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Abstract 

Oxy-fuel combustion is one of the leading options for power generation with CO2 

capture. The process consists of burning the fuel with a mixture of nearly pure oxygen 

and a CO2-rich recycled flue gas, resulting in a product flue gas from the boiler 

containing mainly CO2 and H2O. Among the possible boiler types, fluidised bed 

combustors are very appropriate for the oxy-fuel process because they allow the in-situ 

desulphurisation by feeding Ca-based sorbents into the combustor.  

In this work, the effect of the temperature of the combustor on the retention of the SO2 

generated in the combustion of two coals with very different sulphur content (a lignite 

and an anthracite) has been studied. The experimental facility used was a bubbling 

fluidised bed (BFB) combustor of ~3 kWth. Tests were conducted under oxy-fuel 

combustion mode and also under enriched-air combustion mode for comparison 

reasons. A Spanish limestone “Granicarb” was used as Ca-based sorbent for sulphur 

retention. The temperatures tested were between 800 and 970 ºC using Ca/S molar 

ratios between 0 and 3. 

It was found that in BFB combustors operating under oxy-fuel combustion conditions 

the optimum temperature to achieve the highest sulphur retention was 900-925 ºC, 

whereas operating with enriched air the optimum combustion temperature was 850-870 

ºC. Working at the optimum temperature, the SO2 retentions were lower in oxy-fuel 
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combustion than in enriched air combustion conditions. It was also observed that 

working with lignite there was 10-15% of sulphur retention by coal ashes, however, 

working with anthracite the sulphur retention by coal ashes was negligible. This finding 

was independent of the combustion mode used, oxy-fuel or enriched air. 

 

1. Introduction 

The emission of gases into the atmosphere from burning fossil fuels, mainly coal, in 

large power plants causes important environmental problems. The CO2 produced in 

combustion process has been recognised as one of the major contributors to the build-up 

of greenhouse gases in the atmosphere and, in addition, sulphur in coal is oxidised to 

SO2, which contributes to acid rain formation. 

The capture and storage of CO2, emitted in large quantities from power plants, is 

considered an option to be explored in the medium term for reducing CO2 levels 

released to the atmosphere. Oxy-fuel combustion is one of the possibilities under 

investigation within the different options for CO2 capture [1-3]. This technology uses 

for combustion pure O2 (instead of air used in conventional combustion) mixed with 

CO2-rich recycled flue gas, and so, the flue gas stream from the boiler finally produced 

is highly concentrated on CO2. After condensing water and a cleaning step, the CO2 can 

be stored. 

Among the possible boiler types, fluidised bed (FB) combustors are very appropriate for 

the oxy-fuel process because they allow the in-situ desulphurisation of the flue gas by 

feeding Ca-based sorbents into the combustor, such as limestone or dolomite. This 

could be an advantage since sulphur containing species mean a risk of corrosion and 

could have impacts in the furnace, during ash collection, CO2 compression, transport 

and storage [4,5]. Other well known advantages are the possibility of burning a wide 

range of fuels and the relatively low NOx emissions achieved [6-7]. It is also believed 

that oxy-fuel circulating fluidised bed (CFB) combustors could be an important 

candidate for new coal fired power plants, mainly because the circulation of solids in 

the combustor can help to an effective control of the temperature [5-11]. This will 

permit the use of high oxygen concentrations in the combustor, thus reducing the area of 

the CFB combustor, as well as the amount of recycled flue gas, thus reducing the size of 

some subsequent equipments and power consumption [10]. Other important advantage 



 3

is the efficiency improvement, mainly due to the strong mixing in the furnace and 

longer residence times of solids that allows a good carbon burnout. 

The development of the oxy-fuel combustion technology in CFB combustor is currently 

growing. Alstom [10], VTT and Foster Wheeler [11], Metso [12], Czestochowa 

University of Technology [7], and Canmet Energy [5,8,9,13] have experimented in oxy-

fuel combustion with CFB combustors at scales up to 4 MWth. The Fundación Ciuden 

[14] in Spain is developing two plants able to operate from conventional air combustion 

to oxy-fuel combustion. One is a 20 MWth PC boiler and the other is a CFB combustor 

of 15 MWth operating in air-mode and 30 MWth operating in oxy-mode. The research 

group of Canmet Energy [8-9] is involved in testing a CFB combustor of 100 kWth with 

flue gas recycle. Operating at ~850 ºC, they found lower sulphation in oxy-fuel 

combustion than in air combustion conditions, but the sulphation improved working 

with a petroleum coke by increasing the operation temperature, that is, changing from 

direct to indirect sulphation. However, the same effect was not confirmed working with 

coals. Recently this group has successfully converted and operated a conventional 0.8 

MWth pilot-plant to oxy-fuel firing [5,13]. Their results strongly support the view that 

this technology offers all of the advantages of air-fired CFB. However, the test 

experiences showed that operating the pilot-scale unit over a long period under oxy-fuel 

mode led to enhanced corrosion due to higher sulphur concentrations in the flue gas [5]. 

SO2 concentration under oxy-fuel mode was up to four times higher compared to air 

firing mode. They concluded that limestone performance for sulphur removal was 

impacted by the combustion mode, and that this impact depended on fuel characteristics 

as well as on combustion temperature. 

Our research group have recently carried out several tests in a thermogravimetric 

analyser (TGA) and in a batch fluidised bed reactor to analyse the behaviour of 

limestones for SO2 retention under oxy-fuel operating conditions [15-16]. We found 

that the major effect of increasing the CO2 concentration in the reacting gas was to shift 

the CaCO3 decomposition to CaO until a higher temperature. The higher temperature 

needed to work in conditions of indirect sulphation with increasing CO2 contents had a 

negative influence on the sulphation conversion reached by the limestones. It was 

concluded that the optimum temperature for sulphur retention in oxy-fuel combustion 

mode in FB reactors was incremented up to ~925 ºC from the 850 ºC normally used at 

conventional air combustion conditions. This conclusion seems in good agreement with 
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the results found by Canmet Energy working in its CFB combustors [5,9]. However, 

more work should be carried in continuous fluidised bed reactors to confirm this 

conclusion. 

The objective of this work was to determine the optimum operating temperature to 

achieve the maximum sulphur retention in fluidised bed reactors working under oxy-

fuel operating conditions. Tests were carried out in a continuous bubbling fluidised bed 

(BFB) combustor (~3 kWth) operating with limestone under calcining or non calcining 

conditions. Two coals of different rank and sulphur content were used. The effect of 

Ca/S molar ratio with respect to the sorbent sulphation process was also analysed. 

  

2. Experimental section 

2.1. Materials 

Two Spanish coals, an anthracite and a lignite with a high sulphur content, were 

selected for this study. Both coals were crushed and sieved, and the particle size in the 

range of 0.2-1.2 mm was used. Table 1 gives the proximate and ultimate analyses of the 

coals. Sulphur in coal can exist in both inorganic and organic forms. The inorganic 

sulphur is mostly pyrite and/or marcasite, together with small amounts of sulphates 

depending on the level of oxidation of the coal. The organic sulphur exists either in 

aromatic rings or in aliphatic functional groups. The distribution between organic and 

pyritic sulphur depends on the rank and total sulphur content of the coal [17]. The 

release of the sulphur to form SO2 in the oxy-fuel combustion process can depend on 

the sulphur distribution. So, it is also included in Table 1 the different forms of the 

sulphur and the composition of the coal ashes. In this case, all the sulphur present in the 

anthracite was as pyritic form meanwhile sulphur present in lignite was distributed in 

three forms. The analysis of the ashes shows that both coals contained some CaO, 

which could contribute to the reduction of the SO2 emissions. 

For sulphur capture tests, a high purity Spanish limestone “Granicarb” (97.1 wt.% 

CaCO3) was used as Ca-based sorbent. Table 2 gives the analysis of the Granicarb 

limestone. Particle size of the limestone was in the range of 0.3-0.5 mm. The porosities 

of the raw and after calcination sorbent were 3.7 % and 49 %, respectively. 
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In addition, inert silica sand of size 0.2-0.6 mm was fed together with the coals and the 

limestone during all the tests to decrease the residence time of the sorbent in the 

fluidised bed reactor, as it will be commented later.  

 

 

2.2. Experimental installation 

The experimental installation of ~3 kWth consisted of a fluidised bed combustor and 

different auxiliary systems for gas supply, solid feeding, solid recovering, and gas 

analysis. Figure 1 shows a schematic diagram of the installation. 

The combustor consisted of a stainless steel reactor of 10 cm i.d. and 60 cm height and a 

freeboard of 15 cm i.d. and 50 cm height. The height of solid in the BFB was 

maintained constant at 40 cm. A heat exchanger located inside the bed allowed us the 

perfect control of temperature. This heat exchanger could be moved vertically through 

the reactor, modifying the contact surface inside the bed and extracting the needed heat 

from the combustor to reach the desired temperature.  

The reactant gases, air, CO2, and O2, were supplied from bottles by mass-flow 

controllers to simulate typical gas compositions entering into the reactor in oxy-fuel 

combustion conditions. These gases were fed into the reactor through a distributor plate. 

A linear gas velocity of 40 cm/s (calculated at 850 ºC) at the inlet of the bed was used 

during all the tests. An air pre-heater allowed introducing hot air inside the reactor 

during the start-up of the plant. 

The solids were fed to the reactor by means of water-cooled screw feeders located just 

above the distributor plate. To assure a constant Ca/S molar ratio, coal and sorbent were 

fed together by means of two screw feeders in series: the first one controlled the 

coal/sorbent feeding rate and the second one introduced the solid mixture as quick as 

possible into the bed to avoid the coal pyrolysis and the plugging of the pipe. Other 

screw feeder controlled the sand fed to the combustor. 

The flue gas stream leaving the combustor passed through a high efficiency cyclone to 

recover the elutriated solids, and then was sent to the stack. The gas composition at the 

exit of the combustor was analysed continuously after water condensation by on-line 

gas analysers. CO2, CO and SO2 concentrations were measured in a Non-Dispersive 
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Infra-Red analyser (NDIR, Siemens/Ultramat 23), and O2 concentration in a 

paramagnetic analyser (Siemens/Oxymat 6). 

The facility was equipped with pressure sensors and thermocouples to know the 

pressure drop and temperatures along the installation. General process data 

(temperatures, pressures, mass flow of gases, gas composition, etc.) were continuously 

recorded by a computer.  

 

2.3. Procedure 

For star-up, the bed was filled with ~1.8 kg of sand. Figure 2 shows the typical 

evolution of temperature and gas composition during the start-up of the installation until 

reaching stable operating conditions. Hot air was introduced through the gas pre-heater 

to heat the bed up to the ignition temperature of the coal (~400 ºC). At this temperature, 

the coal feed started and the bed temperature rose rapidly due to the combustion of the 

coal. Neither sand nor sorbent was fed during this step. During this step, O2 

concentration decreased and CO2, CO, and SO2 appeared as combustion products. CO 

concentration was high at the lowest temperatures, due to the bad combustion, but as the 

temperature went on the CO concentration decreased. When the temperature set point 

was reached and the initial charge of coal (without limestone) spent, the sand and the 

coal/limestone mixture were fed into the bed, the preheating system was turn off, the air 

was replaced by the desired O2/CO2 or O2/N2 mixture, and the heat exchanger was 

introduced into the bed to control the temperature. The total time for the start-up of the 

plant was about 3-4 hours. Once stable operating conditions were reached, these 

conditions were maintained until reaching steady state operation for SO2 retention. This 

aspect will be commented in detail later. 

The SO2 retention (SR) was calculated by equation (1) as the molar fraction of sulphur 

retained by the bed solids with respect to the sulphur fed into the bed. 
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being F0,coal the feeding coal rate, xS,coal the coal sulphur content, MSO2 the molecular 

weight of SO2, CSO2 the SO2 concentration in the flue gas, and Q the gas flow rate at the 

exit of the reactor. The SO2 concentration was considered as an average value of those 

measured along the whole duration of the test in steady state conditions. Q was 
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calculated by means of a mass balance, considering the coal and gas flow rates fed to 

the combustor and the flue gas composition. 

 

2.4. Steady state conditions for SO2 retention. 

An important feature of the tests carried out in continuous units is the certainty that the 

results are obtained under steady state conditions. In our installation, considering the 

fluidised bed dimensions, the coal and limestone feeding rates (with a Ca/S molar ratio 

of 3 and without feeding sand), and assuming that the coal ashes are not elutriated out of 

the combustor, the mean residence time of solids in the bed was estimated by equation 

(2) to be about 7 hours when operating with anthracite and 4 hours with the lignite. 

limestoneash

bed
R FF

W
(h)t


  (2) 

Of course, the mean residence time of non-elutriable solids will be higher when the 

Ca/S molar ratio would be lower than 3 and because an important fraction of ash will be 

elutriated out of the combustor and collected by the cyclone (this fact was observed in 

the experiments). So, mean residence times between 5 and 20 hours, or even higher, 

would be normal for typical tests in our installation. 

To be sure that steady state conditions have been reached, it is considered that the 

weight of solids fed to the bed should be at least 2-2.5 times the weight of solids 

existing in the bed, which gives operating times of 10-50 hours, out of our experimental 

possibilities. To reduce the mean residence time of the solids inside the fluidised bed up 

to about 2 hours, 0.9 kg/h of sand was fed into the reactor in all of the tests. In this way, 

after reaching stable conditions, the steady state for SO2 retention was reached in 4-5 

hours and maintained at least for 1 hour for each experimental data. 

 

3. Results 

Coal combustion tests with and without limestone addition were carried out in a BFB 

combustor working in oxy-fuel combustion conditions with oxygen concentrations at 

the inlet of 27 and 35 vol.% O2. In addition, similar experiments were also carried out 

under enriched air conditions to know the effect of the reaction atmosphere. 
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Tables 3 and 4 summarize the experiments carried out with the two coals including the 

operating conditions (temperature, Ca/S molar ratio, and O2 concentration), as well as 

the O2 in the flue gas and the SO2 emissions measured in each case. These data 

correspond to the average values recorded during at least 1 hour working under steady 

state operation, which gives a total of about 50 hours in steady state and about 300 

hours of total continuous operation in the plant (including the time to reach the steady 

state).  

To calculate both the SR and the power developed by the facility, a combustion 

efficiency of 100 % has been considered. This simplification was made because the 

carbon combustion efficiencies determined by solid analysis were always >99 % 

working with the lignite and >98 % working with the anthracite. These combustion 

efficiencies were determined in the tests carried out without limestone addition taking 

into account the carbon fed to the combustor and the losses of carbon in the solids 

collected in the cyclone and in the solids collected in the drainage deposit. 

 

3.1. Influence of temperature. 

In practice, FB combustors are usually operated in the 800-950 ºC range, under overall 

oxidising conditions [18]. Some researchers [19-20] have found that the optimum 

temperature for sulphur retention was nearly 850 ºC under conventional air combustion 

in FB combustors. These operating conditions are characterised by low CO2 

concentrations in the flue gas (up to 16%). However, the CO2 concentration in oxy-fuel 

operating conditions is significantly higher than in air combustion, up to 90%, which 

will affect to the Ca-based sorbent behaviour inside the bed. 

When a Ca-based sorbent is added to a FB combustor, temperature is one of the most 

important parameters affecting the SO2 retention process because sorbent calcination is 

highly dependent on the temperature and CO2 concentration through the thermodynamic 

equilibrium curve of CaCO3 calcination, as it can be observed in Figure 3.  

The conditions existing in FB combustors during conventional combustion with air lead 

to a previous sorbent calcination (R1) and to the sulphation of calcines (R2), i.e. indirect 

sulphation: 

 CaCO3      CaO  +  CO2 (R1) 
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 CaO  +  SO2  +  ½ O2     CaSO4 (R2) 

In oxy-fuel combustion, CO2 concentration in the flue gas may be enriched up to values 

as high as 90%. Therefore, the sorbent can be surrounded by CO2 concentrations 

ranging from 40 to 90 % during their stage in the FB reactor. Under so high CO2 

concentrations, the sorbent can behave in two ways depending on the temperature (see 

Figure 3). At 850 ºC, the sulphur retention will be produced under direct sulphation 

(R3), being necessary higher temperatures to operate under indirect sulphation (R1 and 

R2). 

 CaCO3  +  SO2  +  ½ O2     CaSO4  +  CO2 (R3) 

To analyse the effect of temperature on SR, several tests were carried out maintaining 

constant the Ca/S molar ratio and the O2 concentration at the inlet of the reactor. Tables 

3 and 4 give the SO2 emissions measured in the tests and Figure 4 shows the effect of 

temperature on SR for the two coals working with enriched air and in oxy-fuel 

combustion conditions.  

Working with enriched air, the SR increased with increasing temperature up to a 

maximum of 850-870 ºC for both coals and then, a further increase in temperature 

caused a decrease in SR values. These results are in accordance with other authors who 

affirm the existence of a maximum sulphur capture efficiency at about 850 ºC working 

in atmospheric FB combustors systems under air combustion conditions [18]. Lin [21] 

has summarised several of the reasons proposed as responsible of this maximum which, 

include: sorbent sintering at high temperatures, resulting in lower porosity and surface 

area, hence reducing the overall conversion of the limestone; SO2/SO3 equilibrium 

determines the maximum, with higher temperatures reducing the availability of SO3 for 

reaction with CaO; and high temperatures enhances sulphation rate which causes small 

pores to become blocked preventing the entry of SO2/SO3 to the inner part of the 

calcined limestone particle. 

Comparing the results obtained working with air and under oxy-fuel operating 

conditions, it is clear that oxy-fuel combustion conditions shift the maximum in SR 

from ~850 to 900-925 ºC. These results are in good agreement with the results obtained 

in previous works of our research group where the sulphur retention capacity of the 

limestone “Granicarb” was analysed in a TGA and in a batch FB reactor under different 

operating conditions [15-16]. In these works, it was found that the effect of the 
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temperature was different for the direct and indirect sulphation reactions. In direct 

sulphation or non-calcining conditions, the sulphation reaction rate rose with increasing 

the temperature (until reach calcining conditions). On the contrary, in conditions of 

indirect sulphation or calcining conditions, the sulphation reaction rate increased with 

increasing the temperature up to 900-925 ºC and then decreased. The sulphation 

conversions achieved under indirect sulphation were always higher than those achieved 

under direct sulphation. As shown in Figure 3, the high partial pressure of CO2 in oxy-

fuel shifts the decomposition of CaCO3 to higher temperatures. Therefore, at 

temperature of 850 ºC under oxy-fuel combustion leads to direct sulphation, being 

necessary temperatures higher than 900 ºC to be indirect sulphation. As a consequence, 

the maximum sorbent conversion was reached at temperatures about 900-925 ºC. 

It can be also seen in Figure 4 that operating at the optimal temperature for each case, 

enriched air or oxy-fuel, the SR obtained in oxy-fuel combustion was lower than that 

obtained in enriched air combustion conditions, probably because the higher 

temperature needed for the sorbent calcination caused an increase of the sinterisation of 

the limestone. 

Figure 5 shows a comparison between the SR obtained working at the same operating 

conditions with the lignite and the anthracite. It can be observed that the behaviour of 

the limestone was qualitatively similar with both coals, but higher SR values, and so 

higher limestone sulphation conversions, were achieved working with the lignite. It has 

to be noted that lignite and anthracite have very different sulphur content, being much 

higher that of lignite (see Table 1). Previous studies carried out under oxy-fuel 

combustion conditions in a TGA [15] and in a batch FB reactor [16] demonstrated that 

the sulphation conversion of the sorbent increased as the SO2 concentration increased. 

The higher SO2 concentration present in the FB combustor during lignite combustion 

was therefore the responsible of the higher SR values achieved in the plant with this 

coal.  

 

3.2. Influence of the Ca/S molar ratio 

As it is well know, the utilisation of Ca-based sorbents for SR in FB boilers is not 

complete due to the pore blockage produced by CaSO4 formation. In the typical 

operating conditions used in FB combustors, the sulphation reaction usually takes place 
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at the external surface and around the pores of the sorbent particles. Since the molar 

volume of CaSO4 is higher than the molar volume of CaCO3 or CaO, the pores are 

blocked and the inner part of the particles remains essentially unsulphated [18]. This is 

usually valid for both direct and indirect sulphation. Therefore, an important parameter 

in the SR process is the Ca/S molar ratio used in the combustor. This Ca/S molar ratio 

has to be necessarily higher than 1 in order to achieve a significant SO2 retention. 

Figure 6 compares the SR achieved working with the lignite and the anthracite under 

oxy-fuel operating conditions at different Ca/S molar ratios. As expected, an increase in 

the Ca/S molar ratio produced a higher SR in all range of temperatures studied. The 

effect of the temperature was similar for the different Ca/S molar ratios used, with 

maximum values at 900-925 ºC.  

When a Ca-based sorbent is fed into a combustor, the SR is normally attributed to the 

effect of the sorbent. However, it is known that not all the sulphur contained in the coal 

is emitted as SO2 either because it is already in sulphates form [17] or because coal 

ashes retain part of the SO2 released [22-24]. 

In this work, to know the real SO2 emissions derived from the combustion of the coals 

used, and to determine therefore the retention capacity of the coal ashes, combustion 

experiments without limestone addition (Ca/S=0) were performed at different 

temperatures both in oxy and enriched air mode. The results obtained are shown in 

Figures 6 and 7. It can be observed that all the sulphur contained in the anthracite was 

emitted as SO2 during its combustion; however, a part of the sulphur contained in the 

lignite was not emitted as SO2. It seems that some of the SO2 generated during the 

combustion of the lignite was retained by its ashes, as it will be commented later. In 

addition, the SR produced by the coal ashes was almost the same working with enriched 

air and under oxy-fuel combustion conditions.  

In the experiments carried out with the lignite, the SR produced by coal ashes was 

around 10-15%, and slightly decreased with increasing the temperature. Taking into 

account the ash content and the CaO present in the coal ashes (see Table 1), the 

maximum SR that can be achieved by this CaO was calculated to be 18 %. Therefore, 

the utilization of this CaO was around 60-80 %, probably because part of the CaO was 

elutriated with the ashes out of the combustor. In the case of the anthracite, the SR 

produced by ashes was negligible. However, taking into account the ash content and the 

CaO present in the coal ashes in this coal, it was calculated that the maximun retention 
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that can be achieved by this CaO would be 38 %. Therefore, it seems that the Ca present 

in the ashes is not in a form able to retain sulphur.  

To analyse these results in more detail, ashes of both coals were produced in a muffle 

oven to study their capacity for SR. Samples of these ashes were introduced in a TGA, 

heated at 900 ºC, and then CO2/O2/SO2 was fed to simulate typical oxy-fuel operating 

conditions. The lignite ashes increased 10.5 % in weight, whereas the anthracite ashes 

did not increase in weight. Both results are in accordance with the experimental results 

obtained in the BFB combustor.   

 

3.3. Effect of mean residence time of the limestone 

Some previous works on sorbent sulphation with long reaction times [15,25] have 

demonstrated that the residual activity of the sorbents after pore plugging can be very 

important. However, as it was previously commented in the experimental section, an 

important feature of the tests carried out in this work was the certainty that the results 

were obtained under steady state conditions. For that, 0.9 kg/h of sand was fed into the 

reactor in all of the tests. At these conditions, the mean residence time of the solids 

inside the fluidised bed was about 2 hours. However, average residence times in 

industrial FB combustors are clearly much higher than those used here, with values as 

high as 10-20 hours [26-28].  

To analyse the effect on the SR of the mean residence time of the limestone in the 

combustor, two tests were carried out with both coals at 925 ºC. For that, after reaching 

steady-state conditions with a mean residence time of the solids of 2 hours, the sand 

feeding was diminished from 0.9 to 0.2 kg/h to increase the residence time of the solids 

inside the bed. Figure 8 shows the evolution of the SO2 concentration during these tests. 

It can be observed that an important decrease in the SO2 concentration was obtained as a 

consequence of the increase of the sorbent inventory in the bed as well as the increase of 

the residence time of the sorbent. However, it must be remarked that in these tests the 

steady-state was not achieved and no quantitative data can be obtained, although the 

trend is clear. 

Figure 9 shows the sorbent sulphation conversion obtained in a TGA in a previous work 

as a function of the reaction time working with the Granicarb limestone (dp=0.3-0.5 

mm, 3000 vppm SO2, 900 ºC, and 60 vol.% CO2) [15]. Considering this plot as 
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representative of the sorbent sulphation pattern exhibited by the limestone in the BFB 

combustor, an important increase in sorbent sulphation (ΔX) can be achieved by 

increasing the residence time as it would be usual in industrial FB combustors. 

It can be concluded therefore that the results showed in this paper are very useful from a 

qualitatively point of view to determine the optimum operating temperature working 

under oxy-fuel combustion in FB with respect to the SR process. However, it is 

expected that the SR achieved in industrial units would be higher than those obtained in 

this work. So, tests of increasing solids residence time in the combustor under steady 

state conditions would be needed to confirm this issue. 

 

4. Conclusions 

Combustion tests were carried out in a ~3 kWth continuous BFB combustor with two 

coals and one limestone as sulphur sorbent under oxy-fuel and enriched-air combustion 

conditions to optimise the operating temperature with respect to the sulphur retention 

process in FB combustors. 

It was found that sorbent calcination had a strong effect on SO2 retention under oxy-fuel 

combustion conditions. The SO2 retention was higher working at calcining (indirect 

sulphation) than at non-calcining (direct sulphation) operating conditions. The optimum 

FB combustor temperature from of point of view of SR shifted from 850-870 ºC in 

combustion with enriched air to 900-925 °C in oxy-fuel combustion mode. Working at 

the optimum temperature for each combustion mode, the SO2 retentions obtained in 

oxy-fuel combustion were lower than those obtained under air combustion. 

As it is obvious, an increase in the Ca/S molar ratio produced an increase in SO2 

retention in all range of temperatures. In addition, an important effect of coal ashes on 

SO2 retention was determined for the lignite, meanwhile the SO2 retention achieved by 

the anthracite ashes was negligible.  

The results showed in this paper are very useful from a qualitatively point of view to 

determine the optimum operating temperature working under oxy-fuel combustion in 

FB with respect to the SO2 retention process. However, it is expected that the SO2 

retention achieved in industrial units with longer residence time of solids would be 

higher than those obtained in this work. 
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Captions for Figures  

Figure 1. Oxy-fuel Bubbling Fluidised Bed Combustor at ICB-CSIC. Measurements of 

temperature (T) and pressure (P). 

Figure 2. Temperature and gas composition evolution during the start-up of the 

installation until reaching stable operating conditions. 

Figure 3. Thermodynamic equilibrium curve of CaCO3 calcination. 

Figure 4. Comparison between the sulphur retentions obtained working under enriched 

air and oxy-fuel operating conditions in the BFB combustor. Calcining and non-

calcining conditions in oxy-fuel combustion determined by thermodynamic equilibrium 

with the gas inlet composition. 

Figure 5. Effect of temperature on the sulphur retention with Granicarb limestone under 

oxy-fuel operating conditions. Ca/S=3; O2/CO2= 35/65. Calcining and non-calcining 

conditions determined by the thermodynamic equilibrium with the gas inlet 

composition. 

Figure 6. Effect of the Ca/S molar ratio on the SO2 retention working with lignite and 

anthracite in oxy-fuel combustion conditions at different temperatures. *(O2/CO2:35/65) 

Figure 7. Sulphur retention by coals ashes at different temperatures working with 

enriched air (circles) and oxy-fuel (triangles) combustion conditions. 

Figure 8. Effect of the residence time of solids in the BFB on the SO2 emissions. 925 

ºC, O2/CO2=35/65, Ca/S=2 

Figure 9. Sulphation conversion of the Granicarb limestone in a TGA during long 

reaction time. dp=0.3-0.5 mm, 3000 vppm SO2, 900 ºC, and 60 vol.% CO2 
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Table 1. Analysis of coals and its ashes. 

 

 Coals 
 Lignite Anthracite 
   
Proximate analysis (wt %)  
Moisture 12.6 1.0 
Ash 25.2 31.6 
Volatiles 28.7 7.6 
Fixed C 33.6 59.9 
Ultimate analysis (wt %, dry)
C 45.43 59.64 
H 2.50 1.67 
N 0.65 0.93 
S 5.17 1.52 
     Sulphate 1.05 0.02 
     Pyritic 1.76 1.50 
     Organic (by diff.) 2.36 0.00 
   
LHV* (kJ/kg) 16252 21807 
  
Ash Composition (wt%)  
    Al2O3 24.81 24.93 
    CaO 6.54 2.73 
    Fe2O3 20.05 10.22 
    K2O 1.38 4.18 
    MgO 1.44 1.84 
    Na2O 0.15 0.94 
    SiO2 41.00 51.47 
    TiO2 0.80 0.94 

                                *Low Heating Value. 
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Table 2. Limestone characteristics. 

 

Composition (wt %)  
CaCO3 97.1 
MgCO3 0.2 
Na2O 1.1 
SiO2 <0.1 
Al2O3 <0.1 
Fe2O3 <0.1 
  
Porosity (%)  

Raw 3.7 
Calcined* 49 
  

         * Calcined in N2 atmosphere at 900 ºC during 10 minutes. 
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Table 3. Tests carried out and experimental results obtained under oxy-fuel operating 

conditions. 

 
 

Exp. Ca/S T (ºC) 
O2 / CO2 

 (%)  

O2 in 
flue gas 
(% d.b) 

SO2 
emitted  

(ppm/kWth) 

Power 
(kWth) 

Lignite       

OX-1 0 800 27 / 73 3.9 3028 2.4 
OX-2 0 850 27 / 73 3.8 3050 2.4 
OX-3 0 900 27 / 73 3.9 3147 2.4 
OX-4 0 950 27 / 73 3.1 3234 2.5 
OX-5 2 800 27 / 73 3.8 2439 2.4 
OX-6 2 850 27 / 73 3.0 2180 2.5 
OX-7 2 900 27 / 73 3.7 1486 2.4 
OX-8 2 925 27 / 73 3.7 1427 2.4 
OX-9 2 950 27 / 73 3.7 1782 2.4 

OX-10 2 925 35 / 65  3.6 1405 3.2 
OX-11 3 850 35 / 65 5.0 1843 3.1 
OX-12 3 875 35 / 65 4.1 1196 3.2 
OX-13 3 900 35 / 65 3.8 770 3.2 
OX-14 3 925 35 / 65 3.5 828 3.2 
OX-15 3 950 35 / 65 4.3 1123 3.2 

Anthracite       
OX-16 0 850 35 / 65 4.3 778 3.4 
OX-17 0 900 35 / 65 3.9 771 3.5 
OX-18 0 950 35 / 65 3.8 795 3.5 
OX-19 2 850 35 / 65 4.3 592 3.4 
OX-20 2 900 35 / 65 3.8 351 3.5 
OX-21 2 925 35 / 65 3.6 332 3.5 
OX-22 2 945 35 / 65 3.7 400 3.5 
OX-23 2 970 35 / 65 3.6 507 3.5 
OX-24 3 820 35 / 65 4.0 585 3.5 
OX-25 3 850 35 / 65 3.8 533 3.5 
OX-26 3 875 35 / 65 3.6 408 3.5 
OX-27 3 900 35 / 65 3.5 293 3.5 
OX-28 3 900 35 / 65 3.4 266 3.5 
OX-29 3 925 35 / 65 3.5 305 3.5 
OX-30 3 925 35 / 65 3.7 268 3.5 
OX-31 3 940 35 / 65 3.6 330 3.5 
OX-32 3 950 35 / 65 3.2 369 3.6 
OX-33 3 970 35 / 65 3.7 437 3.5 
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Table 4. Tests carried out and experimental results obtained under enriched air 

operating conditions. 

 

Exp. Ca/S 
T  

(ºC) 
O2 / CO2 

(%) 

O2 in  
flue gas 
 (% d.b) 

SO2 emitted 
(ppm/kWth) 

Power 
(kWth) 

Lignite       
A-1 0 800 27 / 73 5.0 2974 2.3 
A-2 0 850 27 / 73 4.0 3153 2.4 
A-3 0 900 27 / 73 4.7 3227 2.3 
A-4 0 950 27 / 73 4.0 3096 2.4 
A-5 2 800 27 / 73 4.4 1238 2.3 
A-6 2 850 27 / 73 4.6 932 2.3 
A-7 2 900 27 / 73 4.5 1179 2.3 
A-8 2 925 27 / 73 4.6 1533 2.3 
A-9 2 950 27 / 73 3.3 1895 2.4 

Anthracite       
A-10 0 850 35 / 65  3.6 780 3.5 
A-11 0 900 35 / 65 3.7 782 3.5 
A-12 3 820 35 / 65 4.0 447 3.5 
A-13 3 850 35 / 65 3.8 176 3.5 
A-14 3 870 35 / 65 3.6 174 3.5 
A-15 3 920 35 / 65 3.7 238 3.5 
A-16 3 970 35 / 65 3.6 360 3.5 
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Figure 1. Oxy-fuel Bubbling Fluidised Bed Combustor at ICB-CSIC. Measurements of 

temperature (T) and pressure (P). 
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Figure 2. Temperature and gas composition evolution during the start-up of the 

installation until reaching stable operating conditions. 
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Figure 3. Thermodynamic equilibrium curve of CaCO3 calcination. 
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Figure 4. Comparison between the sulphur retentions obtained working under enriched 

air and oxy-fuel operating conditions in the BFB combustor. Calcining and non-

calcining conditions in oxy-fuel combustion determined by thermodynamic equilibrium 

with the gas inlet composition. 
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Figure 5. Effect of temperature on the sulphur retention with Granicarb limestone under 

oxy-fuel operating conditions. Ca/S=3; O2/CO2= 35/65. Calcining and non-calcining 

conditions determined by the thermodynamic equilibrium with the gas inlet 

composition. 
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Figure 6. Effect of the Ca/S molar ratio on the SO2 retention working with lignite and 

anthracite in oxy-fuel combustion conditions at different temperatures. *(O2/CO2:35/65) 
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Figure 7. Sulphur retention by coals ashes at different temperatures working with 

enriched air (circles) and oxy-fuel (triangles) combustion conditions. 
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Figure 8. Effect of the residence time of solids in the BFB on the SO2 emissions. 925 

ºC, O2/CO2=35/65, Ca/S=2 
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Figure 9. Sulphation conversion of the Granicarb limestone in a TGA during long 

reaction time. dp=0.3-0.5 mm, 3000 vppm SO2, 900 ºC, and 60 vol.% CO2 


