: The same test as nº 1 is performed with two sequences. For a small mean value the
result is proportional to the nominal DC gain while for a high mean value it is sensitive to DC gain
non-linearity. The value of the signature is only sensitive to the non-linearity of the DC gain but not its
uncertainty.

Table I: Test summary

nº type signature
equation

ref.
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9 DC gain non-linearity

test for 2nd order

(4-115)
p. 173

Stimulus: Two sequences of non-zero mean value Q1 and Q2 and their opposite.
Signature: It is the scaled difference between the leakage test signatures.
Comments: This signature does not requires a division but is a function of the nominal DC gain and
not only of its non-linearity..

10 overall settling error
test for any modula-
tor

(5-13)
p. 191

Stimulus: A sequence of zero mean value. The period of the clock reference is doubled for a 1 input

sample during the 1st acquisition and for a 0 input sample during the 2nd acquisition (*).
Signature: Apart from the accumulated input/output difference, the number of occurrences of a level
-2 (alternatively 2) at the integrator input also has to be acquired.

11 overall settling error
test for any modula-
tor

(5-41)
p. 197

Stimulus: A pseudorandom sequence of zero mean value. The period of the clock reference is dou-

bled for a 1 input sample during the 1st acquisition and for a 0 input sample during the 2nd acquisition
(*).
Comments: The use of a pseudorandom sequence allows one to estimate as N/4 the number of
occurences of a level -2 (alternatively 2) at the integrator input. The signature is thus much simpler
but this approximation leads to an additional (small) relative error.

12 non-linear settling
error test for any
modulator

(5-58)
p. 214

Stimulus: A sequence with only 1s and analog 0s and its opposite. The clocking does not have to be
modified as function of the input. Two more acquisitions have to be performed at half the nominal fre-
quency.
Signature: Apart from the accumulated input/output difference, the number of occurences of a level 2
(alternatively -2) at the integrator input also has to be acquired.
Comments: As the input sequence is not of zero mean value, the influence of the leakage has to be
supressed. For this reason the acquisitions are also performed at half the nominal frequency.

Table I: Test summary

nº type signature
equation

ref.
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Test summary
13 non-linear settling
error test for any
modulator

(5-59)
p. 214

Stimulus: A pseudorandom sequence with only 1s and analog 0s, and its opposite. The clocking
does not have to be modified as function of the input. Two more acquisitions have to be performed at
half the nominal frequency.
Comments: The use of a pseudorandom sequence allows one to estimate as N/8 the number of
occurences of a level -2 (alternatively 2) at the integrator input. The signature is thus much simpler
but this approximation leads to an additional (small) relative error.

Table I: Test summary

nº type signature
equation

ref.
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