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ABSTRACT   

In this work we present the synthesis and photovoltaic application of four different vertically-aligned ZnO 
nanostructured electrodes: ZnO nanorods prepared by the a) low-temperature hydrothermal method (LT-HM) and the b) 
autoclave method (A-HM), c) ZnO nanotrees (NTs) and d) ZnO core-shell NRs  with an indium sulfide layer as the shell 
(CS). The electrodes have been applied in Dye sensitized solar cells (DSCs) and Polymer solar cells (PSCs). The 
photovoltaic properties of each type of nanostructured electrode were optimized separately. Our results show that the 
optimal power conversion efficiency depends in great extent on NR dimensions (length and diameter) and the final ZnO 
nanostructure. In this respect, we have observed an increase in power conversion efficiency when the NR nanostructure 
is modified as follows: ZnO NRs LT-HM < A-HM <  NT < CS for Dye semnsitized solar cells. In the case of PSCs the 
best power conversion efficiency was obtained for the CS sample.  

Keywords: ZnO nanorods, surface defects, hydrothermal method, ZnO nanostructures, core-shell nanostructure, Dye-
sensitized solar cells, Polymer solar cells, Photoluminescence. 
 

1. INTRODUCTION  
The application of vertically-aligned ZnO nanorods (NR) in Excitonic Solar Cells, XSCs, (organic, dye sensitized 
and hybrid solar cells) has been rising over the last few years due to the excellent optical properties of ZnO.1 ZnO 
can be synthesized in a wide variety of nanoforms applying easy, low cost, environmental-friendly and scalable 
synthesis methodologies.2, 3 Moreover, the ZnO interface between the donor and acceptor materials can be tune in 
order to improve power conversion efficiency in polymer solar cells (PSC),4 or enhance electron injection in Dye 
sensitized solar cells (DSCs).5, 6 Up to date, DSCs based on ZnO have already achieved promising power 
conversion efficiency values of about 6-7%.7 Nevertheless, the efficiency of DSC applying vertically-aligned ZnO 
nanorods is still low with power conversion efficiencies not higher than 2.4%.8 For this reason, many research 
efforts are currently focused on the synthesis of ZnO nanostructures like hierarchical ZnO nanoplates, nanosheets, 
disk-like nanostructures and aggregates that can achieve about 5-6% when applied in DSCs.9 In this work we 
present the synthesis of ZnO NRs prepared with two different hydrothermal methods, ZnO nanotrees and core-shell 
structures of ZnO NRs with an indium sulfide layer. The comparison of solar cell performances in DSC and PSC 
between all the different ZnO nanostructures is described.  

2. EXPERIMENTAL 
2.1 Materials  

All chemicals were commercial and used without further purification. Solvents: Methanol (99.8% Aldrich), ethanol 
(99.5% Panreac), 2-propanol or also called isopropanol (99.5% Sigma-Aldrich), acetone (99.5% Panreac), chlorobenzene 
(99.9% Sigma-Aldrich), hydrochloric acid fuming (HCl) (37% Fluka). Chemicals for the ZnO electrode preparation: zinc 
acetate dehydrate (Zn(OAc)2·2H2O) (99% Riedel-de Haën), potassium hydroxide (KOH) (Na<0.002% Fluka), 
diethanolamine (DEA) (≥98% Sigma–Aldrich), zinc nitrate hexahydrate (Zn(NO3)2·6H2O) (98% Sigma–Aldrich), 
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hexamethylenetetramine (HMT) (99% Aldrich), indium (III) chloride (98% Aldrich), sodium thiosulfate (≥98%, Sigma-
Aldrich). Fluor-tin oxide (FTO) slides were purchased from Solems (glass thickness= 1.1 mm, FTO thickness=800 Å, 
R=7-100 Ω). Hydrothermal reactors: Pyrex glass bottle (Sigma-Aldrich) and an autoclave of PTFE (Parr). Materials for 
Dye-sensitized solar cells: Iodolyte AN-50 (50 mM tri-iodide in acetonitrile), dye (Bu4N)2Ru(debpyH)2(NCS) 
(Ruthenium 535-bisTBA  also known as N719) and hot melt sealing foil (SX1170) were from Solaronix. The Pt source 
for the counter electrode preparation by electron beam physical vapor deposition was 99.95% from Goodfellow (50 nm 
thicknes). Materials for polymer solar cells: poly(3,4-ethy-lenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS 
from Agfa, Orgacon EL-P 5010) diluted with 2-propanol (2:1) with a viscosity around 200 mPa·s, polymer Poly(3-
hexylthiophene) (P3HT, Sepiolid P200 from BASF), [60]PCBM (99% purchased from Solenne BV), silver flakes 
(≥99.9%, Aldrich). All the aqueous solutions were prepared using double distilled and ion-exchange water. 

2.2 Preparation and characterization of ZnO electrodes. 

FTO (Fluor-indium-tin oxide)-coated glass were used to prepare the ZnO electrodes. First, a ZnO sol-gel solution, 
prepared from zinc acetate and diethanol amine (DEA)10 was deposited by spin-coating at 1500 rpm on top of clean 
FTO slides. Then the substrates were sintered at 450ºC/2h. ZnO nanoparticles (NPs) synthesized by Pacholski et. 
al. method11 were spin coated 3 times at 1000 rpm on the ZnO buffer layer prepared before, between layers the 
slides were dried at 150ºC for 10 min. The growth of ZnO nanorods (NRs) was carried out using two different 
hydrothermal growth methods, a low-temperature hydrothermal method (LT-HM) and a modified method with an 
autoclave reactor (A-HM). Both hydrothermal syntheses use an equimolar aqueous solution of 25 mM zinc nitrate 
hexahydrate and HMT, growth times were between 6h and 28h. The aqueous solutions were changed every 6h. For 
the LT-HM method, a Pyrex glass bottle was used as reactor (96ºC and at atmospheric pressure),12 for the A-HM 
method an stainless steel autoclave was used. Finally, the samples were rinsed with deionized water, dried in air 
and then sintered at 450°C for 30 min. Core-shell structures were also prepare using the ZnO NRs electrodes 
prepared by LT-HM and A-HM. The shell layer of indium sulfide was deposited by SILAR technique. The ZnO 
NR electrodes were immersed first in a 0.1 M InCl3 aqueous solution then in a 0.03 M of Na2S (the pH of Na2S 
solution was controlled between 7-8 adjusted with a 0.2 M solution of HCl) and finally in distilled H2O for 3, 5 and 
10 cycles. After the substrates were dried with N2 they were annealed at 200ºC/30 min.13 Characterization of the 
ZnO electrodes was carried out in a scanning electron microscopy (SEM, HITACHI-S-570), transmission electron 
microscopy (TEM, JEOL 2011 operated at 200 kV). X-ray powder diffraction analyses between 5 and 120 degrees 
were carried out in a XRD, RIGAKU Rotaflex RU200 B instrument, using CuKα1 radiation. Room-temperature 
photoluminescence (PL) measurements were made with a Kimmon IK Series He-Cd CW laser (325 nm and 40 
mW). Fluorescence was dispersed through an Oriel Corner Stone 1/8 74000 monochromator, detected with a 
Hamamatsu R928 photomultiplier, and amplified through a Stanford Research Systems SR830 DSP Lock-in 
amplifier.  

2.3 Solar cells fabrication and characterization 

Dye-sensitized solar cells (DSCs) were prepared: FTO/ZnONRs were first sensitized in a 0.5 mmol/L solution of 
N719 dye in ethanol at different times. Platinized FTO counter electrode was then bounded thermally together with 
the ZnO electrode using a hot melt sealing foil and a liquid electrolyte was used to fill the internal space between 
electrodes. For Polymer solar cells the ZnO electrodes were annealed first at 140°C for 5 minutes and then the 
organic solution P3HT:PCBM was spin-coated on top. The blend P3HT:PCBM concentration was 40:40 mg/mL in 
chlorobenzene. Different blend deposition speeds were used: 1500 rpm, 800 rpm, 400 rpm and 2 times 400 rpm 
(400 rpm + 400 rpm), the drops of the blend solution were first added and then the spin-coater was started. The 
following step was the PEDOT:PSS deposition at 1000 rpm and after an annealing process at 140°C for 5 
minutes.14 At the end the silver counter-electrode was deposited by vacuum evaporation at a ~10-6 Torr pressure. 
The extra active area from outside the silver deposited counter-electrode was scratched and cleaned with 
chlorobenzene and 2-propanol to remove the organic components. Active areas were around ~ 0.25-0.3 cm2 (after 
scratch), measured carefully for each cell. The solar simulation was carried out with a Steuernagel Solarkonstant 
KHS1200. Light intensity was adjusted at 1000W/m2 with a bolometric Zipp & Konen CM-4 pyranometer. 
Calibration of the sun simulator was made by several means applying a calibrated S1227-1010BQ photodiode from 
Hamamatsu and a minispectrophotometer from Ava-Spec 4200. The AM1.5G reference spectrum was according to 
ASTM G173 standard. IV-curves were measured using a Keithley 2601 multimeter connected to a computer and 
software. IPCE analyses were carried out with a QE/IPCE measurement System from Oriel at 10 nm intervals 
between 300 and 700 nm. The results were not corrected for intensity losses due to light absorption and reflection 
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3. RESULTS AND DISCUSSION 
 
3.1 Preparation of ZnO nanostructured electrodes 

Four different electrodes made of vertically-aligned ZnO nanostructures were prepared and applied in dye sensitized 
solar cells (DSCs) and polymer solar cells (PSCs): two types of bare ZnO nanorods (NRs), nanotrees (NT) and Core-
shell Nanorods (CS). The first two nanostructures are bare ZnO nanorods (NR) obtained by the standard low-temperature 
hydrothermal methods (LT-HM), also known as chemical bath deposition. All the synthesis conditions were optimized 
as described before.15 The same synthesis procedure was followed in order to obtain the second type of bare ZnO NRs, in 
this case, however, the ZnO NRs were obtained in a pressurized autoclave (A-HM). For comparison purposes of these 
two types of ZnO NRs, all synthesis conditions were kept the same and special emphasis was made to synthesize the 
NRs at the same periods of growth time. Thus, the main difference between the ZnO NRs obtained by the LT-HM and 
the A-HM is the reaction container that, in the first case is a glass reactor and in the second case a stainless steel 
autoclave reactor.16 Results show that, for the same reaction time, the ZnO NRs obtained by the A-HM method are 1/5 
times shorter in length than the ZnO electrodes obtained by the LT-HM, an indication of the great effect of the 
pressurized autoclave on NR dimensions. The latter is clearly observed on the SEM images of Figure 1. Figure 1 a-b 
correspond to the ZnO NR grown by the LT-HM and Figure 1c-d to NRs grown by the A-HM, grown for 6 h and 22 h 
respectively. Besides the clear difference in NR length, we can also observe a needle-tip morphology, and a more 
homogeneous distribution of NR diameter for the NR grown by the A-HM. X-Ray diffraction analyses (Figure 2a) 
together with TEM analyses (Figure 3a-f), revealed that the ZnO electrodes prepared by the LT-HM and A-HM methods 
show an hexagonal wurtzite crystalline structure. Important differences on surface defects were find by 
photoluminescence (PL) and time resolved photoluminescence (TRPL).16 Less surface defects were find on the ZnO NR 
obtained by the A-HM [16]. Lower surface defects imply less electron traps on the ZnO surface and thus less electron 
recombination is expected. Time-resolved photoluminescence (TRPL) technique also agreed with PL results: larger 
electron lifetime was observed for the ZnO NRs obtained by the A-HM electrodes (between 50 and 140 ps) compared to 
LT-HM electrodes (20-30 ps).16  
In order to obtain our third nanostructure, this is, the vertically-aligned ZnO nanotrees (NT), the reaction time of the A-
HM was increased up to 28 h. At this reaction time the NRs no longer grow vertically, but an open structure on the top of 
the NR is formed (See Figure 1e). The result is a vertically arrangement of nanotrees-like electrode characterized by 
nanorod shape on the bottom and an open structure on the top. The NTs can be seen as a nanostructure that can combine 
the good electron transport properties of NRs with the higher surface area of the top open structure. Thus an optimized 
nanostructure for light harvesting is obtained.   
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ZnO nanostructure. An improvement on power conversion efficiency was observed for the core-shell electrodes with 
values around 2% (See Figure 4 and Table 1).14    

 
Figure 4. Power conversion efficiency for the different vertically-aligned ZnO nanostructures applied in DSCs and PSCs: 
Nanorods (NRs) synthesized by the LT-HM and the A-HM methods, nanotrees (NT) and core-shell nanorods (CS).  

 

Table 1. Best performance obtained for DSC and PSC with ZnO nanostructured electrodes. Photovoltaic performance measured at 1.5 
AM at 1000 W·m-2. 

Type of 
Solar  Cell 

Growth 
Time 

Synthesis 
Method ZnO nanostructure Length 

(µm)
Voc 
(V)

Jsc 
(mA/cm2) 

FF 
(%) 

Efficiency 
(%)

Dye-
sensitized SC 

22h LT-HM Nanorods (LT_HM)  5.0 0.603 3.72 45 1.01 

22h A-HM Nanorods (A-HM) 1.0 0.705 3.50 50 1.24 

28h A-HM Nanotrees (NT) 3.0 0.656 6.15 38 1.53 

12 h SILAR Core-shell NRs (CS) 3.0 0.702 5.46 60 2.32 

Polymer SC 

6h LT-HM Nanorods (LT_HM)  1.6 0.493 9.65 32 1.51 

6h A-HM Nanorods (A-HM) 0.4 0.492 11.63 35 1.96 

28h A-HM Nanotrees (NT) 3.0 0.459 8.25 28 1.07 

6 h SILAR Core-shell NRs (CS) 0.4 0.548 10,37 31 2,14 

 

 

Figure 5 shows the IV-curves and IPCE analyses of DSC and PSC cells with all the different ZnO nanostructured 
electrodes. For the application of the ZnO nanostructures in DSCs (see Figure 5a) an improvement of the open circuit 
voltage (Voc) was observed when the ZnO electrodes were obtained by the A-HM in comparison with the LT-HM 
electrode. The response has been attributed to the different amount of the ZnO surface defects: larger amount of surface 
defects reduces Voc and FF. The application of electrodes made by ZnO nanotrees induce an increase in the current 
density (Jsc), attributed to the larger amount of dye adsorbed on the ZnO nanostructure and the increase in the light  
harvesting properties of the electrodes.  
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