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Abstract

Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of
the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN)
regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three
different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic
lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we
genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142)
in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands,
Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5
genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong
associations with the global disease (rs4728142: P = 1.3461028, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.6061027,
OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53610220, OR = 1.63, CI 95% = 1.47–1.81). However, the association of
rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles
(rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04610222, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed
association (likelihood P-value = 1.4861024), suggesting an additive effect of the three haplotypic blocks. No statistical
significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our
data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-
phenotype-specific.
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Introduction

Systemic sclerosis (SSc) is a chronic multisystem connective

tissue disorder characterized by fibrotic events, vascular damage

and autoantibody production. Two main clinical subtypes have

been defined based on the extent of skin involvement, limited

cutaneous scleroderma (lcSSc) and diffuse cutaneous scleroderma

(dcSSc) [1]. Recent candidate gene and genome-wide association

studies (GWASs) clearly suggest that an important genetic

component underlies this disease. In this regard, an increasing

number of loci have been reported to be convincingly associated

with the susceptibility and clinical manifestations of SSc in the last

years. However, the causal functional mutations responsible for

these associations have not been unambiguously identified yet in

most cases [2].

Outside the HLA region, interferon (IFN) pathway genes, which

encode cytokines with critical modulatory effects on innate and

adaptive immunity, have been shown to represent a key

component of the genetic network leading to autoimmune

processes. Interestingly, a misregulated expression of type I IFN

genes, also referred to as IFN signature, have been observed in

peripheral white blood cells patient subsets of several autoimmune

diseases [3,4,5,6], thus suggesting that the IFN signaling plays a

crucial role in autoimmunity. Indeed, multiple single-nucleotide

polymorphisms (SNPs) of the IFN regulatory factor 5 gene (IRF5),

a major regulator of the type I IFN induction, have been

associated with different rheumatic disorders such as SSc, systemic

lupus erythematosus (SLE), rheumatoid arthritis (RA), and

Sjögren’s syndrome (SS) [7,8,9,10]. The IRF5 association with

SLE was narrowed down to three different haplotype blocks that

seem to have independent functional consequences, including 1)

alteration of the protein stability, 2) creation of a donor splice site

in intron 1 resulting in transcription of an alternative exon 1B, and

3) modification of the 39UTR length which affects expression

levels [11]. Subsequent studies in SSc patients suggested that

genetic variation within IRF5 correlate with SSc severity and

survival [12,13].

Based on the above, we decided to explore whether the

functional haplotype blocks described by Graham et al. [11] were

also susceptibility signals affecting SSc development and progres-

sion. For that purpose, we analysed the allele frequencies of three

representative IRF5 genetic variants that have been previously

associated with SSc [8,14] in five large Caucasian European

cohorts and performed allelic combination and dependency tests.

Patients and Methods

Study Population
We recruited a total of 3,361 SSc patients and 4,012 unaffected

controls of Caucasian origin from five different European

countries, including an initial cohort from Spain and four

replication cohorts from Germany, The Netherlands, Italy and

United Kingdom. Case and control sets were matched by

geographical origin and ethnicity. Written informed consent from

all participants and approval from the local ethical committees of

all centres involved in the study were obtained in accordance with

the tenets of the Declaration of Helsinki. All SSc patients fulfilled

the classification criteria by Leroy et al. [15]. The clinical features

of the different SSc cohorts are shown in Table 1. Case sets were

further subdivided based on their skin involvement into limited

cutaneous scleroderma (lcSSc) and diffuse cutaneous scleroderma

(dcSSc) subgroups [15], and by autoantibody status according to

the presence/absence of anti-centromere antibodies (ACA) or anti-

topoisomerase antibodies (ATA), which were detected using

standard procedures. Pulmonary fibrosis (PF) was diagnosed by

high resolution computed tomography (HRCT).

SNPs Selection and Genotyping
Samples were genotyped for three IRF5 tag SNPs, rs10488631,

rs2004640, and rs4728142, representative of three different

haplotype blocks (refers to as Groups 1–3, respectively) which

have been reported to have functional roles in SLE patients [11]:

Group 1 includes SNPs tagging a 30-bp in-frame INDEL variant

of exon 6 that alters protein stability; Group 2 includes an exon 1B

splice site variant; and Group 3 corresponds to genetic variants

located in a conserved polyadenilation signal sequence that alters

the length of the 39UTR, thus affecting expression levels.

Genomic DNA was obtained from peripheral blood cells using

standard procedures, and genotyping was performed using

TaqManH 59 allele discrimination assays (IDs: C___2691242_10,

C___9491614_10, and C___2691222_10), in a 7900 HT Fast

Real-Time PCR System (Applied Biosystems, Foster City,

California, USA).

Statistical Analysis
The statistical power of the study was calculated with Power

Calculator for Genetic Studies 2006 software (http://www.sph.

umich.edu/csg/abecasis/CaTS/reference.html), which implements

the methods described in Skol et al. [16].

Table 1. Main clinical features of systemic sclerosis patients
included in the study.

N (%)

Feature Spain Germany Netherlands Italy UK

Female 1089 (89.14) 494 (85.83) 323 (81.83) 644 (91.50) 388 (83.33)

Male 133 (10.86) 81 (14.17) 72 (18.17) 60 (8.50) 77 (16.67)

lcSSc 843 (68.99) 338 (58.78) 271 (68.61) 515 (73.15) 336 (72.26)

dcSSc 379 (31.01) 237 (41.22) 124 (31.39) 189 (26.85) 129 (27.74)

ACA+ 560 (45.83) 214 (37.22) 99 (25.06) 312 (44.32) 169 (36.34)

ACA- 617 (50.49) 341 (59.30) 291 (73.67) 385 (54.69) 285 (61.29)

ATA+ 267 (21.85) 174 (30.26) 106 (26.84) 238 (33.81) 71 (15.27)

ATA- 881 (72.09) 376 (65.39) 284 (71.90) 461 (65.48) 382 (82.15)

PF+ 294 (24.06) 175 (30.43) 144 (36.46) 205 (29.12) 111 (23.87)

PF- 830 (67.92) 327 (56.87) 158 (40.00) 400 (56.82) 189 (40.65)

Data are referred to the total analysed individuals.
ACA; anti-centromere antibodies; ATA, anti-topoisomerase antibodies; dcSSc,
difusse cutaneous systemic sclerosis; lcSSc, limited cutaneous systemic sclerosis;
PF, pulmonary fibrosis.
doi:10.1371/journal.pone.0054419.t001
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PLINK v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/)

[17] was used to carried out all statistical analyses of allele

frequencies. P-values were obtained by performing 262 contin-

gency tables and x2 test and/or Fisher’s exact test, when

appropriate. Since the association between IRF5 and SSc has

been confirmed in several independent studies [2], we considered

appropriate to set the significance threshold at P = 0.05. Odds

ratios (OR) and 95% confidence intervals were calculated

according to Woolf’s method. Breslow–Day (BD) test method

was used to estimate the homogeneity amongst populations.

Pooled analyses were performed by Mantel-Haenszel test under

fixed effects, or DerSimonian-Laird if the BD test reached

statistical significance.

Dependency of association between the studied genetic variants

was determined by conditional logistic regression analysis as

implemented in PLINK, and the allelic combinations were tested

using PLINK, StatsDirect (V.2.6.6; StatsDirect, Altrincham, UK),

and Haploview (V.4.2) [18].

To analyse whether allelic combinations would better explained

the possible association than the genetic variants independently,

we compared the goodness of fit of both models using PLINK. For

that purpose, we calculated the deviance (defined as 22 6 the log

likelihood), which follows a x2 distribution, to assess the

significance of the improvement in fit. If statistically significant

differences in the improvement of fit were observed when the

haplotype effect was considered, we assumed that this model was

more informative explaining the putative association.

Results

The overall statistical power of the study, based on previous

IRF5 reports, to detect associations with OR = 1.2 at 0.05

significance level was 100% for rs2004640 and rs4728142, and

93% for rs10488631 (Table S1 in File S1). Additionally, no

significant departure from Hardy-Weinberg equilibrium was

observed either in cases or controls in each analysed population

(P = 0.05).

Allele Test
The results of the global analyses of the discovery cohort and the

four independent replication populations separately are shown in

Table S2 in File S1. Since the Breslow-Day test evidenced no

heterogeneity of the ORs amongst the different cohorts (P = 0.05),

a combined meta-analysis was performed to test the overall effect

of the IRF5 genetic variants in the whole dataset (Table 2). The

pooled analysis showed that the three SNPs were strongly

associated with the global disease (rs4728142: P = 1.3461028,

OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.6061027,

OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53610220,

OR = 1.63, CI 95% = 1.47–1.81). Highly significant P-values

were also yielded when the different phenotype subgroups were

compared against the control population (Table S3 in File S1).

However, no statistical significance was observed in the compar-

isons amongst SSc patients accordingly with the presence/absence

of the different clinical characteristics and autoantibody profile

(Table 2), i.e. lcSSc vs. dcSSc (rs4728142: P = 0.564; rs2004640:

P = 0.971; rs10488631: P = 0.086), SSc ACA+ vs. SSc ACA-

(rs4728142: P = 0.359; rs2004640: P = 0.357; rs10488631: P

= 0.449), SSc ATA+ vs. SSc ATA- (rs4728142: P = 0.154;

rs2004640: P = 0.128; rs10488631: P = 0.259), and SSc PF+ vs.

SSc PF- (rs4728142: P = 0.934; rs2004640: P = 0.397;

rs10488631: P = 0.945), thus indicating the three IRF5 polymor-

phisms are indeed associated with the global disease and there was

no phenotype-specific association.

Conditional Logistic Regression
We decided to perform pairwise conditioning analyses to test

whether there could be any dependency amongst them (Table 3).

The analysis showed that every SNP maintained its statistical

significance after conditioning to the other two except for

rs2004640, which was dependent of rs4728142. The moderate

linkage disequilibrium between them (r2,0.68) could explain this

fact (Table S4 in File S1).

Haplotype Analysis
We also analysed the allelic combinations of the IRF5 genetic

variants included in this study according to the global disease

(Table 4). The most associated haplotype was that containing the

risk alleles of the three SNPs (rs4728142*A-rs2004640*T-

rs10488631*C: P = 9.04610222, OR = 1.75, CI 95% = 1.56–

1.97). The protective haplotype also showed a very significant

P-value (rs4728142*G-rs2004640*G-rs10488631*T: P = 2.4861027,

OR = 0.84, CI 95% = 0.78–0.89).

When comparing the haplotype model with the independent

SNP model, we observed a statistically significant improvement of

the goodness of fit compared to rs4728142 (likelihood P-value =

1.23610217), rs2004640 (likelihood P-value = 1.94610219), or

rs10488631 (likelihood P-value = 1.4861024) individually.

On the other hand, we also performed a sub-phenotype analysis

of allelic combinations to test whether some haplotype could

influence a specific clinical condition (Table S5 in File S1). This

analysis only showed a residual P-value for a low frequency

haplotype in the PF+/PF- comparison (rs4728142*G-

rs2004640*T-rs10488631*T: P = 0.041, OR = 1.28, CI 95% =

1.02–1.61). The rest of allelic combinations did not reach statistical

significance in any other comparison.

Discussion

GWAS data have confirmed IRF5 as one of the strongest

associated signals with SSc [19,20]. In addition, it has been

proposed that particular IRF5 functional genetic elements

contribute to SLE pathophysiology through their relationship

with auto-antibodies and IFNa production [21,22]. These data

indicate that this gene may represent a crucial member of the

genetic component underlying this type of autoimmune diseases

[23].

Previous published data suggested that two different IRF5

haplotypes influence specific SSc phenotypes. It was hypothesised

that these haplotypes may explain a possible IRF5 association with

dcSSc and PF, likely by tagging an intronic 5-bp biallelic insertion-

deletion polymorphism (INDEL), which would represent the real

causal functional variant [12]. However, our results are not in

agreement with this idea, since we did not find evidence for a

specific genetic association between IRF5 and any of the major

clinical manifestations, despite the fact that two out of the three

genetic variants comprising the previously described risk haplotype

were covered in our analysis (rs2004640 and rs10954213 that is

highly correlated with rs4728142). A similar discrepancy was also

observed by Sarif et al. [13], who failed to replicate the IRF5

haplotype effect on PF described by Dieudé et al. [12]. Our data

are, however, consistent with recent GWAS follow-up studies that

did not show a phenotype-specific association of IRF5 with SSc,

but a clear association with the overall disease [14,24]. It should be

noted that one of the SNPs included in this study, rs4728142, has

been shown to correlate with longer survival and a milder

pulmonary involvement in SSc patients [13]. Taking this together

with our results, it could be speculated that, although the risk

variants of IRF5 do not predispose to develop PF, they may

IRF5 in Systemic Sclerosis
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influence the severity of some clinical features like PF. In any case,

it is important to note that whereas antibody profile and disease

subtypes are clearly a dichotomous outcome, PF can range from

mild-stable to severe-progressive involvement (and the utilised

approach for definition of PF does not differentiate the different

severity scales of this disease manifestation) [25].

Table 2. Meta-analysis of IRF5 genetic variants accordingly with the global disease and the presence or absence of the main
clinical features.

Genotype, N (%) M-H allele test

SNP Position 1/2 Subgroup (N) 1/1 1/2 2/2 MAF (%) P-value OR [CI 95%]{ PBD
"

rs4728142 39UTR A/G Controls (n = 3933) 787 (20.01) 1924 (48.92) 1222 (31.07) 44.47 1.34E-08 1.22 [1.14–1.30] 0.32

SSc (n = 3128) 769 (24.58) 1549 (49.52) 810 (25.90) 49.34

lcSSc (n = 2142) 533 (24.88) 1059 (49.44) 550 (25.68) 49.60 0.564 0.97 [0.87–1.08] 0.61

dcSSc (n = 986) 236 (23.94) 490 (49.70) 260 (26.37) 48.78

ACA- (n = 1781) 444 (24.93) 852 (47.84) 485 (27.23) 48.85 0.359 1.05 [0.95–1.16] 0.08

ACA+ (n = 1268) 307 (24.21) 658 (51.89) 303 (23.90) 50.16

ATA- (n = 2222) 531 (23.90) 1110 (49.95) 581 (26.15) 48.87 0.154 1.09 [0.97–1.22] 0.28

ATA+ (n = 793) 215 (27.11) 378 (47.67) 200 (25.22) 50.95

PF- (n = 1797) 427 (23.76) 929 (51.70) 441 (24.54) 49.61 0.934 1.00 [0.89–1.12] 0.97

PF+ (n = 893) 237 (26.54) 409 (45.80) 247 (27.66) 49.44

rs2004640 Exon 1 G/T Controls (n = 3912) 897 (22.93) 1895 (48.44) 1120 (28.63) 47.15 4.60E-07 0.84 [0.78–0.90] 0.12

SSc (n = 3122) 584 (18.71) 1511 (48.40) 1027 (32.90) 42.91

lcSSc (n = 2143) 406 (18.95) 1026 (47.88) 711 (33.18) 42.88 0.971 1.00 [0.90–1.12] 0.23

dcSSc (n = 979) 178 (18.18) 485 (49.54) 316 (32.28) 42.95

ACA- (n = 1772) 354 (19.98) 833 (47.01) 585 (33.01) 43.48 0.357* 0.91 [0.74–1.12] 0.01

ACA+ (n = 1272) 211 (16.59) 643 (50.55) 418 (32.86) 41.86

ATA- (n = 2216) 424 (19.13) 1076 (48.56) 716 (32.31) 43.41 0.128 0.91 [0.81–1.03] 0.43

ATA+ (n = 793) 137 (17.28) 377 (47.54) 279 (35.18) 41.05

PF- (n = 1800) 327 (18.17) 899 (49.94) 574 (31.89) 43.14 0.397 0.95 [0.85–1.07] 0.84

PF+ (n = 883) 163 (18.46) 417 (47.23) 303 (34.31) 42.07

rs10488631 INDEL tagger C/T Controls (n = 3958) 41 (1.04) 625 (15.79) 3292 (83.17) 8.93 7.53E-20 1.63 [1.47–1.81] 0.11

SSc (n = 3148) 70 (2.22) 749 (23.79) 2329 (73.98) 14.12

lcSSc (n = 2165) 46 (2.12) 494 (22.82) 1625 (75.06) 13.53 0.086 1.14 [0.98–1.33] 0.96

dcSSc (n = 983) 24 (2.44) 255 (25.94) 704 (71.62) 15.41

ACA- (n = 1798) 48 (2.67) 425 (23.64) 1325 (73.69) 14.49 0.449 0.94 [0.81–1.10] 0.92

ACA+ (n = 1273) 21 (1.65) 306 (24.04) 946 (74.31) 13.67

ATA- (n = 2236) 48 (2.15) 508 (22.72) 1680 (75.13) 13.51 0.259* 1.17 [0.89–1.54] 0.03

ATA+ (n = 799) 21 (2.63) 212 (26.53) 566 (70.84) 15.89

PF- (n = 1818) 43 (2.37) 425 (23.38) 1350 (74.26) 14.05 0.945 0.99 [0.84–1.17] 0.94

PF+ (n = 886) 19 (2.14) 213 (24.04) 654 (73.81) 14.16

{Odds ratio for the minor allele.
"Breslow-Day P-value.
*DerSimonian–Laird random effects model P-value. SSc, systemic sclerosis; lcSSc, limited cutaneous SSc; dcSSc, diffuse cutaneous SSc; ACA, anti-centromere antibodies;
ATA, anti-topoisomerase antibodies. M-H, Mantel-Haenszel test under fixed effect.
doi:10.1371/journal.pone.0054419.t002

Table 3. Conditional logistic regression analysis for the IRF5 polymorphisms considering the five populations as covariate.

SNP P-value
P-value:
add to rs10488631

rs10488631 P-value:
add to SNP

P-value:
add to rs2004640

rs2004640 P-value:
add to SNP

rs4728142 1.344E-08 2.57E-04 8.92E-16 2.24E-03 0.598

rs2004640 4.603E-07 0.020 1.72E-16 NA NA

rs10488631 7.528E-20 NA NA 1.72E-16 0.020

LD, linkage disequilibrium; SNP, single-nucleotide polymorphism.
doi:10.1371/journal.pone.0054419.t003
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As stated before, the tag SNPs analysed here are representative

of three haplotype blocks that have been reported to affect the

function of the protein in different ways, including production of

an alternative spliced isoform, alteration of polyadenylation sites

that leads to a shorter messenger RNA, and reduction of protein

stability [11]. These three polymorphisms showed strong associ-

ation signals in our study, supported by a high statistical power.

Therefore, the functional alterations caused by their risk alleles

may be also of high relevance in the pathogenic mechanisms that

lead to SSc. However, the rs2004640 signal was dependant of that

from rs4728142 in our study cohort. Hence, rs2004640 might not

be an independent SSc susceptibility locus although it is

functionally relevant, which suggests that not all functional

variants in a determined risk gene may play an independent role

in the associated disease. In any case, as described in SLE [11], we

observed a significant additive effect amongst the three analysed

SNPs because the haplotypes containing both the risk and

protective alleles better explained the association between this

locus and SSc. Hence, although no functional studies have been

carried out yet to unmask the possible implication of the IRF5 risk

alleles in the SSc pathophysiology, it is likely that each one of the

protein alterations described above influence the development of

SSc individually, and that carrying all the three risk alleles results

in a critically reduced protein function that highly increases SSc

susceptibility.

In conclusion, this study clearly shows that a haplotype of three

different functional genetic variants within the IRF5 region confer

susceptibility to SSc. The fact that this association is shared with

SLE adds another piece of evidence to the common genetic

background of both diseases, and provides a new perspective for

the study of the type I IFN pathway and its implication in the

development of autoimmune conditions.
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8. Dieudé P, Guedj M, Wipff J, Avouac J, Fajardy I, et al. (2009) Association
between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a

new perspective for pulmonary fibrosis. Arthritis Rheum 60: 225–233.

9. Han SW, Lee WK, Kwon KT, Lee BK, Nam EJ, et al. (2009) Association of

polymorphisms in interferon regulatory factor 5 gene with rheumatoid arthritis:

a metaanalysis. J Rheumatol 36: 693–697.

10. Miceli-Richard C, Comets E, Loiseau P, Puechal X, Hachulla E, et al. (2007)

Association of an IRF5 gene functional polymorphism with Sjögren’s syndrome.
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