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ABSTRACT 

 

The objective of this work is to evaluate a novel regenerable sorbent for mercury 

capture based on gold nanoparticles supported on a honeycomb structured carbon 

monolith. A new methodology for gold nanoparticles deposition onto carbon monolith 

support has been developed to obtain an Au sorbent based on the direct reduction of 

a gold salt onto the carbon material. For comparison purposes, colloidal gold method 

was also used to obtain Au/C sorbents. Both types of sorbents were characterized by 

different techniques in order to obtain the bulk gold content, the particle size 

distribution and the chemical states of gold after deposition. The mercury capture 

capacity and mercury capture efficiency of sorbents were tested in a bench scale 

facility at different experimental conditions. The regenerability of the sorbents was 

tested along several cycles of mercury capture regeneration. High retention 

efficiencies are found for both types of sorbents comparing their gold content. 

Moreover, the high retention efficiency is maintained along several cycles of Hg 

capture-regeneration. The study of the fresh sorbent, the sorbent after Hg exposition 

and after regeneration by XPS and XRD gives insight to explain those results.  
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INTRODUCTION 

 

Mercury is a leading concern among the air toxic metals because of its volatility, 

persistence, bioaccumulation in the environment and its neurological health impacts  

[1]. 

By far, the largest anthropogenic source of mercury is the burning of fossil fuels, 

primarily coal. Electrical power plants are estimated to account for about 25% of the 

global anthropogenic mercury emissions to the atmosphere and industrial and 

residential heating for another 20% [1]. 

Mercury present in coals varies widely based on its origin (where it was excavated) 

and any processes it undergoes prior to sale on the market. A literature review 

provides data of the mercury content of different coals [2]. Recent data reported in 

this review ranges mercury content between 0.05-0.35 mg/kg, with most values 

below 0.2 mg/kg. 

During the combustion processes, these forms evaporate, giving rise to Hg0, HgO 

and HgCl2, which proportions in gas phase depend on the concentration and mode of 

occurrence in the coal and on the compounds present in the gaseous stream, 

especially particulates and HCl [3].  In pulverized-coal power plants more than 90% 

of the Hg in coal can be emitted in gas phase through the stack, in some cases. If the 

power plant has a wet flue gas desulphurization unit implemented (WFGD)  [4], part 

of the oxidized mercury is removed in it, resulting in an average mercury emission to 

stack 25% Hg2+:75% Hg0. 

The environmental implications of mercury do not correspond only to the emissions 

to the atmosphere; the quality of CO2 to be transported and sequestered has been 

subject of research, concerning trace quantities of heavy metals participating in 
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mineralization and precipitation reactions in sequestration conditions. Moreover, 

mercury could accumulate within the CO2 processing unit (CO2 clean up and 

compression). The removal of Hg is necessary to protect key components in the CO2 

processing unit in order to prevent Hg attack on the aluminum heat exchangers. 

Mercury control post-combustion technologies can be associated with abatement 

measures for other pollutants (principally particulate and sulphur dioxide) [2, 5]. 

Mercury is adsorbed on fly ash, which is captured in the particulate matter control 

devices. Oxidized mercury can be absorbed in the scrubbing solution meanwhile 

elemental mercury is insoluble and cannot be captured. Average total mercury 

capture by existing ESP+WFGD varies depending on coal range, being for 

subbituminous coal about 30% [5]. These procedures generate residues that can be 

toxic, or of limited reutilization due to the presence of Hg (fly ashes in the PM control 

systems or gypsum retained in the scrubbers). 

Specific technologies for mercury capture are mainly based on the use of sorbents 

injected in the gaseous stream for Hg capture, and subsequently retained in the 

particulate matter control systems, rendering new toxic residues to be controlled [6]. 

Activated carbon injection (ACI) technologies require a high C:Hg ratio to achieve the 

desired mercury removal level (> 90%), which results in a high portion cost for 

sorbent material. A major problem associated with ACI technology is that the 

commercial value of fly ash is sacrificed due to its mixing with contaminated activated 

carbon powder and the generation of high amount of toxic residue.  

Regenerable sorbents can accomplish high mercury retention that can be recovered 

as well as balance cost because of its regenerability.  Recognizing reversible 

characteristics of mercury amalgamate with gold and silver, gold- or silver-coated 

silica beads have been widely used to pre-concentrate low concentration of 
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elemental mercury for its detection [7, 8]. The gold- or silver-mercury amalgam is 

extremely stable at room temperature. However, the amalgam decomposes to 

release mercury to a gas phase at higher temperatures, leaving clean gold or silver 

surfaces ready for further mercury capture [8]. To effectively collect trace amounts of 

mercury, it is necessary to have the gold and/or silver in a form of large surface 

areas. However, metal monolayer tends to aggregate into larger islands in 

micrometer sizes after repetitive Hg exposure and heating, which could lead to 

inefficient mercury capture [8-10].   The efficiency of the Au for the retention of 

mercury would be enhanced if nanometric particulate sizes of the metal could be 

achieved. 

Present work focuses on a structured Au/C regenerable sorbent, based on two 

different procedures for gold deposition on a carbon monolith: (i) colloidal gold 

method and (ii) gold salt method. 

The first procedure use the traditional method based on citrate to produce gold 

nanoparticles [11]. This well-known method to get colloidal Au is fully in force for the 

preparation of catalysts with highly dispersed Au supported nanoparticles supported 

[12]. 

The second procedure to deposite nanometric gold, the salt method, is a novel 

concept for Au deposition. The reduction potential of the own carbon material is used 

to reduce Au3+ to Au0. This hypothesis has been tested previously by the authors 

[13]. This method does not use other chemicals than the gold salt, and the gold 

nanoparticles are formed in-situ over the carbon support.  

In this work, Au/C sorbents prepared following both methodologies for gold 

deposition were tested for mercury capture at different temperatures of operation in 

order to have a first approach to test different position in a coal power plant (ESP 



 6

cold-side, after WFGD or before the stack). Moreover, the regenerability of the novel 

sorbent (prepared with the gold salt method) was tested along several cycles of 

capture-regeneration. 

 

EXPERIMENTAL 

 

Preparation of sorbents 

A commercial carbon monolith with honeycomb structure and square channel with a 

density 69 cell/cm2 was used as support for gold deposition. Block of carbon material 

was cut and smoothed to obtain rectangular prisms with 36 channels, 15 mm length 

and 7x7 mm section.  This support was used without treatment for direct gold 

deposition or treated with HNO3 (acid concentration 65%, 80ºC, 4h) for colloidal gold 

deposition.  

Two different methods for gold deposition onto the supports have been used. The 

first method for gold deposition consists of the direct reduction of the gold salt by the 

own carbon material of the support. The salt used for gold deposition was 

HAuCl4·3H2O. A solution of 40 mg/l of salt in ethanol/water (1:1 v/v) was forced to 

pass through the channels of the carbon monolith to try to achieve a homogeneous 

deposition of gold along the channels of the monolithic supports. The contact time of 

the dissolution passing through the channels of the monolith was 30 min. The second 

method is based on the formation of colloidal gold  [11]  with the modification of 

reference [14]. During the formation of colloidal gold, citrate anion acts as reducing 

agent of the gold salt and as protector of the gold sol formed preventing its 

aggregation. The colloidal solution of gold is forced to pass through the channels, 
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with a total contact time between channels of the monoliths and the colloidal solution 

of 40 min. 

After gold deposition distillated water was pumped through the channels of the 

sorbents to remove the spare gold dissolution.  Sorbents were vacuum dried at 30ºC 

for 30 min. Sorbents were finally undergone to a reducing thermal treatment (TTR) at 

300ºC in a flow containing 4%H2 in N2 during 1 h. Sorbents obtained by direct 

reduction of gold or by deposition of colloidal gold were labeled as MC-Au-red and 

MC-Au-col, respectively. 

 

Characterization of sorbents 

 

Sorbents were characterized by different techniques. A detailed description is given 

in reference [15]. The bulk Au content of the sorbents was obtained by Inductively 

Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The surface Au content 

was determined by Scanning Electron Microscopy with Energy Dispersive X-ray 

Spectroscopy (SEM-EDX). The gold nanoparticle size distribution was obtained by 

image analysis (free software “Image J”) of electron micrographs taken by Scanning 

Electron Microscopy with Field-Emission (FE-SEM) technique. The oxidation states 

of gold were analyzed by X-ray Photoelectron Spectroscopy (XPS).  

After mercury retention, some sorbents were characterized by XPS, in order to detect 

possible changes in Au oxidation state and X-ray Diffraction (XRD) in order to test 

crystal modification of Au by Au-Hg alloy formation.  

 

Mercury capture and regeneration tests 
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A bench scale installation was used to determine the efficiency of the sorbents for the 

capture of mercury as well as the maximum retention capacity. A permeation tube for 

mercury gives the desired Hg concentration. The reactor is a quartz tube of 300 mm 

length with an internal diameter of 16 mm. The monolith is fitted inside using ceramic 

pieces. The mercury is analyzed on-line with an elemental mercury analyzer 

(VM3000). Moreover, the installation is provided with a tail-end train of flasks to allow 

the capture the mercury as well as its speciation (in the case of evidences of 

oxidation under the experimental conditions). The installation is built up with Teflon 

pipes and pieces (in the part of the installation where Hg is present) to prevent 

possible mercury attack to steel. More details of the experimental installation are 

given elsewhere [15]. 

The Hg breakthrough curves were obtained at a ratio WAu/Q of 2.9x10-5 g h l-1 (where 

WAu is the weight of Au used in each experiment and Q is the total gas flow), 

temperatures from 50ºC to 150ºC and Hg inlet concentration of 200 g/m3 in N2. It 

was considered that saturation is reached at 95% breakthrough. Moreover, the 

amount of Hg retained at 20% and 80% of breakthrough was calculated from the 

integration of the breakthrough curve. The efficiency of Hg retention was calculated 

as the ratio between the amount of Hg retained by the sorbents at either 20% or 80% 

of breakthrough and the total amount of Hg fed into the reaction during this time. 

Some experiments were repeated to test reproducibility. Some of the exhausted 

sorbents after Hg capture were analyzed for Hg content in an automated mercury 

analyzer (AMA) from Leco, and the results were compared with those obtained by 

breakthrough curve integration. 

Regeneration of exhausted sorbents was carried out at 220ºC during 1h. Details of 

the regeneration process are given in reference [15]. After this period of time, the 
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sorbent is cooled down to the desired temperature to be used in a new Hg capture 

test. Several cycles capture-regeneration were performed in order to test the 

efficiency for Hg retention along cycles. 

 

RESULTS AND DISCUSSION 

 

Honeycomb structured carbon monoliths have square channels with a density 69 

cell/cm2. This structure shows a very low pressure drop, high surface area to volume 

ratio and avoids particle entrainment. However, gold deposition on this structure has 

some difficulties regarding gold particles distribution homogeneity. So, definitive 

deposition procedure for both gold deposition methodologies considers homogeneity 

as well as reproducibility. 

The gold content in the bulk sorbent was determined by ICP-OES and it was 0.110% 

for sorbent MC-Au-red and 0.035% for sorbent MC-Au-col.  

The study of the distribution of gold along the monolith channels was carried out by 

SEM-EDX. Monoliths were longitudinal sectioned in order to determine the Au 

distribution along the channels. Seven measurement of gold content along each 

channel was carried out and an appropriate homogeneity of Au content was found. 

Moreover, different channels of a monolith and different monoliths were tested to 

obtain a representative value for Au surface content. The surface gold content from 

SEM-EDX for sorbent MC-Au-red was 3.96% and for MC-Au-col was 1.92%. 

The study of the oxidation states of deposited gold before and after of TTR was 

carried out by XPS. The CASA data processing software allowed smoothing, Shirley 

type background subtraction, peak fitting and quantification. Binding energy regimes 

containing the Au 4f5/2 y Au 4f7/2 emission lines are presented in Figure 1. The fitting 
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of the Au 4f peaks was performed according contributions of different gold species 

[16-18]. The fitting shows the presence of various contributions with BEs that are 

given in Table 1. The doublet with peaks around 84.0 and 87.7 eV is characteristic of 

metallic gold. Peaks around 85.0 and 88.7 eV can be assigned to ionic species Au+. 

Before the TTR of the sorbents remaining oxidized Au can be found: 20.8% and 

14.6% of the deposited gold for MC-Au-red and MC-Au-col, respectively. After 

reduction, the amount of oxidized gold decreases, and it is 12.2% and 11.3% of the 

deposited gold for MC-Au-red and MC-Au-col, respectively. Some studies reports 

that complete reduction is achieved as temperatures as high as 500ºC [19].  

As the active specie for Hg amalgamation is Au0, it means that this portion of 

oxidized Au will not participate on the Hg retention. However, for calculations bulk Au 

content was considered because the percentage of oxidized Au is similar for both 

sorbents. On the other hand, the gold content by XPS is referred to a spot of about 2 

mm whereas bulk Au content is obtained by the analysis of a whole Au/C monolith 

and the value is an average of the Au analysis of three Au/C monoliths. The Au 

content before TTR is lower than after TTR, by XPS. This fact can be explained as 

after TTR the surface of Au particles are clean and “visible” for the analysis.   

The importance of TTR is not only because the reduction of gold, but also because of 

temperature. As can be seen in Figure 2, the morphology of Au particles changes 

after TTR. The use of these sorbents along several cycles is based on the 

regeneration step in which mercury is released from the sorbent and the sorbent is 

ready for a new capture cycle. The temperature for Hg evolution from these sorbents 

is around 220ºC [15], so sorbents should be treated at least this temperature before 

using them for Hg capture-regeneration. 
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In order to obtain the gold particle size distribution on the sorbents, several 

micrographs were taken by FE-SEM in backscattering mode. Micrographs for MC-

Au-red and MC-Au-col sorbents (after TTR) are shown in Figure 3. These 

micrographs were analyzed by image analysis using Image J free software. 

The images show that the particles are well separated and dispersed, but the particle 

size distribution is quite different.  With the colloidal gold method, the negatively-

charged citrate ions are adsorbed onto the gold nanoparticles, introducing the 

surface charge that repels the particles and prevent them from aggregation. 

However, with the direct reduction method there is a spontaneous gold particle 

formation onto the carbon material due to the reduction potential of the own carbon 

material to reduce Au3+. However, particle nucleation on carbon material is fast and 

ceases in a very short time, after which particle growth, rather than further nucleation, 

dominates. Therefore, the process needs a fine control to prevent the formation of 

high particle size or particle aggregation. These two mechanisms could explain the 

differences in Au particle size distribution, as can be seen in Figure 3. Average 

particle size (Feret’s diameter) was 23 nm for sorbent MC-Au-red and 30 nm for 

sorbent MC-Au-col. These values were obtained by average of 286 and 1964 

particles for MC-Au-red and MC-Au-col, respectively. However, if smallest particles 

<10 nm are excluded from MC-Au-red particle counting because they just have a 

small contribution (2%, to the area covered by individual particles) diameter results in 

173 nm.  

Figure 4 depicts Hg breakthrough curves for sorbents and Table 2 reports the total 

amount of Hg captured by sorbents, calculated from the integration of the 

breakthrough curves, when reached 95% saturation, deducing death volume of the 

reactor and the contribution of the supports. Carbonaceous materials can exhibit 
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some mercury capture by either physisorption or chemisorption mechanism. In 

present case, carbon supports (after a TTR similar to that undergone by sorbents) 

exhibited very low Hg adsorption capacity, less than 0.5 g Hg/g support. This is in 

agreement with results in the literature concerning with the low affinity between non-

treated activated carbons and elemental mercury [20, 21]. This value was subtracted 

from value obtained from breakthrough curve integration.  Because of the on-line 

mercury analyzer determines only elemental mercury (that is the only specie fed to 

the gas), in some duplicated experiments the possible oxidation of elemental mercury 

by Au catalytic oxidation was followed. The train of impingers containing a chilled 

solution of KMnO4/H2SO4 and chilled solution of KCl was placed after the mercury 

analyzer in order to retain elemental and oxidized mercury, respectively (the so-

called Ontario-Hydro ASTM method). Both solutions were further analyzed in the 

AMA. No oxidized mercury was detected in any of the impinger analyzed.  

It can be observed in Figure 4 that breakthrough times are larger for MC-Au-red 

sorbent than that for MC-Au-col. On the other hand, it seems that temperature 

influences in more extent on MC-Au-col breakthrough curve. However, magnification 

of MC-Au-red breakthrough curve shows also some differences with temperature. 

Moreover, the amount of Hg captured is higher for MC-Au-red as can be deduced 

from Table 2. This fact can be attributed to the different Au content of both sorbents, 

as it is shown below. Work on Hg capture at different temperatures was carried out 

by some authors [22], but the use of thin films of Au instead particles and low 

temperatures and low Hg initial concentration limits the extrapolation of those results. 

Figures 5 and 6 show the Hg retention capacity by Au content of each sorbent and 

the Hg retention efficiency for MC-Au-red and MC-Au-col, respectively, for 20% and 

80% breakthrough at different temperatures. As can be observed in Figures 5 and 6, 
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it seems that the degree of Au use is similar for both sorbents despite of both 

methodologies of Au deposition give different Au particle size and both sorbents 

reached up to 20 mg Hg/g Au, depending on the temperature. This fact seems a 

contradiction because there is an overwhelming evidence of the dependence of Au 

particle size and its characteristics related to the defects on the crystal structure. 

However, the average Au particle size for our sorbents is far from that reported in the 

literature which maximize the effect of particle size on structural defects of the Au 

crystal [23]. In present case, the independence of particle size on the Hg retention 

could be explained as follows: the high Au particle size for both sorbents does not 

make differences on Au crystal structure and consequently, no differences are found 

in Hg capture performance. Despite of particle size of present sorbents is more than 

four times the particle size that takes advantage of the increase of Au atoms with 

different coordination number, the Hg capture efficiency at saturation is higher than 

that reported in reference [24] for a gold-activated carbon based sorbent and the 

amount of Hg captured is higher than that reported by reference [25] for Ag based 

sorbent and by reference [26] for Ag based sorbent containing 20% Ag.  

The highest temperature used for Hg retention gives the lowest Hg retention 

capacity. This fact can be related with the low temperature needed to regenerate the 

sorbents, which was 220ºC [15]. Once the sorbent is exhausted, a Hg-TPD 

experiment (Figure 7) was carried out at a heating rate of 10ºC/min. It was found that 

temperature for maximum Hg evolution was around 220ºC. However, Hg evolution 

started near 180ºC, which is close enough to the retention temperature of 150ºC. 

This effect is more pronounced for sorbent MC-Au-col, because the Hg evolution in 

Hg-TPD experiments takes place at a slightly lower temperature than that for sorbent 

MC-Au-red. 
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Both Hg capture capacity and Hg capture efficiency were determined along several 

cycles of retention-regeneration on sorbent MC-Au-red. Temperature of 75ºC for 

retention experiments was selected among those studied because highest Hg 

retention performance was obtained for this sorbent. The conditions for regeneration 

have been detailed in the experimental section. 

Figure 8 shows the Hg retention capacity and efficiency along several retention-

regeneration cycles. The Hg retention efficiency is maintained along cycles, 

indicating that the sorbent does not undergo significant changes after regeneration. 

On the other hand, the amount of Hg retained at 20% and 80% breakthrough 

decreases slightly after first regeneration and it is maintained along the cycles. This 

fact cannot be attributed to incomplete Hg evolution at 220ºC as can be seen in 

Figure 9. This fact can be explained in terms of Hg-TPD experiments (Figure 7).  

A maximum of Hg evolution is found near 220ºC, but a shoulder can be found at 

higher temperatures, indicating that not only Hg amalgamation is the mechanism for 

Hg capture but also other Hg retention mechanism is involved, being chemisorption 

on the carbon material of the support the most probable mechanism. However, the 

amount of Hg evolved at higher temperatures is low to justify the use of higher 

regeneration temperatures to completely remove Hg. But this chemisorbed Hg 

remains on the sorbent after regeneration at 220ºC, meaning that no Hg will be 

retained by this mechanism after regeneration, because chemisorption sites are still 

occupied. This fact could explain the slight loss in Hg retention capacity after first 

regeneration. However, after first cycle the amount of Hg retained is similar to the 

amount retained in the rest of the cycles tested, because the amalgamation capacity 

is maintained and the sites for chemisorption are yet occupied.  
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More Hg capture-regeneration cycles are expected to maintain the behavior 

observed for firsts five cycles, because mercury capture via amalgamation can be 

regenerated for unlimited times in theory [27]. 

To support this theory, sorbents were characterized after Hg capture, before 

regeneration. The XRD pattern (Figure 10) of sample MC-Au-red before the 

exposition to Hg exhibits the peaks expected for gold (according to the Joint 

Committee on Powder Diffraction Standards data bank) occurring at about 38.2º, 

44.4º, 64.6º and 77.6º in 2. They correspond to gold (1 1 1), (2 2 0), (2 2 0) and (3 1 

1) planes, respectively. The peak intensity of the (1 1 1) plane parallel to the carbon 

surface is high as corresponds to the preferred orientation for polycrystalline fcc 

(face-centered cubic) metals deposited onto amorphous substrates. The intensity of 

the rest of the peaks is low due to the low Au content of the sample. This is the 

reason of peak at around 81.7º, corresponding to (2 2 2) plane is not shown because 

is almost negligible. The band around 2=44º is attributed to carbon signal of plane 

(0 0 1) diffraction. 

After Hg exposition, a new diffractogram was obtained on sample MC-Au-red. As can 

be seen in Figure 10, the exposition to mercury has not changed the XRD pattern of 

gold. As it was previously discussed [15] the mercury capture on the Au/C sorbent is 

based on the amalgam mechanism, so displacement of Au peaks was expected 

because of the formation of Au-Hg amalgam [28]. However, in present case the 

relation Hg/Au (=0.02) is low and this should be the reason of no new peaks 

appearing and no intensity of peaks decreasing. Assuming that the most probable 

Au-Hg amalgam formed is Au3Hg (relation Hg/Au 0.33), the Au capacity for Hg of 

sorbent is not reached by far. This fact could confirm the need of lower Au particle 
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size to take advantage of points of defects on Au crystal structure where Hg can be 

adsorbed. 

Because of XRD is a bulk technique and it is difficult to follow changes when 

concentration of sample elements are low, the study of the surface of sample MC-Au-

red before Hg exposition, after Hg exposition and after in-situ regeneration at 220ºC 

was carried out by XPS. Binding energy regimes containing the Au 4f5/2 y Au 4f7/2 

emission lines and Hg 4f5/2 y Hg 4f7/2 emission lines were obtained. Table 3 reports    

XPS peaks after curve fitting. The position of peaks corresponding to Au0 and Au+ 

after Hg exposition is slightly shifted to higher binding energies. This shift has been 

reported by others [29] related with the amalgam formation. Hg content is at% 0.13 

and Au content is at% 5.25, resulting in a Hg/Au ratio of 0.025, close to that obtained 

from breakthrough curves, as it has been reported above. 

Once the Hg and Au XPS spectra have been acquired, sample was heated up in situ 

at 220ºC during 2 h to remove Hg from sorbent. After cooling down to room 

temperature, a new XPS spectrum was obtained in order to follow possible changes 

on Au emission line. As can be seen in Table 3, no displacement of peaks position 

from fresh sample is observed, indicating that Au/C sorbent is not altered by Hg 

capture-regeneration. These results agree with those obtained from breakthrough 

curves along Hg capture-regeneration cycles. 

 

CONCLUSIONS 

 

A novel structured regenerable sorbent for Hg capture based on Au/C has been 

developed. The procedure for sorbent preparation is based on the direct reduction of 
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an Au salt on a carbon monolith without the addition of reducing or protective 

chemicals, which represents a novelty respect to the gold colloidal method. 

This sorbent with an Au content of 0.11% exhibits a high Hg retention efficiency in a 

range of temperatures from 50ºC to 150ºC. The efficiency is maintained along 

several Hg retention-regeneration cycles with regeneration temperatures as low as 

220ºC.  

There is a differentiated Hg chemisorption and amalgamation mechanism on Au/C 

sorbents during first capture-regeneration cycle. After first cycle, the chemisorption 

sites are occupied and the Hg capture through amalgamation mechanism is 

maintained along several cycles. 

The in-situ XPS and XRD studies explain the theoretically unlimited cycles of Hg-Au 

amalgamation and regeneration: after regeneration Au on sorbent exhibit same XPS 

behavior than that for fresh sorbent. 
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FIGURE CAPTIONS 

 

Figure 1. Au 4f XPS and fitted spectra of samples MC-Au-red and MC-Au-col before and 

after TTR. 

 

Figure 2. FE-SEM micrographs of sample MC-Au-red before (left) and after (right) TTR. 

 

Figure 3. FE-SEM micrographs (after TTR) of samples MC-Au-red (left) and MC-Au-col 

(right) and particle size distribution from Image J analysis. 
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Figure 4. Hg breakthrough curves for sorbents obtained at different temperatures and 

WAu/Q=2.9x10-5 g h l-1. 

 

Figure 5. Hg retention capacity and Hg retention efficiency for MC-Au-red at different 

temperatures and WAu/Q=2.9x10-5 g h l-1. 

 

Figure 6. Hg retention capacity and Hg retention efficiency for MC-Au-col at different 

temperatures and WAu/Q=2.9x10-5 g h l-1. 

 

Figure 7. Hg evolution from exhausted sorbents in Hg-TPD experiments 

 

Figure 8. Hg retention capacity and efficiency for MC-Au-red along several capture-

regeneration cycles (temperature for capture step 50ºC; temperature for regeneration step 

220ºC). 

 

Figure 9. Hg evolution during sorbent regeneration at 220ºC. 

 

Figure 10. XRD of fresh MC-Au-red sorbent and after an experiment of Hg capture. 

  



 21

Table 1. Results from XPS analysis. 

Sample Binding energy (eV) and peak area (%) *AuXPS 

Au0 Au+ (at. %) 

MC-Au-red (before TTR) 

MC-Au-red (after TTR) 

84.0 (41.7) 

84.0 (51.1) 

87.7 (37.5) 

87.7 (36.6) 

84.7 (15.6) 

84.8 (9.6) 

88.7 (5.2) 

88.8 (2.6) 

1.18 

4.73 

MC-Au-col (before TTR) 

MC-Au-col (after TTR) 

84.0 (49.6) 

84.0 (48.1) 

87.7 (35.8) 

87.7 (40.6) 

85.2 (10.2) 

84.9 (8.1) 

88.8 (4.4) 

89.0 (3.2) 

1.07 

2.96 

*considering the only presence of C and Au. 

 

 

 

Table 2. Total amount of Hg captured by sorbents (95% breakthrough) from integration of 

breakthrough curves. In parenthesis values obtained from AMA analysis of a sorbent. 

Temperature 

(ºC) 

MC-Au-red MC-Au-col 

g Hg/g sorbent 

50 

75 

100 

120 

150 

20.5 (19.9) 

23.0 

21.9 

21.0 (21.2) 

15.5 

9.7 

7.8 

7.8 

6.6 

3.2 

 

Table 3. Results from XPS analysis on MC-Au-red sorbent after Hg capture experiment ans 

after in situ regeneration. 

Sample Binding energy (eV)  AuXPS HgXPS 

Au0 Au+ (at. %) (at. %) 

MC-Au-red  

MC-Au-red (after Hg exp) 

MC-Au-red (after regeneration) 

84.0 

84.1 

84.0 

87.7 

87.8 

87.7 

84.8 

84.9 

84.8 

88.8 

88.9 

88.8 

4.73 

5.25 

5.60 

- 

0.13 

- 
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Figure 2 

 

  

 

  



 24

Figure 3 

 

  

  

 

  



 25

 

 

Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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