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Abstract Avena sterilis weed pressure categories can be discriminated in wheat through

remote images taken at late stages of wheat senescence. Site-specific image processing was

achieved with SARI�, an add-on software program for ENVI� developed to implement

precision agriculture. Using the SARI software and crop-weed competition and economic

models, the precision yield losses for each micro-plot can be estimated and herbicide

prescription maps obtained. Simulation studies on control indicators and herbicide use

efficiency were undertaken using real-time ground data and remote images of two wheat

plots infested with Avena sterilis at LaFloridaII and Navajas (Southern Spain). The sim-

ulation indicated that precision application of herbicides would produce higher overall

herbicide savings (OHS) compared to broadcast applications but would vary depending on

the level of weed infestation, the decision making criteria (DMC) of applying herbicide

above a weed infestation level and the size of the spray grid considered. For example, for

areas with low levels of infestation (around 15%), the OHS was 20, 44, 81 and 90% for a

DMC of 0, 10, 20 and 30%, respectively. SARI� also estimates the overall herbicide

application efficiency (OHAE), a key agro-environmental index to estimate the efficiency

of herbicide applications in weedy areas and the lack of herbicide applications in weed-free

areas. Ideally, the OHAE is equal to 1 if weed control is complete and herbicide appli-

cations in weed-free areas are not necessary. The OHAE index is influenced by the size of

the micro-plot and decision-making herbicide application criteria (DMC). The OHAE

values increased as the size of the micro-plot decreased, regardless of the intensity of the

weed infestation. For example, micro-plots of 20 9 6 m, 5 9 3 m and 1.2 9 1.5 m had

OHAE values of 0.27, 0.57 and 0.76, for areas of low infestation, when averaged over the

DMC. Generally, the OHAE values increased as the size of the micro-plot decreased

regardless of the intensity of weed infestation. Based on actual weed abundance data,

competition models and production costs, SARI� estimated wheat yield losses and
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economic net return for each micro-plot and herbicide application strategy. In both loca-

tions, weed infestation varied spatially from virtually weed-free micro-plots to 15 and 24%

winter wheat yield loss in Navajas and LaFloridaII, respectively. Preliminary calculations

indicate that net returns were slightly higher for areas with site-specific adjusted-rate

applications than for the overall standard label rate application strategy. Both of these

strategies provided considerably higher net returns compared to non-treated areas.

Keywords SARI� add-on software � Control efficiency � Weed control strategies �
Economic control

Nomenclature
Wild oat Avena sterilis sp. sterilis L

Wheat Triticum durum L

Introduction

In weed science, weed-crop competition has been an important topic and many scientific

papers have been produced over the past few decades (Cousens et al. 1987 and Cousens

et al. 2003). The implementation of economic thresholds is desirable in site-specific weed

management (SSWM) and this is based on models of the competition between weed

density and yield loss. Yield losses in response to Avena sterilis panicle density were

studied in barley (Hordeum vulgare L.) (Torner et al. 1991), and in winter wheat (Saavedra

et al. 1990). Detection of late-season weed infestations with remote sensing has large

possibilities when plants are mature, the soil surface is completely covered and the

influence of background soil and crop residue reflectance is minimal (Koger et al. 2003).

Most weed competition studies are based on weed density ground sampling. The data from

the ground samples are fitted into economic threshold models. However, very few of these

studies, if any, have been applied by farmers because the weed-density spatial assessment

could not be determined through conventional techniques in an economic and feasible way.

Conversely, the use of high spatial resolution remote images and appropriate weed-crop

discrimination techniques could be of high utility to determine site-specific weed popu-

lation. For example, several authors have used remote sensing to map late-season infes-

tations of Avena sterilis in wheat (López-Granados et al. 2006), Ridolfia segetum Moris in

sunflower (Helianthus annuus L.) (Peña-Barragán et al. 2007) and weed crucifers in wheat

and legumes (deCastro et al. 2009). In addition, weed infestations can be relatively stable

from year to year (Wilson and Brain 1991; Barroso et al. 2004), allowing late-season weed

detection maps to be used in the design of SSWM for following years.

Semi-automatic, cost effective, large-scale mapping of weed infestations needs to be

developed to take full advantage of SSWM. Software to manage images obtained through

remote sensing can play an important role in the fulfilment of this objective. SARI�

(Sectioning and Assessment of Remote Images) is a software add-on for ENVI� 4.6

(Visual Information Solution Inc., Boulder, Colorado, USA) that has been developed to

implement precision agriculture strategies (Garcı́a-Torres et al. 2009; Gómez-Candón et al.

2011). SARI� splits field plot images into grids of rectangular ‘‘micro-images’’ or ‘‘micro-

plots’’ as multiples of the spatial resolution of the image, assesses diverse indicators for
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each micro-plot and classifies the micro-plots into arbitrarily defined classes based on these

indicators (Gómez-Candón et al. 2011).

Generally, the principles of SSWM are widely accepted for its potential economic and

environmental benefits (Timmermann et al. 2003), although not yet applied in practice due

to lack of a feasible and cheap technology to determine the weed spatial distribution. Site-

specific methodological developments for the management of weed infestation through

remote imaging are not common but may be of increasing interest due to the expected

development of high spatial resolution imagery in the coming decade. This article intends

to contribute to the precision management of Avena sterilis in wheat, through the use of

remote sensing, a weed-crop competition model and SARI software. Its specific objectives

are (1) to evaluate the efficiency of SSWM with varying grid size and decision making

criteria and (2) to estimate net economic returns of different herbicide application

strategies.

Materials and methods

Airborne photographs of LaFloridaII farm (Utrera, Seville) and of the Navajas farm

(StaCruz, Cordoba) in Southern Spain were taken around mid-May 2006 over winter wheat

fields. The characteristics of the crop fields, aerial flight and image acquisition and image

processing for land use classification were the same as described by Gómez-Candón et al.

(2011). Two rectangular portions of LaFloridaII and Navajas images of 1.95 and 2.69 ha,

respectively, were selected for the studies and their geographic co-ordinates are shown in

Fig. 1. Supervised classification of the grassy weed patches in wheat was previously

described by López-Granados et al. (2006), and the use of the NDVI index was recom-

mended due to the high per-class accuracies obtained (0.87–0.94) in all locations.

Classification of weed abundance categories

Each farm was visited during mid-May 2006 to collect ground-truth control points of crop

areas of several categories of weed abundance: (a) Avena sterilis-free, (b) low (1–30 Avena
sterilis panicles m-2, average 20 m-2), (c) intermediate (31–80 panicles m-2, average

60 m-2), and (d) high infestation ([ 81 panicles m-2, average 140 m-2). Details of ground

work for weed abundance assessment and geo-referencing, and for weed abundance cat-

egories boundary digital values (BDV) determination were the same as previously

described in Gómez-Candón et al. (2011). The overall accuracy and Kappa coefficient of

the whole classification process were calculated.

SSWM efficiency versus micro-plot size and herbicide application criteria (DMC)

The NDVI image of LaFloridaII was used to determine the relationship between SSWM

efficiency and micro-plot size. Two 0.19 ha wheat crop zones, infested with Avena sterilis,
were selected. One zone had a low infestation intensity with 14.1% infested pixels

(X = 242282, Y = 4124821) and the other zone had an intermediate infestation intensity

of 52.8% infested pixels (X = 242264 Y = 4124796). SARI� was used to divide the two

selected zones into micro-plots of varying dimensions, from 1.2 9 1.5 m to 80 9 24 m

(Table 2). Progressive decision making criteria (DMC) regarding the application of her-

bicide were considered for each micro-plot and decisions were made based on strict

criteria, which included the application of herbicide only if the infestation intensity was
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greater than a given percentage, for example 20% (DMC20%). To estimate the relationship

between the efficiency of SSWM and DMC, two agro-environmental indices were used: (a)

the Overall Herbicide Saving (OHS), which is the ratio between the area not treated with

herbicide compared to the entire plot area and (b) the Overall Herbicide Application

Efficiency (OHAE), which estimates the efficiency of herbicide applications in weedy

areas and the lack of herbicide applications in weed-free areas, as calculated by the

following equation:

OHAE ¼
Xn

i¼1

AITAi=AI

 !
�

Xn

i¼1

AFTAi=AF

 ! !
=nÞ ð1Þ

where AITAi and AFTAi are the Avena sterilis-infested and Avena sterilis-free herbicide-

treated area of each micro-plot, respectively. i is the micro-plot number, n is the number of

micro-plots, AI is the Avena sterilis-infested area and AF is the Avena sterilis-free area of

the entire plot. Therefore, the OHAE indicates the efficiency of herbicide applications to

weedy areas and the lack of herbicide application to weed-free areas, as affected by the

DMC and size of the micro-plot. A value of OHAE near one indicates a high efficiency in

Fig. 1 Avena sterilis abundance categories in wheat at LaFlorida (top) and Navajas (bottom). Weed free
area is in black, and Avena sterilis low, intermediate and high infested areas are in yellow, blue and white,
respectively. Overall classification accuracy and Kappa coefficients were 93.6 and 0.89%, and 84.8 and
0.78% for each location, respectively. Wheat weed-free (black) and Avena sterilis low (pale grey),
intermediate (grey) and high (white) weed abundance categories at LaFlorida. Overall classification
accuracy and Kappa coefficients were 93.6 and 0.89% (Color figure online)
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herbicide application, while small values indicate poor efficiency. The OHS and OHAE

indices, influenced by DMC and micro-plot size, were obtained with SARI� in Excel

format.

Economic net returns of herbicide application strategies

The images obtained by remote sensing of the LaFloridaII and Navajas farms, the infes-

tation intensity categories and their corresponding NDVI BDV were used to calculate the

economic profitability of herbicide application strategies. The original NDVI image of the

winter wheat crop infested with Avena sterilis was segmented into four images using the

BDV thresholds for each farm. These four images included each weed infestation category.

Each image was divided into 75 and 112 micro-plots with an area of 20 9 13 m for

LaFloridaII and Navajas farms, respectively. The percentage of Avena sterilis-infested

pixels for each micro-plot was calculated by SARI�. The effect of Avena sterilis-infes-

tation on wheat yield for each micro-plot was estimated using the following equation:

L ¼ 3:90 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WOPA
p

ð2Þ

where L is the percentage of wheat yield lost and WOPA is the average Avena sterilis
abundance for each infestation category. This equation was calculated using data from

Saavedra et al. (1990). The percentage of infested surface (%IS, pixels) and grams of wheat

yield loss for each micro-plot were calculated using SARI� and obtained in Excel format

as described in Gómez-Candón et al. (2011).

Three herbicide application strategies were simulated: (i) no herbicide application, (ii)

overall label rate application and (iii) site-specific adjusted rate application. Herbicide

treatments in the site-specific adjusted rate strategy were assigned based on the infestation

levels present at harvest in the previous season, indicated as a percentage of infested

surface area (%IS). Maps of Avena sterilis based on the previous year’s information can be

used for patch spraying in future years (Barroso et al. 2004 and Barroso et al. 2005). In

order to match spatial resolutions, the size of the micro-plot was used for the herbicide

prescription map. Application maps were based on the following criteria: (a) no herbicide

was applied in Avena sterilis-free and micro-plots with very low infestation levels (\ 10%

IS), (b) half the label rate was applied to micro-plots with low infestation levels (11–30%

IS) and (c) the label rate was applied to intermediate and highly infested micro-plots

([ 30% IS). When the herbicide was applied at the label rate, complete weed control with

no yield losses was assumed. At half the label rate, a 10% reduction in wheat yield due to

weed competition was assumed. These assumptions were similar to those by Ruiz et al.
(2006) and were based on results obtained in previous research (Barroso et al., 2004). The

OHS and OHAE indices and the herbicide application strategies were calculated using

SARI� and obtained in Excel format.

The economic profitability or net return (NR) for each herbicide application strategy

was assessed for each micro-plot by the following equation:

NR ¼ ŷ 1� 1

n

Xn

k¼1

Lk

 !
p� Ci þ Ca þ H

1

n

Xn

k¼1

dk þ Co

 !
ð3Þ

where ŷ is the expected weed-free wheat yield (Ymax) and is equal to 4.8 t ha-1 and 4.0 t

ha-1 in LaFloridaII and Navajas, respectively. n is the total number of micro-plots, each of

which is 20 9 13 m. k is the micro-plot number, Lk is the yield loss estimate in micro-plot
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k according to Eq. 2, p is the price of wheat grain (0.30 € kg-1), Ci is the cost of acquiring

and processing the images (€ 2 000 for a 200 ha farm, with an additional 10 € ha-1 for

site-specific treatments), Ca is the herbicide application cost, 6.6 € ha-1 for spraying with a

13-m boom standard sprayer, with a capacity of 3.46 ha h-1 and 14.1 € ha-1 for precision

application using a DGPS-controlled adjusted-dose patch sprayer similarly as achieved by

Barroso et al. (2004) and Timmermann et al. (2003). H is the specific herbicide cost at the

label rate (40 € ha-1), dk is the herbicide rate for micro-plot k according to each strategy

(Table 3) and Co includes all other costs involved in crop production (tillage, seed, fer-

tilisers, harvest, etc., 300 € ha-1). Net returns for the three herbicide application strategies

are indicated in € ha-1. Economic parameters were calculated using SARI� and were

obtained in Excel format.

Results

Classification of weed abundance categories

At LaFloridaII, the selected NDVI BDV values for weed free, low, intermediate and high

weed pressure categories were \ 0.56, 0.56–0.66, 0.67–0.72 and 0.73–0.80 (Table 1),

respectively, assessed with an overall classification accuracy of 93.6% and Kappa coef-

ficients of 0.89. At Navajas, for the same categories the defined BDV were \ 0.16,

0.16–0.39, 0.40–0.46 and 0.47–0.59 for Navajas (Table 1), with an overall accuracy 84.8%

and Kappa coefficient of 0.78. For both locations, the infested surface for each weed

abundance category is indicated in Table 1 and shown in Fig. 1.

SSWM efficiency versus micro-plot size and herbicide application criteria

Site-specific overall herbicide saving (OHS) varied considerably with the degree of

infestation, decision making criteria (DMC) and the size of the micro-plots (Table 2).

Generally, the OHS was considerably lower in intermediately infested areas (52.8%

infested pixels) than in areas of low infestation (14.8%), when averaged across the size of

the micro-plot and DMC. The OHS increased as DMC increased when averaged across the

size of the micro-plot. Strict decision making criteria (DMC0% to DMC30%), when

averaged across the size of the micro-plot, were more efficient at reducing OHS in areas of

low infestation (20–90%) than in areas with intermediate infestations (5–30%).

At DMC0% criterion, the herbicide was applied only to each Avena sterilis infested

micro-plot regardless of its density and, at low infestation intensities, micro-plots that were

5 9 3 m or larger provided an OHS of zero, but smaller micro-plots gave greater values

40–65% of the total area (Table 2). DMC0% criterion at an intermediate infestation level

resulted in OHS values ranging from 5 to 18% for the four smallest micro-plot sizes. The

use of DMC10% in low infestation areas resulted in OHS of about 37% for micro-plot sizes

of 20 9 12 m, and the OHS increased as micro-plot size decreased, up to 71% (Table 2).

Generally, SSWM produced consistent herbicide savings. For example, in areas with low

levels of infestation, the OHS was 20, 44, 81 and 90% for DMC0, DMC10, DMC20 and

DMC30%, when averaged over micro-plot size, respectively (Table 2). However, very

permissive decision-making application criteria such as DMC40%, DMC50 and DMC60%

(data not shown for abbreviation) indicated a predisposition for the lack of a herbicide

application or to apply herbicide only at very high infestations. This would be unusual in

highly productive farming systems.
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The OHAE index was influenced by micro-plot size and decision-making criteria

(Table 2). Ideally, if the OHAE was equal to 1, this would indicate complete weed control

and no herbicide application was necessary in weed-free areas. The OHAE values

increased as the size of the micro-plot decreased, regardless of the intensity of weed

infestation. For example, micro-plots of 20 9 6, 5 9 3 and 1.2 9 1.5 m had OHAE values

of 0.27, 0.57 and 0.76, for areas with low infestation and 0.23, 0.39 and 0.52 for areas with

intermediate infestation, respectively, when averaged over DMC. Averaging over the size

of the micro-plot, the OHAE for areas of low infestation (14.1% infested surface) was

higher for DMC10% (0.43) and DMC20% (0.42), than for the other DMCs. In areas with

intermediate infestation levels (52.8% infested surface), the OHAE was 0.09, 0.26, 0.33

and 0.42 for DMC0%, DMC10, DMC20 and DMC30%, respectively. Thus, when aver-

aging the size of a micro-plot, a DMC that approximates the overall infestation level is

optimal for obtaining high OHAE values.

Economic returns of herbicide application strategies

The yield losses and economic return of each micro-plot can be estimated through SARI

software output, and subsequently a prescription herbicide map can be obtained based on

these parameters, as shown in Table 3 for the upper left 16 micro-plots of each location. In

addition, the overall economic net returns were estimated based on infestation categories

defined by ground-truth control points at the selected plots at LaFloridaII and Navajas and

their corresponding NDVI BDV in the images (Table 1). At LaFloridaII, the observed

infestation categories were estimated as low, intermediate and high with 40, 5 and 0.7%

Avena sterilis-infested pixels and with yield losses of 253 79 and 16 kg ha-1 (6 598, 2 072

and 422 g micro-plot-1) for each category, respectively. The presence of weeds on micro-

plots varied from 1.2% of infested surface and yield losses of 5.4 kg ha-1 (143 g micro-

plot-1), to a maximum of 83% of infested surface and 1.1 kg ha-1 (30.2 g micro-plot-1)

of yield loss (Table 4). At Navajas, the average percent of surface infestation for the low,

intermediate and high infestation categories were 16.4, 1.0 and 0.9%, with corresponding

yield losses of 200, 32 and 45 g micro-plot-1, respectively.

Across the three herbicide application strategies, yield losses were 351 0 and

27 kg ha-1, while overall costs were 273 319 and 296 € ha-1 at LaFloridaII for non-

treated areas, standard overall label rate application and site-specific adjusted rate appli-

cation strategies, respectively (Table 4). Economic net returns were slightly higher for

areas with site-specific adjusted-rate applications (1 137 € ha-1) than for the overall

standard label rate application strategy (1 121 € ha-1). Both of these strategies provided

considerably higher net return compared to non-treated areas (1 062 € ha-1). Additionally,

the OHS was 21%. The Avena sterilis-infested non-treated areas were only 0.45% in the

site-specific adjusted-rate strategy compared to the overall standard label rate strategy. At

Navajas, the results showed the agronomic advantages of site-specific adjusted-rate

applications over the other two strategies evaluated.

Discussion

Agro-environmental indices, such as the OHS and the OHAE, provide important insight

into the advantages of using SSWM and can be estimated through remote sensing and

SARI� software. Generally, the data show that SSWM can be used to save unnecessary
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Table 4 Agronomic parameters and economic net returns as a result of herbicide application strategies

Location Parameters Herbicide application strategy

None Standard overall
label rate

Site-specific
adjusted rate

LaFloridaII Agronomic Wheat yield (kg ha-1) 4 449 4 800 4 773

Yield losses (kg ha-1) 351 0 27

Overall herbicide saving (%) 100 0 21

Avena-infested non treated area
(%)a

46.5 0 0.45

Avena-infested herbicide treated
area (%) b

0 100 46.1

Avena-free herbicide treated
area (%)a

0 53.5 53.8

Economic Ci all remote sensing costs – – 10

Ca standard herbicide application
cost (€ ha-1)

– 6.5 –

Css site-specific herbicide
application cost (€ ha-1)

– – 14.2

H herbicidecost (€ ha-1) – 38.5 8.1

C0 all other production costs
(€ ha-1)

273 273 273

COH overall cost (€ ha-1) 273 319 296

Net economic return (€ ha-1) 1062 1 121 1 137

Navajas Agronomic Wheat yield (kg ha-1) 3 893 4 000 3 988

Yield losses (kg ha-1) 107 0 12

Overall herbicide saving (%) 100 0 37

Avena-infested non treated area
(%)a

18.8 0 0.7

Avena-infested herbicide treated
area (%)b

0 100 18

Avena-free herbicide treated
area (%)a

0 81.3 26.7

Economic Ci all remote sensing costs
(€ ha-1)

– – 10

Ca standard herbicide
application cost (€ ha-1)

– 6.6 –

Css site-specific herbicide
application cost (€ ha-1)

– – 14.2

H herbicidecost (€ ha-1) – 40.0 14.2

C0 all other production costs
(€ ha-1)

273 273 273

COH overall cost (€ ha-1) 273 319 311

Net economic return (€ ha-1) 895 881 885

a Over whole area
b Over whole infested area
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herbicide applications on Avena sterilis-free areas or zones with very low infestations,

which is in agreement with the findings of other authors (Timmermann et al. 2003).

To implement any SSWM strategy, it is necessary to decide the size of the micro-plot and

the criteria for the application of herbicide (DMC). OHS and OHAE indices vary with the

size of the micro-plot and the DMC used. Both indices are important in the analysis of the

efficacy of SSWM strategies. Generally, higher values of OHS and OHAE indicate a superior

SSWM strategy. Ideally, the OHAE should be equal to 1, where a value of 1 can be inter-

preted as complete weed control and avoidance of herbicide applications in weed-free areas.

It should be pointed out that the OHS and OHAE can only be calculated by processing remote

images through SARI� software, and conversely the estimation of these indices through

conventional ground or image processing techniques would simply hardly be feasible.

Agricultural, environmental and economic objectives should be balanced in the final

decision regarding the application of herbicides. From the objective of agricultural pro-

duction, increasing the proportion of the field that is treated with herbicides will improve

production, assuming that this practice leads to the maximum yield. From an environmental

viewpoint, the goal would be to reduce the area treated with herbicide. Finally, the eco-

nomic objective is to get the maximum benefit, taking into account weed-crop competition

losses, input production costs and the crop sale price. Through the use of SARI� software, it

has been shown that these three objectives can be studied if basic information is available.

Conclusions

Avena sterilis weed pressure categories can be discriminated in wheat through remote

images taken at late stages of wheat senescence. Furthermore, using SARI software and

weed-crop competition and economic models, the yield losses for each micro-plot can be

estimated and a herbicide prescription map designed. In addition, key agri-environmental

indices such as OHS and OHAE can be determined through SARI�. They vary with the

size of the micro-plot and the DMC used and are important in the analysis of the efficacy of

SSWM strategies. An original method for the implementation of weed-crop competition

models under site-specific conditions has been shown. As previously described, the method

requires images obtained through remote sensing, appropriate models, ground-truth data

and SARI� software. An additional limitation to this method is that weeds, or other biotic

or abiotic factors, have to be detected in the images. The computerised decision making

method has the important advantage of using images obtained through remote sensing and

the ability to adapt these images to site-specific actions, which potentially reduced the costs

of mapping biotic or abiotic factors across a field. SARI� has been shown in two fields to

be effective software for sectioning images, the assessment of agro-environmental indi-

cators and the implementation of weed control strategies in each micro-plot.
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