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Abstract 
  Response Surface Methodology (RSM) was used to determine how the interaction of 
pressure, time and temperature affects gelling of blue whiting muscle (1.0-2.5% NaCl and 5% starch) 
as compared with traditional heat processing. Gels were analysed chemically (to ascertain the kind of 
bonds formed) and physically (rheological parameters, lightness and water holding capacity). High 
pressure gels were softer, and with superior gel strength and deformability than thermal gels. Modori 
(gel irreversible degradation) was not inhibited in the experimental pressure conditions. 
 
 
1. INTRODUCTION 
 
 A number of studies have been reported in recent years on gelling of muscle of a variety of fish 
species using high-pressure and mixed pressure-temperature procedures. The authors of these have 
concluded that the characteristics of the resulting gel differ from those of heat-processed gels: they are 
glossy, smooth and soft with greater elasticity (1-2). 
 Other experiments (3-5) have been conducted to demonstrate the effectiveness of high-pressure 
gelling in fish muscle (surimi and mince), but no work has been found on muscle of blue whiting 
(Micromesistius poutassou Risso) which determines bonds formation and relates these to gel texture. 
Also addressed is the utility from a nutritional standpoint of utilising these new technologies to achieve 
low salt levels. 
 In this paper, Response Surface Methodology was used to examine the influence of 
pressure-time-temperature on the texture of blue whiting muscle gels made with two levels of NaCl, as 
compared to gels made only by heating at atmospheric pressure. The paper also examines the bonds 
forming in high-pressure gels, as these exhibit different characteristics from heated gels. 
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2. MATERIAL AND METHODS 
 
 Blue whiting (Micromesistius poutassou Risso) used in this study was caught off the Cantabrian 
coast and kept about 24 hours at 4°C. Average size was 21.09±1.24 cm and average weight 
71.86±17.17 g. Fish were headed, gutted and washed. Skin and bones were removed with a deboning 
machine (Baader model 694, Lübeck, Germany) . Muscle was minced and washed in a solution of 
0.2% NaCl at 0°-3°C, proportion 3:1 (solution:minced muscle), first with constant stirring for 10 min 
then without stirring for another 10 min. After draining, excess water was removed using a screw press 
(Baader 523, Lübeck, Germany). Sorbitol (4%) and tripolyphosphate (0.2%) were added as 
cryoprotectants. The mince was immediately vacuum-packed in bags (Cryovac BB-1, Grace, 
Barcelona, Spain) and frozen in a plate-freezer at -40°C setting (Saabroe SMC, Dinamarca). The bags 
were stored at -80°C in a freezer cabinet (Revco ULT, Giralt, Revco Scientific Inc., Asheville NC, 
USA) in order to minimize alteration during frozen storage for the duration of the experiment. 
 For gel preparation, the washed blue whiting mince was semi-thawed and placed in a refrigerated 
vacuum homogenizer (Stephan mod. UM5, Stephan u. Söhne GmbH & Co., Germany). The muscle 
was ground for 1 minute at high speed (rotor angular velocity 3000 rpm). Sodium chloride 
(PANREAC, Montplet & Esteban S.A., Barcelona, Spain) was added and the mixture homogenized 
for 3 min. Then 5% starch (CLEARAM CH 20, LAISA, Barcelona, Spain) was added with crushed 
ice to give the required final gel moisture (80%) and homogenizing continued for 6 min at low speed 
(1500 rpm) in vacuum conditions. The resulting batters were stuffed into cases (Krehalon Soplaril, 
Barcelona, Spain) of 40 μm thickness and 3.5 cm diameter. The filled casings were subjected to a 
pressure-time-temperature combination according to the statistical model described further below, in 
a high pressure pilot unit (ACB Nº665, GEC ALSTHOM, Nantes, France). For comparison with the 
conventional gelling procedure, heat gels were made in the conventional way at atmospheric pressure: 
37°C 30 min / 90°C 50 min by waterbath immersion. Immediately, the casings were stored in a cold 
room at 4°C for 24 hours before analysis. 
 Proximate analysis was performed according to AOAC procedures (6) and crude fat by Bligh and 
Dyer (7) method as modified by Knudsen et al.(8). 
 Colour was determined on a colorimeter (HunterLab MiniScan MS/S-4000S, Hunter Associates 
Laboratory Inc., USA) using the CIE Lab scale (D65/10°) where L* is the parameter that measures 
luminosity. The result was the average of six measurements taken at ambient temperature at different 
points on the sample. 
 Water holding capacity (WHC). This was a modification of the method of Roussel and Cheftel 
(9). About 1.5 g of sample was placed in a centrifuge tube along with two dried pipette filters (Gilson, 
Villiers le Bel, France). A centrifuge (Sorvall RT6000B, Du Pont Co., Delaware, USA) was used at 
5000 g for 15 min at ambient temperature. WHC was expressed as water retained per 100 g of water 
present in the sample prior to centrifuging. All determinations were carried out in triplicate. 
 For texture analyses samples were removed from their casings, cut (3.5 cm diameter and 3cm 
height) and tempered at 20°C. Gels were penetrated to breaking-point using a texturometer (Instron 
mod. 4501, Instron Engineering Corp., Canton, MA, U.S.A.) with a round-ended stainless steel 
plunger (∅=5 mm). Cross-head speed was 10 mm/min and a 100N load-cell was used. Gel strength 



ISBN: 0-444-82224-0 (ISSN: 0167-4501 
 

[N.mm] was determined by multiplying maximum breaking force [N] by breaking deformation 
[mm]. All determinations were carried out at least in quadruplicate. Also Texture Profile Analysis 
(TPA) was performed as described by Bourne (10). Samples were placed on the flat plate of the 
texturometer. Compression was applied by a cylindrical plunger (∅=36 mm) adapted to a 5 KN load 
cell at a deformation rate of 50 mm/min. On the basis of previous trials to establish a compression 
limit that would ensure no cracking and recoverability of most samples, it was decided to compress 
samples to 50% of height. In the test, each sample was compressed twice running. The parameters 
determined were: hardness [N], elasticity [mm], adhesiveness [g.cm] and cohesiveness. Folding test 
(FT) was performed on gel slices of 3 mm height and 3.5 mm width (11). 
 In order to ascertain ionic, hydrogen, hydrophobic bonds and S-S bridges formation, the gels were 
solubilised in four solutions (12): 0.6 M sodium chloride (S1), 1.5 M urea+ 0.6M sodium chloride 
(S2), 8 M urea+ 0.6 M sodium chloride (S3) and 0.5 M 2-ß-mercaptoethanol+ 0.6 M sodium 
chloride+ 8 M urea (S4) at pH=7.0. Two grams of chopped gel was homogenized with 10 ml of S1 
(Ultraturrax TP18/10, Janke & Kunkel, Ika-Werk, Staufen, Germany) for 2 min at maximum speed. 
The resulting homogenate was stirred at ambient temperature for one hour then centrifuged for 20 
min at 20000g in a centrifuge (Beckman J2-MC, Beckman Instruments, Inc., Palo Alto, California, 
USA). The pellet obtained was homogenized in the S2 by the same process, then again with S3 (in 
this case, twice) and finally with S4. Protein concentration in the supernatants was determined in 
triplicate, based on the method of Lowry (13) using a commercial preparation (DC Protein Assay 
Reagent S nº 500-0116, BIO-RAD Laboratories, California, USA) and in the insoluble protein by the 
method of Kjeldhal. In order to eliminate interferences in protein determination, solutions were 
dialysed. Colorimetry was performed in a spectrophotometer (Hitachi 100-40 UV-VIS, Japan) at 750 
nm. Results are the average of two determinations and are expressed as percentage of solubilized 
protein with respect to total protein. 
 Response Surface Methodology (RSM) was used to study the simultaneous effect of three 
independent variables (pressure, time, temperature) according to a central composite rotatable design 
(20 points), using the statistical programme (Statgraphic, STSC Inc., Rockville MC. USA) as shown in 
table 1. Assessment of error was derived from replication (5x) of one treatment as suggested in the 
design (14). A 3-D graph was drawn to show interrelationships among these variables; combining 
pressure-time-temperature (two variables and the third variable keeps constant in the middle level) 
and response variable: textural properties and water holding capacity. Minimum level of significance 
was set for p≤0.05. 
 One-way analysis of variance was carried out using the Statgraphics computer programme. The 
difference of means between pairs was resolved by means of confidence intervals using a LSD range 
test. Level of significance was set for p≤0.05. 
 
 
 
 
 
 
3. RESULTS AND DISCUSSION 



ISBN: 0-444-82224-0 (ISSN: 0167-4501 
 

 
3.1.- Proximate analysis 
 For muscle: crude protein was 15.50±0.31%, moisture 82.92±0.09%, ash 0.99±0.02% and crude 
fat 0.50±0.04%; and for mince: crude protein was 12.80±0.30%, moisture 86.59±0.13%, ash 
0.43±0.02% and crude fat 0.40±0.06%. 
 
3.2.- Thermal gel 
 Table 2 shows the results of analysis of thermal gels at atmospheric pressure. The textural 
parameters of gels made with 1.0% NaCl were superior in gel strength, breaking force and breaking 
deformation to those of gels made with 2.5% NaCl, as was reported by Ishikawa et al. in 
sardine-surimi (15). 
 
3.3.- High pressure gels 
 In the folding test (r=0.97) on high-pressure gels, the influence of temperature was linear and 
quadratic (p≤0.01) on samples with either salt concentration. The highest values occurred at 
temperatures below 40°C. 
 The fact that high-pressure blue whiting gels could not be produced at higher temperatures during 
the times assayed suggests that in the given processing conditions there is no impediment to modori 
(gel irreversible degradation) resulting from the action alkaline proteases (11). Ohshima et al. (16) 
reported that much of the sarcoplasmic protein in cod and mackerel white, most of it enzymes, 
becomes denatured at 400 MPa for 15 min. Shoji et al. (17) found that most transglutaminases were 
inhibited at 300 MPa at 0°C for 10 min in crude extract prepared from walleye pollack surimi. Gels 
made by heating at  
atmospheric pressure scored maximum in the folding test (Table 2). 
 Evolution of gel strength (GS) of high-pressure gels is shown in figure 1. In gels made with 1.0% 
NaCl (r=0.99), the significative variables were time, temperature (linear) and pressure-temperatures 
and pressure-time interactions (p≤0.01). In gels made with 2.5% NaCl (r=0.99), the influence of time 
(linear; p≤0.05), temperature (linear and quadratic; p≤0.01) and pressure-time and pressure 
temperature interactions (p≤0.01) was significant. The highest values of GS occurred at 200-300 MPa 
pressure and low temperature (0-15°C), or at 400 MPa at 25-30°C for 30 min. Working with silvery 
pout, Serennes (18) obtained maximum GS at 400 MPa for 35 min at 30°C, reporting that the 
minimum pressure conditions at which myosin molecules would aggregate was 200 MPa for 15 min 
at room temperature (19). According to Okazaki et al. (20),the optimum pressure-time-temperature 
combination depends on species, pH and protein concentration. Carlez et al.(21) found in threadfin 
bream surimi that the firmest gels were obtained at 300 MPa, 5-10°C for 15 min. Shoji et al.(22) 
reported increasing GS during storage at 5°C after processing at 200 MPa at 0°C for 10 min. 
 Experimental results show that behaviour of gels processed in the same way differs according to 
NaCl concentration, higher GS being achieved in gels made with the lower concentration. GS has 
generally been found to be substantially lower in thermal than in pressure gels. Carlez et al.(21) found 
the same with threadfin bream surimi; Serennes (18), however, found that with silvery pout muscle 
better results were achieved by pressurising muscle previously mixed with 3% NaCl. Then again, in 
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sardine muscle high-pressure gels, Ishikawa et al. (15) obtained best gel strength with 0% and 2% 
NaCl. 
 Breaking force (BF) was significantly influenced by time (p≤0.01), temperature (p≤0.05) and 
pressure-time (p≤0.01) and pressure-temperature (p≤0.05) interactions in gels made with 1.0% NaCl 
(r=0.99), the highest values occurring at the lowest working pressures over short times. In gels made 
with 2.5% NaCl (r=0.99), on the other hand, breaking force was influenced by pressure and time 
(linear; p≤0.05 in both cases), by temperature (linear and quadratic; p≤0.01) and by pressure-time and 
pressure-temperature interactions (p≤0.01). The highest values were achieved at around 200 MPa 
pressure at low temperatures. Nagashima et al. (23) found no direct relationship between BF and 
increased pressure in squid gels with EDTA added as enzyme inhibitor. BF in high-pressure gels was 
generally similar to that of gels made by heating at atmospheric pressure. 
 Breaking deformation (BD) in figure 2, was influenced by time (linear; p≤0.05), temperature 
(linear; p≤0.01) pressure-temperature interaction (p≤0.05) in gels made with 1,0% NaCl (r=0.96), but 
only by temperature (linear; p≤0.01) in gels made with 2.5% NaCl (r=0.98). A decreasing of 
deformation were when time and temperature rise, when more than 300 MPa were applied this fact 
was not so evident. BD was lower in gels made by heating at atmospheric pressure (Table 2). 
 Hardness as measured by TPA is shown in figure 3. Only temperature had a clear influence 
(linear; p≤0.01) in gels made with 1% NaCl (r=0.89) and only pressure (linear; p≤0.05) on gels made 
with 2.5% NaCl (r=0.89). The highest values in pressure gels occurred in samples with the lower salt 
concentration and at relatively low temperatures (less than 40°C), particularly at pressures around 200 
MPa. Okamoto et al. (24), however, found that gels made with egg yolk and white, carp crude 
actomyosin, and rabbit meat paste tended to be harder as pressure was raised at 25°C for 30 min. In 
the present experiment, blue whiting muscle gels made by heating at atmospheric pressure were 
found to be harder than those made by pressurizing (Table 2). 
 Elasticity diffeered according to salt concentration. In gels made with 1% NaCl (r=0.83), elasticity 
was influenced by pressure (linear; p≤0.05) and by interaction of pressure and temperature (linear; 
p≤0.01), whereas in gels made with 2.5% NaCl (r=0.92) only temperature influenced elasticity (linear 
and quadratic; p≤0.01). The effect of pressure was greatest at around 300 MPa in gels with 2.5% NaCl 
and at higher pressures in gels with 1% NaCl. The best temperature was found to be about 30°C for 
gels with 1% NaCl and about 20°C for gels with 2.5% NaCl. Ishikawa et al. (15) reported that elasticity 
of sardine-surimi gels heated at 55°C for 15 min after pressurizing at 100 MPa for 20 min was higher 
than that obtained by only pressurizing at 400 MPa or heating at 85°C; elasticity was greater in 
heated-only than in pressurized-only gels. In the present case elasticity was similar in both heated and 
pressurized gels. As regards the combination of temperature and pressure, behaviour differed 
according to salt concentration. Elasticity was greater on pressurizing at around 40°C in gels with 1% 
NaCl, whereas in gels with 2.5% NaCl elasticity was low at temperature above 20°C. 
 Adhesiveness was only influenced by temperature (linear, p≤0.05; quadratic, p≤0.01) in gels with 
1% NaCl (r=0.87) and gels with 2.5% NaCl (r=0.91) (linear and quadratic; p≤0.01). The highest values 
of adhesiveness occurred at low pressures and temperatures (200 MPa at ≤15°C) or intermediate 
pressures and temperatures (300 MPa at 40°C). Gels made by heating at atmospheric pressure were 
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much more adhesive than pressure gels. Okamoto et al. (24) reported that adhesiveness of gels made 
from carp crude actomyosin was greater at low spressures (100 MPa, 25°C for 30 min). 
 Cohesiveness (Fig 4) was influenced by temperature and pressure (linear, p≤0.01) in gels made 
with 1% NaCl (r=0.93) and by time (linear, p≤0.01), temperature (linear and quadratic, p≤0.01), and 
time-temperature interaction (p≤0.05) in gels made with 2.5% NaCl (r=0.99). The best conditions for 
obtaining a cohesive gel were found to be low pressure and low temperatures in the case of gels with 
1% NaCl, or temperatures around 20°C in gels made with 2.5% NaCl. Cohesiveness of gels made by 
heating at atmospheric pressure were slightly lower. 
 Evolution of water holding capacity (WHC) in high-pressure gels is shown in figure 5. In gels with 
1% NaCl (r=0.92), temperature was the significant variable (linear, p≤0.01), whereas in gels made with 
2.5% NaCl (r=0.90), these were temperature and time (both linear; p≤0.01, p≤0.05). The highest 
WHC occurred at 200 MPa pressure combined with long time (25 min) or low temperature (10°C) 
in gels with 1% NaCl, and in similar conditions but for a shorter time (10 min) in gels with 2.5% NaCl. 
Values were higher in conventional thermal gels than in pressure gels. Okazaki (25) reported that 
WHC values became lower as gelling pressure increased (200-500 MPa for 20 min). 
 Lightness (L*) was positively influenced by pressure and temperature (linear and quadratic, 
p≤0.01) irrespective of salt concentration. Values were higher in pressurized than in heated gels. 
Wada and Ide (26) also found that L* increased with pressure in gels made from sardine. In gels 
made with 2.5% NaCl, lightness was also influenced by time (linear, p≤0.01; quadratic, p≤0.05), 
pressure-time interaction (p≤0.05) and pressure-temperature interaction (p≤0.05). L* values fitted the 
regression model with r=0.94 for gels with 1% NaCl and r=0.95 for gels with 2.5% NaCl. As was to be 
expected, the highest values of L* occurred with temperatures above 50°C. 
 On the basis of the results from the RSM test, a pressure-time-temperature combination was 
chosen: 375 MPa for 20 min at 38°C (gel H) in order to identify the kinds of bond forming under 
pressurization and compare them with those found in conventional heat processing (gel T) elaborated 
with 1.0% NaCl. Protein solubility in various solutions as an indicator of the types of bonds forming in 
the two gels is shown in figure 6. Protein solubility in S1 and S2 was similar in both gels, with no 
significant differences between them. According to Carlez et al. (21), ionic bonds, and more 
specifically Ca+2 ions, play an important role in gel texture. The highest solubility percentages were 
found in solution S3. Hydrophobic bonds were more abundant (p≤0.05) in gel H than in gel T. High 
pressure has been reported to favour hydrophobic bonds by Ikeuchi et al. (27) in actomyosin gels, 
Mozhaev et al.(28) in proteolytic enzymes and Carlez et al.(21) in threadfin bream surimi. Protein 
soluble in S4 and insoluble protein differed significantly in both gels (p≤0.05), which suggests that 
pressure causes the formation of a smaller number of covalent bonds. 
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Table 1 
Level of variables in pressure treatment according to RSM experimental design  
 
 pressure (MPa) time (min) temperature (°C)   
 
 200 10 0 
 245 14 15 
 310 26 38 
 375 20 60 
 420 30 75  
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Table 2 
Values of analyses performed on thermal gels processed at atmospheric pressure. 
 
Assay 1.0% NaCl  2.5% NaCl  
  
Folding test 5 a 5 a 
Breaking deformation [mm] 10.16±0.48 a 8.51±0.59 b 
Breaking force [N] 2.79±0.25 a 1.69±0.10 b 
Gel strength [N.mm] 28.37±3.73 a 14.39±1.46 b 
Hardness [N] 64.20±7.56 a 59.09±9.07 a 
Elasticity [mm] 13.86±1.27 a 13.08±0.99 a 
Adhesiveness [g.cm] 2265±324 a 2092±354 a 
Cohesiveness  0.61±0.02 a 0.59±0.02 a 
Water holding capacity [%] 94.04±0.57 a 92.89±2.14 a 
Lightness (L*) 69.67±0.73 a 68.84±0.26 b  
 
Variables in the same row with different letters are significantly different (p≤0.05) 
 
 


