Density division + Embedding Potential Inversion method for spectroscopy in clathrates

Octavio Roncero
Inst. Física Fundamental, CSIC
octavio.roncero@csic.es
Outline:

1. Introduction
2. Localization vs. Embedding potential
3. Inversion of embedding potentials
4. Density division and embedding potential inversion
5. Conclusions
Partition techniques

- A : primary region \rightarrow high accuracy
- B : Substrate \rightarrow low accuracy
- V_{emb} : Embedding potential

Covalent
- “cluster” method
- saturation of bonds

Ionic
- cations by core pseudopotential
- anions by point charges
- polarization of the substrate

Metallic
- Wave function partition
- electronic density partition
Frozen Density Method (Wesolowski & Warshel, 1993)

Total density factorizes as \(\rho = \rho_A + \rho_B \)

and energy as \(E[\rho] = E_A[\rho_A] + E_B[\rho_B] + E_{int} \)

The embedding potential is obtained by minimizing \(E_{int} \)

\[v_{emb} = \frac{\delta E_{int}}{\delta \rho_A} \]

\[E_{int} = E[\rho] - E_A[\rho_A] - E_B[\rho_B] \]

\(\rho_A \approx 0 \) in \(B \) \(\rightarrow \frac{\delta E_B}{\delta \rho_A} \approx 0 \)

\[v_{emb} = v_T + v_J + v_{xc} + v_{ion} \]

Exchange Correlation

Coulomb

Nuclear
Frozen Density Method
(Wesolowski & Warshel, 1993)

Total density factorizes as $\rho = \rho_A + \rho_B$

and energy as $E[\rho] = E_A[\rho_A] + E_B[\rho_B] + E_{int}$

The embedding potential is obtained by minimizing E_{int}

$$v_{emb} = \frac{\delta E_{int}}{\delta \rho_A}$$

$$E_{int} = E[\rho] - E_A[\rho_A] - E_B[\rho_B]$$

$$\rho_A \approx 0 \text{ in } B \rightarrow \frac{\delta E_B}{\delta \rho_A} \approx 0$$

$$v_{emb} = v_T + v_J + v_{xc} + v_{ion}$$

Kinetic = $\frac{\delta T_s[\rho]}{\delta \rho} - \frac{\delta T_s[\rho_A]}{\delta \rho_A}$
Beyond DFT in A (Govind, Wang & Carter, 1999)

1. FDE used to obtain v_{emb} and ρ_A iteratively by setting $\rho_B = \rho - \rho_A$

Kondo state in Co/Cu(111)

A: cluster of CoCu$_7$

Huang & Carter (’06)

2. In subsystem A, with a modified Fock operator ($\mathcal{F} = \hat{F} + v_{emb}$)

 - to include dynamical correlation in A (CoCu$_7$)
 - calculate excited electronic states localized in A
 - etc
Kinetic energy functional

Approximate character of the kinetic energy functional

\[v_T = \frac{\delta T_s[\rho]}{\delta \rho} - \frac{\delta T_s[\rho_A]}{\delta \rho_A} \]

Break down of the FDE procedure for covalent bonds (Fux, et al. 2010)
Kinetic energy functional

Approximate character of the kinetic energy functional

\[v_T = \frac{\delta T_s[\rho]}{\delta \rho} - \frac{\delta T_s[\rho_A]}{\delta \rho_A} \]

Break down of the FDE procedure for covalent bonds (Fux, et al. 2010)

Intense work

1. Developing new functionals (Wesolowski, since ’97)
2. :
3. Exact no additive kinetic potentials (Goodpaster, et al.’10)
4. Numerical calculations of accurate \(v_T \) (Jacob and co-workers, ’10)
Outline:

1. Introduction
2. Localization vs. Embedding potential
3. Inversion of embedding potentials
4. Density division and embedding potential inversion
5. Conclusions
Density partition and localization

\(\rho_A \) related to local orbitals, obtained by an unitary transformation

\[
| \Lambda_l \rangle = \sum_k | \phi_k \rangle U_{kl}
\]

1. Boys: minimization of spacial extension
 \[
 \sum_l \langle \Lambda_l \Lambda_l | (r_1 - r_2)^2 | \Lambda_l \Lambda_l \rangle
 \]

2. Pipek and Mezey: projection maximization
 \(\hat{P}_A \)

3. Edmiston and Ruedenberg: maximization of self-repulsion
 \[
 \frac{1}{r_1 - r_2}
 \]
Density partition and localization

\(\rho_A \) related to local orbitals, obtained by an unitary transformation

\[
| \Lambda_l \rangle = \sum_k | \phi_k \rangle U_{kl}
\]

1. Boys: minimization of spacial extension
 \[\sum_l \langle \Lambda_l \Lambda_l | (\mathbf{r}_1 - \mathbf{r}_2)^2 | \Lambda_l \Lambda_l \rangle \]

2. Pipek and Mezey: projection maximization
 \(\hat{P}_A \)

3. Edmiston and Ruedenberg: maximization of self-repulsion
 \[\frac{1}{r_1 - r_2} \]

Localized orbitals satisfy

(Edmiston & Ruedenberg, ’63)

\[
\left[\hat{F} + \mathcal{V} \right] \Lambda_l = \lambda_l \Lambda \rightarrow \text{Modified Fock equation}
\]

where \(\mathcal{V} \) includes terms analogue to the embedding potential
Kinetic energy term

Let’s partition the molecular orbitals as

$$\Phi_k = \alpha \Phi_k + (1 - \alpha) \Phi_k \equiv \Phi_k^A + \Phi_k^B$$

Two coupled Fock equations, for Φ_k^A and Φ_k^B

- local terms: $V \alpha(r) \Phi_k = \alpha(r) V \Phi_k$
- non local terms: $-\frac{1}{2} \nabla^2 \alpha(r) \Phi_k = \alpha(r) \left[-\frac{1}{2} \nabla^2 \right] \Phi_k + \mathcal{V}_T \Phi_k$
Kinetic energy term

Let’s partition the molecular orbitals as

$$\Phi_k = \alpha \Phi_k + (1 - \alpha) \Phi_k \equiv \Phi_k^A + \Phi_k^B$$

Two coupled Fock equations, for Φ_k^A and Φ_k^B

- local terms: $V \alpha(r) \Phi_k = \alpha(r) V \Phi_k$
- non local terms: $-\frac{1}{2} \nabla^2 \alpha(r) \Phi_k = \alpha(r) \left[-\frac{1}{2} \nabla^2 \right] \Phi_k + \nabla T \Phi_k$
Kinetic energy term

Let’s partition the molecular orbitals as

$$\Phi_k = \alpha \Phi_k + (1 - \alpha) \Phi_k \equiv \Phi^A_k + \Phi^B_k$$

Two coupled Fock equations, for Φ^A_k and Φ^B_k

- **local terms:** $V \alpha(r) \Phi_k = \alpha(r) V \Phi_k$
- **non local terms:** $-\frac{1}{2} \nabla^2 \alpha(r) \Phi_k = \alpha(r) \left[-\frac{1}{2} \nabla^2 \right] \Phi_k + \mathcal{V}_T \Phi_k$

![Graph for V_T in FDE: $f_A = f_B = \exp(-r^2)$](image1.png)

![Graph for $\alpha(z)$, $\alpha''(z)$](image2.png)
Outline:

1. Introduction
2. Localization vs. Embedding potential
3. Inversion of embedding potentials
4. Density division and embedding potential inversion
5. Conclusions
Inversion of embedding potential method (Roncero et al.’08)

- **Density partition**
 \[\rho = \rho_A + \rho_B \]
 E.g.: minimizing
 \[\langle \rho_A | \frac{1}{r_{12}} | \rho_B \rangle \]

- **Inversion of the embedding potential**
 \[\mathcal{F}_A = F_A + V_A \]
 whose solution is \(\rho_A \)

Functionals from reference densities in DFT
- Zhao, Morrison & Parr Phys. Rev. A (’94)
- Yang & Wu Phys. Rev. Lett. (’02)

- Use \(\mathcal{F}_A \) to calculate
 \[E_A^{cor} = E_A^{CI} - E_A^{HF} \]

Total energy:
\[E^{HF}[\rho_A + \rho_B] + E_A^{cor} \]

Self-repulsion and embedding potential

For a reference density ρ_A we define

$$\Delta^k_A = \rho^k_A - \rho_A$$

- $\Delta^k_A > 0 \rightarrow$ repulsive potential
- $\Delta^k_A < 0 \rightarrow$ attractive potential

Defining a repulsive potential as (Zhao, Morrison & Parr ’94)

$$v^k_{rep} = \int dr \frac{\Delta^k_A}{r - r'} \equiv J[\Delta^k_A]$$

the embedding potential is obtained iteratively as

$$\mathcal{V}^{k+1}_A = \mathcal{V}^k_A + \lambda v^k_{rep}$$

where λ minimize $\delta^{k+1} = \int dr (\Delta^{k+1})^2$
H$_{10}$ chain example: procedure

- Density partition: Mulliken’s method
- $R = r = 1.3$ a.u.
H$_{10}$ chain example: procedure

- Density partition: Mulliken’s method
 - R = r = 1.3 a.u.

$$\Delta^k_A$$

Density difference

Octavio Roncero

Water-Ice-Clathrate, Toulouse, Nov.3-4th
H$_{10}$ chain example: procedure

Embedding pot. \mathcal{V}^k_A

Density difference Δ^k_A
H$_{10}$ chain example: comparison with FDE

FDE potential using ρ and ρ_A

- $V_J \approx -V_N$
- The dominant term is V_T

The two V_{emb} are similar
H$_{10}$ chain example: Energies

- Electronic Correlation
 - Full symbols: in whole H$_{10}$ system
 - Open symbols: in “A” embedded

$r = 1.3$ a.u.

Octavio Roncero

Water-Ice-Clathrate, Toulouse, Nov.3-4th
H$_{10}$ chain example: Energies

- Electronic Correlation
 - Full symbols: in whole H$_{10}$ system
 - Open symbols: in “A” embedded

- $r = 1.3$ a.u.

- Only with A the repulsion of enviroment is described !!

- The van der Waals well requires AB and a CI method
H_{10} + H_2 van der Waals interactions

Comparison of CI calculations:

- **Full H_{10}+H_2 system**
- **H_2+H_2**
- **embedded H_2+H_2**

Outline:

1. Introduction
2. Localization vs. Embedding potential
3. Inversion of embedding potentials
4. Density division and embedding potential inversion
5. Conclusions
Problems of the inversion of embedding potentials

- The reference density \(\rho_A \) may not be v-representable
 - Mulliken’s method yields fractional charges
 - Any renormalization is arbitrary

- The procedure depends on:
 - Initial guess:
 - Self-repulsion potential \(v_{rep} \)
 - Optimization procedure

- Convergence is always a problem: 3 iterative procedures
Density division + embedding potential inversion

All in one single step

(Roncero et al’09)

To obtain the density partition \(\rho = \rho_A + \rho_B \)

\[\Delta^k = \rho - \rho_A^k + \rho_B^k \]

with \(\rho_C^k \) being obtained from a MFE

\[[F_C + V_C^k] \phi_C^k = \epsilon_C \phi_C^k \]

\[\nu_{rep}^k = \frac{1}{2} \sum_{m,l} \Delta^k_{m,l}(imlj) \equiv K[\Delta^k] \]

\[V_C^{k+1} = V_C^k + \lambda \nu_{rep}^k[\Delta^k] \]

where \(\lambda \) minimizes \(\delta^{k+1} = \int dr (\Delta^k)^2 \)
The H$_{10}$ example
The H_{10} example

ρ^k_A

Density difference Δ^k

Octavio Roncero

Water-Ice-Clathrate, Toulouse, Nov.3-4th
The H_{10} example

- Embedding pot. V_A^k

 \begin{align*}
 &V_A^8 \\
 &V_A^5 \\
 &V_A^4 \\
 &V_A^3 \\
 &V_A^2 \\
 &V_A^1
 \end{align*}

- Density difference Δ^k

 \begin{align*}
 &\Delta^6 \\
 &\Delta^5 \\
 &\Delta^4 \\
 &\Delta^3 \\
 &\Delta^2 \\
 &\Delta^1 \\
 &\Delta^0
 \end{align*}
Comparing different DFT functionals for the full system

$H_{10} + H_2$ van der Waals interactions

- Comparing different DFT functionals for the full system
- The density difference Δ^k converges fast
- The convergence depends on the DFT functional used for ρ

$H_{10} + H_2$ van der Waals interactions

- Comparing different DFT functionals for the full system
- The density difference Δ^k converges fast
- The convergence depends on the DFT functional used for ρ
- This new method yields better results

Outline:

1. Introduction
2. Localization vs. Embedding potential
3. Inversion of embedding potentials
4. Density division and embedding potential inversion
5. Conclusions
Conclusions

- An alternative to the FDE embedding method in which ρ_A and ρ_B are v-representable.
- It has **not** the problem of the kinetic energy functional; **but** different v_{rep} should be tested for different functionals.
- Initial ρ can be obtained from any method, DFT or not.
- It can be combined with the most traditional FDE method by using ρ_A and ρ_B.

Octavio Roncero
Conclusions

- An alternative to the FDE embedding method in which ρ_A and ρ_B are v-representable.
- It has not the problem of the kinetic energy functional but different v_{rep} should be tested for different functionals.
- Initial ρ can be obtained from any method, DFT or not.
- It can be combined with the most traditional FDE method by using ρ_A and ρ_B.
- More work is needed to solve convergence problems and to design new v_{rep}.
What about impurities in clathrates?

First check: \(\text{Br}_2 + \text{H}_2\text{O} \)

Franklin-Mergarejo \textit{et al}
What about impurities in clathrates?

First check: Br$_2$ + H$_2$O

Franklin-Mergarejo et al

Ramón Hernández-Lamoneda

What DFT functional to use?
Acknowledgements

- Alfredo Aguado (UAM)
- Pablo Villarreal (CSIC)
- Alexandre Zanchet (CSIC)
- Pilar de Lara (CSIC)
- Fernando Flores (UAM)
- Miguel Paniagua (UAM)
- Jose Ortega (UAM)
Acknowledgements

- Alfredo Aguado (UAM)
- Pablo Villarreal (CSIC)
- Alexandre Zanchet (CSIC)
- Pilar de Lara (CSIC)
- Fernando Flores (UAM)
- Miguel Paniagua (UAM)
- Jose Ortega (UAM)