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Abstract 
 

The kinetics of reduction and oxidation of Ni based oxygen carrier particles with CH4 and O2 

have been investigated. The kinetic parameters were obtained from reactivity data using a 

thermogravimetric analyzer (TGA), where the freeze granulated particles were tested using 

different reactant gas concentrations, temperature and particles size. The particles showed 

high reactivity during both reduction and oxidation at temperatures above 900 °C. The 

shrinking-core model for spherical grain geometry of reacting particle with chemical reaction 

control was used to determine the kinetic parameters during for both the reduction and 

oxidation reactions. The reaction order found was 0.4 and 1 for CH4 and O2 respectively, 

while the activation energies found were 114 and 40 kJ/mol for reduction and oxidation 

reaction respectively. The reactivity data and kinetic parameters were used to estimate the 

solid inventory needed in a CLC system. The total solid inventory varies with the solid 

conversion at the inlet of fuel and air reactor, and for the investigated particles, the minimum 

solid inventory was 22 kg/MWf.  It was found that to operate fuel and air reactor of a CLC 

system at 950 and 1000 °C respectively, using NiO/MgAl2O4 oxygen carrier with a 50% 

active NiO content, the conversion variation between the two reactors should not exceed 0.18.  
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The recirculation rate between the air and fuel reactor needed was 4.15 kg/s per MWf. The 

high reactivity of the NiO/MgAl2O4 both with methane and oxygen found in this work, 

together with the good fluidizing properties found in earlier studies, suggests that this is an 

excellent oxygen carrier for CLC system. 

 

Keywords: Chemical-looping combustion, NiO, Methane, Oxygen carriers, TGA 

 
 

1. Introduction  
  

                      Combustion of fossil fuels for power generation emits a significant amount of 

greenhouse gas CO2 to the atmosphere. It is generally accepted that reduction in greenhouse 

gas emission is necessary to avoid major climate changes. Chemical-looping combustion 

(CLC) has emerged as a new combustion technology in which gaseous fuel is burned and 

resulting CO2 is inherently separated from the rest of the flue gases 1-3. The CLC system is 

composed of two fluidized bed reactors, an air reactor and a fuel reactor, see Fig 1. 

In CLC fuel and air never mix; instead a metal oxide is used as an oxygen carrier which 

transfers oxygen from air to the fuel reactor. Fuel is oxidized by the metal oxide in the fuel 

reactor according to: 

 

(2n + m) MyOx + CnH2m    ======> (2n + m) MyOx-1 + nCO2 + mH2O                   (1) 

 

where MyOx is fully oxidized oxygen carrier and MyOx-1  is the oxygen carrier in reduced form.  

The exit stream from the fuel reactor contains only CO2 and H2O. Thus pure CO2 can be 

obtained by condensing H2O. The reduced metal oxide, MyOx-1, is sent to air reactor, where it 

is oxidized according to: 

 

 MyOx-1 + ½ O2   ======> MyOx                                                                                                                     (2) 

 

The flue gas stream from the air reactor will contain N2 and some unreacted O2. The reaction 

between fuel and metal oxide in fuel reactor may be endothermic as well as exothermic 

depending on the oxygen carrier used, while the reaction in the air reactor is always 

exothermic. Since air and fuel never mix in CLC and combustion takes place without flame at 
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a temperature below 1400°C, NOx formation should be avoided 4,5. The technology has been 

successfully demonstrated in 10 and 50 kW prototypes of inter-connected fluidized beds 5-7.  

        Oxygen carriers based on transition state metals Mn, Fe, Co, Ni and Cu supported on 

different inert material e.g. SiO2, TiO2, Al2O3, MgO, YSZ and MgAl2O4 have been 

investigated for chemical-looping combustion. In general NiO exhibits very high reactivity 

and has been successfully used as an oxygen carrier in prototypes based on inter-connected 

fluidized beds of 10 kW and 50 kW respectively 5,6. A number of research groups have tested 

different types of oxygen carriers with different types of inert materials. A detailed review of 

this work can be found in Mattisson et al. 8.  

 

Of the investigated oxygen carriers, the system of NiO and MgAl2O4 seems to be very 

promising. Zafar et al. investigated oxides of Ni, Mn, Fe and Cu supported on MgAl2O4 

prepared by impregnation in a TGA using 10% CH4 for reduction and 5% O2 for oxidation 

and concluded that NiO/MgAl2O4 is a promising candidate both for CLC and CLR 

(Chemical-looping reforming) due to its high reactivity during reduction and excellent 

regenerability 9. Villa et al. investigated NiO/NiAl2O4 and NiO/MgAl2O4 carriers using CH4 

as fuel. It was concluded that the presence of NiAl2O4 spinel in the oxygen carrier prevents 

the crystal size growth of NiO and Mg addition in the particles limit the sintering of cubic 

oxide phase and improves regenerability upon repeated redox cycles 10. Mattisson et al. 

investigated NiO supported on NiAl2O4, MgAl2O4, TiO2 and ZrO2 in a laboratory fluidized 

bed reactor 11. All oxygen carriers showed high reactivity, and no particle breakage or 

agglomeration was observed.  NiO/MgAl2O4 prepared by freeze granulation has also been 

successfully used in a 300 W continuous reactor both for chemical-looping combustion (CLC) 

and chemical-looping reforming (CLR) and has shown excellent results 12,13. The operation 

time for CLC was 30 h and for CLR was 41 h using syngas and natural gas as fuels in the 

experiments. 

 

       Some research has been performed to determine the kinetics of the reaction between 

oxygen carriers and the common gases used for CLC and a review of this work follows below.  

 

Ishida et al. studied the kinetics of NiO/YSZ particles prepared by dissolution method and 

used the unreacted shrinking core model to interpret the experimental results. It was 

concluded that reduction reaction with hydrogen is controlled by chemical reaction resistance 

while oxidation is the intermediate reaction between chemical reaction and ash-layer diffusion. 
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The activation energy was 82 kJ/mol for the reduction reaction and between 17-56 kJ/mol for 

the reaction with air 14. Ryu et al. studied kinetics of NiO/bentonite and used the unreacted 

shrinking core model to interpret the reduction and oxidation reaction. Here the fuel gas was 

methane and the oxidizing gas was oxygen. It was concluded that the reduction reaction was 

controlled by chemical reaction while the oxidation reaction was controlled by product layer 

diffusion 15. The activation energies for reduction and oxidation reaction were about 9 and 31 

kJ/mol respectively. Garcia-Labiano and co-workers determined the kinetics of reduction with 

CH4, CO and H2 and of oxidation with O2 for oxygen carriers based on Ni, Fe and Cu. They 

used the shrinking-core model for plate-like geometry for Cu-based oxygen carrier prepared 

by impregnation and spherical grains geometry for freeze-granulated Ni and Fe-based oxygen 

carriers for the interpretation of the results. It was concluded that both reduction and oxidation 

reactions are controlled by chemical reaction resistance 16-18. Only in the case of NiO 

reduction with H2 was diffusion resistance included in the model17. The value of the activation 

energy for the reduction reaction was dependent on the fuel gas used and varied between 14 

and 78 kJ/mol and the activation energy for oxidation reaction was between 7 and 15 kJ/mol. 

The reaction order found was in the range of 0.25 and 1 depending on the reaction gas and 

oxygen carrier. Son and Kim investigated the kinetics of NiO-Fe2O3/bentonite particles using 

methane as fuel and found that the modified volumetric model is the best representation of the 

reduction reaction, while the shrinking-core model is the best representation of oxidation 

reaction 19. The values of activation energy found were in the range of 30-60 kJ/mol and 2-6 

kJ/mol for reduction and oxidation reaction respectively, depending on the NiO/Fe2O3 ratio in 

the particles. Readman et al. investigated the kinetics of NiO/NiAl2O4 and found a two step 

reduction behaviour20. First reduction reaction is very fast where oxygen transport to the 

particle surface is not rate-limiting followed by slower reduction where oxygen transport 

through the particle becomes a rate limiting step. The reaction order with respect to H2 and O2 

found was 1, where as reaction order with respect to CH4 was little bit less than 1. 

 

The reaction kinetics of oxygen carrier particles is a key in designing the air and fuel reactors 

of a CLC system. Thus, the purpose of this paper is to determine the kinetics of reduction with 

methane and oxidation with O2 of NiO/MgAl2O4 oxygen carrier prepared by freeze 

granulation. In a real system, the fuel would likely be natural gas, but as methane is the main 

component of natural gas, it will be used in this study for simplicity.  To establish the kinetic 

parameters, the reactions were carried out at different temperatures, gas concentrations and 
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particles sizes. Further, the kinetic parameters obtained were used to estimate the solid 

inventory needed in a CLC system. 

 

2. Experimental  
 

2.1. Oxygen carrier particles 

 

          Oxygen carrier particles used in this work were composed of 60 wt% NiO and 40 wt% 

MgAl2O4 and were prepared by freeze granulation. The particles were sintered for 6 h at 

1400°C to increase the mechanical strength. During sintering of oxygen carrier some of the 

NiO reacted with the support material and formed irreversible phases, likely spinels9. Oxygen 

carrier particles were sieved to get a size range between 125-180 �m. The preparation method 

has been discussed in detail by Mattisson et al. 11. Main physical properties of the 

NiO/MgAl2O4 oxygen carrier are given in Table 1.  

 

2.2. Reactivity investigation 

 

             The experiments were performed in a High-Resolution thermogravimetric analyzer 

(TGA 2950, TA Instruments). The reactor was an evolved gas analysis (EGA) furnace 

consists of a quartz tube (15mm ID) and the sample holder was a platinum pan (9 mm ID). 

The reacting gas enters from one side of the quartz tube, reacts with the sample and leaves the 

tube from other side as shown in Fig 2. The lower part was filled with inert quartz particles to 

reduce the volume of the reactor tube. 

 

           A 20 mg sample of the oxygen carrier NiO/MgAl2O4 was heated in the platinum pan to 

the desired reaction temperature (800-1000°C) in a nitrogen atmosphere. The particles were 

well spread in the platinum pan forming a single layer, in order to avoid the inter-particle 

mass transfer resistance.  The sample was exposed in cyclic manner to a reducing gas of 5-

20% CH4 and 20% H2O balanced with N2 for the reduction period and to an oxidizing gas 3-

15% O2 balanced with N2 for the oxidation period. The CH4 and O2 concentration used in the 

experiments are in the range of the average gas concentration, which the particles may be 

exposed to in the fuel and air reactors. The steam was added during reduction period to avoid 

any carbon formation on the particles but also to better simulate the environment to which the 
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particles are exposed to in the fuel reactor. The reduction period was 50-140 s and oxidation 

period was 70-150 s long depending on the reaction temperature and reacting gas 

concentration used in the experiment. N2 was introduced for 200 s after each reducing and 

oxidizing period to avoid mixing between methane and oxygen.  

 

The flow of the gas in to the reactor was controlled by electronic mass flow regulators and 

was 300 mL/min (normalized to 1 bar and 0°C) for all the periods and cycles. 10 % of the 

total gas flow i.e. 30 mL/min purge N2 was always introduced from the head of the TGA to 

keep the balance parts free from any corrosive gas. Some tests were performed with different 

gas flows and no effect on reaction rate was observed, thus it was concluded that mass 

transfer resistance is not rate limiting in these experiments.  However, in the initial part of the 

reaction, the reaction rate increased for 3-5 s, depending on the temperature and the gas 

concentration used in the experiment.  This is likely due to some small back-mixing in the 

system, and thus there is a short time when the methane concentration is lower than the 

desired concentration.  In the experiments the gas flow was relatively high and the reactor 

volume small, and thus calculations showed that the gas residence time in the reactor should 

be less than 0.5 s.  Due to this short delay time, the measured reactivity data for the first few 

seconds was not used in the calculations, but instead the rate was here obtained from 

extrapolation of data obtained when there was no back-mixing. At least four cycles of 

reduction and oxidation were performed for each experiment. The reactivity during the first 

cycle was generally somewhat slower in comparison to the succeeding ones, and here the 4th 

cycle is used as the reference cycle.  

 

The degree of conversion for reduction and oxidation was calculated as 
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The difference between mox and mred in eq 3 and 4 is the amount of active oxygen in the 

carrier, i.e. the maximum amount of oxygen that can be transferred through reaction with 
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methane. The difference between mox and mred is calculated on the basis of the transformation 

between NiO and Ni. Although the oxygen carrier was prepared with 60% NiO, by reducing 

the sample in H2 atmosphere, the actual oxygen capacity was found to be somewhat less, 

likely due to reactions between inert and active metal oxide, and as is shown in Table 1, the 

active NiO content is here 50%. 

 

3. Results 
 

3.1 Reduction reaction 

 

      In the fuel reactor the oxygen carrier is exposed to different fuel gas concentration and 

environment at different locations. At the bottom of the fluidized bed oxygen carrier will be in 

contact with pure fuel while the gas phase will mostly consist of CO2 and H2O at the top of 

the bed. Some experiments were done by adding 5% CO2 with fuel gas to see the effect of 

product CO2 on reduction reaction with oxygen carrier, however no major change in reaction 

rate was observed.   

 

Reaction of methane with NiO is an example of non-catalytic solid-gas reaction and several 

resistances can affect the reaction rate. The reaction could be controlled by external mass 

transfer, gas diffusion in to the porous particle, diffusion in the solid product layer and the 

chemical reaction. Mass transfer resistance was reduced as much as possible by working with 

high gas flows and small sample mass in the TGA experiments. The effect of particle size was 

investigated with particles in the size range 90-250 �m and no effect on reaction rate was 

observed. This suggests that internal diffusion resistance is not limiting the rate of reaction.  

The oxygen carrier particles are porous and porosity increases as NiO is reduced to Ni due to 

the difference in molar density of NiO and Ni, see Table1. Garcia-Labiano et al. showed that 

for the experimental conditions (porosity, type and content of MeO, particle size, reaction 

rate) similar to those used in this work, internal diffusion resistance is not important and the 

reaction takes place inside the whole particle at the same time.21 Also, temperature changes 

inside the particle due to reactions were not important and the particles could be considered 

isothermal. Chemical reaction seems to be the only resistance which is controlling the 

reduction reaction rate of these types of oxygen carriers with methane.  
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During the preparation of the freeze granulated particle, small primary particles of NiO and 

MgAl2O4 of less than 10 µm in size are physically mixed and prepared into slurry which can 

easily be atomized into drops of larger size. Thus, the particles are composed of relatively 

large individual grains/primary particles.  This was also confirmed by ESEM images of the 

surface of the particles. Thus, for kinetic determination it was assumed that the particles are 

composed of spherical grains, which reacts with the same reaction rate throughout the particle 

following the shrinking-core model. The kinetics equation for shrinking core model for a 

spherical grain with chemical reaction control is 22, 
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t
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where �ch is the time for complete conversion of the particle and  calculated from 
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3.1.1. Effect of CH4 concentration 

 

To see the effect of methane concentration on the reduction of NiO/MgAl2O4 carrier, 

experiments were performed with 5, 10, 15 and 20% CH4. Fuel gas was saturated with water 

vapours (20%) in all the experiments to avoid carbon formation on the particles. Figure 3 

shows the solid conversion as a function of time for NiO/MgAl2O4 oxygen carrier with 

different CH4 concentrations at 950°C for the 4th reduction period. Also included in the figure 

are the results of the model calculations, i.e. equation (5), using the kinetic parameters 

obtained in this work, see below.  The reaction rate is very fast initially for all experiments, 

and the reaction rate increased with increasing CH4 concentration.  For all concentrations, less 

than 20 s is needed to obtain a ∆X=0.6. 
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3.1.2. Effect of temperature on reduction reaction 

 

The effect of temperature on the reduction reaction was also investigated. Several experiments 

were done with different CH4 concentration i.e. 5, 10, 15 and 20% at different temperatures 

from 800-1000°C. Figure 4 shows the conversion as a function of time obtained with 10% 

CH4 concentration at different temperatures. Clearly the reaction rate is a function of 

temperature. The change in conversion was very low at lower temperatures i.e. conversion 

was only �X=0.2 and 0.4 at 800 and 850°C respectively. However, at these temperatures the 

reactions was relatively fast in the beginning of reduction but decreased rapidly and continue 

at a very slow rate. It is likely that at lower temperature the reaction is controlled by two kinds 

of different resistance; at low solid conversion the reaction rate is likely controlled by 

chemical reaction and at higher solid conversion (from 0.1 to 1 depending on the temperature) 

the reaction rate could be controlled by the diffusion in the solid product layer. Because of the 

slow reduction reaction at lower temperatures, the investigated particles should likely be used 

at temperatures of 900 °C and above. Here the reaction is controlled by chemical reaction for 

a substantial part of the conversion interval, see Fig. 4. 

 

3.1.3. Kinetic parameters for reduction reaction  

 

Fig. 5 shows a plot of ln(�mrg/b�) as a function of ln(CCH4) for the experiments conducted at 

different temperatures. The slope of the plot was about 0.4 with all temperature, which is the 

order of reaction n with respect to CH4. Also, the values of k at different temperatures were 

obtained from the y-intercept in the figure. 

 

Figure 6 shows the plot used to obtain the values of the kinetic parameters assuming 

Arrhenius dependence of the kinetic constant with the temperature, 

 

k= ko × e(-E/RT)                                        (8) 

 

Results from the investigation at 800°C have not been included in the plot due to the low 

conversion at this temperature.  The frequency factor, ko, and activation energy, E, obtained 

from equation (8) are shown in Table 2. The value of activation energy for reduction reaction 

was found to be 114 kJ/mol and frequency factor, ko, was 2.75 mol0.6m-0.8s-1. The value of the 

activation energy found here is higher in comparison with the values found by the other 
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authors for NiO using YSZ, bentonite and alumina as inert material 14,15,18. This is possibly 

due to the addition of MgO in the oxygen carrier, where a NiO-MgO solid solution may form, 

in which Ni+2
 ions are stabilized against reduction and sintering by MgO-type matrix as 

shown by Villa et al. 10. These authors analyzed the reactivity of the oxygen carrier by TPR 

and it could be speculated that the presence of Mg in the particles increase the reduction 

temperature peak in the TPR analysis, thus increasing the activation energy of the reaction.  

 

    The kinetic constant, k, obtained from eq. (8) using the frequency factor and activation 

energy from Table 2, and the order of reaction, n, were used in the shrinking-core model, 

equation (6).  The model results are shown together with the experimental data in Fig. 3 and 4. 

The experimental results are represented by symbols and model prediction with continuous 

lines. It can be seen in Fig. 3 and 4 that experimental results obtained at temperature of 

practical interest (950 and 1000 °C) fit with the prediction model until almost 70 % 

conversion of the oxygen carrier during reduction. It is unlikely that NiO/MgAl2O4 will be 

reduced to such a high degree of conversion in the fuel reactor of real chemical-looping 

combustor, since a high degree of conversion difference between the air and fuel reactor 

would mean large temperature drops in the fuel reactor. 

 
3.2. Oxidation reaction 

 

The reduced oxygen carrier from the fuel reactor will be transferred to the air reactor of a 

CLC system for regeneration. In the air reactor NiO/MgAl2O4 oxygen carrier in reduced state 

will be exposed to different oxygen concentrations varying from 21 % O2 at the inlet of the 

reactor and perhaps 4%O2 at the outlet if 20% of excess air is used in the reaction. Several 

experiments were conducted with different oxygen concentrations between 3-15% at different 

temperatures 800-1000 °C to determine the kinetics of the oxidation reaction.   

 

3.2.1. Effect of O2 concentration 

 

Fig. 7 shows the conversion as a function of time obtained at 1000 °C with different oxygen 

concentrations for the 4th oxidation period. Also shown are the model calculations using 

kinetic data obtained below.  Clearly, also the oxidation reaction is very fast and the rate of 

reaction is a function of oxygen concentration with the higher rates for the experiments with 

the higher oxygen concentration. 
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3.2.2. Effect of temperature on oxidation reaction  

 

Effect of temperature on the oxidation reaction was investigated by performing several 

experiments at different temperatures between 800-1000°C with different O2 concentrations 

of 3,6,10 and 15% to increase the validity of data.  

Fig. 8 shows the conversion as a function of time obtained at different temperatures with 10% 

O2 concentrations. It was observed that the oxidation rate was a function of temperature; 

although for higher temperatures i.e. 900, 950 and 1000 °C, that there is only a little 

difference in reaction rate.  The low degree of final conversion at 800 and 850 °C is due to the 

low conversion reached during the reduction period. But in all cases the sample was oxidized 

back to a fully oxidized sample. 

 

3.2.3. Kinetic parameters for oxidation reaction  

 

The shrinking-core model for spherical grains was also used to model the oxidation reaction, 

i.e. equation (6).  The kinetic model was developed using chemical reaction being the only 

resistance controlling the reaction. To determine the order of reaction several experiment were 

conducted at different temperatures with different O2 concentration. The reaction order, n, of 

oxidation reaction was obtained by the slope of the plot of ln(�mrg/b�) vs. ln(CO2) and was 

about 1, see Fig. 9. The results obtained at 800°C have not been included in this figure due to 

the much lower conversion obtained in the previous reduction step at this temperature. 

 

Fig. 6 shows the Arrhenius plot obtained from the oxidation reaction data. The energy of 

activation for oxidation reaction obtained from the Arrhenius plot was about 40 kJ/mol and 

pre- exponential factor ko found was 5.43 × 10-3
 m/s.  

 
The results obtained with the shrinking-core model fit reasonably well with the experimental 

results, see Fig 7 and 8, which confirms that chemical reaction controlled the global reaction 

rate. 

 

4. Design of a CLC system 
 

Main parameters for the design of a CLC system are (i) the amount of oxygen carrier in both 

reactors must be enough in order to convert all the incoming reacting gases (ii) the 
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recirculation rate between the air and fuel reactor must be high enough to transport oxygen 

necessary for the fuel combustion and supply enough heat to maintain the high temperature in 

the fuel reactor, where the reaction of CH4 with the Ni-based oxygen carrier is endothermic. 

 

4.1. Mass and heat balance 

 

In CLC oxygen is transported from air reactor to the fuel reactor by means of oxygen carrier.  

It is expected that a small amount of oxygen carrier will be elutriated from the reactor system 

due to attrition/fragmentation during the operation. Thus, a make up flow of oxygen carrier 

will be necessary in order to maintain the mass balance in the reactor system. However, it is 

likely that this make up is low enough to have any affect on mass and heat balance, and was 

not considered in the calculations. Also, when ash-free gaseous fuel is used, it is possible that 

elutriated material can used as raw material in the production process for the oxygen carrier 

particles. 

The reaction of NiO with methane is endothermic, which results in a temperature drop in the 

fuel reactor. In order to maintain a high reduction rate of oxygen carrier particles with 

methane, a large temperature drop in the fuel reactor must be avoided. The temperature drop 

in the fuel reactor depends on the circulation rate of oxygen carrier, which is connected to the 

conversion difference of oxygen carrier between in the air and fuel reactor. A heat balance 

was made over the CLC reactor system for NiO/MgAl2O4 oxygen carrier. Here it was 

assumed that the fuel gas was preheated to 400°C before it was introduced to the fuel reactor 

and 20% excess air was used.  It was found that in order to achieve a working temperature of 

1000°C in the air reactor and 950°C in the fuel reactor, the conversion difference, �X, should 

be 0.18 for NiO/MgAl2O4 with 50% active NiO content. 

 

4.2. Recirculation rate 

 

             Recirculation rate depends on the oxygen carrier and fuel used, as well as on the 

active metal content and the conversion variation obtained in the fuel and air reactor. The 

method of calculation for the recirculation rate is based on Abad et al. 18.  For 1 MWf and 

assuming full conversion of fuel gas recirculation rate can be calculated from the following 

equation,  
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A value of 0.74 kg s-1(MW)-1 for cm
•

 was obtained using NiO/MgAl2O4 (50% active NiO 

content) as an oxygen carrier and methane as fuel. As discussed earlier, in case of NiO 

oxygen carrier, the recirculation rate is limited by the heat balance, due to the endothermic 

reaction in the fuel reactor. The recirculation rate of oxygen carrier per MWf of CH4 was 4.14 

kg s-1, when �X was 0.18. To achieve a reasonable recirculation flux of iron oxide particles 

between the air and fuel reactor, Lyngfelt et al. proposed, a high velocity riser,similar to the 

actual configuration of a circulating fluidized bed boiler (CFB). The authors found that a 

recirculation rate of 50 kg m-2 s-1 was needed to transport sufficient oxygen, and this was 

deemed feasible in the proposed system3. The recirculation rate in CFB depends on the 

operational conditions and riser configuration. The value of riser area in a CLC process for 

combustion of methane was suggested to be in the range 0.18-0.35 m2/MWf 18. Taking a value 

of 0.2 m2/MWf as an average of cross section area of riser, S, the solid flow can be calculated 

as, 

 

S
m

G OC
S

•

=                                         (11) 

 

The value of GS found was 20.7 kg m-2 s-1 for the NiO/MgAl2O4 oxygen carrier used in this 

work which should be within the normal operational range for CFB systems. 

 

4.3. Solid inventory  

 

           The NiO/MgAl2O4 oxygen carrier has been investigated in a 300W CLC reactor 

system in Johansson et al. 12. Complete conversion of methane was obtained using a solid 



 14 

inventory in the range 600-2200 kg/MWf.  However, from this result it can be deduced that the 

amount of oxygen carrier material in the CLC system should be less and still maintain high 

gas yield. This would be preferable in order to reduce reactor size, which will result in lower 

investment cost in addition to less cost for oxygen carrier particles. A lower bed mass will 

also need a less power consumption by the fans that supply reacting gases to the air and fuel 

reactor. Thus, it is desirable to optimize the amount of bed material in a CLC system. The 

amount of bed material in a CLC system is directly related to the reactivity of the oxygen 

carrier with the fuel gas and air, as well as the oxygen transport capacity. NiO has a rather 

high transport capacity in comparison with Fe2O3 and Mn3O4, which are other common 

oxygen carrier materials.  

The calculation method for the solid inventory is based on the method proposed by Abad et al. 
18. For complete conversion of gas, the bed mass in each reactor per MW of fuel can be 

calculated as  
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where the parameters FRφ  and ARφ   is the characteristics reactivity in the fuel reactor and air 

reactor respectively and defined as 
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The parameters �r and �o in eqs.12 and 13 are the times needed for the complete conversion of 

particles in the fuel and air reactor respectively obtained at average gas concentration and 
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dt
dX S  is the average solid reactivity in the air and fuel reactor. Assuming gas plug flow in the 

reactors and no resistance to the gas exchange between bubble and emulsion phases in the 

fluidized bed, the average reacting gas concentration in the fuel and air reactor can be 

obtained by the equation,  
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The parameter �g  in eq. 14 represents the  gas volume variation as a result of reaction  and can 

be calculated as 
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When CH4 is used as fuel gas in CLC, for each mole of reacting gas, 3 moles of product gas 

are obtained. The value of �g is 2 for reduction reaction, using CH4 as fuel gas, while -0.21 for 

oxidation reaction. Considering 100% CH4 at the inlet of fuel reactor and a final gas 

conversion of 0.999, the average CH4 concentration obtained in the fuel reactor was 13.2%. 

The average concentration of oxygen in air reactor was 11%, using 20% excess air for 

combustion. The values of �r and �o obtained in this work were 42 s and 34 s respectively, 

considering temperature in the fuel reactor 950° C and in air reactor 1000° C.  

 

With the assumption of perfect mixing of solid particles in the fuel and air reactor, the 

characteristics reactivity, φ j, can be expressed as a function of solid conversion at the inlet of 

each reactor and the conversion variation in a reactor. For a spherical grain φ j can be 

calculated as 18, 
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The value of characteristics reactivity is limited between 0 and 3 for the spherical grain using 

the shrinking core model.  

Total solid inventory in a CLC system is obtained by summation of the bed masses in the fuel 

and air reactor 

 

AROCFROCtotal mmm ,, +=               (17) 

 

The parameter φ j varies with the solid conversion at the inlet of the fuel or air reactor, varying 

the solid inventory. The minimum solid inventory in a CLC system of inter-connected 

fluidized bed is defined by solid-gas reactivity and depends on �r and �o.  

Abad et al. have shown the curves of �r/�o and �o/�r to obtain the minimum solid inventory for 

CLC 18. For a �XS=0.18 and with �r= 42 s for reduction reaction and �o= 34 s for oxidation 

reaction, the minimum solid inventory in the fuel reactor is reached at a point (�XS=0.18, 

�r/�o=1.2) which gives values for FRφ =2.58 and Xo,inFR=0.6. For the air reactor, at point 

(�XS=0.18, �o/�r=0.8), the values of ARφ =2.57 and Xo,inAR=0.42 were obtained. Figure 10 

shows the total solid inventory needed in the reactors system. It can be seen that total solid 

inventory is dependent on the solid conversion at the inlet of fuel and air reactor. The 

minimum solid inventory needed in this work obtained was 22 kg/MWf.  The solid inventory 

increases as the solid conversion approaches to the value of Xo,inFR=0.18 or complete 

conversion in the air reactor.   

 

5. Discussion 
 

           The kinetics of a promising oxygen carrier NiO/MgAl2O4 has been investigated in 

TGA using CH4 as reducing gas and O2 as oxidizing gas. The oxygen carrier was prepared by 

freeze granulation and has earlier been investigated in both continuous and batch fluidized 

beds with highly promising results.  However, the detailed kinetics for the particles has not 
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been investigated earlier, and this was done in the present work.  It was found that both the 

reduction and oxidation rates were dependent on the concentration of reacting gases and 

reaction temperature.  

 

       The reaction order n found for NiO/MgAl2O4 with CH4 and O2 was 0.4 and 1 respectively. 

There is no data available in the literature concerning the reaction order of this type of oxygen 

carrier with methane and oxygen. Abad et al. investigated a carrier based on NiO with Al2O3 

and found reaction order of 0.8 and 0.2 for CH4 and O2 respectively 18. Readman et al. also 

investigated NiO on NiAl2O4 and found reaction order of 0.74 and 1 for   CH4 and O2 

respectively20 .The two types of particles are clearly different and the difference in the values 

of reaction order may be due to Mg addition in the oxygen carrier used in this work. 

 

         The activation energies found for reduction and oxidation reactions were 114 and 40 

kJ/mol respectively. A number of publications have calculated the activation energy for 

reduction and oxidation reaction for Ni-based oxygen carriers 14,15,18,19. The activation energy 

obtained in this work is rather high in comparison to those found for previously investigated 

Ni- based oxygen carrier. As discussed earlier, possibly addition of Mg in the oxygen carrier 

increase the activation energy both for reduction and oxidation reaction.  

 

        Solid inventory needed in a CLC system is inversely proportional to the reactivity of the 

metal oxide with fuel and oxygen. NiO/MgAl2O4, showed a very high reaction rate during 

both reduction and oxidation at high temperature. Thus, less amount of this oxygen carrier 

will be needed in the CLC reactor system. For NiO/MgAl2O4 oxygen carrier the minimum 

solid inventory with a solid conversion of �XS=0.18, is 22 kg/MWf. This amount can be 

compared with the amount of Ni-based oxygen carriers calculated by the other authors. 

Mattisson et al. investigated NiO/Al2O3 prepared by impregnation in a TGA and found that 

total solid inventory needed for CLC is 620 kg/MW 23. Zafar et al. investigated NiO/MgAl2O4 

prepared by impregnation and conclude that the amount of oxygen carrier needed in the fuel 

and air reactor varies between 125 and 175 kg/MW depending on the mass based conversion 

difference �� obtained in the reactor system 9. However, these authors assumed first order 

reaction with average CH4 and O2 concentration of 10 and 5% in fuel and air reactor 

respectively. Also the active NiO content in these particles was below 30 %. Cho et al. 

investigated freeze granulated NiO on alumina support in a laboratory fluidized bed reactor 

and found that 57-162 kg/MW oxygen carrier is needed in the fuel reactor depending on the 
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mass based solid conversion achieved during reduction 24. Readman et al. has presented 

reactivity data for NiO/NiAl2O4 oxygen carrier containing a 60 wt% active metal content. The 

solid inventory needed in the fuel and air reactor of a CLC system, based on the reactivity 

data given is 315 kg/MWfuel
20. Garcia et. al found an inventory of 45 kg/MWf of freeze 

granulated NiO on alumina support with an active MeO content of 40 wt% 17. Above 

discussion shows that oxygen carrier used in this work needs less amount of bed material per 

MW of fuel and is superior to the oxygen carriers investigated by the other authors using 

methane as fuel. All authors assumed that mass transfer resistance was negligible between the 

bubble and emulsion phase. When the mass transfer in the fluidized bed is important, the 

solids inventories should be higher than those given. 

 

6. Conclusions 
 

The detailed reactivity of a highly promising oxygen carrier for CLC was determined using 

methane and oxygen.  The carrier was composed of 60 wt% NiO with 40 wt% MgAl2O4. 

Some of NiO reacted with the support material reducing the active content to approximately 

50%. The reactivity was investigated in a TGA at 800-1000 °C using 5-20% CH4 as fuel gas 

for reduction and 3-15% O2 as oxidizing gas for oxidation.  The oxygen carrier showed very 

high reactivity during reduction and oxidation. The reaction rate was a function of reacting 

gas concentration and temperature both for reduction and oxidation reaction.  However, 

conversion of particles for the reduction reaction was very low at lower temperatures i.e. 800 

and 850 °C suggesting that it may not be feasible to use this oxygen carrier at lower 

temperature in a CLC system. The shrinking-core model for spherical grain geometry of 

reacting particle with chemical reaction control was used to determine the kinetics of 

reduction and oxidation. The value of reaction order for reduction reaction was 0.4, while 1 

for oxidation reaction. The activation energy for reduction and oxidation reaction found was 

114 and 40 kJ/mol respectively. The values of activation energy are higher to those described 

in the literature for Ni-based oxygen carrier. This may be due to the addition of MgO in the 

oxygen carrier particles. The reactivity data of NiO/MgAl2O4 was used to estimate the solid 

inventory needed in the CLC system. It was found that total solid inventory varies with the 

solid conversion at the inlet of fuel and air reactor. The minimum solid inventory found was 

22 kg/MWf. In order to operate the fuel reactor at 950 °C and air reactor at 1000 °C, the solid 



 19 

conversion difference between the two reactors should not be more than 0.18, with a 

recirculation rate of 4.15 kg s-1 MWf
-1.  
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Nomenclature 
 

bi= Stoichiometric factor for the reaction i, mol solid reactant  

Ci = gas concentration of species i, mol m-3 
d= stoichiometric factor in the fuel combustion reaction with oxygen, mol O2 per mol of fuel 
E = activation energy, kJ mol-1 
Gs = specific solids circulation rate, kg m-2 s-1  

k = chemical reaction rate constant, mol1-n m3n-2 s-1 
k0= preexponential factor of the chemical reaction rate constant, mol1-n m3n-2 s-1  
mOC,FR= solid inventory, in the fuel reactor , (kg OC) MWf

-1 
mOC,AR= solid inventory, in the air reactor , (kg OC) MWf

-1 

mtotal=total solid inventory, as fully oxidized oxygen carrier, (kg OC) MWf
-1 

cm
•

= characteristic circulation rate, (kg OC) s-1 MWf
-1 

OCm
•

= circulation rate of fully oxidized oxygen carrier, (kg OC) s-1 MWf
-1 

MO = molecular weight of oxygen, 16 g mol-1
 

m = actual mass of the oxygen carrier, g 
mred = mass of the sample in reduced form, g 
mox = mass of the sample when it is fully oxidized, g 
n = reaction order 
Ro,OC = oxygen transport capacity of the oxygen carrier 
rg = grain radius, m 
S = cross section area of the riser per MWf, m2 MWf

-1 
t= time, s 
Vg,Xg=0 = volume of the gas mixture at Xg=0, m3 
Vg,Xg=1 = volume of the gas mixture at Xg=1, m3

 

Xred = the degree of conversion during reduction of oxygen carrier  
Xred = the degree of conversion during oxidation of oxygen carrier 

Xg = gas conversion 
Xg,in = gas conversion at the reactor inlet 
Xg,out = gas conversion at the reactor outlet 
Xs = solid conversion  
Xo,inj= average solid conversion at the inlet of the reactor j 
 
 
Greek letters 

0
cH∆  = standard heat of combustion of the gas fuel, kJ mol-1 

gX∆  = variation of the gas conversion 

sX∆ = variation of the solid conversion between the two reactors 

εg = coefficient of expansion of the gas mixture 
φj=characteristic reactivity in the reactor j  
ρm = molar density of the reacting material, mol m-3 
�ch= time required for complete conversion of the particles, s 
�r =time needed for the complete conversion of particles in the fuel reactor, s 
�o= time needed for the complete conversion of particles in the air reactor, s 
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Table 1: Properties of the NiO/MgAl2O4 oxygen carrier particles 

 

Theoretical NiO content (wt%) 60 

Active NiO content (wt%) 50 

Particle size (mm) 0.125-0.180 

Porosity 0.36 

Specific surface area BET (m2/g) 3.0 

Apparent density (kg/m3) 3200 

Molar density of NiO/MgAl2O4 (mol/m3)  33290 

Molar density of Ni/MgAl2O (mol/m3) 47712 

Grain radius of NiO/MgAl2O (m) 0.2 ×  10-6 

Grain radius of Ni/MgAl2O (m) 0.19 ×  10-6 

 

 

 

 

 

Table 2: Kinetic parameters for the reduction and oxidation reaction of the NiO/MgAl2O4 oxygen 

carrier 

                                                                          CH4                                                                                   O2 
E       (kJ mol-1)              114                    40 
ko      ( mol1-n m2n-2 s-1)              2.75                    5.43 × 10-3

    
n              0.4                     1.0 
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Figure 1: Chemical-looping combustion. 

 
 
 
 
 
 
 
 
 

 
 

Figure 2: TGA furnace used for reactivity experiments. 
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Figure 3: The conversion as a function of time for different CH4 concentrations for the experiments conducted 
at 950°C. CH4 concentrations are 5% (�), 10 %(�), 15% (�) and 20% (	). Continuous line: results predicted by 
model using kinetic parameters obtained in this work. 
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Figure 4: Effect of temperature on the reduction reaction of NiO/MgAl2O4 with CH4 (10%) at 800°C (�), 
850°C (�), 900°C (+), 950°C (
) and 1000°C (�).Continuous line: results predicted by model using kinetic 
parameters obtained in this work. 
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Figure 5: ln(�mrg/b�) as function of ln(CCH4)  to obtain the order of reaction for reduction and the value of k at 

different temperatures 800°C (	), 850°C (�), 900°C (�) 950°C (
) and 1000°C (�)  
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Figure 6:  Arrhenius plot of the reduction and oxidation reaction with NiO/MgAl2O4 oxygen carrier.CH4 (
), 
O2 (�). 
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Figure 7: The conversion as a function of time for different O2 concentrations for the experiments conducted at 
1000°C. O2 concentrations are 3% (�), 6% (�), 10% (�) and 15% (	). Continuous line: results predicted by 
model using kinetic parameters obtained in this work. 
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Figure 8: Effect of temperature on the oxidation reaction of NiO/MgAl2O4 with O2 (10%) at 800°C (�), 
850°C (�), 900°C (+), 950°C (
) and 1000°C (�).Continuous line: results predicted by model using kinetic 
parameters obtained in this work. 
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Figure 9: ln(�mrg/b�) as a function of ln(CO2)  to obtain the order of reaction for oxidation and the value k at 

different temperatures:  850°C (�), 900°C (�) 950°C (
) and 1000°C (�) 
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Fig 10: Solid inventory as a function of solid conversion at the inlet of fuel reactor (Xo,inFR) and air reactor 
(Xo,inAR) mFR (�),mAR (�) and mtotal (
). 
 
 


