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Abstract 

In the recently developed Chemical-Looping Combustion (CLC) technology, the oxygen 

needed for the oxidation of the fuel is provided by an oxygen-carrier. Today, there is an 

increasing interest on CLC application to solid fuels, especially coal. One of the possibilities 

to process coal in a CLC system is the in situ gasification and subsequent combustion of the 

product gases (iG-CLC). Potential CLC oxygen-carriers should comply with some chemical 

and mechanical requirements but it would be interesting that the carrier is as inexpensive as 

possible, as some losses are expected accompanying the coal ashes. In the present work, a 

residue from alumina production mainly constituted by Fe2O3 has been tested as oxygen-

carrier in CLC of coal. Batch experiments were carried out in a fluidized-bed reactor using a 

bituminous coal as fuel. The effect of operating conditions, such as temperature and 

gasification agent on the char conversion and combustion efficiency of gasification products 

were evaluated. Several H2O/CO2 mixtures were tested as gasifying agents. After 50 hours of 

cycling operation in a batch fluidized bed, no defluidization or agglomeration problems were 

observed. A gain in the reactivity of the bauxite waste was observed with the number of 

redox cycles. The carrier showed high combustion efficiencies at all temperatures tested 

meaning that the bauxite waste was capable of burning the gases generated during the 

gasification of the char. The percentage of CO2 in the feeding should be limited in order to 

maintain high gasification rates and combustion efficiencies. The present results indicate that 

this bauxite waste is a promising oxygen-carrier for the iG-CLC of coal. 
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1. Introduction 

 

The world electricity demand is expected to grow more strongly in the coming years than any 

other final form of energy [1]. Today, the fuel of choice for electricity generation is often coal 

and it is also expected to remain an increasingly important fuel in the near future while the 

shares of renewables expand [2]. The evidences of global warming have focus attention on 

the CO2 emissions to the atmosphere from the combustion of fossil fuels. Both the emissions 

and the coal share of the emissions are expected to increase toward 2030 for the world as a 

whole [1]. Therefore, many research efforts are focused on the CO2 emission minimization in 

coal combustion. Since electricity generation plants are stationary, they are considered as an 

easier target for reducing CO2 through Carbon Capture and Storage CCS [3].   

 

CCS is a process consisting in the separation of CO2 from industrial and energy-related 

sources, its transportation to a storage location and long-term isolation from the atmosphere. 

One of the challenges for the success of CSS is to reduce the costs related to CO2 capture [4]. 

The Chemical-Looping Combustion (CLC) technology allows combustion with inherent CO2 

separation at low cost [5]. The main idea of CLC is to split combustion of a carbonaceous 

fuel into separate oxidation and reduction reactions by introducing a suitable metal oxide as 

an oxygen-carrier to circulate between two reactors called fuel- and air-reactors.  

 

The feasibility of this process has been demonstrated in different CLC prototypes up to 140 

kWth using gaseous fuels and oxygen-carriers based on nickel, cobalt, manganese and copper 

oxides [6-12]. In the recent years, CLC applied to solid fuels has gained great interest [13]. 

Up to date, two approaches have been proposed for CLC with coal. In the first one (syngas-

CLC), coal gasification is carried out and the syngas produced subsequently introduced in the 
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CLC system [13-15]. The second possibility (solid fuelled-CLC) is the direct feeding of the 

coal to the reactor where it may be either gasified by H2O or CO2, i.e  in situ Gasification-

Chemical-Looping Combustion (iG-CLC) [16], or it will be burned with gaseous oxygen 

released by the oxygen-carrier, i.e. Chemical-Looping with Oxygen Uncoupling (CLOU) 

[17].  

 

The reaction between fuel and oxygen-carrier takes place in the fuel-reactor where the 

oxygen-carrier is reduced while the fuel is oxidized. As shown in Figure 1, in the iG-CLC, 

coal is physically mixed with the oxygen-carrier in the fuel-reactor and the carrier reacts with 

the gaseous products of coal gasification, where H2 and CO are main components. The 

gasification process has been identified as the controlling step in the iG-CLC concept [18]. 

Reactions (1)-(4) summarize the processes taking place in the fuel-reactor: 

 

Coal → volatiles + char                                                                                                           (1) 

Char + H2O → H2 + CO                                                                                                          (2) 

Char + CO2 → 2 CO                                                                                                                (3) 

H2, CO, volatiles + n MxOy → CO2 + H2O + n MxOy-1                                                           (4) 

 

The product gas from the fuel-reactor consists of CO2 and H2O. Water can be easily separated 

by condensation leading to a high CO2 concentrated stream, ready for compression and 

sequestration, without additional costs or energy penalties for gas separation.  

 

In the air-reactor, the oxygen-carrier is regenerated following reaction (5): 

 

MxOy-1 + ½ O2 → MxOy                                                                                                           (5) 
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The net chemical reaction and combustion enthalpy is the same as in a conventional 

combustion. The circulation rate of the solid material between the reactors and the average 

solids residence time in each reactor control the heat balance and the temperature levels in 

each reactor. 

 

The efficiency of char gasification in the fuel-reactor and the separation of ash from the 

oxygen-carrier seem to be key factors for the development of this process. Unconverted char 

leaving the fuel-reactor will burn when exposed to air in the air-reactor, according to equation 

(6) and therefore decreasing the carbon capture efficiency.  

 

C + O2 → CO2                                                                                                                         (6)  

 

One option to reduce the char amount reaching the air-reactor is to increase the residence 

time of char particles in the fuel-reactor. In order to increase the residence time without 

excessively increasing the reactor size, the separation of char from oxygen-carrier particles 

and recirculation to the fuel-reactor by means of a carbon separation system has been 

proposed as shown in Figure 1 [16].  

 

Moreover, the development of appropriate oxygen-carriers will determine the success of the 

CLC technology. Besides the common chemical and mechanical properties demanded for an 

oxygen-carrier, in CLC of coal it is especially interesting to find inexpensive oxygen-carriers, 

as there might be losses of material during ash separation. Lately, different Fe-based ores [19-

34] and industrial by-products [19,26,35] have been evaluated as oxygen-carriers for iG-

CLC. Among the different Fe-based oxygen-carriers tested, the use of the natural ore ilmenite 

has been extensively analyzed. Ilmenite is a natural mineral composed of FeTiO3 (FeO·TiO2). 
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Through the different studies, ilmenite showed highly reactive to CO and H2 but moderate 

conversion of CH4 [20,36]. Good mechanical stability and fluidizing properties for this 

material have also been observed. Several studies in different experimental configurations 

have analyzed the main variables influencing the process. Leion et al. [27] observed that the 

coal gasification reaction was slow when compared to the reaction of the oxygen-carrier with 

the gasification products (CO and H2). Actually, other batch fluidized-bed studies with coal 

also pointed to a high reactivity of different Fe-based oxygen-carriers to H2 and CO generated 

in coal gasification [21,37-38]. Therefore, the gasification of the fuel can be considered as the 

limiting step of the process [21,27]. Steam was preferred as gasification agent to CO2, since 

the gasification rate was higher. The resulting combustion efficiency was therefore higher 

when gasifying with high H2O/CO2 molar ratio [21]. Besides these works, the iG-CLC 

concept using low-cost Fe-based materials has been recently proven during continuous 

operation in CLC units ranging from 500 Wth to 10 kWth [22-25,30-31,39-40]. Good 

performance with different Fe-based carriers was described. CO2 capture efficiencies ranged 

60-96% depending on the reactivity of the solid fuel used. 

 

This work focuses on the evaluation of a Fe-based industrial residue as oxygen-carrier for 

CLC of coal, as the use of residues represents an interesting advantage both from the 

environmental point of view and the economy of the process. The residue used is an 

industrial by-product in the alumina production containing a high amount of iron. It is 

obtained after bauxite digestion in the Bayer process and is generated in a very large quantity, 

around 55 to 70% of the bauxite processed [41-43]. The active material in the bauxite waste 

is Fe2O3 and it is present mainly together with Al2O3. In previous studies by our research 

group, the behaviour of this bauxite waste for CLC with different gaseous fuels was analyzed 

[44]. The bauxite waste showed a good performance in the combustion of syngas [44]. 
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Regarding the use of the bauxite waste in coal combustion, the performance of the carrier was 

evaluated in two consecutive steps. First, the reactivity of the potential oxygen-carrier to the 

main gases generated in coal gasification was evaluated in a recent work [35]. The bauxite 

waste reacted faster with H2 than with CO and CH4. Nevertheless, the reaction rates observed 

were similar to those of a synthetic Fe2O3/Al2O3 oxygen-carrier [45] and higher than the 

corresponding values found for ilmenite [20]. Besides, the fluid dynamics properties of the 

bauxite waste were adequate for the operation in a fluidized-bed. Now in this work, the 

reaction of the bauxite waste with the char formed during coal gasification was tackled and 

analyzed. The effect of operating conditions, such as temperature (900-980ºC) and 

gasification agent (H2O, CO2 or H2O/CO2 mixtures) on the char conversion and combustion 

efficiency of gasification products was analyzed in a batch fluidized-bed reactor. The 

activation of the bauxite waste samples under several reducing/oxidizing cycles using char 

will be also investigated. 

  

2. Experimental 

 

2.1 Materials used 

 

The Fe-based oxygen-carrier used in this work corresponds to the sand fraction obtained in 

the alumina production via de Bayer process. In this process, the majority of the aluminum-

containing species in the ore are dissolved leaving an insoluble residue. In the clarification 

step, the sand fraction (particles over 150 µm) is separated and the rest sent to sedimentation 

tanks, where the smallest particle fraction (red mud) is deposited. This Fe-based sand fraction 

was supplied by Alcoa Europe-Alúmina Española S.A. It will be referred to as bauxite waste 

throughout this paper.  The bauxite waste was dried at room temperature for 72 hours and 
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then sieved to the desired size (150-300 µm). Prior to its use, the dried sample was calcined at 

1200ºC during 18 h to ensure complete oxidation of the sample and to increase the 

mechanical strength. 

 

The main chemical and physical properties of the calcined material are shown in Table 1. The 

active Fe2O3 content was determined in a TGA using 15% H2 at 950ºC, and therefore, this 

percentage corresponds to the amount of iron reducible species, which are the species to take 

part in the chemical-looping process. The identification of crystalline chemical species was 

carried out by powder X-ray diffraction (XRD) patterns acquired in an X-ray diffractometer 

Bruker AXS D8ADVANCE using Ni-filtered Cu Kα radiation equipped with a graphite 

monochromator. The XRD analysis of the calcined sample confirmed that Fe2O3 and β-Al2O3 

were the major components. The composition of the sample was determined by an ICP Jobin 

Ybon 2000 apparatus. The weight percentages obtained were 75.2 % Fe2O3, 13.6 % Al2O3, 

6.5 % TiO2, 2.0 % SiO2, 2.3 % Na2O and 0.4 % CaO. The force needed to fracture a particle 

was determined using a Shimpo FGN-5 crushing strength apparatus. The value for the 

mechanical strength was estimated as the average of 20 different measurements on randomly 

selected particles. The values obtained for the calcined samples resulted adequate for 

operating in a circulating fluidized-bed (CFB) [46]. Particle porosity was measured by Hg 

intrusion in a Quantachrome PoreMaster 33. The real density of the particles was measured 

with a Micromeritics AccuPyc II 1340 helium picnometer. Brunauer-Emmett-Teller (BET) 

surface area value was measured and a low value was obtained.  

 

Samples before and after reaction were analyzed using a scanning electron microscope SEM 

EDX Hitachi S-3400 N equipped with an EDX analyzer Röntec XFlash de Si(Li).  
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The oxygen transport capacity, RO, is defined as the mass fraction that can be used in the 

oxygen transfer.  

 

o

ro
O m

mm
R


                                                                                                                          (7) 

 

where mo and mr are the mass of fully oxidized and reduced bauxite waste sample, 

respectively. 

 

The value of the oxygen transport capacity, RO, depends on the final oxidation state after 

reduction.  Although iron compounds have different oxidation states (Fe2O3–Fe3O4–FeO–Fe), 

only the transformation from hematite (Fe2O3) to magnetite (Fe3O4) may be applicable for 

industrial CLC systems. Further reduction to FeO would decrease the CO2 purity obtained in 

the fuel-reactor due to the increase of CO and H2 concentrations in the equilibrium [45]. 

Besides, it has been demonstrated that the reduction to FeO may lead to agglomeration in the 

subsequent oxidation process [36,47]. Therefore, the value of the oxygen transport capacity 

in this case, ROC, corresponds to the transformation to only Fe3O4. 

 

As mentioned before, char from a bituminous South African coal was used as fuel in the 

experiments. Char was produced when around 300 g of coal particles sized 200-300 µm were 

devolatilizated in a fluidized-bed reactor using N2 as fluidizing agent. The bed operated in the 

bubbling bed regime through the whole experiment in order to avoid elutration of particles.  

Temperature was increased from room temperature to 900ºC using a heating rate of 

20ºC/min. Once the temperature was reached, the heat supply was stopped and the sample 

was cooled down in nitrogen. Table 2 shows the proximate and ultimate analyses of the coal 

and the char obtained. The yield to char was around 70 wt. %. 
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2.2 Thermogravimetric apparatus (TGA)  

 

The reactivity of the bauxite waste was analyzed in a thermogravimetric apparatus (TGA) CI 

Electronics type operating at atmospheric pressure. A detailed description of this apparatus 

has been presented before [48]. In all the experiments, 50 mg of oxygen carrier particles were 

loaded on a platinum basket. The system was heated in nitrogen up to the desired 

temperature. To analyze the activation process of this material, different samples were 

extracted from the batch fluidized-bed reactor after sucessive cycles and analyzed in the 

TGA. Depending on the ratio H2O/H2, the reduction of Fe2O3 can finish in one of the above 

mentioned products (Fe2O3–Fe3O4–FeO–Fe). In order to obtain Fe3O4 as stable reduced 

phase, the H2O/H2 ratio must be higher than 2.8 [45]. Therefore, the reducing mixture 

employed was 5% H2 + 40% H2O, with nitrogen to balance. For steam addition, the gas flow 

was bubbled through a saturator containing water at the required saturation temperature. All 

the experiments were carried out at 950ºC. During the solid oxidizing period, the particles 

were regenerated in air at the same temperature as the reduction took place. 

  

The conversion for the reduction, Xr, and oxidation, Xo, of the oxygen carrier were calculated 

from the mass variations registered in TGA as: 

 

oOC
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
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                                                                                                        (8) 
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where m is the instantaneous mass of the sample. For the calculation of the conversion, a 

value of ROC = 2.4 % was considered in all cases. 

 

2.3 Batch fluidized-bed (FB) 

 

Figure 2 presents the scheme of the experimental setup which has also been used in previous 

works of our research group [21]. The bauxite waste sample was placed inside the fluidized-

bed reactor (FB). The amount loaded was 400 g. The FB reactor was 0.055 m I.D and 0.7 m 

in length, with a pre-heating zone under the distributor, and was located inside an electrically-

heated furnace. Both temperature and pressure drop in the bed were measured. The changes 

in the pressure drop help to detect possible agglomeration problems in the bed. 

 

Gases were fed at the bottom of the reactor. By means of a three-way-valve, it was possible 

to switch between water vapour/CO2, nitrogen and air so that the sample was sequentially 

exposed to reducing, purge and oxidation periods. Water vapour was produced by heating up 

in an evaporator the corresponding water flow supplied by a peristaltic pump.  

 

Air was supplied as fluidizing agent while heating up to the desired temperature. Once the 

reaction temperature was reached, a nitrogen flow purged the system before the experiment 

started. During the reducing periods, char was used as fuel whereas the reactor was fluidized 

with water vapour, CO2 or water vapour/CO2 mixtures, which also acted as gasification 

agents. The coal char was fed at about 5-6 cm below the upper level of the fluidizing particles 

using a fuel chute. As it can be seen in Figure 2, the char particles were placed in a deposit in 

the upper part of the chute (v1) and overpresussurized with nitrogen (v2). The amount 

introduced was in a range of 6.1-9.2 molar O/C ratio, which corresponds to 1-1.5 g of char. 
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This amount was estimated as the highest amount to be introduced with no major fuel 

entrainment. At the beginning of the experiment, the valve connecting the deposit with the 

fuel chute (v3) was quickly opened and closed so that the char particles were introduced. This 

procedure ensures an efficient char feeding inside the oxygen-carrier bed, favouring the 

mixing between the fuel and solid material used as bed. The reducing period was considered 

finished when char gasification was complete. After every reducing period, the oxygen 

carrier particles were fully re-oxidized with air before starting a new cycle. Between the 

reducing and oxidizing periods a nitrogen flow purged the system during 2 min to avoid 

mixing gaseous atmospheres. The total flow used was 200 LN/h, which corresponds to a gas 

velocity of 0.1 m/s at 900ºC in the reactor. 

 

The product gas leaving the reactor was conducted to a filter that retained the solids that may 

elutriate during reaction. Before entering the analyzers, the product gas flowed through a 

condenser to eliminate water prior to analysis. At this point 90 LN/h nitrogen flow was 

introduced to ensure a continuous dry gas flow feeding the analyzers. The dry gases 

concentration were continuously registered and collected with a data logger connected to a 

computer. CO, CO2 and CH4 dry basis concentrations were determined using non-dispersive 

infrared analysis (NDIR) and H2 by thermal gas conductivity. The O2 concentration was 

determined in a paramagnetic analyzer. 

 

The effect of temperature and fluidization gas composition on the reaction rates of 

gasification and subsequent combustion of gasification products was analyzed, as well as the 

role of bauxite waste during char gasification. The temperature was varied in the 900-980ºC 

range. Different H2O:CO2 molar ratios were used (0:100, 10:90, 30:70; 100:0). The same 

batch of particles was exposed to a total number of 40 reduction/oxidation cycles (50 hours). 
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The morphology and reactivity of the bauxite waste samples extracted at different operation 

times were also evaluated using different techniques. 

 

2.4. Data evaluation 

 

Mass balances to carbon, hydrogen and oxygen were done considering the CO, CO2, H2, H2O 

and CH4 flows in every experiment. From the results obtained, the performance of bauxite 

waste during char gasification and combustion of gasification products was evaluated. The 

molar gas flow of each component exiting the fuel-reactor, Fi, is calculated as: 

 

iouti yFF                                                                                                                            (10) 

 

where yi is the molar fraction of the component i (CO2, CO, H2 or CH4) in the product gas. 

 

The total dry basis outlet flow, Fout, can be calculated by using the downstream introduced N2 

flow, 
2NF :  

 





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





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F

1

2                                                                                                                  (11) 

 

The rate of char conversion, rC(t), was calculated from a carbon balance to gaseous species in 

the reactor. Methane was not detected in any case and therefore was not considered in the 

balance. 
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inCOoutCOCOC FFyytr ,22
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The evolution of char conversion, Xchar, with time can be calculated by integrating equation 

(12). 
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where NC,char are the moles of carbon fed into the reactor.  

 

The instantaneous rate of conversion of the char, rC,inst, is calculated as the rate of gasification 

per the amount of non-gasified carbon in the reactor.  
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The time to convert 95% of the char present in the bed, (t95), was determined, as an 

estimation of the residence time to mostly convert the char in the reactor [21,27,38]. In order 

to calculate this value it was assumed that the gasification reaction can be represented using 

the homogeneous model: 

 

dt
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m
r char
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11
,                                                                                (15) 

 

From equation (15), the value for t95 can be calculated as: 
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t                                                                                                        (16) 

 

The rate of oxygen transferred from the oxygen-carrier to the fuel gas, )(tr
redO , can be 

calculated through the  oxygen balance: 

 

][]2)2([)( ,2,2,22,, inOHoutOHinCOCOCOoutinOoutOredO FFFyyFFFtr               (17) 

 

In equation (17) the amount of CO2 fed to the reactor is subtracted in order to calculate the 

amount of CO2 generated. Several assumptions were made in order to simplify the equation. 

According to the values presented in Table 2 the amount of hydrogen and oxygen present in 

the fuel is very low and therefore it was not considered in the mass balances The flow of 

water at the reactor exit was calculated assuming that the flow of hydrogen either in H2 or 

H2O comes only from introduced steam, inOHF ,2
, and neglecting hydrogen in char moisture. 

 

2,2,2 HoutinOHoutOH yFFF                                                                                                (18) 

 

Including all the previous assumptions in equation (17), it is reduced to: 

 

inCOHCOCOoutredO FyyyFtr ,222
2)2()(                                                                    (19) 

 

The oxygen carrier conversion in the fluidized-bed was analyzed by the oxidation conversion, 

XO, during both reducing and oxidizing periods. Thus, during reduction the oxidation 

conversion can be calculated from the integration of rO(t) with time as: 
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where NO,bw are the moles of oxygen in bauxite waste active for CLC process: 

 

O

OCOC
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
,                                                                                                                (21) 

 

where MO is the oxygen molar weight. 

 

During the oxidation period, the oxygen-carrier was re-oxidized in air. The rate of oxygen 

transfer from air to the reduced solid is calculated in this case as: 

 

)(2)(
,2,2,, outOinOinOoutOoxiO FFFFtr                                                                        (22) 

 

and the oxygen-carrier conversion during oxidation is calculated as: 

 

  t
O

bwO
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)(                                                                                  (23) 

 

where Xf,red is the conversion reached by the bauxite waste in the previous reduction. 

 

Finally, the conversion of gasification products, i.e. CO and H2, to CO2 and H2O by reaction 

with the bauxite waste particles was evaluated using the combustion efficiency, ηC. The 

combustion efficiency is defined as the oxygen gained by the fuel for its oxidation divided 

per the oxygen needed to fully oxidize the fuel.  
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3. Results and Discussion 

 

3.1 Activation of the bauxite waste sample 

 

The activation process of minerals or industrial residues have been previously reported in the 

literature both using gaseous [19-20,26,36,49,50] and solid fuels [21]. In this sense, the 

activation of the bauxite waste sample with gaseous fuels was evidenced in a previous work 

[35]. In this work, the activation of the bauxite waste using coal char as fuel was first 

analyzed in the batch fluidized-bed reactor. The experiments were performed at 900ºC and 

using steam as fluidizing/gasifying agent. In each reducing cycle, two loads of 1 g char were 

added so that the variation of the solid conversion achieved was about 0.4.  Figure 3 shows 

the product gas concentration (wet basis and nitrogen free) at the exit of the reactor together 

with the solid conversion evolution in a typical reduction cycle using two consecutive loads 

of char and steam as gasifying agent. The reduction step was considered finished when the 

char was completely gasified and therefore no CO or CO2 were detected in the outlet stream.  

 

In Figure 3, after the addition of the first char load, the CO2 concentration increases to a 

maximum value of 3% and then decreases as the amount of char in the bed also decreases. No 

CO or H2 were detected during this first reduction, indicating that the material was capable of 

completely burning all the gases generated during char gasification. The variation of oxygen 

carrier conversion during this first period is 0.18. A second char load was added after the 

gasification of the first one was completed. Again, a similar maximum in CO2 concentration 
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was observed and then the value of the concentration decreased as the char was depleted and 

no CO or H2 were present. The variation of the oxygen carrier conversion increased up to a 

final value of 0.36.  

 

After the reduction period, the gaseous atmosphere was switched to nitrogen for two minutes. 

Then, the bauxite waste was re-oxidized using air at the same temperature used during 

reduction. During the first stages of oxidation, all the oxygen was consumed due to the high 

reactivity of the bauxite waste material to oxygen. After that, the oxygen concentration 

increased up to the initial value. No CO or CO2 were detected during the oxidation, meaning 

that no char remained in the bed.  

 

This experimental procedure was repeated during 23 consecutive cycles. As an activation of 

this material was found in a previous work in a TGA [35], it is believed that the activation of 

the sample takes place along these redox cycles. As shown in Figure 3, the bauxite waste 

sample was capable of burning all the gases generated during char gasification in all the cases 

and only CO2 was observed in the product gases. Therefore, it was not possible to determine 

from the gas product distribution if the activation process was underway. To analyze this 

activation process, some samples were extracted from the oxygen-carrier bed at different 

stages (1st, 4th, 8th, 15th, 23rd cycles). The reactivity of the samples extracted from the 

fluidized-bed at different cycles was analyzed instead in the TGA. Figure 4 shows the 

evolution of both the reduction (Xr) and oxidation (Xo) conversion with time for the 

experiments performed with the samples extracted from the FB reactor after the 1st, 4th, 8th, 

15th and 23rd FB cycle. The dashed lines are used as reference and they represent the 

reactivity obtained with a calcined and fully activated sample in the TGA.  
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According to the conversion curves obtained in Figure 4, the bauxite waste increases its 

reactivity with the number of redox cycles performed with coal char, but after 23 redox 

cycles it has not reached fully activation both for reduction and oxidation reactions. The 

activation seems therefore to be slower than the previously observed when using gaseous 

fuels [35]. Using H2 as reducing agent, the sample could be considered fully activated after 

three cycles. In experiments with CO or CH4, full activation was observed after 20 cycles. 

These differences in the activation process were attributed to the different conversion degree 

obtained in each reducing cycle depending on the gas used. The higher the conversion 

obtained the fewer the cycles needed to fully activate the sample. A similar explanation 

would justify the results shown in Figure 4. The variation in the bauxite waste conversion 

achieved during cycling reduction with char was 0.4 at the most. Higher conversion degrees 

were obtained using gaseous fuels in the TGA [35]. Therefore, the activation of the sample 

using coal char would require more redox cycles. Figure 4 also shows with a dotted line the 

results corresponding to the bauxite waste sample extracted from the bed at the end of the 

experiments presented in this work (40th cycle). The conversion rate for reduction is slightly 

higher than the observed in the 23rd cycle, but still very close to it. The gain in reactivity was 

higher for the oxidation reaction when the 23rd and 40th redox cycles are compared, but even 

in this case the conversion rate value is not the corresponding to a completely activated 

sample. The number of redox cycles performed in order to evaluate the effect of different 

operating parameters are not high enough in number to represent a significant progress in the 

further activation of the sample. Therefore, the experimental work here presented was carried 

out with a batch of partially activated sample, but maintaining roughly constant its reactivity.  

 

3.2. Char gasification in the presence of bauxite waste  
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To determine the extent of the influence of the bauxite waste on the char gasification, the 

same experiment was performed using the bauxite waste and an inert bed, in this case silica 

sand. At 900ºC and using steam as fluidizing agent, a load of 1.5 g of char was introduced 

into the bed. The experiment was considered finished when all the char was gasified. Figure 5 

plots the CO, CO2 and H2 molar flows generated during char gasification both in bauxite 

waste and in a silica sand bed together with the conversion evolution with time. Figure 5(A) 

shows that during char gasification using a silica sand bed, H2 and CO were produced in a 

CO/H2 molar ratio which oscillated between 0.4-0.6 through the experiment. CO2 was also 

generated through the water-gas-shift reaction (WGS), although the equilibrium was not 

reach in these experimental conditions: 

 

CO + H2O ↔ CO2 + H2                                                                                                         (25) 

  

The CO, CO2 and H2 molar flow values decreased with the char conversion, as the char 

remaining in the bed also decreases. If bauxite waste is the material present in the bed, no H2 

and CO were observed at the outlet of the reactor. Once generated, both H2 and CO react with 

the bauxite waste particles to produce CO2 and H2O, which are the main gases present in the 

outlet stream. The H2 and CO removal from the gasification products reduced the inhibition 

effect that both gases, especially H2, could have on the gasification process [51]. Similar 

conclusions were reached before in previous studies using Fe-based oxygen carriers 

[21,38,52]. The decrease in the inhibition of char gasification can be observed in Figure 5 

(B), where the char conversion evolution with time is represented for both sand and bauxite 

waste experiments. Considering the same reaction time, the char conversion values observed 

for the experiment using bauxite waste are around 2 times higher than those for the 
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experiment with sand. Therefore, char gasification proceeds faster using bauxite waste as bed 

material.  

 

3.3 Dilution of the bauxite waste bed 

 

3.3.1 Influence of temperature 

 

Some experiments were performed at different temperatures, namely 900, 950 and 980ºC, 

with steam as gasifying agent. In this case, only one load of 1.5 g of char was introduced as 

fuel. In all the cases, the gaseous exit stream was again mainly composed of CO2 and steam. 

The bauxite waste was able to oxidize the CO and H2 generated during char gasification. The 

solid conversion reached in the reduction period was 0.22 in the experiment at 900ºC and 

around 0.4 for the rest of the temperatures tested.  

 

Figure 6 presents the values for the instantaneous rate of char conversion as a function of the 

char conversion at the different temperatures analyzed. The char conversion rate increased 

with temperature, confirming the findings of other authors which previously reported the 

notable influence of temperature on the gasification process [21,27,38]. The char conversion 

rate increased with char conversion at all temperatures tested. An average value for the char 

conversion rate could be calculated for the char conversion interval 0.1-0.7. The values are 

presented in Table 3. For comparison purposes, the values obtained using ilmenite as oxygen 

carrier are also presented [21]. The average values obtained for the bauxite waste are slightly 

higher than those obtained with activated ilmenite, although the value of the O/C molar ratio 

was higher in the case of ilmenite. In the experiments with ilmenite, CO and H2 were 

registered in significant amounts in the gaseous products, while CO2 and H2O were the only 
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products in the experiments with bauxite waste. Therefore, the lower rate values observed for 

ilmenite may be explained due to the gasification inhibition mainly caused by the hydrogen 

presence.  

 

In the experiments above described, complete combustion of gasification products was 

reached when 400 g of bauxite waste were used. This means that complete combustion could 

be also reached with lower amount of solids. As the amount of char introduced could not be 

increased if entrainment of significant amounts of char should be avoided, the partially 

activated bed was diluted in alumina to reduce the O/C molar ratio, so that the bauxite waste 

sample was not capable of burning all the gases generated during char gasification. In this 

way, the lower limit of the oxygen carrier inventory to get complete combustion can be 

evaluated. In order to analyze the char gasification and subsequent combustion processes, the 

total mass of the bed was maintained in 400 g and the dilution used was 50:50 (wt %) bauxite 

waste in alumina, which corresponds to a O/C ratio of 3.1. 

 

The influence of temperature on the char gasification in the presence of bauxite waste was 

also tested with the 50:50 bauxite/alumina bed in the 900-980ºC range. Figure 7 (A) shows 

the instantaneous rate of char conversion for the different temperatures tested using steam as 

fluidizing agent. For a certain char conversion interval, the conversion rate remained 

constant. This interval corresponds to 0.2-0.8 at 900 and 950ºC and 0.35-0.8 for the highest 

temperature tested. The averaged rates of char conversion in these intervals, were 10.4 %/min 

at 900ªC, 27.4 %/min at 950ºC and 41.9 %/min at 980ºC, so the char conversion rate was 

around four times higher at 980ºC compared to the value at 900ºC. Table 3 shows the values 

obtained for the char conversion rates at different temperatures and compares them with the 

previous results from the non-diluted bed and with ilmenite. Using steam as gasifying agent, 
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the averaged values obtained at 900ºC were lower than those observed for the bauxite waste 

without dilution. This is attributed to the presence of small amounts of CO and specially H2, 

which act inhibiting the char gasification process.  The values for the diluted bed are similar 

to those of ilmenite, where also CO an H2 were detected in the outlet gases, although the 

amount of available oxygen in the bauxite waste was around a third of that present with the 

ilmenite. Therefore, it can be concluded that there is not a significant effect of the amount of 

oxygen-carrier present in the fluidized-bed as long as CO and H2 concentrations in the 

gaseous atmosphere are low. 

 

The influence of temperature on the char gasification was also evaluated using CO2 as 

fluidizing/gasifiying agent. The use of CO2 as gasifying agent in iG-CLC processes could 

represent an interesting advantage from the energetic point of view, as it would contribute to 

decrease the energy penalty associated to steam generation. Experiments were performed at 

the same temperatures as the experiments using steam. Figure 7 (B) presents the evolution of 

the instantaneous rate of char conversion with the char conversion for the experiments at the 

three different temperatures. Note the different axis scale used compared to Figure 7 (A). The 

increase in temperature leads to an increase in the char conversion rate. The average values of 

the instantaneous char conversion rate calculated for the experiments using CO2 are included 

in Table 3. Average values were calculated for the different temperatures: 2.1 %/min at 

900ºC, 3.4 %/min at 950ºC and 6.6%/min at the highest temperature, 980ºC. The gasification 

of the South African coal char using CO2 is slower than using steam. The values observed 

using steam at the same conditions were 5-8 times those reported above. At the highest 

temperature tested, the values observed for ilmenite [21] and the bauxite waste become quite 

similar as can be observed in Table 3, despite the different amount of available oxygen in the 

bed. At lower temperatures the gasification rate was lower with bauxite waste because more 
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unconverted CO was obtained than with ilmenite. To complete the char gasification 

comparison using different gasifying agents with the two Fe-based carriers, namely ilmenite 

and bauxite waste, the time to convert 95% of the char, t95, is shown in Table 3. The most 

favourable condition for a low residence time of the char particles in the reactor was the use 

of high temperatures. At 980ºC with the diluted bauxite waste bed, 95% of the char fed was 

converted in 7.1 minutes using steam as gasifying agent while, if it is replaced by CO2, the 

char needs 45.4 minutes to reach the same conversion level.  Besides, assuming an Arrhenius 

type temperature dependence of the gasification rate constant, the value for the apparent 

activation energy could be calculated, both for the experiments using steam or CO2 as 

fluidizing/gasification agents. For the experiments using steam, a value of 210 kJ/mol was 

estimated and for the case using CO2, the apparent activation energy was 164 kJ/mol.  

 

In order to evaluate the bauxite waste performance in the combustion of the char gasification 

products, both using steam and CO2 as gasifying agents, the combustion efficiency defined 

by equation (24) was represented in Figure 8 versus de oxygen-carrier conversion. According 

to the results in Figure 8 (A), the combustion efficiency was high at all the temperatures 

tested gasifying with steam. Moreover, in the conversion interval 0-0.3 the efficiency values 

were similar and higher than 0.97 in all cases. This could be attributed to the high reactivity 

of bauxite waste to H2, one of the main gases generated in char gasification, at all the 

temperatures tested. The efficiency decreases as the oxygen-carrier conversion increases, as 

there is less oxygen available to complete H2 and CO combustion and therefore these gases 

escape from the bauxite waste bed as unburnt products. The efficiency values observed in 

Figure 8 (B) correspond to those obtained in experiments with CO2 at different temperatures. 

In this case, the combustion efficiency increases with temperature, from values close to 0.8 at 

900ºC to reach values close to 0.9 in the experiment at the highest temperature tested, i.e. 
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980ºC. These results highlight the increase in the bauxite waste reactivity to CO with 

temperature, as this gas is the main product in char gasification with CO2 according to 

equation (3). Similarly to what was observed in the experiments with steam, the value of the 

combustion efficiency decreases as the amount of oxygen transferred by bauxite waste to the 

gases decreases. The efficiency values obtained in this work are higher than those previously 

obtained by our research group in experiments with ilmenite [21]. Working with ilmenite, 

combustion efficiencies oscillated between 0.89 (900ºC) and 0.95 (1000ºC) using steam. The 

values for char gasification in CO2 were also lower, ranging from 0.59 at 900ºC to 0.65 at 

1000ºC. These results confirm the higher reactivity of bauxite waste in the iG-CLC process 

compared to ilmenite. The higher reactivity will decrease the solids inventory needed to 

achieve adequate gasification rates and combustion of the gasification products when 

compared to ilmenite. 

 

3.3.2 Effect of the gasifying agent 

 

According to the results showed above in Figures 7 and 8, the use of CO2 as gasifiying agent 

implies both a significant reduction in the char gasification rate and the combustion 

efficiency values, as the bauxite waste is not as reactive to CO as it is to H2. But still, the 

introduction of certain amount of CO2 in the gasifying stream could be economically 

beneficial if a steep decrease in the efficiency of the process is avoided. Therefore some 

experiments were conducted with the diluted bauxite waste bed using different H2O:CO2 

molar ratios in the gaseous stream, i.e. 50:50, 70:30 and 90:10. The experiments were 

conducted at two different temperatures, 900 and 980ºC.  
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Figure 9 shows the instantaneous rate of char conversion as a function of char conversion 

using different H2O:CO2 molar ratios in the feeding stream at 900ºC and 980ºC, respectively. 

As a reference, experiments with only steam or CO2 as gasifying agent have been also 

included. In both Figures 9 (A) and (B), the rate of char conversion increases as the molar 

ratio H2O:CO2 increases. The values obtained at the highest temperature were around four 

times the values obtained at 900ºC. Table 4 summarizes the average values for the rate of 

char conversion determined for the different experiments and compares them with the values 

obtained in similar experiments at 900ºC using ilmenite as oxygen carrier [21,27]. At 900ºC, 

the values obtained for the different mixtures were similar for both oxygen carriers, although 

the amount of oxygen available in the experiments was lower than in the case of ilmenite.  

 

The time values for the char conversion to reach 0.95 (t95) were calculated using equation 

(16) for both temperatures and plotted versus the H2O percentage in the gasification feed in 

Figure 10. The time to almost completely gasify the introduced char decreases with the 

increase in the percentage of steam fed. The decay is steeper for 900ºC, but at both 

temperatures tested, the differences between the t95 values tend to be small for steam 

percentages higher than 50%. At the highest temperature tested (980ºC), the t95 values for 

steam percentages higher than 50% were similar (12.5, 10, 8.1 and 7.1 min for 50, 70, 90 and 

100% H2O, respectively). Therefore, regarding the gasification efficiency, it would be 

possible to operate with H2O:CO2 molar ratios close to 50:50. Nevertheless, not only high 

gasification efficiencies but also high combustion efficiencies of the gasification products are 

desired in order to optimize the performance of the iG-CLC process. Figure 11 presents the 

corresponding averaged values for the combustion efficiencies (C) in the experiments with 

H2O and CO2 mixtures. The averaged combustion efficiency increases as the steam 

percentage in the feed increases at both temperatures. However, and in order to reach 
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combustion efficiencies higher than 0.95, the amount of CO2 introduced should not exceed 

30%, according to the experimental conditions presented in this work.  

 

An experiment was also conducted in order to analyze if the solid-solid reaction between the 

bauxite waste and char was contributing in some extent to the char conversion. For that 

purpose, the fluidizing agent used was nitrogen. The bauxite waste was heated up to 900ºC 

and a load of 1.5 g of char was introduced. The product stream was analyzed during 120 min 

and no significant amounts of carbonaceous products (CO, CO2) were detected. Therefore it 

was concluded that the solid-solid contribution to the carbon conversion was negligible in 

this case, similarly to what was found before by other authors [21,38,52]. Char gasification 

must proceed as an intermediate step in the coal conversion process using bauxite waste as 

oxygen carrier. 

 

3.4 Fluidization behaviour and structural changes in bauxite waste particles 

 

The bauxite waste sample used in this work was subjected to several consecutive redox 

cycles at high temperature in the batch fluidized-bed previously described. No defluidization 

or agglomeration problems were detected at any time during the experiments performed. The 

total operation time was 50 hours. In a previous work, good fluidization properties of this 

material were observed [35]. Here no influence on the bauxite waste fluidizing properties was 

observed under the experimental conditions in this work, i.e. when the oxygen carrier 

particles are in contact with ashes coming from coal. 

 

After this time, the bauxite waste sample was extracted and analyzed in order to determine 

the possible structural changes undergone by it. The most interesting conclusions can be 
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obtained from the SEM images and EDX profiles for Al and Fe of fresh and used particles 

shown in Figure 12. No ash particles from the char used were observed stuck to the bauxite 

waste particles. According to the SEM pictures, some morphological changes were observed 

in the particles. The bauxite waste has increased its porosity after several cycles using char as 

fuel. Besides, there is a change in the Al and Fe distribution throughout the particle. In the 

calcined sample, the surface seems to be alumina-enriched. After operation in the FB, the 

EDX analysis revealed a more homogenous distribution of both metals through the particle.  

 

3.5 Discussion 

 

The experiments showed in this work were carried out in a batch fluidized-bed reactor. The 

gasification rates and combustion efficiencies were obtained with two different O/C molar 

ratios. In this section, these results will be used in order to estimate the solids inventory in the 

fuel reactor of a CLC system that allows complete combustion of the gasification products 

and a determined value of char conversion in the reactor. 

 

From the reactivity data obtained in this work, an estimation of the solids inventory in the 

fuel-reactor (mFR) in an iG-CLC system can be done according to the following equation: 

 

fixed
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


,

                                                                                                             (26) 

 

where mO is the stoichiometric oxygen (kg) needed per kg of carbon introduced to the system, 

LHV corresponds to the low heating value of the coal, Cfixed is the percentage of fixed carbon 

in the coal and rO,inst represents the experimental value of  the rate of oxygen transfer  by the 
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oxygen-carrier to the fuel at different reaction conditions (kg/s) per kg of oxygen-carrier. The 

solids inventory (mFR) represents the amount of solids to burn the gasification products per 

MWth of fuel. The combustion of volatiles from coal is not considered at this point, because 

the experiments were carried out with char. 

 

For the South African coal used in this work, the value of mO can be estimated as 2.69 kg 

oxygen/kg carbon. The low heating value of the South African coal was 25500 kJ/kg. The 

highest value for rO,inst was obtained at the highest temperature tested (980ºC) and using 

steam as gasifiying agent. Two different values have been obtained in this work, one 

corresponding to the non-diluted bauxite waste experiments (3.4·10-5 kg O/s·kg OC). 

Considering the previous values, the solids inventory in the fuel-reactor needed would be 

1726 kg/MWth. In this case, complete conversion of the gasification products to CO2 and H2O 

was achieved which corresponds to 100% combustion efficiency. In the conditions where not 

complete combustion of CO and H2 where obtained, i.e. diluting the bauxite waste bed with 

alumina 50:50 (wt%), the rO,inst value resulted 7.3·10-5 kg O/s·kg OC, which would 

correspond to a solids inventory of 812 kg/MWth. In this case, the combustion efficiency 

observed in Figure 8 was 99%. 

 

Additional information about the char conversion in the iG-CLC system can be obtained from 

the reactivity data in this work, as has been previously done with ilmenite [21]. In a system 

including a carbon separation unit, the mass balance for carbon in char was done. An 

estimation for the char conversion, XC, defined as the fraction of carbon introduced with the 

char fed that exits as gaseous product from the fuel-reactor, was obtained as: 
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where rC,inst is the char gasification rate obtained experimentally, FOC, is the circulation flow 

rate of the bauxite waste in an iG-CLC system, mFR is the bauxite waste inventory in the fuel-

reactor and CS the efficiency of the carbon separation system. 

 

The values of  rC,inst obtained in this work were presented in Tables 3 and 4. For the 

calcuations, 1 MWth was taken as reference and steam as gasifying agent. Considering the 

oxygen transfer capacity of the bauxite waste (ROC=2.4%), the stoichiometric circulation flow 

rate of to fully convert coal to CO2 and H2O was 3.5 kg/s, i.e. with an oxygen-carrier to fuel 

ratio  = 1. However, the optimum oxygen-carrier to fuel ratio when using solid fuels should 

be in the range 1.1-1.2, according to Cuadrat et al. [53]. Therefore, a  value of 1.2 was 

chosen.  Figure 13 shows the values for the char conversion (Xc) obtained for different values 

of efficiency in the carbon separation system considering both of the solids inventories 

previously calculated with equation (26) from experiments without or with dilution. 

Obviously, the char conversion increases as the efficiency of the carbon separation system 

also increases. Assuming 0.9 as an adequate efficiency value for the carbon separation 

system, the values of the char conversion are higher than 0.9 in both cases. These results 

allow to calculate an estimation of the carbon capture efficiency in an iG-CLC process where 

a carbon separation unit is incorporated and 1 MWth South African coal is fed, assuming that 

all the carbon in the coal volatiles is captured. The carbon capture efficiency (ηCC) indicates 

the fraction of the carbon introduced converted to gas in the fuel-reactor and it is calculated 

as: 
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where Ccoal is the percentage of carbon in the coal. 

 

The carbon capture efficiency values were calculated and plotted in Figure 13 for the two 

solids inventories considered. The carbon capture efficiency is 0.98 using 1726 kg bauxite 

waste/MWth and 0.95 using 812 kg/MWth considering 0.9 the efficiency value for the carbon 

separation system. It is interesting to note that these values correspond to partially activated 

bauxite waste. Depending on the further post-treatment of the flue gases from the fuel-reactor 

and the requirements for a safe storage of the CO2-concentrated stream generated, the lowest 

solids inventory could be adequate for operation, what would decrease the dimensions of the 

fuel-reactor needed. According to these results, it can be concluded that the bauxite waste is a 

promising material among the different Fe-based oxygen carriers presented in literature in 

order to be used with solid fuels. 

4. Conclusions 

 

A bauxite waste has been evaluated as a potential oxygen carrier for the iG-CLC of coal 

process. Experiments were performed using char from a bituminous coal as fuel and different 

operating variables were studied, such as temperature and the composition of the gasifying 

mixture. Both char gasification and combustion of the gasification products were analyzed.  

 

Bauxite waste reactivity increased after several cycles using char as fuel. In the same 

conditions, the bauxite waste displayed higher reactivity to the gasification products than 

ilmenite. Thus, higher combustion efficiencies were reached using steam or CO2 as gasifying 
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agents than with ilmenite. The higher reactivity will decrease the solids inventory needed to 

achieve adequate gasification rates and combustion of the gasification products when 

compared to ilmenite. 

 

In experiments with different amounts of bauxite waste in the fluidized-bed, it was observed 

that the incomplete combustion of the gasification products reduced the char gasification 

velocity. 

 

Experiments were performed with different H2O:CO2 ratios. Both the char gasification rate 

and the combustion efficiency increased as the percentage of steam in the feeding increased. 

A molar ratio 70:30 turned out to be adequate to reach combustion efficiencies higher than 

0.95 at the different temperatures tested (900 and 980ºC). Regardless the gasifying agent 

used, char gasification rate and combustion efficiency were notably increased with 

temperature, although the extent of this increase was larger using steam.  

A theoretical approximation of the solids inventory needed in an iG-CLC system was carried 

out by using experimental results. Combustion efficiencies of 0.99 were estimated for 812 

kg/MWth, whereas a carbon capture efficiency of 0.95 could be reached when the efficiency 

of the carbon separation system is 0.9. 
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Tables 

Table 1. Characterization of calcined bauxite waste sample 

Fe2O3 (% wt) 71a 

XRD main phases Fe2O3, β-Al2O3 

Crushing strength (N) 2.8 

Oxygen transport capacity, ROC, (%) 2.4 

Porosity (%) 3.7 

Skeletal density (kg/m3) 4500 

Specific surface area, BET (m2/g) 0.1 

a Determined by TGA 
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Table 2. Proximate and ultimate analyses of coal and char from bituminous South African 

coal (% weight) 

 
Proximate analysis 

 Coal  Char 

Moisture 4.2 0.9 

Ash 14.3 20.0 

Volatile matter 25.5 1.1 

Fixed carbon 56.0 78.0 

Ultimate analysis 

 Coal  Char 

Carbon 69.3 76.5 

Hydrogen 4.0 0.2 

Nitrogen 2.0 1.6 

Sulfur 1.0 0.8 

Oxygen b  5.2 0 

b Determined by difference 
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Table 3. Average values of the instantaneous rate of char conversion, rC,inst(t) and residence time to convert 95% of char, t95, at different 

temperatures for H2O or CO2 as gasification agents using ilmenite (ILM) or bauxite waste (BW) as oxygen carriers (OC). I: Inventory. 

 

   rC,inst (%/min) t95 (min) 

   H2O CO2 H2O CO2 

   T (ºC) T (ºC) T (ºC) T (ºC) 

OC I(g) O/C (molar) 900 950 980 1000 900 950 980 1000 900 950 980 1000 900 950 980 1000 

ILM 400 10.5 10.9 24.0 - 37.3 3.4 5.2 - 6.9 27.5 12.5 - 7.8 88.1 57.6 - 43.4 

BW 400 6.2 14.4 29.1 41.5 - - - - - 20.8 10.3 7.7 - - - - - 

 200 3.1 10.4 27.4 41.9 - 2.1 3.4 6.6 - 28.8 10.9 7.1 - 142.7 88.1 45.4 - 
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Table 4. Average values of the instantaneous rate of char conversion, rC,inst(t), at different 

temperatures and H2O:CO2 molar ratios in the gasifying stream using ilmenite (ILM) or 

bauxite waste (BW) as oxygen carriers (OC). I: Inventory. 

 

    rC,inst (%/min) 

    H2O:CO2 

T (ºC) OC I (g) O/C (molar) 100:0 90:10 70:30 50:50 0:100 

900 ILM 400 10.5 10.9 8.1 5.7 4.8 3.4 

 BW 200 3.1 10.4 8.0 7.0 6.0 2.1 

980 BW 200 3.1 41.9 37.1 30.0 23.9 6.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46

List of Figure Captions 

 

Figure 1. In situ Gasification Chemical Looping Combustion process.  

(                        ) Optional streams to replace H2O (v) by CO2 in the fluidizing gas of fuel 

reactor and/or the carbon separation system 

Figure 2. . Experimental setup: batch fluidized-bed reactor 

Figure 3. Gas product distribution (wet basis) and solid conversion evolution in a typical 

experiment with char as fuel (cycle 15th). Gasifying agent: H2O; Char load: 1 g; Bauxite 

waste in bed: 400 g. T = 900ºC. R: reduction and O: Oxidation 

Figure 4. Conversion of (A) reduction (Xr) and (B) oxidation (Xo) with time of bauxite waste 

samples extracted after the 1st, 4th, 8th, 15th and 23rd cycle in the batch fluidized-bed reactor 

using char as fuel (solid lines). The dashed lines correspond to the curves for calcined and 

activated bauxite waste obtained in a multicycle test in TGA. Experimental conditions for 

TGA experiments: T = 950ºC. (A) 5 % H2 + 40% H2O (B) Air  

Figure 5. (A) CO and H2 molar flow evolution with char conversion and (B) char conversion 

evolution with time for the experiments performed with bauxite waste (solid line) and sand 

(dashed line) as bed materials. Bauxite waste in bed: 400 g. T = 900ºC; Gasification agent: 

steam 

Figure 6. Instantaneous rate of char conversion, rC,inst (t), as a function of the char conversion 

at 900, 950 and 980ºC using steam as gasifying agent. Bauxite waste in bed: 400 g. 

Figure 7. Instantaneous rate of char conversion, rC,inst (t), as a function of the char conversion 

at 900, 950 and 980ºC using (A) steam and (B) CO2 as fluidizing agents. Bauxite waste in 

bed: 200 g. 

Figure 8. Combustion efficiency, C, as a function of the bauxite waste conversion at 900, 

950 and 980ºC using (A) steam and (B) CO2 as fluidizing agent. Bauxite waste in bed: 200 g.   



 47

Figure 9. Instantaneous rate of char conversion, rC,inst (t), as a function of the char conversion 

using different H2O:CO2 molar ratios in the gasifying stream at (A) 900 (B) 980ºC. Bauxite 

waste in bed: 200 g. 

Figure 10. Average values of the residence time to convert 95% of char, (t95) using different 

H2O:CO2 molar ratios in the gasifying stream at 900 and 980ºC. Bauxite waste in bed: 200 g. 

Figure 11. Average values of combustion efficiency using different H2O:CO2 molar ratios in 

the gasifying stream at 900 and 980ºC. Bauxite waste in bed: 200 g. 

Figure 12. SEM images and EDX profile lines for Al and Fe of (A) calcined and (B) used 

particles after 50 hours of operation in FB with coal char feeding 

Figure 13. Char conversion by gasification, Xc (squares) and carbon capture efficiency, ηCC 

(triangles) in the fuel-reactor as a function of the efficiency of the carbon separation system. 

In all cases, steam was used as gasifying agent at 980ºC.
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Figure 1. In situ Gasification Chemical Looping Combustion process.  

(                        ) Optional streams to replace H2O (v) by CO2 in the fluidizing gas of fuel 

reactor and/or the carbon separation system 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 2 /O 2 

Air

Air
reactor 

Carbon separation 
system 

2 

 MxOy

MxOy-1

C

CO2

O (v)H2H2O (v)

CO

H 2 O (l)

Fuel
reactor

Coal

CO2

CO2/H2O

Ash

2

H 2 O (l)

2

2



 49

Gas 
analysis

N2

Solids
feeding system

Air

Filter

P

CO2

steam

P

N2

v1v2

v3

Furnace

Thermocouple

Distributor plate

N2

H2O (l)

P

Gas 
analysis

N2

Solids
feeding system

Air

Filter

P

CO2

steam

P

N2

v1v2

v3

Furnace

Thermocouple

Distributor plate

N2

H2O (l)

P

 

 

Figure 2. . Experimental setup: batch fluidized-bed reactor 
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Figure 3. Gas product distribution (wet basis) and solid conversion evolution in a typical 

experiment with char as fuel (cycle 15th). Gasifying agent: H2O; Char load: 1 g; Bauxite 

waste in bed: 400 g. T = 900ºC. R: reduction and O: Oxidation 
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Figure 4. Conversion of (A) reduction (Xr) and (B) oxidation (Xo) with time of bauxite waste 

samples extracted after the 1st, 4th, 8th, 15th and 23rd cycle in the batch fluidized-bed reactor 

using char as fuel (solid lines) and at the end of the experiments, 40th cycle (dotted line). The 

dashed lines correspond to the curves for calcined and activated bauxite waste obtained in a 

multicycle test in TGA. Experimental conditions for TGA experiments: T = 950ºC. (A) 5 % 

H2 + 40% H2O (B) Air  
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Figure 5. (A) CO and H2 molar flow evolution with char conversion and (B) char conversion 

evolution with time for the experiments performed with bauxite waste (solid line) and sand 

(dashed line) as bed materials. Bauxite waste in bed: 400 g. T = 900ºC; Gasification agent: 

steam 
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Figure 6. Instantaneous rate of char conversion, rC,inst (t), as a function of the char conversion 

at 900, 950 and 980ºC using steam as gasifying agent. Bauxite waste in bed: 400 g. 
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Figure 7. Instantaneous rate of char conversion, rC,inst (t), as a function of the char conversion 

at 900, 950 and 980ºC using (A) steam and (B) CO2 as fluidizing agents. Bauxite waste in 

bed: 200 g. 
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Figure 8. Combustion efficiency, C, as a function of the bauxite waste conversion at 900, 

950 and 980ºC using (A) steam and (B) CO2 as fluidizing agents. Bauxite waste in bed: 200 

g.   
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Figure 9. Instantaneous rate of char conversion, rC,inst (t), as a function of the char conversion 

using different H2O:CO2 molar ratios in the gasifying stream at (A) 900 (B) 980ºC. Bauxite 

waste in bed: 200 g. 
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Figure 10. Average values of the residence time to convert 95% of char, (t95), using different 

H2O:CO2 molar ratios in the gasifying stream at 900 and 980ºC. Bauxite waste in bed: 200 g. 
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Figure 11. Average values of combustion efficiency using different H2O:CO2 molar ratios in 

the gasifying stream at 900 and 980ºC. Bauxite waste in bed: 200 g. 
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Figure 12. SEM images and EDX profile lines for Al and Fe of (A) calcined and (B) used 

particles after 50 hours of operation in FB with coal char feeding 
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Figure 13. Char conversion by gasification, Xc (squares) and carbon capture efficiency, ηCC 

(triangles) in the fuel-reactor as a function of the efficiency of the carbon separation system. 

In all cases, steam was used as gasifying agent at 980ºC. 

 


