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Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are
primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlo-
rosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, comple-
mented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment composi-
tions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum.
High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when
grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addi-
tion to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and con-
tain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using
hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlo-
robi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by
hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of
the pigments in C. tepidum may lead to �-� interactions between carotenoids and bacteriochlorophylls, preventing carotenoid
extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in
the protein-free environment of the chlorosome interior.

Photosynthetic bacteria comprise a large and diverse group of
microorganisms that colonize a variety of ecological niches,

including low-light biomes in deep aquatic environments. Some
of these low-light niches are inhabited by green photosynthetic
bacteria, which have adapted to their environmental conditions
by harboring large light-harvesting complexes, the chlorosomes
(1–3). A typical chlorosome is an ellipsoidal body (approximately
150 by 50 by 20 nm) with a lipid-protein envelope (4) and an
internal core that contains a large number (50,000 to 250,000) of
bacteriochlorophyll (BChl) molecules (5, 6). Chlorosomes are lo-
cated on the cytoplasmic side of the plasma membrane and inter-
face with the membrane via a so-called baseplate. The baseplate is
composed of a regular array of the chlorosomal protein CsmA,
forming a complex with BChl a and carotenoid molecules. BChl a
serves as an acceptor of the harvested excitation energy from the
main chlorosome pigments (BChl c, d, or e). In species belonging
to the phyla Chlorobi and Acidobacteria, the baseplate is further
connected to an acceptor protein, FMO (7), while chlorosomes
from species belonging to the Chloroflexi are directly connected to
the membrane. In both cases, the excitation energy is ultimately
delivered to the reaction centers within the membrane, where
charge separation takes place, and is subsequently used to drive
cellular processes.

The internal architecture of chlorosomes is substantially differ-
ent from that of other photosynthetic antennas, which contain
pigments tightly associated with a protein structural scaffold. In-
stead, the majority of pigments in chlorosomes are arranged in
large, self-assembling aggregates with no involvement of proteins.
In all structurally characterized chlorosomes, the aggregates con-
sist of chlorin rings stacked into curved sheets that further assem-
ble into lamellae (3, 7–10). The lamellar spacing is proportional to

the average length of esterifying alcohols of BChls (11). In the
most ordered chlorosomes from Chlorobaculum tepidum (espe-
cially from a bchQRU triple mutant), these lamellae have been
described in the form of multilayered cylinders (12, 13).

In addition to BChls, the chlorosome interior also harbors var-
ious amounts of carotenoids, which provide photoprotection and
also contribute to light harvesting (14–17). In vitro assembly stud-
ies in aqueous buffers have also suggested that hydrophobic caro-
tenoids may augment self-assembly of BChls into aggregates by
enhancing interaction between the hydrophobic tails of esterify-
ing alcohols within lamellae (18, 19). Furthermore, carotenoids
can be extracted from chlorosomes isolated from several species
by nonpolar solvents, such as hexane (9, 20). Structural character-
ization of hexane-treated chlorosomes from Chlorobium pha-
eovibrioides (containing BChl e as the main pigment) demon-
strated that carotenoids are located within lamellae and increase
the apparent spacing between adjacent lamellar layers (9).

Among the structurally characterized chlorosomes, those from
brown Chlorobi species (C. phaeovibrioides and Chlorobium phaeo-
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bacteroides) and the Chloroflexi species Chloroflexus aurantiacus
may accumulate large amounts of carotenoids (up to a carote-
noid-to-BChl molar ratio of �0.5:1) (21, 22). In comparison with
C. tepidum, all of these species contain a greater percentage of
BChl homologs with longer esterifying alcohols, and thus, their
aggregates exhibit larger lamellar spacing that allows the accumu-
lation of additional carotenoids (10). In addition, chlorosomes
with larger spacing have a more disordered lamellar system, which
is manifested, e.g., by a wider distribution of the lamellar spac-
ings seen in electron cryomicroscopy (cryo-EM) and X-ray
scattering (9).

Here, we probe the structural role of carotenoids in BChl c-
containing chlorosomes from two different phyla: C. aurantiacus
(Chloroflexi) and C. tepidum (Chlorobi). By subjecting purified C.
aurantiacus chlorosomes to hexane extraction, followed by struc-
tural characterization by cryo-EM and X-ray scattering, we dem-
onstrate that carotenoids are, as in the Chlorobi, located within
lamellae, contributing to the large spacing. Remarkably, the over-
all structure, including the proteinaceous paracrystalline base-
plate, remains intact throughout hexane extraction. In contrast,
the carotenoid content in C. tepidum chlorosomes is much lower
and could not be further reduced with hexane following the same
extraction procedure. This difference is ascribed to stronger car-
otenoid-BChl interactions in C. tepidum chlorosomes caused by
the specific molecular structure of its pigments.

MATERIALS AND METHODS
Cell growth. C. tepidum cells were cultured and chlorosomes were iso-
lated as previously described (8). C. aurantiacus cells were grown in a
14-liter fermentor (�30-cm vessel diameter) at two different light inten-
sities: the low-light culture was grown under illumination by four 25-W
incandescent bulbs. The fermentor was shielded by a sheet of white paper
to diffuse the incident light, resulting in a light intensity of �10 to 15 �E ·
m�2 · s�1 incident to the vessel surface. The culture was grown for 11 days
under these conditions to the late exponential phase of growth. The high-
light culture was grown under the illumination of 12 100-W incandescent
bulbs, leading to a flux of �1,000 �E · m�2 · s�1 incident to the vessel
surface. The high-light culture was grown for 2 days under these condi-
tions. Both cultures were grown at 50°C in a modified version of DG
medium (24) with the following changes: 2 g per liter yeast extract, 1 g per
liter Tris base, 0.2 g per liter (NH4)2SO4 adjusted to pH 8.2. In both
instances, the cultures did not reach the stationary phase of growth.

C. aurantiacus chlorosomes were isolated using a modified method of
Feick and Fuller (25). Whole cells were disrupted using a Branson sonifier,
and the suspension was centrifuged at 16,000 � g for 20 min. The super-
natant was centrifuged at 225,000 � g for 2 h at 4°C. The pellet containing
whole membranes was resuspended in 20 mM Tris, pH 8, and homoge-
nized using an overhead stirrer with a Teflon mixer. Concentrated whole
membranes were diluted to a final optical density at 865 nm (OD865) of 2
to 4 cm�1 in 2 M NaI and 20 mM Tris, pH 8. The mixture was briefly
sonicated and then ultracentrifuged for 16 h at 135,000 � g at 4°C. This
yielded a floating pellet enriched in chlorosomes, while the supernatant
contained mostly membranes. The floating pellets were pooled and resus-
pended in 20 mM Tris, pH 8. These partially purified chlorosomes were
layered onto a two-step (20 to 40% [wt/vol]) sucrose gradient in 20 mM
Tris, pH 8, and centrifuged at 135,000 � g for 16 h at 4°C. Purified chlo-
rosomes banded at the interface of the gradient layers and pure chloro-
somes were collected from the top of the band, while membranes still
contaminated the lower part of the band. To further reduce the possibility
of membrane and wax oleosome contamination, the top band was sub-
jected to a second sucrose gradient after dilution with 1 volume of 20 mM
Tris, pH 8. The final chlorosome stock was suspended in �20% (wt/vol)
sucrose, 20 mM Tris, pH 8.0. After each step of the purification, an ab-

sorption spectrum was collected from the various fractions. Comparison
of the chlorosomes contaminated with membranes and the final pure
chlorosomes showed similar absorption band structures (results not
shown), suggesting the chlorosomes used in the subsequent analysis are
representative. The selective removal of carotenoids from chlorosomes by
a hexane wash was performed as described previously (9).

Pigment analysis. An aliquot of chlorosomes with an OD of 4 cm�1 at
742 nm was dried in a centrifugal evaporator at room temperature in the
dark. Pigments from the dried chlorosomes were extracted in 500 �l ice-
cold 1:1 (vol/vol) acetone- methanol (MeOH). Extracts were bath soni-
cated for 5 min, followed by incubation of the mixture at �20°C for 20
min. Samples were then centrifuged at 14,000 � g for 5 min, and the
supernatants were immediately analyzed by high-performance liquid
chromatography (HPLC) using a Zorbax Eclipse XDB-C18 column
(5-�m particle size; 4.6 by 250 mm). The mobile phase was as follows: 0 to
10 min, isocratic flow of 100% methanol; 10 to 18 min, a linear gradient
from 100% methanol to 75% methanol and 25% hexane; 18 to 25 min, an
isocratic flow of 75% MeOH and 25% hexane. The flow rate was 2 ml ·
min�1.

Structural analysis. Electron cryomicrographs of chlorosomes from
C. tepidum were obtained as previously described (8). Cryo-EM data with
chlorosomes from C. aurantiacus were collected using a Gatan 626 cryo-
holder maintained at �180°C in a FEI Tecnai F20 microscope operated at
200 kV and recorded with a Gatan Ultrascan 4000 digital charge-coupled
device (CCD) camera with a 15-�m pixel size. The magnifications were
�50,000 (C. tepidum) and �109,000 (C. aurantiacus). Medium-angle X-
ray-scattering data were collected as previously described (8, 11). Samples
for X-ray-scattering experiments were concentrated using an ultracentri-
fuge and airfuge to an OD (at 750 nm) of �500 cm�1.

RESULTS
Absorption spectra. Figure 1a shows absorption spectra of the
chlorosomes from C. aurantiacus grown under low-light and
high-light conditions. The Qy band of the BChl c aggregates is
located around �740 nm and that of BChl a around 795 nm.
Low-light chlorosomes exhibit greater absorbance in the carote-
noid region (�400 to 550 nm), mainly due to higher carotenoid
content (relative to BChl c) (Table 1) and partly also due to stron-
ger scattering of the low-light chlorosomes caused by their larger
size (see below). Figure 1b shows the absorption spectrum of chlo-
rosomes from C. tepidum. The differences between the absorption
spectra of the two species are mainly due to the small molar frac-
tion of carotenoids and BChl a relative to BChl c in C. tepidum
(Table 1).

A hexane wash (9, 20) was applied to low-light chlorosomes of
C. aurantiacus because their carotenoid-to-BChl c molar ratio was
higher, and therefore, a more pronounced effect was expected.
Figure 1a illustrates that hexane efficiently extracted carotenoids
from chlorosomes of C. aurantiacus. However, the absorption
spectra also indicated that a small fraction of carotenoids re-
mained resistant to extraction, suggesting these carotenoids might
be tightly bound. In addition, a slight broadening of the BChl c Qy

band was observed (Fig. 1a), which slowly diminished with time
(not shown). In contrast, the absorption spectrum of C. tepidum
chlorosomes (Fig. 1b) showed hardly any change upon hexane
treatment. Carotenoids were not removed, and broadening of the
BChl c Qy band was not observed.

X-ray scattering. X-ray scattering is a useful technique to
probe structure on the nanometer scale and has been employed to
probe the chlorosome interior (8, 11, 26). In our previous study, it
proved difficult to obtain chlorosomes of C. aurantiacus devoid of
membrane contamination, as attested by X-ray-scattering results
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(10). Improved preparation methods yielded chlorosomes with
considerably higher purity and consequently resulted in a better
X-ray-scattering pattern, although the presence of a peak at a q of
�0.13 Å�1 suggests some residual contamination with cytoplas-
mic membranes (Fig. 2a). In particular, the new scattering curve
of low-light chlorosomes exhibits a well-resolved lamellar peak at
a q of �0.19 Å�1 (lamellar spacing, 33 Å) (q�4� sin(�/2)/	, where
� is the scattering angle and 	 is the X-ray wavelength). A very
similar curve was obtained for high-light-grown chlorosomes
(data not shown). However, upon extraction of carotenoids by
hexane wash, lamellar spacing decreased from 33 to 25 Å (Fig. 2a).
In addition, the lamellar peak became slightly broader, perhaps

reflecting the same disorder that caused the broadening of the Qy

absorption band. The decrease of lamellar spacing was confirmed
by direct observation using cryo-EM (see below). The membrane
peak at �0.13 Å�1 became stronger, presumably due to further
stacking of contaminating membranes during hexane treatment
induced by their polar surfaces. In contrast, the hexane wash failed
to produce any changes in C. tepidum X-ray peaks, and thus, the
spacing remained the same (Fig. 2b). In addition, the X-ray-scat-
tering pattern demonstrated that the baseplate remained intact in
C. tepidum after the hexane wash, as demonstrated by the peak
corresponding to spacing of 32.2 Å (26). The results show that
hexane treatment itself affects neither the lamellar arrangement
nor the baseplate integrity, and therefore, the changes in lamellar
spacing observed here for C. aurantiacus, and previously for C.
phaeovibrioides (9), are solely due to the carotenoid removal from
intact chlorosomes.

Previously, we have reported that the lamellar spacing is pro-
portional to the length of the esterifying alcohol and is further
increased by carotenoids within the chlorosome interior (11). For
the high-light and low-light chlorosomes of C. aurantiacus used in
this study, the weighted average of the content of C16 and C18

esterifying alcohols was determined by HPLC and found to be
similar. The resulting average lengths for the esterifying alcohols
were as follows: C � 17.1 for high-light chlorosomes and C � 17.4

FIG 1 (a) Absorption spectra of chlorosomes from C. aurantiacus. Shown are
low-light chlorosomes before (solid line) and after (dotted line) the hexane
wash and high-light chlorosomes (dashed line). a.u., arbitrary units. (b) Ab-
sorption spectra of chlorosomes from C. tepidum before (solid line) and after
(dotted line) the hexane wash.

TABLE 1 Pigment compositions of the chlorosomes used in this work

Bacterium and conditions

Molar ratio Esterifying alcohols of BChl c

BChl c/BChl a Carotenoid/BChl c C12:C16:C18
a Avg lengthb

C. aurantiacus, high light 27.5:1 0.26:1 0.00:0.34:0.65 17.14
C. aurantiacus, low light 34.5:1 0.31:1 0.00:0.31:0.69 17.38
C. aurantiacus, low light, hexane washed 34.0:1 0.06–0.07:1 0.00:0.32:0.68 17.36
C. tepidumc 110:1 0.08:1 0.83:0.17:0.00 12.68
a Molar ratio between BChl c homologs esterified with alcohols containing different numbers of carbons in the main chain of the alcohol.
b Average length of esterifying alcohols expressed as the number of carbons in the main chain of the alcohol.
c Data from reference 9.

FIG 2 X-ray scattering from chlorosomes of C. aurantiacus (a) and C. tepidum
(b) before (solid lines) and after (dotted lines) the hexane wash.
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for low-light chlorosomes (Table 1), where C stands for the num-
ber of carbons in the main chain of the esterifying alcohol tail.
They also accumulated relatively high but comparable fractions of
carotenoids (Table 1) and hence exhibited similar lamellar spac-
ing (Fig. 3). However, after the extraction of carotenoids, the la-
mellar spacing decreased, while the average length of the alcohol
remained unaffected.

Cryo-EM. To analyze the effect of the hexane wash on overall
morphology, the chlorosomes were imaged by cryo-EM. The field
views presented in Fig. 4 show that both C. tepidum and C. auran-
tiacus chlorosomes remained intact and neither the overall mor-
phology nor the chlorosome internal arrangement was altered by
hexane washing, in accordance with previous observations for the
BChl e-containing green sulfur bacterium C. phaeovibrioides (9).

Figure 5 analyzes the details of representative individual C.
aurantiacus chlorosomes. High-light chlorosomes were relatively
thin and exhibited striations from the baseplate lattice perpendic-
ular to the long axis of the chlorosome and BChl c lamellae more
or less parallel to the long axis of the chlorosome. On the other
hand, low-light chlorosomes were more electron dense, presum-
ably due to a higher content of pigments, leading to thicker chlo-
rosomes. The molar ratios of BChl c to BChl a and of carotenoids
to BChl c increased by approximately 25% and 20%, respectively,
compared with the high-light chlorosomes (Table 1). This is fur-
ther supported by the absorption spectra (Fig. 1). Consequently,
the baseplate is not directly visible in the cryo-EM projections. In
addition, low-light chlorosomes exhibited domains of well-or-
dered lamellar aggregates with variable orientations with respect
to the long axes of the chlorosomes (Fig. 5c). The analysis of Fou-
rier transform power spectra for both types of chlorosomes
yielded spacings ranging typically from 26 to 38 Å. The baseplate
spacing was about 33 Å, as previously reported (10).

Cryo-EM further confirmed the decrease of the lamellar spac-
ing after the hexane wash. Fourier transform power spectra
yielded values for the spacing typically between 23 and 24 Å. In
addition, the micrographs indicated that the internal arrangement
of chlorosomes from C. aurantiacus remained intact after the
hexane wash, including the baseplate and lamellar arrangement in
domains (Fig. 5c). It is worth noting that the systematic difference
between the spacings derived from X-rays and cryo-EM is most
likely due to underrepresentation of large spacings in EM data
analysis. Areas with visible striations, which were selected for the
EM analysis, usually correspond to better-ordered and thus tightly
packed regions with smaller spacings (9).

DISCUSSION

The chlorosomes from C. aurantiacus studied in this work con-
tained a larger amount of pigments (see below) and had an �20%
higher carotenoid-to-BChl c molar ratio when the cells were
grown under low-light conditions than when grown under high
light. Although the observed increase of the carotenoid fraction
was not great, its impact on absorption between �400 and 500 nm
was quite significant (Fig. 1). The observed higher carotenoid-to-
BChl c molar ratio under low-light conditions may seem contra-
dictory compared with earlier results obtained for C. aurantiacus.
Previously, a higher content of carotenoids was observed in ex-
tracts from whole cells grown under high-light conditions (27)
and also in chlorosomes isolated from such cells (22). However,
the majority of the additional carotenoids were most probably not
located in chlorosomes but within structures known as wax oleo-
somes (28), which may copurify with chlorosomes but which were
effectively eliminated from our preparation (see Materials and
Methods). These additional carotenoids most likely provide pho-
toprotection to cells as screening pigments, but not directly to the
BChls associated with chlorosomes, as suggested previously (10,
11). Based on the present results, we suggest that the amount of
carotenoids per BChl c molecule inside chlorosomes from C. au-
rantiacus increases moderately under low-light conditions to en-
hance light harvesting. However, it is not clear whether the ob-
served changes in pigment composition were caused solely by the
differences in illumination intensity or if other factors, like cell
density or culturing time, also affected the molar ratio of pig-
ments. Therefore, more experiments are needed to further clarify
this issue, preferably using continuous cultures and/or identical
culturing times.

The combination of X-ray scattering and cryo-EM allowed us
to discern features of both the baseplate and the BChl aggregates.
Although X-ray scattering from the baseplate overlaps with that
from BChl c lamellae in chlorosomes for C. aurantiacus, cryo-EM
projections clearly show the baseplate lattice. Conversely, the X-
ray peak from the baseplate is visible for chlorosomes from C.
tepidum, whereas the baseplate is not discernible in cryo-EM pro-
jections because of the thickness of chlorosomes that contain a
large amount of BChl c relative to BChl a (Table 1). Thus, the
observation of the baseplate, either in X-ray (C. tepidum) or in
cryo-EM (C. aurantiacus), for the hexane-washed chlorosomes
suggests that the baseplate remains intact during the treatment.
Additionally, as attested by cryo-EM, the overall morphology is
unaffected by hexane treatment. Thus, the removal of carotenoids
and the concomitant change in lamellar spacing happens without
changing the chlorosome intactness. On the other hand, a slight
broadening of the BChl c Qy band and the lamellar X-ray peak

FIG 3 Lamellar spacing of BChl aggregates as a function of the esterifying
alcohol length and hexane removal of carotenoids. Data compiled for refer-
ence from our previous studies are as follows: diamonds, in vitro aggregates
(11); solid circles, native chlorosomes (8, 9); and open circle, C. phaeovibrioides
chlorosomes after hexane wash (9), which is indicated by an arrow. The data
obtained in this work are shown as squares. For C. aurantiacus, two filled
squares are shown for the high-light and low-light chlorosomes and one empty
square for low-light chlorosomes after hexane wash. The half-filled, half-
empty square for C. tepidum reflects the fact that the same spacing was ob-
served before and after the hexane wash. For C. tepidum, another point is
shown (solid circle) to illustrate the natural batch-to-batch variation in spac-
ing. The numbers in parentheses are carotenoid-to-BChl molar ratios deter-
mined for native chlorosomes.
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were observed in chlorosomes from C. aurantiacus, suggesting
some disordering of the aggregates accompanying the shrinking of
the lamellar spacing during the carotenoid extraction. Neverthe-
less, the unchanged position of the Qy band excludes any signifi-
cant changes in short-range interactions. These spectral changes
are similar to those observed for C. phaeovibrioides (9).

While the increase of the carotenoid-to-BChl ratio needs to be
confirmed by further experiments, the other observed differences
between the low-light and high-light chlorosomes are in line with
other available data. Previously, it was observed that the overall
amount of pigments increases with decrease of the light intensity,
in chlorosomes from both Chlorobi species (light intensities above
1 �E · m�2 · s�1) (21, 23) and C. aurantiacus (22). In this work, we
observed changes in morphology between the high-light and low-
light chlorosomes that are in a very good agreement with these
observations. The high-light chlorosomes from C. aurantiacus are
relatively thin, and therefore, the baseplate is discernible. In con-
trast, the low-light samples contain proportionally more BChl c
and carotenoids than BChl a (Table 1). This is in agreement with
previously reported pigment ratios under different light condi-
tions (22). As a result, low-light chlorosomes are thicker and the
baseplate is not visible in top views. A plausible explanation may
be that the high-light chlorosomes correspond to the stage of mor-

phogenesis in which the baseplate is already formed and only a few
layers of BChl aggregates are assembled. While this stage is final
under high-light conditions, further BChl layers assemble on top
of the initial layers under low-light conditions. Indeed, thickening
of chlorosomes that correlated with an increase in the ratio of
BChl c to BChl a was observed during chlorosome morphogenesis
in C. aurantiacus (29). The additional layers in low-light chloro-
somes are often arranged into domains of lamellar aggregates with
slightly different orientations with regard to the long axis of the
chlorosome, although with much less variation than in C. pha-
eovibrioides (9). This might indicate that formation of domains is
a general response to low-light conditions and may assist in light
harvesting (9).

The mechanism of the domain formation is not yet clear. For
certain bacteria from phylum Chlorobi, it has been observed that
they respond to low-light conditions by producing BChl ho-
mologs with longer esterifying alcohols (30, 31). One explanation
could be that the newly synthesized homologs do not fit into the
spacing of the existing lamellar system and start to nucleate inde-
pendently of the parallel lamellar system underneath, leading to
domain formation. At the same time, more carotenoids are incor-
porated into the chlorosome. As there is no significant difference
between the average lengths of the esterifying alcohols for the low-

FIG 4 Comparison of overall shapes from electron micrographs of chlorosomes from C. aurantiacus grown under low-light conditions (a and b) and C. tepidum
(c and d) embedded in vitreous ice before (a and c) and after (b and d) hexane wash. The dense 10-nm spheres are from colloidal-gold markers.
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light and high-light chlorosomes in this study (Table 1), we have
to consider another possibility: The larger amount of pigments
produced under low-light conditions may lead to a higher prob-
ability of defects during the build-up of the parallel lamellar sys-
tem, which in turn leads to independent nucleation and domain
formation. A similar finding was reported for C. phaeobacteroides
chlorosomes; whereas parallel lamellae without domains were ob-
served in thin chlorosomes, domains prevailed in thicker chloro-
somes (9).

Carotenoids can be effectively removed from the C. aurantia-
cus chlorosome by hexane (20). Here, we have shown that the
extraction leads to a substantial decrease in lamellar spacing. Fig-
ure 3 demonstrates that the lamellar spacing in BChl aggregates is
linearly proportional to the average length of esterifying alcohols
in the absence of carotenoids (11). In chlorosomes, the spacing is
often larger than that extrapolated by the linear dependence. This
deviation is caused by carotenoids, which occupy the lipophilic
space of the interdigitated esterifying alcohols between the layers
of stacked chlorin rings. When carotenoids are extracted by
hexane, the spacing reduces to a value close to that predicted by
the average length of the alcohol chains. Similar results were pre-
viously obtained for C. phaeovibrioides (Fig. 3) (9), which belongs
to the phylum Chlorobi. Thus, partitioning of carotenoids into the
interlamellar space is a general feature of chlorosomes from both
Chloroflexi and Chlorobi. The spacing change for C. aurantiacus is
larger than that for C. phaeovibrioides, which can be explained by
the larger amount of carotenoids in the former.

In contrast to C. aurantiacus, the efficiency of carotenoid re-
moval by hexane is severely reduced for C. tepidum chlorosomes.
Although rather efficient removal of carotenoids and quinones by
hexane was reported for C. tepidum (32), we could not extract
carotenoids from C. tepidum chlorosomes under the conditions
used here for C. aurantiacus. This is intriguing, because both C.
aurantiacus and C. tepidum contain BChl c as the main pigment.

We cannot explain this as due to differences between Chlorobi and
Chloroflexi species, because the hexane wash was as efficient for C.
phaeovibrioides as for C. aurantiacus under the same conditions.
One of the differences between chlorosomes from these two spe-
cies and those from C. tepidum is that the amount of carotenoids is
naturally low in C. tepidum (�0.1:1 relative to BChl c). These
carotenoids seem to be packed in the voids between C12 esterifying
alcohols within the lamellae. This is probably the main reason why
even before the hexane wash the spacing is close to that predicted
by the length of the esterifying alcohol chains (Fig. 3). From the
data presented in Fig. 3, it seems very likely that when the molar
ratio of carotenoids to BChl c is about 0.1:1 or below, the carote-
noids are filling only the empty spaces between esterifying alco-
hols in lamellae without affecting the spacing. This may yield a
well-defined and ordered interior structure, but it still does not
explain why the carotenoids cannot be efficiently removed from
the interior of C. tepidum chlorosomes by hexane.

One explanation for the low efficiency of carotenoid extraction
could be that most of the carotenoids in chlorosomes from C.
tepidum may be contained within the baseplate, where they are
tightly bound to the CsmA protein. Moreover, in C. aurantiacus
and C. phaeovibrioides, a small portion of carotenoids resisted
hexane extraction, suggesting a different environment, such as the
baseplate. However, the amount of carotenoids in the baseplate is
much smaller than the fraction of tightly bound carotenoids in C.
tepidum. On the basis of the molar ratios for BChl a to BChl c and
for carotenoids to BChl c (Table 1), it is possible to calculate that
the molar ratio between carotenoids and BChl a is about 9. As it is
assumed that there are only 2 to 3 carotenoids per BChl a molecule
in the baseplate (33), we conclude that a substantial portion of the
carotenoids in C. tepidum must be located in the chlorosome in-
terior. Thus, the presence of baseplate-associated carotenoids can-
not fully explain why we found it impossible to remove all caro-
tenoids from C. tepidum chlorosomes. On the other hand, the

FIG 5 Electron micrographs of representative high-light (a), low-light (b), and hexane-washed low-light (c) chlorosomes from C. aurantiacus embedded in
vitreous ice. The boxes denote regions where the domains are most pronounced. The arrow indicates a chlorosome where the baseplate is clearly visible and intact
after the hexane wash.
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molar ratio between carotenoids remaining in chlorosomes from
C. aurantiacus after hexane wash and BChl a is about 2:1 (Table 1)
and matches well the ratio expected for the baseplate pigments.
Therefore, we suggest that the carotenoids not extracted by hexane
from the C. aurantiacus chlorosomes are those located in the base-
plate.

We propose the following explanation for the differences in
efficiency of carotenoid removal from the chlorosome interiors of
different species. We hypothesize that it is based on the molecular
details of BChl-carotenoid interactions in chlorosomes. Unlike
other light-harvesting complexes, the chlorosome interior is de-
void of protein that would control the optimal mutual distances
and orientations of the pigments. Thus, pigment-pigment inter-
actions drive assembly, determine the resulting structure and sta-
bility, and ensure close contact between the carotenoid and BChl
molecules, which in turn is required for the observed efficient
excitation energy transfer. Chlorosomes from Chlorobi mainly
possess carotenoids with one or two aryl rings, namely, 
 end
groups, such as chlorobactene (C. tepidum) or isorenieratene (C.
phaeovibrioides) (Fig. 6). The conjugated system of the 
-ring is
effectively disconnected from the conjugated system of the caro-
tenoid backbone, and therefore, it does not alter the spectral cov-
erage of the carotenoid absorption in the visible region compared
to their precursors (�-carotene and �-carotene) in their biosyn-
thetic pathway (34). Therefore, there must be a reason other than
light harvesting for these bacteria to synthesize carotenoids with
the 
-ring. It has been suggested that the �-� interaction between
the planar conjugated systems of the 
-ring and the BChl chlorin
is responsible for the close contact between the two molecules
(34). Since BChl-BChl �-� stacking plays an important role in

stabilization of the aggregate (35), it is likely that the same is true
for BChl-carotenoid interactions in chlorosomes from Chlorobi
species. It is reasonable to expect that �-� interactions are stron-
ger in BChl c-containing C. tepidum than in BChl e-containing
brown bacteria, such as C. phaeovibrioides, because the aldehyde
group at C-7 of BChl e (Fig. 6) might prevent close �-� interaction
between the conjugated system of BChl molecules and the 
 end
group of carotenoids. This hypothesis is based on the assumption
that the �-� interaction is most likely to take place between the 

end of the carotenoid and the pyrrole B of the BChl molecule (Fig.
6 shows the labeling of the pyrrole rings). Pyrroles A and C are not
accessible due to the hydrogen-bonding network between BChls
(Fig. 7), and pyrrole D is reduced (Fig. 6). Therefore, pyrrole B is
the only one available for the BChl-carotenoid �-� interactions,
and the aldehyde group located at the pyrrole B in BChl e may
decrease the strength of the attractive interaction through the re-
pulsive interaction caused by its electronegative oxygen. We may
also expect that the interaction between BChl and carotenoid mol-
ecules is weaker in C. aurantiacus than in C. tepidum because the
carotenoids present in C. aurantiacus (mainly �-carotene and
�-carotene) do not contain 
 end groups but �-rings, with two
out-of-plane methyl substituents. In this case, a CH-� interaction
seems to be responsible for the attractive interaction between the
carotenoid end ring and the conjugated system of the BChl mol-
ecule (36). CH-� interaction is weaker than the �-� interaction,
and therefore, �-carotene is more easily removed by hexane than
chlorobactene.

In conclusion, the results obtained in this work provide impor-
tant information about BChl-carotenoid interactions in the pro-
tein-free environment of the chlorosome interior. The differences
in chemical structure between the pyrrole rings B of BChl c and e
and between � and 
 end groups of carotenoids seem to affect the
strength of this interaction, making the interaction between BChl
c and carotenoids with the 
 end group the strongest one. Further
research on the nature of the BChl-carotenoid interactions is nec-
essary and is now under way.
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