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Abstract

In this study, we propose using the least squares optimal deformable filtering approximation as an efficient tool for
linear shift variant (SV) filtering, in the context of restoring SV-degraded images. Based on this technique we
propose a new formalism for linear SV operators, from which an efficient way to implement the transposed SV-
filtering is derived. We also provide a method for implementing an approximation of the regularized inversion of a
SV-matrix, under the assumption of having smoothly spatially varying kernels, and enough regularization. Finally,
we applied these techniques to implement a SV-version of a recent successful sparsity-based image deconvolution
method. A high performance (high speed, high visual quality and low mean squared error, MSE) is demonstrated
through several simulation experiments (one of them based on the Hubble telescope PSFs), by comparison to two
state-of-the-art methods.

Keywords: shift variant filtering, deformable kernel, deformable filtering, Singular Value Decomposition, integration
kernel, point spread function, restoration, sparsity, wavelet frames

1 Introduction
For many real imaging devices, especially those designed
to be wide-angle, small, cheap and/or extra robust (for
instance, because of having very simple optics), it may
still be reasonable to consider their degradation model
as linear, but they may significantly depart from shift-
invariance (SI). That is, different areas of the image sup-
port may present substantially different blurring func-
tions (shift-variant (SV), behavior). In those cases a local
point spread function (PSF) for each spatial location of
the image support must be considered, constituting
globally a PSF field. Then, from a digital restoration per-
spective, this new scenario becomes much harder, com-
pared to the SI case.
Whereas in the (linear) SI case matrix inversion can

be efficiently done in the Fourier domain (eigenvalues/
eigenvectors of the convolution matrix), obtaining the
eigenvectors and eigenvalues of an arbitrary square SV
matrix of a large size is computationally unaffordable in
most situations. Nevertheless, some authors have
approached the large SV-matrix inversion problem, by

using the Singular Value Decomposition (SVD [1])
directly on the blur matrix. This requires some approxi-
mations to make the SVD tractable, like hierarchically
extracting singular vectors until their associated singular
values become irrelevant (see, e.g., [2,9]). Other
researchers have addressed the problem of inverting the
linear transformation in a stable, iterative way, mostly
by using the so-called Krylov sub-spaces and related
techniques [5,10]. A serious problem of all these meth-
ods, besides their high computational cost, is their lack
of modeling upon which to establish a criterion for fix-
ing the amount of required regularization. For instance,
trying to do a “practical pseudo-inverse” of the linear
transform, by setting to zero the small singular values
and inverting the rest is quite arbitrary for two reasons:
(1) the choice of the considered threshold, and (2) the
fact of using an all-or-nothing weighting function for
the singular values. In this sense, even a Wiener esti-
mate, which applies a smooth mask on the singular
values, is both more correct and should, if properly
used, provide better results in general. Another impor-
tant problem is that, despite their conceptual and com-
putational complexity, the referred methods’
performance is seriously limited, because they are linear.
Whenever the amount of noise in the observation is
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significant, the reduced ability of linear methods to
simultaneously compensate for the blur and suppress
noise will manifest in terms of a poor trade-off between
these two kind of degradations in the restored image.
Only non-linear methods (which typically alternate lin-
ear and non-linear steps) are able to effectively regener-
ate lost spatial frequencies (like blurred edges), and, at
the same time, to suppress a large amount of noise. Not
surprisingly, the extra computation of making a costly
linear inversion iterative within a non-linear method is
rarely held [3,11].
An alternative to attack the SV blurring inversion pro-

blem globally consists of making a spacial partition of
the image, i.e. to divide it into non-overlapping regions,
and then modeling the pixels within each region as con-
volved by a single (semi-local) kernel. This strategy is
used by the so-called sectional methods (e.g., [7,12]). We
can improve significantly the results and avoid annoying
boundary artifacts by allowing for a certain amount of
overlapping of adjacent regions. In such a way, the sig-
nal in overlapping areas can be modeled as a linear
combination of the convolutions of the image with the
kernels corresponding to the overlapping regions, using
spatially varying weights [4,8,13]. However, the best pos-
sible approximation of the local kernels as linear inter-
polations of a set of reference kernels (for a certain
error measurement) is obtained when no spatial con-
straints are imposed to the linear coefficients. That is,
nothing prevents us from using all the reference kernels,
not only the adjacent, to improve the approximation of
the local kernel as local linear combinations of them.
Furthermore, we can take an even larger step farther
from arbitrary decisions, by no longer fixing a priori a
set of reference kernels. Instead, we may try to optimize
them as well, by minimizing a measurement of the aver-
age interpolation error (typically, the mean squared
error, MSE) for the whole image support. If we look for
both a given number of unknown reference kernels and
their corresponding unknown weights to jointly mini-
mize the quadratic error of the local integration kernels
(IKs) we want to approximate, we are facing the so-
called total least squares regression problem [14]. Its
solution can be obtained through the SVD of the matrix
obtained by stacking all the local IKs (vectorized) we
want to interpolate. In 1995 this technique was pro-
posed by Perona [15] for having a convenient and effi-
cient way to obtain linearly deformable kernels, that is,
kernels whose shape changes in a certain desired fashion
by means of linearly interpolating a set of reference ker-
nels specifically designed for that task. Perona’s main
motivation was to obtain a set of tunable kernels for
mimicking early vision. However, another direct applica-
tion of this approach is SV filtering (see, e.g., [16]) in
image processing: the local integration of a signal with a

locally varying linear combination of some reference
kernels can be expressed as a locally varying linear com-
bination of the convolutions of the original signal with
those kernels (as explained in detail in Section 3). From
a different, analysis-driven point of view, PCA-based
optimal basis functions have been recently used to
describe with increased accuracy the response of astro-
nomical instruments [17-20] in a more compact and
numerically-stable way than other recent techniques. In
this study, we propose for the first time (to the best of
our knowledge), to use this LS-optimal deformable fil-
tering approximation as an efficient tool for restoring
linearly SV-degraded images.
However, one must note that being able to efficiently

perform SV filtering does not solve, by itself, the pro-
blem of SV-image restoration. Most restoration meth-
ods, including non-linear ones, require to perform
regularized inversions of the SV-blurring matrix H.
Typically, the regularized inverse is computed as (HTH
+ R)-1HT , where R is a positive definite matrix (often
chosen to be the identity matrix multiplied by a posi-
tive constant). As we can see, this computation
requires both transposition and inverse operations of
very big non-circulant (in the SV case) matrices. Fol-
lowing the deformable filtering approach, we propose
in this study a new formalism for linear SV operators
which it is applied to derive an efficient and arbitrarily
accurate implementation of the transposed SV-filtering.
We propose, too, an approximation for the SV-matrix
inversion, under the assumption of having a smoothly
varying PSF field and enough regularization as to
ensure its local regularized inverse also changes
smoothly in the space.
In this study, we have also devoted some attention to

distinguish between two concepts that are sometimes
wrongly taken as synonyms, or their meanings incor-
rectly exchanged, in the context of modeling linear SV
degradations: the IK versus the PSF. Our endeavor here
is not just for rigor sake: rather, it is practical and meth-
odological. First, note that using the PSFs (one for each
spatial location of the image support) to characterize the
linear response of an imaging device is more natural
than using the IKs. The reason is that the IKs, unlike
the PSFs, are not directly observable. In spite of this
fact, many SV-simulations start from considering a
given set of IKs. Furthermore, very often those IKs are
forced to be normalized to one in their integral,
although there is no general physical reason why the
IKs should integrate to a constant. On the other hand,
under the simplifying assumption of neglecting losses in
the imaging process, energy conservation may be argued
to force the PSFs to integrate to one. Thus, contrarily to
what is usual (e.g., [10,21]), we propose here to use the
set of PSFs describing the linear response of the imaging
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device (the PSF field), and not using explicitly the IKs,
neither in the direct nor in the transposed SV filtering.
The set of techniques presented here are aimed at

obtaining short restoration times (ideally real time, or
close), whereas preserving the most relevant features of
realistic degradations (specifically, their SV nature,
under noise). Therefore, we chose a state-of-the-art,
non-linear, image restoration generic method with a
high speed potential, named L0-AbS [22] for testing
them, which is applicable to any kind of linear blur (SI
or not), and which assumes presence of additive white
Gaussian noise. This method had previously been used
only for deconvolution (SI case). Note that the emphasis
in this article is not in the estimation procedure and its
associated statistical model (the interested reader is
referred to the original study [22], which has been
improved and extended in [23,24]), but rather in a set of
efficient solutions for adapting a (generic) restoration
method assuming a linear degradation plus noise, to a
SV-scenario.a We demonstrate a high performance (high
speed, high visual quality, low MSE) through several
simulation experiments (one of them using the Hubble
telescope’s PSFs), comparing to two reference methods.
This study is organized as follows. Section 2 poses the

linear SV observation model, and introduce some gen-
eral concepts relevant for the linear SV filtering and its
(linear) compensation. Then, Section 3 describes what a
deformable kernel is, and how the concept can be
applied for SV-filtering. Section 3.2 introduces a new
formalism to express a SV-filtering matrix as a sum of
(pre- or post-) locally-masked convolutions, which
makes the associated transposed SV-filtering easy to
implement. It also provides a method to approximately
invert smoothly varying PSFs, by combining the Fourier
transform and the deformable filtering formulation.
Finally, it briefly describes how to apply these techni-
ques to the linear filtering stage of the method described
in [22]. Section 5.3 shows and discuss some simulation
results with test images and several SV degradations
under additive white Gaussian noise. Results are com-
pared to two state-of-the-art methods. Section 6 con-
cludes the article.

2 Shift variant image filtering
We can express a SV 2-D signal filtering in a discrete
domain as:

y0(p0) =
∑
p∈D

x(p)h(p; p0), (1)

where y0(p
0) is the SV-filtered image at location p0, D

is the discrete image support, x is the image being fil-
tered, and h(p; p0), considered as a function of p, is the
IK at location p0 : IKp0(p) = h(p; p0) . In this formalism,

the output image is obtained through inner products of
the input image with spatially varying local IKs. This is
the most usual approach to understand SV filtering, but
not the only one. We can also express it in terms of the
PSFs of the system. To express the PSFs in terms of h
we substitute the input image by a Kronecker delta
placed at location q:

PSFq(p0) =
∑
p∈D

δ(p − q)h(p; p0) (2)

= h(q;p0). (3)

We can interpret Equation 1 as a linear superposition
of all the PSFs, each weighted by the value of the under-
lying image at its location [25]:

y0(p0) =
∑
p∈D

x(p)PSFp(p0). (4)

Let us now re-write Equation 1 in terms of two
indices, i and j, expressing a 2-D location in the image
support, given a certain lexico-graphical order to map
the support D into a finite 1-D sequence:

y0(pj) =
∑N

i=1
x(pi)h(pi; pj) .

If we call hij = h(pi; pj), y0j = y0(pj), and xi = x(pi),
then, using matrix algebra, we may write the previous
equation as:

y0 = Hx. (5)

It is immediate to check that, under this formalism,
the vectorized IKs correspond to the rows of H, and the
vectorized PSFs to its columns, as illustrated in Equa-
tions 6 and 7 in following section.

2.1 Integration kernel versus point spread function
Usually, having the set of PSFs (one for each location)
to characterize a linear SV device is more natural than
having the set of IKs. The main reason is that a PSF is
the output of the system when an impulse (a point
light source) is fed at its input. Therefore, a PSF is
observable (though in practice there will always be
some noise and other imperfections), unlike the IKs.
Another reason to use the PSFs instead of the IKs to
characterize the SV-filtering is that it seems more nat-
ural to impose a gain constraint (basically, a fixed
value for their integral, usually chosen to be one) to
the PSFs than to the IKs. For instance, in an optical
system without significant losses it makes sense to
assume unity gain, with respect to an ideal optical sys-
tem with perfect (no blur, no optical distortion) beha-
vior. Note that PSF and IK normalization are, in
general, incompatible one of each other.
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(6)

(7)

On the other hand, interpreting the SV filtered image as
a superposition of the local weighted PSFs, as in Equations
4 and 7, it is usually less convenient, in a computational
and operational sense, than the more usual local inner
product interpretation, using the IKs, as in Equation 6.
Specifically, for the set of tools proposed in this study, it is
essential to use the inner product interpretation (which
will lead us to use locally weighted convolutions, as
explained in following section). In this study, we propose a
solution to have “the best of both worlds” of using PSF-
based and IK-based formulations. First, we consider HT ,
instead of H, and thus, we have inner products with PSFs,
instead of with IKs. Then, we propose a very simple and
efficient way to implement the original filtering from its
transposed version. Furthermore, in many real restoration
methods it is also necessary to apply HT , so it is also con-
venient to have an efficient approximation for it. We have
assumed that H is square, unless stated otherwise. Finally,
in this article we have not applied any rigorous boundary
handling technique. Robust and stable boundary handling
for image deblurring is a very important and difficult mat-
ter on its own (even in the SI case), and it has been left as
future study. Details on how boundaries have been
handled in the presented simulations are explained in Sec-
tion 5.1.1.

3 Deformable kernels applied to SV filtering
3.1 Deformable kernels
The deformable kernel idea consists of approximating a
discrete kernel whose shape we want to control in a cer-
tain way by doing linear combinations of some
(unknown a priori, in a general case) reference kernels
[15]. If we express our kernel as k(p; d), where d is a
vector indicating a deformation parameter, we can, same
as we did in previous section, express it as a matrix K
whose elements are kij = k(pi; dj), for i = 1... N and j =
1...M. Thus, its column vectors contain the desired ker-
nel, each with a different deformation parameter. Now,

by means of the SVD we solve the Total Least Squares
problem of finding both the reference kernels and the
interpolation functions that minimize, for a given num-
ber J of reference kernels, the mean squared error
(MSE) of the linear combination [15]:

K = UKSKVT
K =

R∑
r=1

ursrvT
r �

J∑
r=1

ursrvT
r , (8)

where R = rank(K), holding the approximation when-

ever
∑

J
r=1s2

r � tr(SST) , and assuming |sn| ≥ |sm|, for n

< m. It is easier to interpret the previous equation by
making the indices explicit:

k(pi; dj) =
R∑

r=1

ur(Pi)srvr(dj) =
R∑

r=1

αr(dj)br(pi) �
J∑

r=1

αr(dj)br(pi). (9)

Here ar(d) = srvr(p), for r = 1...R, are the LS-optimal
interpolation functions, and br(p) = ur(p) are the LS-opti-
mal reference kernels [15]. In many real cases, there is a
substantial amount of overlapping among the kernels with
different deformations, so one can use a J ≪ R.

3.2 From deformable kernels to SV deformable filtering
Now we try to use the technique of deformable filtering
to efficiently implement an approximation of the trans-
posed SV-filtering, which is made by using the local
PSFs as local IKs (see Section 2.1). Let us assume that
there is no magnification between input and output
coordinates, and that the amount of geometrical (e.g.,
optical) distortion is negligible. Then each PSF is located
around the position of the input impulse (q, in Equation
2). If we shift each local PSF to compensate for this dis-
placement, all local PSFs will be centered at zero. We
can write ŷ0 = HT x, and:

ŷ0 =
N∑

i=1

x(pi)h(p0; pi) =
N∑

i=1

x(pi)h
0(p0 − pi; p0),

where now, using Equation 9, we can consider h0 a
deformable kernel, and thus, closely approximate it as a
linear interpolation (depending on its location p0) of a
reduced set of reference kernels, by applying a SVD to
the matrix H0 made of all these centered PSFs, stacked
by vectorized columns (see Section 3.1):

ŷ0(p0) ≈
N∑

i=1

x(pi)
J∑

r=1

αr(p0)br(pi − p0)

=
J∑

r=1

αr(p0)
N∑

i=1

x(pi)br(pi − p0)

=
J∑

r=1

αr(p0)[x ∗ b̃r](p0),

(10)
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where the symbol ‘*’ denotes convolution, and b̃r are
the reference kernels rotated 180°. Therefore, we have
been able to approximate the transposed filtering opera-
tion as a sum of a (reduced, in favorable cases) number
of convolutions post-masked (with a different mask
each) in the spatial domain. Each of these convolutions
can be done very efficiently, either in the Fourier
domain, or directly, for small reference kernels. The
idea of using deformable kernels for filtering was already
in Perona’s original study. However, it was not applied
to perform SV filtering, but rather to obtain continuous
tunable filters from a (reduced) set of discrete filters.
Later on, several authors (including a coauthor of this
study, see [16]) used it for SV filtering, although no one,
to the best of our knowledge, for the purpose of image
restoration.
We want to emphasize here that, whereas other SV-

image restoration techniques use the SVD for directly
inverting a linear SV blur, these previous methods–
unlike ours–applied the SVD to the matrix made of the
IKs/PSFs kernels at their original spatial locations.
Because of the kernels’ spatial shift, there is much less
overlapping among kernels than when using the matrix
made of the centered IKs/PSFs, as we do. This is a very
relevant difference, in practice, as it translates, in our
case, into a much higher concentration of the singular
values, and, as a consequence, into a much better
approximation of the linear transform for a given num-
ber of reference kernels.

4 Application to image restoration: transposition
and inversion
Many restoration methods apply (iteratively or not) a
regularized inversion involving HT, or (R + HTH)-1

(where R is a regularization matrix), or a combination
of both, such as their multiplication (which is a regular-
ized version of H-1). Specifically, the restoration method
implemented in this work, requires both the transposi-
tion and the inversion.

4.1 A new formalism yielding a fast SV transposed
filtering algorithm
In our case, because we have used the PSFs instead of
the IKs to build a deformable kernel–with which local
inner products are done with the image–we have
already obtained an approximation to the associated
transposed operator of the original SV filtering. We can
easily rewrite Equation 10 in matrix shape, for instance
by expressing the convolution as the sequence of a
direct Fourier Transform, a masking in the frequency
domain (using a diagonal matrix multiplication), and an
inverse Fourier transform. The spatial domain masking
is also easily expressible by means of a diagonal matrix:

HT =
R∑

r=1

Dα r
FDB∗

r
F∗. (11)

Here F* is the Hermitian matrix performing the Four-
ier transform (thus F performs the inverse Fourier trans-
form), and B∗

r represents the Fourier transform of a
(180° rotated) reference kernel. If we transpose in the
previous expression we come back to the original SV fil-
tering operator:

H =
R∑

r=1

FDBr F
∗Dα r

. (12)

We believe that this result is both beautiful and useful:
when using a deformable kernel formulation to imple-
ment a SV filtering, we (i) convolve the original image
with the set of R (J for a practical approximation, with,
typically J ≪ R) reference kernels (180 degrees rotated);
(ii) apply a different spatial mask to the output of each
convolution; and (iii) add all of them. Whereas for
implementing the transpose linear SV operator we do,
instead: (i) apply the same set of R (J for a practical
approximation) masks as before, directly to the original
image, obtaining R (J) masked images; (ii) convolve each
with the corresponding reference kernel; and (iii) add all
of them. Using this result simplifies a lot the task of
transpose-filtering in SV-restoration problems. Note,
again, that our starting point for computing the deform-
able kernel has not been the rows (IKs) but the columns
(PSFs) of H. If we were building the deformable kernel
from the IKs (as it is usually done in the literature),
instead, then the roles of H and HT in Equations 11 and
12 would be exchanged.

4.2 Regularized inversion
In image restoration very often we search for a linear
operator aiming to compensate for the observed blur,
either as part of an iterative non-linear approach, or as
a single-step linear restoration (e.g., Wiener filter). As
mentioned in the introduction, due to noise and possi-
ble singularity of H, instead of trying to invert it
directly, a regularized inversion it is usually preferred, i.

e., Ĥ
i = (R + HTH)-1HT , where R typically being a cir-

culant symmetric definite positive matrix, sometimes
expressing the noise power relative to the signal power,
in the system. Thus, this regularized inversion can be
done in two steps, by first applying the transposed SV
filtering associated to HT , and then applying to the pre-
vious output the inverted matrix.
When the IK associated with the matrix to be inverted

changes very little within its support, and the amount of
regularization in the inversion is enough to avoid high

Miraut and Portilla EURASIP Journal on Advances in Signal Processing 2012, 2012:100
http://asp.eurasipjournals.com/content/2012/1/100

Page 5 of 20



absolute values in its Jacobian, then it is a good approxi-
mation to use the Fourier-reciprocal kernel (the kernel
such that, if convolved with the kernel of interest, yields
a unity gain Kronecker delta) of each IK to build, stack-
ing by columns, an approximation of the inverted
matrix. Being, by assumption, the neighbor IKs shifted
versions of each other, in a local approximation, their
Fourier-reciprocal kernels will also be approximately
shifted versions of each other. This implies that, when
multiplying the original matrix times this approximation
of the inverse matrix, the corresponding inner products
will almost vanish (when taking the local IK and a close
approximation to its reciprocal kernel, spatially shifted),
except for the reference location (diagonal terms of the
resulting matrix), where an exact value of one will be
obtained (inner product of the local IK with its recipro-
cal kernel), as desired. Provided that each IK associated
with the matrix to be inverted is invertible in the Four-
ier domain (i.e., that has no zeros in that domain,
because of the regularization term), the reciprocal kernel
can be computed in that domain. In practice, we can
start from the Fourier transform of the PSFs of H, and
compute, for each location, the inverse Fourier trans-
form of (R(f) + |Hp(f)|

2)-1, for every location pÎD,
where f represents a 2-D frequency component in Four-
ier. Using these kernels we can obtain, through the SVD
technique, an approximation to the LS-optimal deform-
able inversion kernel with whom to reduce the complex-
ity of the associated SV filtering without compromising
the accuracy, in typical cases. It is important to note
that, although the calculations of these reciprocal ker-
nels, and their LS-optimal deformable filtering represen-
tation may be relatively costly, all that can be done off-
line, for each known degradation. The resulting SV
approximate inverse filtering, though, is done on-line,
and that is very fast, requiring only J’ convolutions and
J’ image maskings, J’ being the number of reference ker-
nels necessary for an accurate enough approximation of
the reciprocal kernels.

4.3 Using the L0-AbS deblurring algorithm
L0-AbS deblurring stands for L0-pseudonorm Analysis-
based Sparsity image restoration [22]. It is a recent, effi-
cient, highly non-linear method. L0-AbS technique is
based on iteratively imposing to the solution being
approximately sparse in a given redundant frame (or a
finite set of them), and being, simultaneously, likely in
terms of the observation. The first requirement is
accomplished by hard-thresholding the image represen-
tation in the x-let (redundant pyramidal wavelet-like
representation) domain, and the second by linear filter-
ing the reconstructed image from the sparse coefficients,
and combining the result it with a linear filtered version
of the observation. These two operations are alternated

iteratively until convergence (or until a given number of
iterations are run).
This deblurring method is applicable whenever the

observation suffers from linear blur and contaminating
noise is Gaussian, no matter the blur is SI or SV. The
set of tools presented here, thus, are applicable to do
efficiently the linear SV filtering stages of the referred
non-linear method.
The steps of the algorithm are summarized below:

Step 0 x(0) = y

Step 1 b(n) = �Tx(n)

Step 2 a(n) = �hard(b(n), λ−1/2)

Step 3 z(n) = �a(n)

Step 4 x(n+1) = (��T + νH∗H)−1(z(n) + vH∗y)

back to Step 1

where z is the image reconstructed from a sparse x-let
coefficient vector, v is a positive constant depending on
the statistical parameters of the signal model and on the
noise variance (see Equation 14 below), and F* is the x-
let frame used to impose sparsity. When F* is a tight
frame (as in our case, which we used a combined frame
made of a Haar redundant wavelet and the Dual-Tree
Complex Wavelet Transform [26], as in [23]), then FF*
becomes the identity matrix. Note that for this algo-
rithm we only need to apply HT once (to the observa-
tion y), whereas the inverted matrix is applied once per
iteration. Clearly, given the iterative nature of this
method it is critical to have a fast SV filtering
implementation.
The L0-AbS method is based on a simple image

model, which has two statistical parameters: a, control-
ling the amount of sparsity of the sparse approximation
of the image in the representation domain, and sr,
which is the standard deviation of the sparse approxima-
tion from the actual vector of the image in the represen-
tation domain. These two parameters set both the
threshold T (static, in the implementation used here, as
in [22]), used to iteratively sparsify the solution candi-
date in the x-let domain, and the v parameter of Step 4.
The threshold applied in Step 2 is defined by the
expression:

T = λ
−

1
2 = 2α

−
1
2 σr .

(13)

And the v parameter is given by:

v = σ 2
r /σ 2, (14)

being s2 the image domain noise variance corrupting
the observation [22].
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The values of a and sr have been obtained by training
to optimize the quality of restored images on a set of
deconvolution tests (see details in 5.1.2). Because of the
dependency of v on s2, calculations of the inverse
deformable filters must be done separately for each
noise level. Also, note that inverse deformable filtering
will require, in general, a larger spatial support for its
reference kernels than the direct one (see, e.g., Figure 1,
BLUR1 case), due to the generally less smooth Fourier
shape of the Fourier-reciprocal kernels.

5 Simulations: results and discussion
We have simulated degradations on standard test images
for obtaining some objective measurements of the per-
formance of our deformable SV-filtering techniques,
combined with the L0-AbS deblurring approach pub-
lished in [22]. For that purpose, we have prepared two
synthetic SV blurs that are SV versions of previously
used degradations in deconvolution tests, with the parti-
cularity of that the “average PSF” corresponds, approxi-
mately, to the convolution kernel in those tests [22].
This allows the reader to compare, also, for the same
noise levels, with the ISNR results for SI degradations
(results should be similar using the same restoration
method). In addition, we have used a set of central PSFs
modelling the Wide Field Camera of the Hubble Tele-
scope in the year 1991, before being fixed, as a realistic
(and, at a certain moment, useful) SV restoration pro-
blem. Simulated blurred images have been also contami-
nated by additive white Gaussian noise, in 3 different

levels (low, medium and high). We have compared to
two reference methods: The Hybrid Bidiagonalization
Regularization (HyBR [6]) and the original sectional
method for spatially variant problems [12].
HyBR [6] is a recent method that has proven to be

effective for solving large-scale ill-posed inverse pro-
blems, such as the restoration of noisy and SV blurry
images. As other Lanczos methods, it restricts the solu-
tion to lie in a Krylov subspace, so the dimension of the
linear systems to solve is much smaller than the initial
problem (Equation 5). It applies a hybrid approach
based both on a standard regularization technique (like
Tikhonov) and on Krylov filtering. Usually, the appropri-
ate choice of the regularization parameter at each itera-
tion in the standard regularization algorithm is a
difficult issue in this kind of methods. HyBR is quite
robust in this sense, thanks to the weighted generalized
cross validation mechanism devised by its authors.
On the other hand, sectional methods apply a parti-

tion in the image domain, thus obtaining non-overlap-
ping regions that are processed independently as
spatially invariant subimages. These methods have been
widely used because of its simplicity, low memory
requirements and computational cost, trivial paralleliza-
tion and good trade-off between speed and quality.
Nowadays, more than 40 years after the release of the
first sectional method [12], new variants are still being
published [8] and applied [27]. The method implemen-
ted here for comparison purposes is a FFT-based local
Wiener filtering [12].

Figure 1 Examples of estimated PSFs in detector chip 1 of Wide Field Camera (Hubble Spatial Telescope). Left image corresponds to
pixel q (0,0) and right image to pixel q (256, 256). Gray-level scale has been jointly modified to highlight the secondary lobes.
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Note that the two methods we compare to here are
strictly linear, in contrast with the SV extension we pro-
pose here of the L0-AbS method (highly non-linear).

5.1 Experiments
5.1.1 Simulation of degraded images
We have used three SV blurs (BLUR1, BLUR2, and
BLUR3), three images, and three noise (AWGN) levels.
The design of these experiments aims to give a broad
view of the characteristics of the new algorithm, in a
way that it can be easily compared with the articles in
the literature dealing with variant and invariant systems.
The first synthetic SV filter (BLUR1) is a SV extension

of the radial PSF h(n, m) ∝ (1 + n2 + m2)-1. b We have
re-scaled this function using a factor kq that changes
with the distance of the central pixel q to the center of
the image (rimg). The new PSF is defined as:

PSFq(n, m) ∝ 1

1 + (n/kq)2 + (m/kq)2 kq =
1√
2

√
1 +

r2
img

(2/3)L2
, (15)

where L is the image support side (assumed squared),
and n, m = -7...7 indices represent the discrete positions
of the PSF support. Using these PSFs we obtain

kmax =
√

2 at the corners of the image, and kmin =
√

2
2

located at the center, therefore having a spatial scale fac-
tor of 2 between these two extreme cases, in a “fovea-
like” manner.
The second synthetic SV filter (BLUR2) is a Gaussian

variant filter. Its height grows as a factor of two from
the left to right of the image, while its width keeps con-
stant for all image locations. At the image center we
have an isotropic blur with sn = sm = 1.6. The change
of the height along the abscissa is exponential (with
base 2), ranging the exponent from -1/2 to 1/2, span-
ning a full octave, as in the previous case. It also uses a
PSF support size of 15 × 15 pixels.
The third SV filter (BLUR3) tries to model a more

realistic case: the aberrated PSFs of Hubble Space
Telescope. Shortly after its deployment on April 24th
1990, a fabrication error in the 2.4 m primary mirror
(PM) was discovered. The wide field and planetary
camera (WFPC) is the principal instrument of the
HST, occupying the central portion of the telescope’s
focal plane. The HST suffered mainly from spherical
aberration in the primary mirror. So, the aberration
caused a strongly space-variant PSF. Restoration is
further complicated by incomplete knowledge of the
PSF and the time variance resulting from changes in
focus and spacecraft motion. While the stars are
almost ideal point sources, obtaining experimental
PSFs is not a simple task. Image cannot be saturated
so calibration experiments must be carefully designed,
and the dependence on wavelength and the large

sensor size requires a huge amount of measures. So, a
complete practical study of aberrations in WFPC was
dismissed by the Spatial Agency, because the required
observation time was not affordable. Nevertheless, PSF
modeling programs, such as TinyTIM [28,29], have
been very helpful for characterization and restoration
of the images of all the instruments of the Hubble, in
its different configurations for filters, wavelengths and
even variations over time. Despite their limitations and
simplifications assumed, these programs give us a good
starting point. TinyTIM C source code is freely distrib-
uted, so it can be compiled and executed on any
machine.
The first WFPC consisted of two separate cameras,

each comprising four 800 × 800 pixel Texas Instruments
CCDs arranged to cover a contiguous field of view. We
have modified TinyTIM C source code to fix some
minor bugs and model a section of 256 × 256 pixels
(the size of standard test images) and its associated PSFs
in detector chip 1 of Wide Field Camera. The configura-
tion was set as the one in 24th April 1991 (one year
after the deployment) for f555w filter, object spectrum
K4V and a null secondary despace (0.0 microns). The
non-subsampled PSF size was 6.0 arc seconds, which
leads to a discrete support of 58 × 58 pixels for each
PSF. This simulation took one week on three computers
working in parallel and generated 1.8 GB of data.
Because of this heavy computational task, it could be
considered to save all the possible PSFs to use them in a
faster way, but the complete dataset for WFCP is esti-
mated to require storage around 8 TB [30], and it
should be recomputed each time the telescope is refo-
cused. Hubble WFPC imaging seems to be a classic ill
posed restoration problem, but it is a daunting challenge
because the extension, variability in time and space, and
lack of accuracy in PSF definitions. Here we only intend
to use estimated PSFs as a means to compare different
algorithms. The restoration of real images involves
many more factors (e.g., Poissonian instead of Gaussian
noise) that go beyond the scope of this article. Figure 2
shows the estimated PSFs for two different image sup-
port locations.
We have used three classic 256×256 test images: Cam-

eraman, House and Satellite. Cameraman and House are
256 × 256 8-bit gray-level standard test images. Satellite
image was synthesized at the US Air Force Phillips
Laboratory, Lasers and Imaging Directorate, Kirtland
Air Force Base, New Mexico. It belongs to the Restore
Tools toolbox data set [31].
In addition, three different amounts of white Gaussian

noise have been added to the blurred images: low level

(σ 2 = σ 2
L = 0.308) , medium (σ 2

M = 2) , and high

(σ 2
H = 8) .
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As a first naïve approximation to boundary handling,
all original images have been extended by mirroring its
outer edges, prior to their SV-filtering. Of course, this is
not a legitimate procedure to apply to real observations,
because in these simulations filtering and noise addition
have been applied also to the extended original image.
At the end of the restoration, the previously added extra
pixels are removed from the restored image, in order to
obtain the same resolution as in the original. In addi-
tion, at each iteration of L0-AbS, each convolution is
done using mirror extension boundary conditions (note
that, contrary to the extension of the original image,
this intermediate mirror extension is legitimate). Rigor-
ous treatment of boundary conditions is left as future
study.
5.1.2 Image representation and training of statistical model
parameters
In this study, we have used two frames for the non lin-
ear method: a translation invariant version of the Haar
pyramid (TIHP, quasi-Parseval), as described in [32],
and the Dual-Tree Complex Wavelet Transform [26]
which is a Parseval Frame, both with four scales.
As introduced in Section 4.3, the L0-AbS method

leans on an image model using two statistical para-
meters: a and sr. In this article, these parameters are
estimated by optimizing the algorithm’s performance for
a set of training images and degradations. We have cho-
sen eight gray-scale images from USC-SIPI Image Data-
base that represent natural scenes: Couple, Man, Bridge,
Elaine, MoonSurface, ChemicalPlant, Pentagon and Aer-
ial5.2.09; and two spatially variant blurring kernels:
BLUR1 and BLUR2 (PSF support size is smaller than
BLUR3 and faster to compute in spatial domain). Some
of the reference images have a higher resolution than
our test images, so in the training set we only have used
the central portion of 256 × 256 pixels, without any

scaling. As figure of merit to be maximized we have
used the average ISNR (increment in Signal-to-Noise
Ratio), in decibels, of all the considered deblurring tests
(two blurs, eight images), independently for each of the
three noise levels considered. Whereas it may be argued
that this is not an ideal quality measurement (for several
reasons), it is nevertheless quite simple, and it seems to
behave robustly enough for this purpose. We believe
that in this case the overlapping of BLUR1 and BLUR2
in the training and test stages, though not being ideal, it
is a justified decision in the context of achieving a rea-
sonable tradeoff among computational cost, quality and
generality. Note that the test images are different from
the training images, and that the test blurs include a
case not used in the training set (BLUR3).
The optimization process has been computed inde-

pendently for a range of noise levels from s2 = 0.25 to
s2 = 8 in half octave intervals, as it is shown in Figure 3
for σ 2

r parameter. We have obtained the optimized

values a = 4.52 and sr = 40.56 for low noise level, a =
8.31 and sr = 69.45 for medium noise level, and a =
15.07 and sr = 108.79 for high noise level.

The optimized image model parameter σ 2
r exhibits

an unexpected behavior, which has been consistently
observed in further tests: it is approximately propor-
tional to s (see Figure 3). Dependency of the opti-
mized a on the noise variance, on the contrary, was
much less pronounced. Making the image model para-
meters to depend on the degradation parameters does
not fit a pure Bayesian estimation framework, for
which the prior knowledge and the observation condi-
tions are intrinsically independent. Within the empiri-
cal Bayes approach, however, it is normal to adjust the
prior features (in our case, the image model para-
meters) depending on the amount and type of degrada-
tion in the observation.c

5.1.3 Algorithm parameters spatially variant L0-AbS
There are two main parameters in the algorithm: the
number of iterations Niter in the spatially variant L0-AbS
algorithm and the number J of reference kernels for the
deformable filtering, both for the original PSFs and for
the regularize inverse filtering (we have used the same
value J’ = J). In addition, one must choose a certain spa-
tial support for the deformable kernels and their regu-
larized inverse quadratic version ("the inverse kernels”,
in short). In the first case the obvious choice is picking
the maximal effective spatial support among all the
PSFs. However, for the inverse kernel the effective sup-
port will depend on the amount of regularization: the
effective size will decrease as the regularization
increases, and vice versa, because regularization
increases the smoothness of the Fourier spectrum. As
shown in Figure 1, we have chosen a square support of

Figure 2 Dependence of sr2 image model parameter with
noise level.
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15 × 15 for the PSFs and of 29 × 29 for the inverse
kernels.
We have observed that, similarly to what happened in

the SI case, the L0-AbS method converges to a point
near the MSE-optimum. It gets very close after a few
steps, and then it moves slightly away but remains in
the immediate vicinity. We have found a good compro-
mise between speed and quality in the studied cases by
taking Niter = 20.
As mentioned above, in many real cases there is a

large amount of overlapping among (centered) PSFs,
both in the direct and inverse regularized SV filtering.
Therefore, the number J of regularized and inverted
deformable kernels can be set quite small to reduce the
number of convolutions without losing much accuracy.

The number of deformable kernels considered in the
study cases is only J = 4, although it could be particu-
larly tuned for each blur. This aspect is further studied
in the Section 5.2.
As far as we have observed, the number of iterations

has stronger influence than the number of deformable
kernels on the final quality, provided that the number of
deformable kernels is not too low. It is immediate to
check that the complexity of the spatially variant L0-
AbS method grows linearly with each of these
parameters.
5.1.4 Algorithm parameters in HyBR and sectional methods
The examples of RestoreTools Toolbox [31] are limited
to a small subset of PSFs, so that degradation is mod-
eled as a set of locally spatially invariant regions. It

Figure 3 SNR between the array of staked PSFs centered at zero and its approximation. Direct (top) and inverse regularized (bottom)
cases are shown.
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resembles to sectional methods although HyBR algo-
rithm is more flexible. When the number of PSFs
increases memory needs grow dramatically, and the ori-
ginal code cannot be run. Therefore, we have slightly
modified the HyBR code in order to support real spa-
tially variant PSFs in an efficient way, even with an arbi-
trary number of PSFs. In our case, a different PSF is
associated to each pixel in the images. No pre-condi-
tioning has been applied.
For the sectional method [12] we have defined 8×8 =

64 uniform regions, so each local invariant region is
only 32 × 32 pixels. For each region it applies a classical
FFT-based Wiener filtering. Obviously, this method
should give better results than the application of a glo-
bal Wiener filtering on the complete image, because it is
approximately adapted to the filtering at each region.
Only the central PSF of each region is considered in the
restoration. Its computational performance grows super-
linearly with the number of processed regions in multi-
core implementations thanks to the effect of memory
hierarchy in the small test images we used.

5.2 Two study cases
In this section, we study in some depth how the
described deformable filtering techniques have been
applied in two SV filtering cases: BLUR1 (synthetic
scaled radial PSFs) and BLUR3 (Hubble PSFs).
The PSF field in BLUR1 is quite smooth, according to

Equation 15. So, as expected, it shows a significant
amount of overlapping among centered PSFs, and,
therefore, a small effective dimensionality of its matrix
of stacked, centered at zero, PSFs. From Figures 1 and
4a, we can see that J = 4 is more than enough to obtain
a high accuracy in all the SV-filtering stages.
The eigenvalues of H0 are represented in the top left

of Figure 1. They fall steeply more than 12 orders of
magnitude. Most of the energy is concentrated in a few
singular vectors. Figure 4 shows the SNR between the
matrix of stacked PSFs centered at zero and its approxi-
mation with a number of eigenvectors. Such behavior is
shared by the inverse kernel case (top right).
The first column in the lowest part of Figure 1 shows

the reference kernels, and the second column their
interpolation functions along the image. These interpo-
lation functions shows the local weight of each reference
kernel in the image (in the figure without taking into
account the eigenvalue weight, for visualization sake).
It is easy to appreciate that the main reference kernel

has a shape similar to the original radial PSF (like an
average of all of them), whose influence is more impor-
tant in the center of the image. The second one reminds
a first derivative of this shape, it may be positive or
negative weighted to approximate the extension of each
PSF. The remaining ones help to define the subtle

details to capture the variability of the original PSFs
[33]. Their relative influences -as seen in the interpola-
tion functions- show a more complex radial character.
Right columns, in Figure 1, have the four first inverse

regularized deformable kernels and their interpolation
functions. Although the nature of these PSFs is different,
a similar pattern is observed.
A similar analysis is presented in Figure 5 for BLUR3.

The PSFs correspond to a region of 256 × 256 pixels in
chip0 of the WFPC of Hubble Space Telescope in the
configuration of 24th April 1991. The degradation is
quite variant. Most of the energy is located in only a
few elements again (top left), but it does not fall so
sharply as in the previous case. Because of this, we need
more deformable kernels to approximate the original
PSFs accurately (Figure 4). Four main direct and inverse
deformable kernels are represented in columns 1 and 3
with linear contrast, so secondary lobes are not high-
lighted. They are nonsymmetric and rather different
from the original ones (Figure 2). The influence of these
kernels take different directions as it is illustrated by the
interpolation functions.
In the following section, the number of deformable

kernels has been cut to J = 4 to show the robustness of
the algorithm in a set of representative scenarios, even
in cases where very few filters are applied.

5.3 Results
Figures 6, 7, 8, and 9 show some comparative visual
examples of our method’s performance, for different
blurs and noise levels, for the three considered images.
The improvement of visual quality with respect to the
observation and also with respect to the competitors is
outstanding. Probably, the most relevant difference with
the compared methods is the much more powerful
noise removal, whereas edges and other salient features
in the images are, in general, substantially better re-gen-
erated. This is clearly reflecting the much higher perfor-
mance of non-linear methods compared to classical
linear approaches.
Tables 1, 2, and 3 show average (and standard devia-

tion, for 16 different noise realizations) Increment in
Signal-to-Noise Ratio, in decibels, for the three differ-
ent implemented SV blurs (respectively), the three
images and the three noise levels. Results are com-
pared to the two methods used as reference here.
Overall, the improvement is very strong. As simulated
observations where extended beyond the original
images boundaries, we have applied the same post-cut-
ting of the valid area after the estimation for all three
compared methods.
Finally, we have measured the computation times for

our method (its MATLAB implementation) as compared
to the competitors (see Table 4) in a server with 2 Intel
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Figure 4 BLUR1: Eigenvalues of the array of stacked PSFs centered at zero are shown in the top, for both direct (left) and inverse
regularized (right) cases. Main (direct) deformable kernels are represented in the first column, their interpolation functions are in the second
column, inverse regularized deformable kernels are in the third column and their interpolation functions are in the last column.
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Figure 5 BLUR3: Eigenvalues of the array of stacked PSFs centered at zero are shown in the top, for both direct (left) and inverse
regularized (right) cases. Main (direct) deformable kernels are represented in the first column, their interpolation functions are in the second
column, inverse regularized deformable kernels are in the third column and their interpolation functions are in the last column.
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Figure 6 Top left: Original Cameraman test image. Top right: Degraded image with BLUR2 and medium amount of additive gaussian noise
(σ 2

M = 2) . Middle left: restored image with sectional method. Middle right: restored image with HyBR algorithm. Bottom: restored image with
spatially variant L0-AbS.
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Figure 7 Top left: Original Satellite test image. Top right: Degraded image with BLUR1 and small amount of additive gaussian noise(
σ 2

M = 0.308
)
. Middle left: restored image with sectional method. Middle right: restored image with HyBR algorithm. Bottom: restored image

with spatially variant L0-AbS.
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Figure 8 Top left: Original Satellite test image. Top right: Degraded image with BLUR3 and a medium amount of additive gaussian noise
(σ 2

M = 2) . Middle left: restored image with sectional method. Middle right: restored image with HyBR algorithm. Bottom: restored image with
spatially variant L0-AbS.
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Figure 9 Top left: Original House test image. Top right: Degraded image with BLUR3 and a large amount of additive gaussian noise(
σ 2

M = 8
)
. Middle left: Restored image with sectional method. Middle right: Restored image with HyBR algorithm. Bottom: Restored image

with spatially variant L0-AbS.
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Quad core Xeon E5504 CPUs and 16 GB of main mem-
ory. Although the sectional method is a bit faster, over-
all times of the three methods are in the same range.
We consider this a notable achievement, as our method
is non-linear and iterative, so conceptually much more
complex (which clearly translates into a superior MSE-
performance, as we have seen) than the compared linear
ones. Execution times and main memory requirements
are notably higher in BLUR3 than in the other degrada-
tion cases in our method. This is due to the fact that
the expression HTy in step 4 must be explicitly calcu-
lated as a sparse matrix-vector multiplication (not like a
deformable filtering), because Hubble PSFs are not so
spectrally concentrated as BLUR1 and BLUR2 (as it is
shown in Figures 4b and 5).

6 Conclusions and future study
Many real imaging processes involve SV linear degrada-
tion. Thus, a single PSF is not enough to characterize the
blur in the observation model, and a local PSF for each
spatial location must be considered. In this study, a least
squares optimal deformable filtering approximation is
introduced as an efficient tool for linear SV filtering, in the

context of restoring SV-degraded images. Based on this
technique a new formalism for linear SV operators has
been proposed, that highlights difference between IKs and
PSFs. This formalism helped us to formulate an efficient
way to implement the transposed SV-filtering based
uniquely on the PSFs. We also have proposed a method
for implementing an approximation of the filtering of a
SV-matrix regularized inverted, under the assumption of
having smoothly varying kernels, and enough regulariza-
tion. We applied these techniques to implement a SV-ver-
sion of a recent successful sparsity-based image
deconvolution method. A high performance (high speed,
high visual quality and low mean squared error, MSE) is
demonstrated through several simulation experiments
(one of them based on the Hubble telescope PSFs), by
comparison to two state-of-the-art methods. As a initial
test, synthetic star cluster images have been processed
with the same set of obtained parameters for natural
images, in order to check optimized parameters’ robust-
ness in a case with a very different image statistics. Results
were comparable to the ones obtained with other meth-
ods. We have also adapted the underlying statistical model
by proper training with typical real astronomical images
(from Kitt Peak observatory) with different blurs and noise
levels; as we expected in this case, results are clearly better
than the previous ones (in a range between 1 and 3 dBs).
So, it is recommended to choose properly statistical para-
meter values to achieve a very high-performance in each
application (astronomical data, natural images in photo-
graphy, micrography, medical images, etc.).
Whereas we have used the SVD as a key tool for the

proposed SV-filtering techniques, the fact of using it over
the set of centered PSFs, instead of on the PSFs at their
original locations, as previous studies have done, makes a
huge difference in efficiency and accuracy terms. By
means of this extra degree of efficiency, for a given accu-
racy, we have been able to include these SV-filtering tech-
niques as part of an iterative non-linear deblurring

Table 1 Averaged ISNR of restored images with several
noise levels with BLUR1

Image Method BLUR1

σ 2
L = 0.308 σ 2

M = 2 σ 2
H = 8

HyBR 6.39 ± 0.03 -1.51 ± 0.04 0.49 ± 0.06

Cameraman Trussell 6.73 ± 0.03 0.71 ± 0.02 -1.45 ± 0.03

var. L0AbS 12.76 ± 0.04 8.90 ± 0.02 6.49 ± 0.05

HyBR 2.33 ± 0.03 -5.65 ± 0.04 -3.76 ± 0.08

House Trussell 2.82 ± 0.03 -2.84 ± 0.03 -4.30 ± 0.03

var. L0AbS 11.13 ± 0.03 8.43 ± 0.03 6.69 ± 0.05

HyBR 6.99 ± 0.03 5.81 ± 0.01 3.74 ± 0.02

Satellite Trussell 7.61 ± 0.04 2.17 ± 0.02 0.65 ± 0.03

var. L0AbS 15.79 ± 0.06 9.73 ± 0.09 6.73 ± 0.05

Table 2 Averaged ISNR of restored images with several
noise levels with BLUR2

Image Method BLUR2

σ 2
L = 0.308 σ 2

M = 2 σ 2
H = 8

HyBR 3.07 ± 0.00 2.30 ± 0.00 1.72 ± 0.01

Cameraman Trussell 0.05 ± 0.03 0.69 ± 0.03 0.83 ± 0.02

var. L0AbS 4.21 ± 0.01 3.27 ± 0.02 2.63 ± 0.02

HyBR 4.33 ± 0.01 3.46 ± 0.01 2.79 ± 0.01

House Trussell -0.48 ± 0.04 -0.26 ± 0.05 -0.09 ± 0.05

var. L0AbS 5.14 ± 0.03 4.18 ± 0.02 3.68 ± 0.02

HyBR 2.77 ± 0.00 1.97 ± 0.00 1.43 ± 0.01

Satellite Trussell 2.67 ± 0.02 2.30 ± 0.02 2.02 ± 0.03

var. L0AbS 4.51 ± 0.02 3.83 ± 0.02 3.35 ± 0.02

Table 3 Averaged ISNR of restored images with several
noise levels with BLUR3

Image Method BLUR3

σ 2
L = 0.308 σ 2

M = 2 σ 2
H = 8

HyBR 8.66 ± 0.03 0.77 ± 0.02 -4.91 ± 0.02

Cameraman Trussell 8.59 ± 0.03 2.83 ± 0.03 0.86 ± 0.02

var. L0AbS 13.95 ± 0.04 9.13 ± 0.04 6.30 ± 0.03

HyBR 5.44 ± 0.04 -2.61 ± 0.03 -8.10 ± 0.01

House Trussell 5.68 ± 0.03 0.05 ± 0.03 -1.22 ± 0.02

var. L0AbS 13.02 ± 0.03 10.62 ± 0.05 8.68 ± 0.04

HyBR 9.73 ± 0.03 7.06 ± 0.04 4.83 ± 0.02

Satellite Trussell 10.27 ± 0.02 5.26 ± 0.03 4.05 ± 0.02

var. L0AbS 17.96 ± 0.06 10.43 ± 0.06 7.73 ± 0.04
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method which is much more powerful than classical linear
approaches, in a similar computation time.
As future study, it is still pending to explore efficient

ways to deal with image boundaries. Finally, in this
first part of the article we only deal with simulations,
because of the complexity to process real images when
the PSF field is unknown. The second part of this arti-
cle provides an in-depth study with real astronomical
data.

Endnotes
aOther SV-restoration techniques could benefit as well
of the proposed techniques, e.g., adapting a classical
Wiener restoration to a SV-blurred noisy degradation.
bWe have forced that all PSFs integrate to one. This is
the reason of using “∞” instead of “ = “ in their defini-
tions. cAn in-depth analysis of this issue lies beyond the
scope of this article. However, a partial explanation of
the observed behavior is that the image model para-
meters are also estimated from the observation, and, as
such, they are subject to error. The bias-variance trade-
off in these estimates, empirically optimized in terms of
the final image estimation performance, may shift a lot,
depending on the observation conditions, even when the
uncorrupted original remains the same.
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