
 
 

 

  

Abstract—Recently, a multiobjective evolutionary algorithm 
based on decomposition (MOEA/D) and its extended version by 
using differential evolution (DE) as the main search engine 
(MOEA/D-DE) were proposed, which outperform several widely 
used multiobjective evolutionary algorithms. MOEA/D 
decomposes a multiobjective problem into a number of scalar 
optimization sub-problems with a neighborhood structure and 
optimizes them simultaneously to approximate the 
Pareto-optimal set. In this paper, two mechanisms are 
investigated to enhance the performance of MOEA/D-DE. 
Firstly, a new replacement mechanism is proposed to call for a 
balance between the diversity of the population and the 
employment of good information from neighbors. Secondly, the 
scaling factor in DE is randomized to enhance the search ability. 
Comparisons are carried out with MOEA/D-DE on ten 
benchmark problems, showing that the proposed method 
exhibits significant improvements. Finally, the enhanced 
MOEA/D-DE is applied to a real world problem, the sizing of a 
folded-cascode amplifier with four performance objectives. 

I. INTRODUCTION 

ANY  real-world optimization applications involve 
several conflicting objectives [1]-[2]. According to 

different purposes and requirements in the decision-making 
process, multiobjective optimization techniques can be 
roughly classified into two categories [1]: (1) a prior methods: 
a decision maker specifies their preferences on these 
objectives and thus transform the multiobjective problem into 
a single objective one by using aggregation methods, and (2)  
a posteriori methods: they produce a number of well 
representative optimal trade-off candidate solutions for a 
decision-maker to check.   Mathematically, a Pareto optimal 
solution is a candidate solution for achieving the best 
trade-off.  There can be many, even infinitely many Pareto 
optimal solutions to a multiobjective optimization problem 
(MOP).  The set of all the Pareto optimal solutions is called 
the Pareto set (PS) and its image in the objective space is the 
Pareto front (PF). Most multiobjective optimization 
evolutionary algorithms (MOEA) aim at finding a reasonable 
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number of solutions to approximate the PF.  In a sense, 
MOEAs belong to category 2.  
    Most MOEAs compare solutions based on dominance. 
However, domination cannot provide a full ranking among all 
the solutions. Therefore, these MOEAs need some other 
techniques for ranking solutions (e.g. crowding distances, 
fitness sharing, niching). Among these algorithms, 
non-dominated sorting genetic algorithm II (NSGA-II) [3] 
and strength Pareto evolutionary algorithm 2 (SPEA2) [4] 
have received much attention in real world applications. 
However, it is shown that these methods cannot always 
provide good results, especially when the MOP is complicated 
[5]-[6].      

Recently, a new MOEA framework, multiobjective 
evolutionary algorithm based on decomposition (MOEA/D) 
[5], was proposed. It decomposes a MOP into a set of scalar 
optimization sub-problems with neighborhood relations. The 
neighborhood relations are defined by the distances between 
their aggregation coefficient vectors. In this way, the fitness 
assignment is the same as single objective optimization, and 
the diversity is maintained by the diverse search directions 
determined by the uniformly distributed weight vectors. The 
first version of MOEA/D uses simulated binary crossover 
(SBX) [7] and polynomial mutation [3] as the search engines. 
Later, a new version using the mutation (DE/best/1/bin [8]) in 
differential evolution (DE) as the main search engine was 
proposed and shown to outperform MOEA/D and NSGA-II, 
especially for complex problems.  

There are several possibilities to enhance the performance 
of the MOEA/D-DE framework. The first one is the 
population replacement. The goal is to call for a balance 
between information sharing and diversity maintenance. In 
our method, when the number of parent solutions that can be 
replaced by a high quality child solution exceeds the 
maximum number, we rank the parent solutions and first 
replace those that are closer to the child solution. The second 
one is to enhance the search ability. We randomize the scaling 
factor in the DE mutation to achieve this.  

The rest of the paper is organized as follows. Section II 
describes the basic concepts of MOPs. Section III introduces 
the basic MOEA/D framework and the two mechanisms to 
extend MOEA/D-DE. The tests and comparisons based on 
benchmark problems and a multiobjective analog cell sizing 
problem are shown in section IV. The concluding remarks are 
offered in Section V.         
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II.  MULTIOBJECTIVE OPTIMIZATION  

A multiobjective optimization problem can be stated as 
follows:  

1
min{ ( ), ( )}

m
f x f x…  , x ∈ Ω                                           (1) 

where  
1

( , )
n

x x x= …  is the decision variable vector and 

( )
i

f x  are the objective functions. Ω  is the decision space. A 

solution x is said to dominate solution y if and only if 

( ) ( )
i iff x y≤  for every {1, , }i m∈ ⋯  and ( ) ( )

j jff x y<  for 

at least one index {1, , }j m∈ ⋯ . A point *x ∈ Ω  is Pareto 

optimal to (1) if there is no point x ∈ Ω  such that ( )f x  

dominates *( )f x . *( )f x  is Pareto-optimal objective vector. 

The set of all the Pareto-optimal points is called the Pareto Set 
(PS). The set of all the Pareto-optimal objective vectors is 
called the Pareto Front (PF). 

III.  THE ENHANCED MOEA/D-DE ALGORITHM 

A. Algorithm Structure 

A general framework of MOEA/D is proposed in [5]. The 
first step is converting the approximation of the PF into N 
scalar optimization sub-problems by decomposition. Three 
decomposition methods are considered in [5]. In this paper, 
we use the Tchebycheff approach [9]. The scalar function is as 
follows:  

* *
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where 
1

( , , )
m

λ λ λ= ⋯  is a weight vector and 
1
 1m

i i
λ=Σ = . Ω  

is the solution space and * * *

1
( , , )

m
z z z= ⋯  is the reference 

point.  If N is reasonably large and 1, , Nλ λ⋯  are properly 
selected, the optimal solutions to those scalar functions will 
provide a good approximation to the PS/PF. The major 
components in MOEA/D are its neighborhood concept, and its 
population replacement mechanism. The enhanced 
MOEA/D-DE, proposed in this paper, works as follows: 
Input: 
(1) an MOP 
(2) a stopping criterion 
(3) N: the number of sub-problems 
(4) T: the neighborhood size 
(5) δ : the probability that parent solutions are selected from 
the neighborhood  

(6) 
r

n : the maximum number of solutions replaced by a child 

solution 
(7) CR: crossover rate in DE 

(8) ,µ σ : the mean and variance of the scaling factor F̂ in the 

DE mutation 

(9) 
m

p : the probability to perform polynomial mutation   

(10) λ : weight vector (the generation method is in [5]) 
Output:  

(1) Approximation to the PF 
(2) Approximation to the PS 
Procedure: 
Step 1: Initialization 
    Step 1.1: Compute the Euclidean distances between the 

weight vectors and work out the T closest weight vectors to 

each weight vector. For 1,i N= ⋯ , set 
1

( ) { , , }
T

B i i i= ⋯ . 

1 , , T
i iλ λ⋯  are the T closest vectors to iλ . 

    Step 1.2: Randomly generate an initial population 

1
, ,

n
x x⋯ . Calculate the fitness values of the population. 

    Step 1.3: Initialize
1

{ , , }
m

z z z= ⋯ , where 

1
min ( )i

j i N j
z f x≤ ≤= . 

Step 2: Update 
For 1,i N= ⋯ ,  
    Step 2.1: Selection of the mating pool:  
    Generate a random number which is uniformly distributed 

in [0,1]. Set  

      
( )               if rand<

{1, , }       otherwise

B i
P

N

δ
=


 ⋯

                                       (3) 

    Step 2.2: Reproduction:   
    Set 

1
r i=  and randomly select two indexes 

2
r  and 

3
r  from   

P, and generate a new solution y by a new DE mutation 

(see Section III (C)). Then, perform a polynomial mutation 

[3] on y  with probability 
m

p  to produce a new solution y.   

    Step 2.3: Repair: 
    If an element of y is out of the bound of Ω , its value is reset 

to be a randomly selected value inside the boundary. 
    Step 2.4: Update of the reference point:   

    For 1, ,j m= ⋯ , if ( )
j j

z f y> , set ( )
j j

z f y= . 

    Step 2.5: Replacement of solutions:  

    (1) For each j in P, calculate ( | , )jg y zλ  and 

( | , )j jg x zλ .  

    (2) Set c=0. If ( | , ) ( | , )j j jg y z g x zλ λ≤ , c=c+1 

    (3.1) If 
r

c n≤ , for each j with ( | , ) ( | , )j j jg y z g x zλ λ≤ , 

set jx y= . 

    (3.2) If 
r

c n> , for each j with ( | , ) ( | , )j j jg y z g x zλ λ≤ , 

calculate the Euclidean distances between ( )f y  and 

( )jf x  and then rank them. Choose 
r

n  solutions with the 

smallest distances. Set jx y= . 

Step 3: Stopping Criterion: 
If the stopping criterion is satisfied, then stop the algorithm 

and output 1{ , , }Nx x⋯  and 1{ ( , , ( }) )Nf x f x⋯ . Otherwise, 

go to Step 2.     
    It can be seen that the main revisions to MOEA/D-DE [6] 
are the replacement of solutions (step 2.5) and the 
reproduction process (step 2.2), which will be described in the 
following sections.  



 
 

 

B. Replacement of Solutions  

    In MOEAs, the replacement mechanism is intended to 
improve the quality (in terms of domination) of the population 
and maintain the diversity. Although in decomposition-based 
methods, search in different directions according to different 
weight vectors can “naturally” help the diversity, diversity 
maintenance is also affected by the replacement mechanism. 
A high quality child solution may replace most of the current 
solutions to its neighboring sub-problems. Consequently, 
diversity decreases significantly. In MOEA/D [5], the 
maximum number of solutions that can be replaced by a child 
solution is the size of the neighborhood, T, whose 
disadvantage is shown in [6]. MOEA/D-DE improves the 

replacement mechanism by adding a bound 
r

n , which is much 

smaller than T. A high quality child solution can replace 
r

n  

current solutions at most, which helps the diversity 
maintenance. 

However, setting the value of 
r

n  is not a trivial problem. 

r
n  controls the balance of information sharing and diversity 

maintenance. If 
r

n  is large, the information of a good solution 

can be shared by more current solutions, but the risk of 

diversity reduction is higher. In contrast, if 
r

n  is small, the 

information can be shared by less solutions, but the diversity is 
maintained.  

An empirical rule is proposed in [10] by setting 0.1T N= , 

0.01
r

n N= , and the 
r

n  current solutions which will be 

replaced by a high quality child solution are randomly chosen 
if the bound is exceeded. Generally, this rule is reasonable. 
Nevertheless, both conditions, c (the number of current 

solutions with ( | , ) ( | , )j j jg y z g x zλ λ≤ ) much smaller than 

0.01N  and c much larger than 0.01N  may appear in the 
evolution process. When c is much larger than 0.01N , 
randomly selecting 0.01N individuals to be replaced may not 
be a good solution.  

It can be seen that 
r

n  is approximately 10% of T, that is, for 

one segment with 10 points that can be replaced by a high 
quality child solution, only one of them can be updated. Such 

r
n  is small to share the good information. On the other hand, 

r
n  cannot be larger to keep the diversity. Hence, selecting 

which points should be replaced in order to make the sharing 
more effectively is a significant problem. We argue that in the 
objective space, points that are near to the newly generated 
high quality child solution can be benefit more compared with 
the ones that have longer distance from it if the replacement is 
performed. The reason is that for neighbors which have 
similar fitness landscapes, their optimal solutions should be 
close to each other in the decision space. This is the basic 
principle of MOEA/D. Our argument can be seen as 
“neighbor’s neighbor”. In Fig. 1, the bottom point with a 
coordinate (1,1) is the high quality child solution, and can 
replace all of the 6 points with ‘*’ symbol. If only one can be 

selected, then the two points in the circle will benefit more 
than the other 4 points if the schema of the bottom point is 
used. 

 
Fig. 1. Illustration of the replacement mechanism 

   
Therefore, our mechanism is that when a high quality child 

solution, which has the ability to replace most of the current 

solutions in T, appears, instead of randomly choosing 
r

n  

current solutions, we rank their distances to the high quality 

child solution in the objective space and replace the 
r

n  

solutions with the smallest distances.    

C. Random scale search in DE mutation  

MOEA/D-DE uses the DE/best/1/bin [8] mutation, which is 
as follows: 

1 2
( ) ( ( ) ( ))' r ri

x t F x t x ty = + −                                           (4) 

where indices 
1
r and 

2
r ( 1 2,r r P∈ ) are randomly chosen and 

mutually different, and also different from the current index i. 
(0,1]F ∈  is a constant called the scaling factor, which 

controls the amplification of the differential variation 
1 2
( ) ( )

r r
x t x t− .  

     DE is with no doubt, a very powerful search engine for 
single objective optimization. But when it comes to 
multiobjective problems, it seems to converge very fast to the 
vicinity of the true PF, but presents problems to actually reach 
it [11]. A recent study using a scaling factor that is uniformly 
distributed from 0.5 to 1 is shown to have higher successful 
rate to reach the global optimization point in single objective 
problems [12].  

In this work, we use a Gaussian distributed random scaling 

factor with mean value µ  and varianceσ : 
,

( , ),
i k

F norm µ σ=   

1, ,Ni = …  and 1, ,k n= ⋯ . For each variable in the search 

space, the scaling factor 
,i k

F  of each differential 

variation 1 2
( ) ( )

r r
x t x t−  is different. F̂  is continuously 

generated randomly in each iteration. Eqn. (4) is changed to: 
 

1 2ˆ( ) ( ( ) ( ))' r ri
x t F x t x ty = + −                                           (5) 

 



 
 

 

 
Fig. 2. Illustration of mutant vectors obtained by the random-scale operator 

 
    The random amplification induces two advantages: (1) The 
algorithm has a lower probability of providing premature 
solutions because of the reasonable diversity; (2) The vicinity 
of the mutant vector is investigated by the randomized 

amplification of the differential variation1 2
( ) ( )

r r
x t x t− . Even 

when stagnation appears, a new trial vector has fair chances of 
pointing at an even better location on the multimodal 
functional surface. Fig. 2 shows the effect of randomizing F. It 
can be seen that a cloud of potential points centered around the 
mutant vector could be generated.  

IV.  EXPERIMENTAL RESULTS 

To show the effects of the two mechanisms, we compare 
original MOEA/D-DE (OD), MOEA/D-DE with new 
replacement rules (RD), MOEA/D-DE with stochastic scaling 
factor (FD) and MOEA/D-DE with both new replacement 
rules and stochastic scaling factor (FRD). The test problem 
instances are UF1 to UF10 in CEC 2009 competition (2-3 
objectives) [13] and a real world problem, sizing of 
folded-cascode amplifier (4 objectives).  

A. Performance Metric 

The inverted generational distance (IGD) [14] is used to 

assess the performance of the algorithms. Let *P  be a set of 
uniformly distributed points in the objective space along the 
PF. Let A be an approximation to the PF, the inverted 

generational distance from *P  to A is defined as: 

**

*

( , )
( , )

| |
v P

d V A
IGD A P

P

∈=
∑

                                        (5) 

where ( , )d v A  is the minimum Euclidean distance between v 

and the points in A.  

B. Test Problems and Parameter Setting 

The test problems include benchmark problems and a four 
objective analog sizing problem. The benchmark problems 
are UF1 to UF10 in [13]. The multiobjective analog sizing is 
optimization of a folded-cascode amplifier (Fig.3), where the 
DC gain, GBW, phase margin and power are the 4 objectives. 
In the analog sizing problem, there is no analytical 
formulation of the optimization goals. They are based on the 
SPICE simulation. There are 11 design variables, 5 of which 

have a range of 0.24mµ to 100 mµ , 5 of which have a range 

of 0.18 mµ  to 10 mµ  and 1 of which has a range of 1Aµ  to 

2.5mA. 

 
Fig. 3. Folded-cascode amplifier 

 

For UF1 to UF10 in [13], the number of decision variables is 
30. For the analog sizing problem, the number of design 
variables is 11. The number of sub-problems (population size), 
N, is 300 for 2 objective problems, 500 for three objective 
problems and 148 for the analog sizing problem (though 4 
objectives, considering the computational effort, N is reduced 

to 148) . T  is set to 0.1N , 
r

n  is set to 0.01N , δ  is set to 0.9. 

In DE operators, CR is set to 1, F is a Gaussian distributed 
vector with a mean of 0.5 and a variance of 0.15. In GA 

operators, η  and 
m

p  are the same as MOEA/D-DE. For 

benchmark problems, the algorithm stops after 1000 
generations for 2 objective problems, and 1200 generations 
for 3 objective problems. For the analog sizing problem, the 
algorithm stops after 200 iterations.  

C. Results 

For UF1 to UF10 in [13], the set *P PF∈ is available. For 
the analog sizing problem, 30 runs are first performed using 
each method, whose results are combined to approximate the 

*P  using the method in [10]. Table I shows the mean values of 
IGD results for each problem in 20 runs. The runs with 
smallest IGD values are drawn in Fig. 4.   

 
Table I. The IGD statistics based on 20 runs (average values) 

Tests FRD FD RD OD 
UF1 0.0096 0.0064 0.0025 0.0027 
UF2 0.0084 0.0072 0.0094 0.0098 
UF3 0.0472 0.0311 0.0093 0.0105 
UF4 0.0592 0.0788 0.0881 0.0858 
UF5 0.5577 0.7650 0.8476 0.9247 
UF6 0.1795 0.2726 0.2381 0.2665 
UF7 0.0056 0.0063 0.0054 0.0032 
UF8 0.0660 0.0611 0.0569 0.0562 
UF9 0.1304 0.1299 0.1170 0.1501 
UF10 0.4035 0.4370 0.4119 0.4781 
Analog  9.4572 9.5344 9.5199 9.6079 



 
 

 

 

D. Discussions 

Here are some observations of the results. For each 
problem, we can rank the different methods according to the 
IGD values and get Table II and Table III. 

  
Table II. Ranking of the IGD values 

Tests FRD FD RD OD 
UF1 Rank 4 Rank 3 Rank 1 Rank 2 
UF2 Rank 2 Rank 1 Rank 3 Rank 4 
UF3 Rank 4 Rank 3 Rank 1 Rank 2 
UF4 Rank 1 Rank 2 Rank 4 Rank 3 
UF5 Rank 1 Rank 2 Rank 3 Rank 4 
UF6 Rank 1 Rank 4 Rank 2 Rank 3 
UF7 Rank 3 Rank 4 Rank 2 Rank 1 
UF8 Rank 4 Rank 3 Rank 2 Rank 1 
UF9 Rank 3 Rank 2 Rank 1 Rank 4 
UF10 Rank 1 Rank 3 Rank 2 Rank 4 
Analog  Rank 1 Rank 2 Rank 3 Rank 4 

 
Table III. Statistics of the ranking 

Methods Rank 1 Rank 2 Rank 3 Rank 4 
FRD 5 1 2 3 
FD 1 4 4 2 
RD 3 4 3 1 
OD 2 2 2 5 

 

It can be seen that the improvement of the new replacement 
mechanism is obvious. In 7 cases out of 11, the RD 
(MOEA/D-DE with new replacement) method ranks 1 or 2, 
FRD (RD plus random scaling factor) method has 6 cases with 
rank 1 or 2, FD (MOEA/D-DE with random-scale F) have 5 
cases with rank 1 or 2 and the original MOEA/D-DE has 4 
cases. If only considering the rank 1 column, it can be seen 
that RD and FRD have more distinct advantages.  

If only adding a random scaling factor, slight improvements 
have been observed in high rank region (rank 1 or 2). But we 
can see that the FD method ranks 3 in 4 cases and ranks 4 in 2 
case, while the original MOEA/D-DE (OD) ranks 3 in 2 cases, 
and ranks 4 in 5 cases.  

When the two mechanisms are combined together, it can be 
seen that FRD have 5 cases with rank 1, which has distinct 
advantage compared with other methods. On the other hand, it 
has 3 cases with rank 4. Therefore, we can conclude that FRD 
is a method which can obtain very good result, and RD method 
is more stable.    

E. NSGA-II Result of the folded-cascode amplifier 

    NSGA-II is also implemented for the analog sizing problem 

using the same population size, η  and 
m

p . The distribution 

index in SBX is set to 20. The average IGD value is 15.8656, 
which is much larger than MOEA/D-based methods.            

V. CONCLUSIONS 

    In this paper, two extensions of the MOEA/D-DE 
framework are investigated. The new replacement mechanism 
uses the good information from high quality child solution 
better than the original random selection replacement 
mechanism, while at the same time keep the diversity by not 

increasing 
r

n . The random scaling factor improves the search 

ability of the MOEA/D-DE. When these two techniques are 
combined, higher performance can be obtained. Future works 
will concentrate on applying the enhanced MOEA/D-DE 
framework(s) to more real world applications.  
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Fig. 4. PF with the smallest IGD values by different methods 


