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Abstract 

Skins, scales and bones are the major by-products of the fish-processing industry. These by-products are 

not regarded as ordinary saleable products and are usually discarded causing a heavy environmental 

impact. However, they are a good source of collagen. This collagen could be extracted and further 

enzymatically hydrolysed to liberate physiologically active peptides. Specifically, some collagen-derived 

peptides may exhibit interesting antioxidant activity, potent antihypertensive activity, antimicrobial 

activity against different strains of bacteria, protective effect on cartilage, or capacity to stimulate bone 

formation. Collagen hydrolysates from fish disposals may also exhibit other interesting activities (e.g., 

satiety, calciotropic, or opioid). The bioactive properties of collagen-derived peptides, and also their 

resistance to protein digestion, make them potential ingredients of health promoting foods. 
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Introduction 

Fish processing waste, which otherwise cause serious environmental pollution, is a promising cost 

effective collagen source [1]. Fish collagen from skins, bones, fins and scales could be extracted and 

hydrolysed by chemical pre-treatment and subsequent heating at temperatures higher than 45 ºC [2, 3]. 

The mixture of soluble protein and peptides produced by the chemical pre-treatment and subsequent 

heating could be defined as gelatine. Collagen and gelatine contain bioactive peptides inactive within 

their sequence which can be released during gastrointestinal digestion or by controlled enzymatic 

hydrolysis. These collagen- and gelatine-derived peptides may exert a wide variety of physiological 

activities in the body, and could have potential applications in functional foods.  

The interest of processed functional food manufacturing in gelatine hydrolysates has grown in the last 

years for their potential nutraceutical activity. The term 'nutraceutical' was coined by DeFelice [4] to 

describe “any substance that is a food or part of a food and provides medical or health benefits, including 

the prevention and treatment of disease”. Interest in nutraceuticals is growing rapidly worldwide, as they 

are a safe alternative to pharmaceutical drugs, which use is sometimes limited by toxicity or intolerance 

reactions. Collagen and gelatine hydrolysates could be attractive nutraceuticals for their interesting 

bioactive properties. The beneficial effect of collagen or gelatine hydrolysates on different diseases has 

been reported in animal or clinical studies, and actually several supplements including collagen-derived 

peptides have been patented and are currently commercialised in USA, Japan and Europe. Moreover, 

hydrolysed gelatine products have received GRAS status (Generally Recognized as Safe) by the US Food 

and Drug Administration (FDA) [5]. Although mammalian gelatines are widely used in the field of 

nutraceuticals, the use of gelatines from marine-discarded sources for preparing protein hydrolysates is 

nowadays increasing, as they are not associated with the risk of outbreaks of bovine spongiform 

encephalopathy and also meet certain religious requirements of Jewish and Muslim markets.  

The resistance of some collagen-derived peptides to protein digestion is one of the most interesting 

properties of collagen hydrolysates. Several studies focused on the effect of oral intake in both animal and 

human models have revealed the excellent absorption and metabolism of Hyp-containing peptides. Some 

of these collagen-derived peptides have revealed biological activity in vivo after absorption from the 

digestive tract [5]. 
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The present article provides a summary on some relevant bioactive activities ascribed to collagen- or 

gelatine-derived peptides from marine sources. Thus, antioxidative, antihypertensive (ACE inhibitory), 

antimicrobial, opioid, joint-regenerative, calciotropic and secretagogue activities of collagen and gelatine 

hydrolysates will be reviewed, as well as other interesting bioactive activities. 

Antioxidant activity 

Oxidation is a vital process in aerobic organisms, particularly in vertebrates and humans. However, 

oxidation leads to the formation of reactive oxygen species (ROS), including free radicals and non-free 

radical species. Oxidation primarily occurs on unsaturated fatty acids by a free radical-mediated process. 

The free radicals interact with molecular oxygen to form lipid peroxy radicals. These radicals can abstract 

a hydrogen atom from adjacent unsaturated fatty acids and produce a hydroperoxide and a new lipid 

radical, which causes the continuation and acceleration of the chain reaction. In fatty foods, lipid 

peroxidation is the main cause of loss of quality [6]. In the human body, excessive production of free 

radicals can cause destructive and lethal cellular effects by oxidizing lipids, proteins, DNA, and enzymes. 

In fact, the generation of reactive oxygen species has been related to heart diseases, stroke, 

arteriosclerosis, diabetes mellitus, cancer, and neurodegenerative and inflammatory diseases [7, 8, 9, 10].  

Antioxidants can protect foods and human body against deterioration by ROS, retarding the progress of 

many chronic diseases. Although many synthetic antioxidants as butylatedhydroxytoluene (BHT), 

butylatedhydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), and propyl gallate are used for food 

and pharmaceutical industries to retard peroxidation processes, the substitution of these synthetic 

antioxidant by natural ones is gaining interest due to health concerns and consumer’s preferences [11, 12]. 

Therefore, the use of natural antioxidant peptides derived from food sources could be of interest for food 

industry. Due to the enormous volume of fish processing waste generated annually, a great deal of 

attention has been paid in the obtaining of antioxidant peptides from collagenous sources. These 

antioxidant peptides derived from collagen may exert higher antioxidant effect than others derived from 

other protein sources [13-15]. Hydrolysates exhibiting antioxidant activity have been obtained from 

collagen or gelatine of different marine sources, as Alaska Pollack skin [16], hoki fish skin [15], cobia 

skin [17, 18], brown-stripe red snapper skin [19], tuna backbones [20], sole skin [21], jellyfish umbrella 

[22], cod [23], or squid skin [15, 21, 24-27]. Some collagen/gelatine-derived antioxidant peptides have 

been further purified and sequenced (Table 1).  



4 

 

Table 1 Antioxidant peptides derived from marine collagenous sources 

Source Sequence Enzyme Activity Ref. 

 
Alaska Pollack skin gelatine 
(Theragra chalcogramma) 
 
 

 
Gly-Glu-Hyp-Gly-Pro-Hyp-Gly-Pro-Hyp- 
Gly-Pro-Hyp-Gly-Pro-Hyp-Gly 
Gly-Pro-Hyp-Gly-Pro-Hyp-Gly-Pro-Hyp- 
Gly-Pro-Hyp-Gly 

 
Alcalase, 
Pronase E 
Collagenase 
 

 
Inhibition of lipid peroxidation  
Increase of cell viability exposed to t-BHP 
 

 
[16] 

Hoki skin gelatine 
(Jonius belengerii) 
 

His-Gly-Pro-Leu-Gly-Pro-Leu Trypsin Radical scavenging  
Inhibition of lipid peroxidation  
Increase of antioxidative enzyme levels in hepatoma cell 
 

[15] 
 

Squid skin gelatine 
(Dosidicus gigas) 
 

Phe-Asp-Ser-Gly-Pro-Ala-Gly-Val-Leu  
Asn-Gly-Pro-Leu-Gln-Ala-Gly-Gln-Pro-Gly-Glu-Arg 
 

Trypsin Radical scavenging 
Increase of cell viability exposed to t-BHP 
 

[27] 

Tuna backbone 
 

Val-Lys-Ala-Gly-Phe-Ala-Trp-Thr- 
Ala-Asn-Gln-Gln-Leu-Ser 
 

Pepsin 
 

Radical scavenging 
Inhibition of lipid peroxidation  
 

[20] 
 

Squid tunic gelatine          
(Dosidicus gigas) 

Gly-Pro-Leu-Gly-Leu-Leu-Gly-Phe-Leu- 
Gly-Pro-Leu-Gly-Leu-Ser 
 

Alcalase 
 

Radical scavenging 
Ferric reducing power 
 

[25] 
 

Nile Tilapia gelatine 
(Oreochromis niloticus) 

Asp-Pro-Ala-Leu-Ala-Thr-Glu-Pro-Asp-Pro-Met-Pro-Phe 
 

Alcalase 
 

Protective effect against free radical-induced cellular and 
DNA damage in murine microglial cell 
 

[61] 
 

Pacific cod skin gelatine 
(Gadus macrocephalus) 
 

Thr-Cys-Ser-Pro 
Thr-Gly-Gly-Gly-Asn-Val 
 

Papain 
 

Radical scavenging 
Protective effect against oxidation-induced  
DNA damage in mouse macrophages cell 
 

[26] 
 

Pacific cod skin gelatine 
(Gadus macrocephalus) 
 

Leu-Leu-Met-Leu-Asp-Asn-Asp-Leu-Pro-Pro 
 

Pepsin, 
Trypsin  
α-Chymotrypsin 

Radical scavenging 
Protective effect against oxidation of  membrane lipids, 
proteins and nuclear DNA in mouse monocyte cells 

[23] 
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The antioxidant effect of some collagen-derived peptides has been observed in culture cells. For example, 

peptides isolated from cod skin gelatine may protect living cells against free radical mediated oxidative 

damage [23, 26]. Two potent antioxidant peptides derived from jumbo squid skin gelatine may exert a 

protective effect in human lung fibroblasts against radical-mediated oxidation [27].  Kim et al. [16] have 

also reported the ability of two antioxidant peptides isolated from fish skin gelatine hydrolysate to 

enhance cell viability in cultured liver cells [16]. The protective effect of peptides against free radical 

mediated oxidative damage could be ascribed to their ability to enhance the expression of antioxidant 

enzymes, as observed in cultured human hepatoma cells [15]. 

The exact mechanism by which some peptides display antioxidant activity is not fully understood. 

Various hypotheses have been put forward to explain this activity. Some researchers agree that the 

antioxidant activity of protein hydrolysates cannot be attributable to a single antioxidant mechanism. 

Thus, some peptides derived from hydrolysed proteins would exert antioxidant activities by acting like 

free radical scavengers, lipid peroxidation inhibitors and/or chelating agents [28, 29]. The radical-

scavenging activity of some peptides could be ascribed to the presence of determined amino acids within 

their sequence which could donate protons to electron-deficient radicals [30]. Dávalos et al. [31] have 

evaluated the antioxidant activity of individual amino acids and have observed that Trp, Tyr and Met 

exhibit the highest antioxidant activity, followed by Cys, His and Phe. The remaining amino acids (Arg, 

Asn, Gln, Asp, Pro, Ala, Val, Lys, Ile, Thr, Leu, Glu, and Gly) do not exhibit apparent antioxidant 

activity. The antioxidant activity of His could be ascribed to the proton-donation ability of the imidazole 

group, while that of Cys could be related to the possible interactions of the sulfhydryl group with free 

radicals [32]. However, many peptides with demonstrated antioxidant capacity do not contain any of the 

above mentioned antioxidant amino acids in their sequence. It leads to think that other factors must also 

influence in the antioxidant activity of the peptides. For example, the antioxidant capacity could be 

affected by the peptide conformation, abundance and also the position of certain amino acids within the 

peptide sequence [33]. In this sense, the high Gly and Pro content in collagen could be related to the 

antioxidant activity of some collagen-derived peptides. The presence of several residues of Gly in a 

peptide sequence may confer high flexibility on the peptide structure, while the pyrrolidine ring of Pro 

could impose certain conformational constraints in the secondary structure of the peptide. Kim et al. [16] 

have isolated two antioxidant peptides from a hydrolysate of Alaska Pollack skin, both containing a Gly 
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residue at the C-terminus and the repeating motif Gly-Pro-Hyp (Table 1). The gelatine-derived peptide 

Asn-Gly-Pro-Leu-Gln-Ala-Gly-Gln-Pro-Gly-Glu-Arg also comprises several Gly residues and has been 

found to exhibit valuable free radical quenching capacity [27].  

The high content of hydrophobic amino acids could also affect the antioxidant activity of the peptides 

[27]. The hydrophobic nature of the peptides would enhance their solubility in lipids and hence the access 

to hydrophobic radical species and polyunsaturated fatty acids [16, 34, 35]. However, Alemán et al. [36] 

have not observed any relation between the hydrophobic amino acid content and the antioxidant 

properties of several marine skin gelatines. Mendis et al. [27] have suggested that the antioxidant activity 

of squid skin gelatine could be due to hydrophilic and hydrophobic partitioning in the peptide sequence.  

The molecular weight of the peptides is also believed to play a key role in their antioxidant activity. 

Alemán et al. [25] have observed an inverse relationship between antioxidant capacity and molecular 

weight in a fractionated squid skin hydrolysate, although the highest antioxidant activity was not found in 

the lowermost molecular weight fraction. This fact was ascribed to the presence, in that fraction, of a 

large number of free amino acids with reduced antioxidant potency. Other authors [17, 37] have also 

found low molecular weight antioxidant peptides (< 1 kDa) in marine gelatine hydrolysates. 

 

Antihypertensive activity 

Hypertension represents one of the major independent risk factors for myocardial infarction, congestive 

heart failure, arteriosclerosis, stroke, and end-stage renal disease [38]. In fact, hypertension is a 

worldwide problem of epidemic proportions that affects over 25% of the adults’ population. Angiotensin-

I converting enzyme (ACE) plays an important role in the regulation of blood pressure and hypertension 

[39]. For that reason, ACE inhibition has become the main target in treatment of hypertension. Captopril, 

Lisinopril and Enalapril are some examples for drugs targeted as ACE inhibitors. However, the adverse 

side effects of synthetic drugs have increased the search for natural ACE-inhibitory peptides [40, 41]. 

Some collagen and gelatine hydrolysates have shown potential to be used as mild or moderate ACE 

inhibitors. Table 2 shows the sequence of several ACE-inhibitory peptides isolated and identified in 

gelatine hydrolysates derived from fish skins [13, 42, 43], scales [23, 44], chum salmon cartilage [42], sea 

cucumbers [45] and squid tunics [25, 46, 47].  
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Table 2: ACE-inhibitory peptides derived from marine collagenous sources. The potency of these collagen-derived peptides to inhibit ACE activity is expressed as an IC50 
value, which is the ACE inhibitor concentration leading to 50% inhibition of ACE activity. 

Source Sequence Enzyme Activity (IC50) Ref. 

 
Alaska Pollack skin gelatine 
(Theragra chalcogramma) 
 

 
Gly-Pro-Leu 
Gly-Pro-Met 
 

 
Alcalase, 
Pronase E 
collagenase 
 

 
IC50 2.6 µM 
IC50 17.13 µM 
 
 

 
[13] 
 

Squid tunic gelatine          
(Dosidicus gigas) 

Gly-Pro-Leu-Gly-Leu-Leu-Gly-Phe-Leu- 
Gly-Pro-Leu-Gly-Leu-Ser 
 

Alcalase 
 

IC50 90.03 µM 
 

[25] 
 

Nile Tilapia gelatine 
(Oreochromis niloticus) 
 

Asp-Pro-Ala-Leu-Ala-Thr-Glu-Pro-Asp-Pro-Met-Pro-
Phe 
 

Alcalase 
 

IC50 62.2 µM 
 

[61] 
 

Pacific cod skin gelatine 
(Gadus macrocephalus) 

Thr-Cys-Ser-Pro 
Thr-Gly-Gly-Gly-Asn-Val 
 

Papain 
 

81% of ACE inhibition  
at 0.5mg/mL 
 

[26] 
 

Pacific cod skin gelatine 
(Gadus macrocephalus) 
 

Leu-Leu-Met-Leu-Asp-Asn-Asp-Leu-Pro-Pro Pepsin, 
Trypsin  
α-Chymotrypsin 

IC50 35.7 µM 
 

[23] 
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The structure–activity relationship of food derived ACE-inhibitory peptides has not yet been fully 

established. The ACE-inhibitory activity of gelatine-derived peptides could be ascribed to their C- 

terminal sequence. Ondetti and Cushman [48] have observed that ACE-inhibitory peptides seem to 

compete with biologically important ACE substrates by interaction of their C-terminal tripeptide residues 

with subsites at the active-site of the enzyme. Other authors [39, 49] have highlighted the important effect 

on the affinity of ACE-competitive inhibitors to ACE of hydrophobic amino acid residues (aromatic or 

branched side chains) located at the three C-terminal positions. The presence of C- terminal amino acids 

with a positive charge on the ε-amino group (e.g., Arg and Lys) may also contribute to the ACE-

inhibitory potency [49, 50, 51]. The high content of Pro residues within the sequence of ACE-inhibitory 

peptides has also been linked to the ACE-inhibitory potency [52, 53]. Indeed, the synthetic ACE-inhibitor 

Captopril is a sulfhydryl-containing analogue of Pro, whereas Enalapril is a derivative of Ala and Pro. 

The molecular weight of the peptides has also been found to influence on the ACE inhibitory activity. In 

particular, the ACE-inhibitory peptides are generally very short and have low-molecular weight [13, 25, 

45, 54, 55]. Nonetheless, some ACE-inhibitory peptides of 9-10 amino acids long have recently been 

found in gelatine-derived hydrolysates (Table 2). 

The high concentration of both hydrophobic amino acids and Pro residues in collagen suggests that this 

protein could be a good source of ACE-inhibitory peptides [56, 57]. Indeed, gelatine peptides exhibiting 

ACE-inhibitory activity in vitro and also in vivo have been widely described. Oral administration of 

protein hydrolysates derived from sea bream scales and salmon skins may successfully decrease blood 

pressure in spontaneously hypertensive rats [44, 58]. As well, the oral administration of the most active 

ACE-inhibitory fractions of gelatine hydrolysates derived from either sea cucumber, jellyfish or squid has 

significantly reduced blood pressure in renal hypertensive rats [45, 47, 59]. The dipeptide Gly-Pro has 

also induced an antihypertensive effect in SHR [54]. However, there is a lack of information on the effect 

of gelatine-derived peptides on hypertensive patients.  

Finally, it is worth mentioning that antioxidant peptides may also have ACE-inhibitory activities in vitro 

[60]. Multifunctional gelatine-derived peptides exerting both ACE-inhibitory and antioxidant activities 

have been found in hydrolysates of squid skin [25, 36], Pacific cod skin [23, 26], Nile tilapia [61] and 

cartilage and skin of chum salmon [42].  
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Antimicrobial activity 

Bioactive peptides exerting antimicrobial properties have interesting applications in the current context of 

food safety and food protection by means of natural products. Although potent antimicrobial compounds 

are nowadays available, antimicrobial peptides show the advantage of being able to kill target cells 

rapidly. Moreover, antimicrobial peptides have a broad spectrum of activity, including activity for some 

of the more serious antibiotic-resistant pathogens in clinics. 

Antimicrobial peptides are mostly small cationic peptides, and are observed throughout nature. They have 

been isolated from most animals including insects and other invertebrates, amphibians, birds and 

mammals. Most of the antimicrobial peptides that are a benefit to health are synthesized by the cells of 

the organism itself [62-64]. In mammals, they are found both at the epithelial surfaces and within granular 

phagocytic cells. In addition to their known antimicrobial role, mammalian cationic peptides are also an 

extremely important player in mediating innate immune responses to infection [65-67]. 

Cationic antimicrobial peptides are short (usually less than 50 amino acids) and usually possess excess 

positively charged Lys and/or Arg or His residues (the latter being charged at acidic pH only) and a large 

percentage (around 50%) of hydrophobic amino acids. To this date, more than 750 antimicrobial peptides 

have been reported [63] and exhibit very little sequence similarity. The molecular mechanisms of action 

of cationic antimicrobial peptides are not fully understood. Upon interaction with bacterial membranes, 

cationic peptides generally adopt a strongly amphipathic or amphiphilic three-dimensional structure. This 

ability to adopt an amphipathic structure is what allows cationic peptides to insert into biological 

membranes and form channels, with specificity for prokaryotic cell membranes. The differences in 

membrane composition between Gram-positive and Gram-negative bacteria may therefore have 

implications for the mode of action and bacterial specificity of these antibacterial compounds [68]. Other 

mechanisms for microbial killing have been reported. Thus, some antimicrobial peptides could inhibit the 

synthesis of the bacterial cell wall and/or the nucleic-acid, stimulate its autolytic enzyme system, or act 

synergistically with other host innate immune molecules [69-73]. 

Antimicrobial peptides can be obtained during gastrointestinal digestion of food protein molecules [74-

76]. Antimicrobial peptides have been found in hydrolysates of milk casein, α-lactalbumin, β-

lactoglobulin, ovalbumin and serum albumin [77]. However, there is not enough information on the 

antimicrobial properties of collagen or gelatine-derived peptides. Theoretically, they could exert 
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interesting antibacterial activity, as some linear antimicrobial peptides identified have a high proportion 

of select residues, particularly Pro, Arg, or Gly, which are abundant in collagen [63]. Gómez-Guillén et 

al. [37] have recently obtained antimicrobial tuna and squid skin hydrolysates. These gelatine 

hydrolysates were highly active against different strains of Gram-positive and Gram-negative bacteria, 

mainly Lactobacillus acidophilus and Bifidobacterium animalis subp. Lactis, Shewanella putrefaciens 

and Photobacterium phosphoreum. Fractions from tuna hydrolysate seemed to be more active than squid 

ones for Lactobacillus acidophilus, Pseudomona aeruginosa and Salmonella choleraesuis; whereas squid 

fractions were more effective at inhibiting the growth of Aeromona hydrophila. The best antimicrobial 

ability was mainly found in the lowermost molecular weight fractions, especially in squid samples. 

Peptides from fish gelatine have a repeated motif of Gly-Pro-Ala triplets in their structure [56], and this 

hydrophobic character would let peptides enter the membrane, as the positive charge would initiate the 

peptide interaction with the negatively charged bacteria surface [78] and consequently the pore formation.  

Role in bone and joint disease 

Osteoarthritis and osteoporosis are two of the most common musculoskeletal disorders. Treatment of 

osteoarthritis includes analgesics and anti-inflammatory agents, lubricating, cushioning agents and 

nutritional supplements. Treatment for osteoporosis includes oestrogenic hormone replacement, 

bisphosphonates, calcitonin, selective oestrogen receptor agonists, fluorides, and parathormone 

derivatives. Nonetheless, therapeutic responses are limited in many patients and it could be considered 

that the best treatment for osteoarthritis and osteoporosis has not been discovered yet. Advances in 

treatment of osteoarthritis and osteoporosis include new and safer compounds (e.g., glucosamine, 

chondroitin sulphate, or methyl-sulfonyl-methane) capable of repairing damaged articular cartilage or at 

least decelerating its progressive degradation [79]. In this sense, collagen hydrolysates are safer 

compounds that could provide, with less overall toxicity, a greater symptomatic relief than 

pharmaceutical drugs.  

Osteoarthritis is a joint disease characterized by progressive destruction of joint cartilage and its 

associated structures (bone, synovial and fibrous joint capsules), and also of the periarticular musculature. 

This disorder is basically produced by an imbalance between the synthesis and degradation of the 

articular cartilage. This imbalance leads to the classic pathologic changes of wearing away and 

destruction of cartilage. Although the beneficial effect of collagen hydrolysates on joint pain is known 
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from the Middle Age, scientific evidences on the effective management of osteoarthritis with collagen 

hydrolysates have recently been reported [5, 80, 81]. In clinical studies with patients suffering joint 

disease, gelatine hydrolysates seemed to exert a direct effect on cartilage [5]. The mechanism by which 

gelatine hydrolysates stimulate cartilage metabolism is unknown. Articular cartilage is comprised of 

chondrocytes and extracellular matrix, being this maintained by chondrocytes [82]. The matrix consists of 

tissue fluid and a framework of structural macromolecules synthesized by the chondrocytes. These 

macromolecules are mainly type II collagen, proteoglycans and non-collagenous proteins. Experimental 

studies have suggested that some gelatine-derived peptides orally administered are absorbed intact in the 

intestine. Subsequently, these peptides would accumulate preferably in cartilage, where finally may 

stimulate cartilage metabolism [81]. Some evidences exist on the ability of collagen hydrolysates to 

stimulate biosynthesis of type II collagen and proteoglycans in chondrocytes [83]. Raabe et al. [84] have 

reported the marked effect of a fish collagen hydrolysate on chondrogenic differentiation of equine 

adipose tissue-derived stromal cells. These studies suggest that effectiveness of collagen hydrolysates on 

biosynthesis of macromolecules would be based on their unique amino acid composition, very similar to 

that of type II collagen. Oral administration of collagen hydrolysates would provide high levels of Gly 

and Pro, two amino acids essentials for the stability and regeneration of cartilage [85]. The therapeutic 

effect of collagen hydrolysates on osteoarthritis could also be mediated by the effect of specific peptides 

on gene expression and function of chondrocytes. In animal studies, Nakatani et al. [86] have observed 

that the peptide Pro-Hyp is able to reduce alkaline phosphatase activity in chondrocytes, and also inhibits 

the differentiation of these cells into mineralised chondrocytes. The effect of bioactive peptides on 

chondrocytes metabolism could be mediated by interaction with specific receptors on cell membranes 

[86]. Nonetheless, this fact has received relatively little attention.  

Osteoporosis is a metabolic disorder in which the bones become increasingly porous, brittle, and subject 

to fracture, owing to loss of calcium and other mineral components. Osteoporosis results in pain, bone 

fragility, and increased susceptibility to fracture. The exact cause of bone loss in patients with 

osteoporosis is not yet clear. Theoretically, increased activity of osteoclasts, decreased activity of bone 

forming osteoblasts, or both may be associated with osteoporosis. Recent animal studies have suggested a 

positive role of collagen hydrolysates on osteoporosis. Hydrolysed collagen-enriched diet may improve 

bone collagen metabolism and bone mineral density in rats and mice fed a calcium- or protein-deficient 

diet [87, 88]. Similarly, oral administration of collagen hydrolysate from shark skin has increased 



12 

 

production of newly synthesized type I collagen and proteoglycan in the bone matrix of ovariectomized 

rats [89]. Guillerminet et al. [90] administered a diet enriched with a collagen hydrolysate to 

ovariectomized mice during 12 weeks, and observed that osteoblast activity was increased at the end of 

the experiment, while differentiation and maturation of osteoclasts was lowered. These effects on 

osteoblasts and osteoclasts led to a significant stimulation of bone formation and mineralization. 

Likewise, other studies have found that cod bone gelatine may prevent bone loss by decreasing bone 

resorption in ovariectomized rats [91]. The effect of collagen proteins on osteoporosis has also been 

investigated in patients with osteoporosis. A diet rich in collagen proteins may enhance and prolong the 

therapeutic effect of calcitonin on osteoporosis in postmenopausal women [92]. Nevertheless, oral 

administration of collagen proteins in absence of calcitonin has not produced any effect on bone 

metabolism in postmenopausal women with low bone mineral density [93].  

The mechanism by which oral administration of hydrolysed collagen may improve bone formation in rats 

remain unclear, but has been suspected to be associated with the release and absorption of collagen-

derived peptides acting on bone metabolism, as observed in cartilage [81]. This effect could also be 

mediated by interaction of small collagen-derived peptides with the bone matrix. In this sense, the type I 

collagen-derived peptide Asp-Gly-Glu-Ala may bind to 21 integrin receptors on cell membranes and 

stimulate osteoblast-related gene expression of bone marrow cells [94]. The biological effect of collagen-

derived peptides on bone remodelling could also be mediated by their binding to calcitonin or CGRP 

receptors on cell membranes. Nonetheless, this fact has been little studied. Further research must be 

necessary to elucidate how the collagen hydrolysates may exert a therapeutic effect on patients with 

osteoporosis.  

Opioid-like activity 

Glyproline peptides have exhibited interesting opioid-like effects in animals. Glyproline family includes 

simple Pro-containing peptides widely found in gelatine and collagen hydrolysates: Pro-Gly (PG), Gly-

Pro (GP), Pro-Gly-Pro (PGP), Hyp-Gly, Gly-Hyp. Some of these peptides could cross the blood brain 

barrier and directly affect central nervous structures involved in organism’s response to stress factors [95, 

96]. Several experiments have shown that PGP and GP may correct stress-induced impairments in 

behaviour of rats [96-98]. Glyproline peptides may also potentiate memory consolidation processes in the 

central nervous system [99]. Furthermore, interesting in vivo effects of glyproline peptides on pain 
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sensitivity have been reported. In particular, GP may suppress the analgesic action of morphine [100], and 

PGP, PG and PG may diminish visceral pain sensitivity in rats in a dose related manner [98]. 

Calciotropic activity (CGRP-like molecules) 

CGRP (Calcitonin Gene Related Peptide) is a potent vasodilator neuropeptide in humans [101]. CGRP 

also plays an important role in the modulation of many other physiological functions. Additional 

biological functions mediated by CGRP include: regulation of pituitary hormone secretion, release of 

pancreatic enzymes, control of gastric acid secretion, thermoregulation, decrease in food intake, bone 

remodelling, and prevention of complication during pregnancy [102, 103]. In the last years, different 

CGRP-like peptides have been found in hydrolysates derived from marine collagenous sources (Table 3). 

The CGRP-like peptides are molecules that show an affinity for CGRP-receptors on cell membranes and 

either positively or negatively affect the activity of the receptor.  
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Table 3: Concentration of CGRP- and gastrin/CCK-like molecules in different protein hydrolysates 

derived from marine collagen. ED50 for gastrin/CCK-like molecules gives information on the quantity of 

sample that induces a 50% inhibition of the initial binding of CCK to its specific antibody. ED50 for 

CGRP-like molecules gives information on the quantity of sample that induces a 50% inhibition of the 

initial binding of human CGRP to specific receptors on rat liver membranes. 

Gastrin/CCK-like molecules [Gastrin/CCK-like molecules], pg/mg dry weight ED50 (mg dry weight) Ref. 

Cod backbones 0.5-1.6 2.17-9.65 [105]

North Atlantic lean fish skin 1.3 11.03 [106]

Sardine heads ≈1.1-9.0 ND [107]

CGRP-like molecules [CGRP-like molecules], pg/mg dry weight ED50 (mg dry weight) Ref. 

Cod backbones 9.09-66.24 1-6.85 [105]

North Atlantic lean fish skin 4 19 [106]

 [CGRP-like molecules], pg/mg protein ED50 (µg protein)  

Siki heads 75 4100 [104]

Sardine heads ND ≈50-800 [107]

Sardine heads 0.14 311 [108]

 

 

Martínez-Alvarez et al. [104] have reported the occurrence of CGRP-like molecules in an industrial 

protein hydrolysate from siki heads. These CGRP-like molecules showed agonistic activity, as they 

stimulated production of cAMP. This effect was reversed by the presence of the specific antagonist 

CGRP8-37. The sequence of the siki-derived CGRP-like molecules was found to be Gly-Phe-Pro*-Gly-

Pro-Glu-Gly-Leu, where the third residue (Pro*) could also match with Hyp. This sequence shows high 

homology to fragments of collagen from different species.  

The occurrence of CGRP-like molecules in other collagen hydrolysates has also been reported. CGRP-

like molecules have been found in protein hydrolysates derived from cod backbones [105]. The content of 

CGRP-like molecules was dependent on the time of hydrolysis and also on the quality of the raw material 

used. The molecular weight of the CGRP-like molecules found in the hydrolysates of cod backbones was 
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estimated at 3300 and 2350 Da. Moreover, Picot et al. [106] have reported the occurrence of CGRP-like 

molecules in a commercial hydrolysate from skins of North Atlantic lean fish. Ravallec-Ple et al. [107] 

and Rousseau et al. [108] have also reported the presence of interesting CGRP-like molecules in protein 

hydrolysates derived from sardine heads. These molecules were able to bind to specific CGRP receptors 

on rat liver membranes and exhibited antagonistic effect [108], unlike the CGRP-like molecules from the 

siki heads hydrolysate [104]. 

Secretagogue activity (gastrin/CCK-like molecules) 

Gastrin and cholecystokinin (CCK) are small intestinal hormones belonging to the secretagogue family. 

Gastrin is a gastric hormone that stimulates postprandial gastric acid secretion and epithelial cell 

proliferation [109]. In humans, gastrin is primarily found in two forms: one form with 17 amino acids in 

the sequence (little gastrin 1), and other with 34 residues in the sequence (big gastrin). Cholecystokinin is 

a family of peptide hormones that control the emptying of the gallbladder and pancreatic enzyme 

secretion. CCK also mediates other physiological processes: it regulates intestinal motility, satiety 

signalling and also the inhibition of gastric acid secretion [110]. Both gastrin and CCK share the common 

sequence for gastrin and CCK (-Trp-Met-Asp-Phe-NH2).  

The occurrence of molecules with capacity to interact with specific gastrin antibodies (gastrin/CCK-like 

molecules) in protein hydrolysates derived from collagenous sources has been reported (Table 3). 

Gastrin/CCK-like molecules have been found in protein hydrolysates derived from sardine heads [107, 

108, 111], cod heads [111], cod backbones [105], siki heads [112] and skins from North Atlantic lean fish 

[106]. The hydrolysis time and the quality of the raw material had a strong influence in the amount of the 

gastrin/CCK-like molecules found in the hydrolysates [105, 107, 108]. Although the in vivo effect of the 

gastrin/CCK-like molecules on satiety has been scarcely investigated, they could be interesting satiety-

ingredients with promising applications in functional foods. 

Other interesting activities 

Collagen-derived peptides could also exhibit other interesting physiological activities. Glyproline 

peptides are abundant in collagen and gelatine hydrolysates and cause significant inhibition of some 

factors involved in blood coagulation and platelet aggregation [99, 113]. Some collagen-derived peptides 

may also suppress thrombocyte aggregation [114-116], as observed in vitro and also in vivo. The peptides 
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PGP, PG, GP, and Gly-Pro-Gly-Gly have been found to show ability to increase fibrinolytic, 

anticoagulant, and antithrombotic activities in rat plasma [99, 113]. Furthermore, the protective antiulcer 

effect of Pro-Gly, Gly-Pro and Pro-Gly-Pro has been reported by different authors [117, 118]. The 

neuroprotective effect of glyprolines has also been reported [119], as well as their capacity to increase the 

resistance of gastric mucosa to damaging agents [98]. Glyprolines could also induce inhibition of mast 

cell degranulation [120] and potentiate chemotaxis-induced superoxide formation [121]. Other peptides 

(Pro-Hyp-Gly, Pro-Hyp and analogues) may also display chemotactic activity to fibroblasts, peripheral 

blood neutrophils and monocytes [122, 123]. Collagen hydrolysates could also enhance wound healing, as 

observed after ingestion of a Chum salmon skin hydrolysate [124]. Moreover, marine collagen peptides 

might improve glucose and lipid metabolism and help to control hyperglycaemia in patients with type 2 

diabetes mellitus [125].  

Effect of gastrointestinal digestion on collagen-derived peptides 

Protein orally administered is enzymatically digested to their amino acid components in the gastro-

intestinal tract. Nonetheless, in vitro and in vivo studies have demonstrated that some collagen-derived 

peptides survive the gastrointestinal digestion [5]. These collagen-derived peptides could also pass across 

the intestinal barrier and reach a maximal plasma concentration in 6 hours [81]. The percentage of high 

molecular weight peptides (1-10 kDa) absorbed following oral administration of collagen hydrolysate 

could reach 10%, with some individual variability [5]. The reason of this resistance to protein digestion of 

gelatine-derived peptides is the presence of Pro residues within their sequence. Di- or tripeptides, 

especially those with C-terminal Pro or Hyp residues, are generally resistant to degradation by gastric 

enzymes [50, 126]. Proline-containing oligopeptides are also particularly resistant to proteolysis in 

intestine and enterocytes, and this may result in their partial penetration into the bloodstream. In this 

sense, the presence of small Pro-containing oligopeptides in human blood after ingestion of hydrolysed 

collagen has been documented [127, 128]. These peptides constituted Pro-Hyp primarily, as well as other 

di- or tripeptides in small portions (Pro-Pro, Ala-Hyp, Hyp-Pro-Hyp, Gly-Pro-Val, Ala-Hyp-Gly, Pro-

Hyp-Gly, Leu-Hyp, Ile-Hyp, and Phe-Hyp). The peptide Gly-Pro-Hyp is able to resist the effect of 

peptidases in blood and may remain in plasma of rats for several hours [129, 130]. As well, Pro-Hyp is 

not digested by peptidases and is excreted into urine without degradation [130, 131].  
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Concluding remarks 

In summary, this review demonstrates that marine collagen may be an excellent source of molecules 

exhibiting interesting nutraceutical properties. The abundance of collagen in fish disposals, the resistance 

of some collagen-derived peptides to gastrointestinal digestion, and also their capacity to reach intact the 

bloodstream suggest that marine collagen could be an interesting source of bioactive peptides with 

promising applications in functional foods. Nonetheless, the presumptive health enhancing effect of 

collagen/gelatine-derived peptides has not been thoroughly demonstrated in vivo and deserve further 

investigation. Additional in vivo studies will be necessary before considering the application of gelatine-

derived peptides as dietary supplements in functional foods.  
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