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Abstract—Recently, a multiobjective evolutionary algorithm
based on decomposition (MOEA/D) and its extended ks&@on by
using differential evolution (DE) as the main seatt engine
(MOEA/D-DE) were proposed, which outperform severalvidely
used multiobjective evolutionary algorithms. MOEA/D
decomposes a multiobjective problem into a numberfoscalar
optimization sub-problems with a neighborhood struture and
optimizes them simultaneously to approximate the
Pareto-optimal set. In this paper, two mechanisms ra
investigated to enhance the performance of MOEA/D-BE.
Firstly, a new replacement mechanism is proposed teall for a
balance between the diversity of the population andthe
employment of good information from neighbors. Seaally, the
scaling factor in DE is randomized to enhance thesarch ability.
Comparisons are carried out with MOEA/D-DE on ten
benchmark problems, showing that the proposed mettb
exhibits significant improvements. Finally, the enhnced
MOEA/D-DE is applied to a real world problem, the szing of a
folded-cascode amplifier with four performance objetives.

M ANY real-world optimization applications involve
several conflicting objectives [1]-[2]. According t
different purposes and requirements in the decisiaking
process, multiobjective optimization techniques che
roughly classified into two categories [1]: (1) r@op methods:

|l. INTRODUCTION

number of solutions to approximate the PF. In mseg
MOEAs belong to category 2.

Most MOEAs compare solutions based on dominance
However, domination cannot provide a full rankimgoang all
the solutions. Therefore, these MOEAs need someroth
techniques for ranking solutions (e.g. crowdingtatises,
fitness sharing, niching). Among these algorithms,
non-dominated sorting genetic algorithm [l (NSGA-[8]
and strength Pareto evolutionary algorithm 2 (SPERZ2
have received much attention in real world appiicet
However, it is shown that these methods cannot yawa
provide good results, especially when the MOP mmacated
[5]-[6]-

Recently, a new MOEA framework, multiobjective
evolutionary algorithm based on decomposition (MUBEA
[5], was proposed. It decomposes a MOP into afsetalar
optimization sub-problems with neighborhood relasioThe
neighborhood relations are defined by the distabedseen
their aggregation coefficient vectors. In this wtye fitness
assignment is the same as single objective optiiaizaand
the diversity is maintained by the diverse searithctions
determined by the uniformly distributed weight \a@st The
first version of MOEA/D uses simulated binary crssr
(SBX) [7] and polynomial mutation [3] as the seaectgines.

a decision maker specifies their preferences OrBEtheLater, a new version using the mutation (DE/besi1j8]) in

objectives and thus transform the multiobjectivelgbem into
a single objective one by using aggregation methaas (2)

differential evolution (DE) as the main search eegivas
proposed and shown to outperform MOEA/D and NSGA-II

a posteriori methods: they produce a number of Wetyspeciallyfor complex problems.

representative optimal trade-off candidate soldidar a
decision-maker to check. Mathematically, a Paogttimal
solution is a candidate solution for achieving thest
trade-off. There can be many, even infinitely m&areto
optimal solutions to a multiobjective optimizatigmoblem
(MOP). The set of all the Pareto optimal solutisalled
the Pareto set (PS) and its image in the objespaee is the

Pareto front (PF). Most multiobjective optimization
evolutionary algorithms (MOEA) aim at finding a seaable
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There are several possibilities to enhance theopaehnce
of the MOEA/D-DE framework. The first one is the
population replacement. The goal is to call for aahce
between information sharing and diversity maintegarin
our method, when the number of parent solutionsdha be
replaced by a high quality child solution exceed® t
maximum number, we rank the parent solutions arst fi
replace those that are closer to the child solufitve second
one is to enhance the search ability. We randoth&zescaling
factor in the DE mutation to achieve this.

The rest of the paper is organized as follows. iSedl
describes the basic concepts of MOPs. Sectiomtiibduces
the basic MOEA/D framework and the two mechanisms t
extend MOEA/D-DE. The tests and comparisons based o
benchmark problems and a multiobjective analog sieihg
problem are shown in section V. The concludingagm are
offered in Section V.



A multiobjective optimization problem can be statasl
follows:

min{ f(X),... f (X} , xOQ

MULTIOBJECTIVE OPTIMIZATION

1)

(1) Approximation to the PF
(2) Approximation to the PS
Procedure:
Step 1: Initialization
Step 1.1:Compute the Euclidean distances between the

where x=(x,...X ) is the decision variable vector and Wweight vectors and work out tieclosest weight vectors to

f (x) are the objective functions is the decision space. A
solution x is said to dominate solutiog if and only if
f.(x) < f,(y) for everyi O{L,---,m} and f, (x) < f,(y) for

at least one indeX O{L,---,n} . A point X 0Q is Pareto
optimal to (1) if there is no poinkQ such thatf(x)

dominatesf (x'). f(x') is Pareto-optimal objective vector.

The set of all the Pareto-optimal points is catleglPareto Set
(PS). The set of all the Pareto-optimal objectieetars is
called the Pareto Front (PF).

I1l. THE ENHANCED MOEA/D-DE ALGORITHM

A. Algorithm Sructure

A general framework of MOEA/D is proposed in [Sha
first step is converting the approximation of thieé iato N
scalar optimization sub-problems by decompositibhree
decomposition methods are considered in [5]. s gaper,
we use the Tchebycheff approach [9]. The scalastionis as
follows:

minimizeg x |1.Z )= max@ |f &>z | @
s.b.xOQ

where A =(A,---,A ) isaweight vectorand, A =1. Q
is the solution space and =(z,--,z) is the reference

point. If N is reasonably large andf,---,A" are properly
selected, the optimal solutions to those scalactfans will

provide a good approximation to the PS/PF. The majo

components in MOEA/D are its neighborhood concapd, its

population replacement mechanism. The
MOEA/D-DE, proposed in this paper, works as follows
Input:

(1) an MOP

(2) a stopping criterion

(3) N: the number of sub-problems

(4) T: the neighborhood size

(5) J: the probability that parent solutions are sel@dtem
the neighborhood

(6) n : the maximum number of solutions replaced by &chi

solution
(7) CR: crossover rate in DE

(8) u,o :the mean and variance of the scaling fadtan the
DE mutation
(9) p,: the probability to perform polynomial mutation

(10) A : weight vector (the generation method is in [5])
Output:

each weight vector. Far=1,---N, setB(i) ={i, ---,i,} .

A*,---,A" are theT closest vectors td' .
Step 1.2: Randomly generate an initial population
X,---,X . Calculate the fitness values of the population.

Step  1.3: Initialize z={z,--,z} , where

z, =min__, f (X).
Step 2: Update
Fori=1,--N,
Step 2.1:Selection of the mating pool:
Generate a random number which is uniformly disted
in [0,1]. Set
b B(i) if rand®
{{1, .-+, N} otherwise
Step 2.2: Reproduction:
Setr, =i and randomly select two indexesandr, from

®3)

P, and generate a new solutighby a new DE mutation
(see Section Il (C)). Then, perform a polynomialtation
[3] on y with probability p_ to produce a new solutign
Step 2.3: Repair:

If an element of is out of the bound of2 , its value is reset

to be a randomly selected value inside the boundary
Step 2.4: Update of the reference point:

Forj=1--,m,if z > f (y),setz =f(y).
Step 2.5: Replacement of solutions:
(1) For eachj in P, calculate g(y|A',z) and

g(x'|A',2).

enhanced (2) Sec=0. If g(y|A',z)<g(x' |A',z), c=c+1

(38.1) Ifc=<n , for each with g(y|A',z)< g(x' |4’ ,2),

setx' =vy.

(3.2) Ifc>n_, for each with g(y|A',z)<g(x' |4’ ,2),

calculate the Euclidean distances betwegfy) and
f(x') and then rank them. Choose solutions with the

smallest distances. St =y .
Step 3: Stopping Criterion:
If the stopping criterion is satisfied, then sttye @lgorithm
and outpu{x’, -, x"} and{f(x’),---, f(x")} . Otherwise,
go toStep 2

It can be seen that the main revisions to MQEBE [6]
are the replacement of solutions (step 2.5) and the
reproduction process (step 2.2), which will be diégd in the
following sections.



B. Replacement of Solutions

In MOEAs, the replacement mechanism is intent®d
improve the quality (in terms of domination) of {hepulation
and maintain the diversity. Although in decompasitbased
methods, search in different directions accordngifferent
weight vectors can “naturally” help the diversityiversity
maintenance is also affected by the replacemenhamsm.
A high quality child solution may replace most bétcurrent
solutions to its neighboring sub-problems. Consatiye
diversity decreases significantly. In MOEA/D [5]het
maximum number of solutions that can be replaced bhild
solution is the size of the neighborhood, whose
disadvantage is shown in [6]. MOEA/D-DE improve® th

replacement mechanism by adding a boandwhich is much
smaller thanT. A high quality child solution can replage

current solutions at most,
maintenance.

However, setting the value of is not a trivial problem.

n, controls the balance of information sharing ancediity

maintenance. Ih_is large, the information of a good solution

can be shared by more current solutions, but thle of
diversity reduction is higher. In contrast,rif is small, the

information can be shared by less solutions, tautithersity is
maintained.
An empirical rule is proposed in [10] by settifig= 0.IN ,

n =0.0IN, and then current solutions which will be

replaced by a high quality child solution are ramdlochosen

if the bound is exceeded. Generally, this rulee@spbnable.
Nevertheless, both conditions, (the number of current
solutions withg(y|A’,z)< g(x' |A',z)) much smaller than

0.0IN and c much larger tharD.0IN may appear in the
evolution process. Wheg is much larger thar0.0IN ,

randomly selectind).0IN individuals to be replaced may not

be a good solution.
It can be seen that is approximately 10% dF, that is, for

one segment with 10 points that can be replaced high
quality child solution, only one of them can be apedl. Such

n, is small to share the good information. On theeptrand,

n, cannot be larger to keep the diversity. Hencegcsielg

which points should be replaced in order to makestiaring
more effectively is a significant problem. We argiiat in the
objective space, points that are near to the newherated
high quality child solution can be benefit more gared with
the ones that have longer distance from it if dg@acement is
performed. The reason is that for neighbors whieleh
similar fitness landscapes, their optimal solutishsuld be
close to each other in the decision space. Ththdsbasic

principle of MOEA/D. Our argument can be seen as y'=xi(t)+|5(x'l(t)—x'2(t))

“neighbor’s neighbor”. In Fig. 1, the bottom poiwnith a
coordinate (1,1) is the high quality child solutiand can
replace all of the 6 points with ** symbol. If onbne can be

which helps the diversit

selected, then the two points in the circle wilhbft more
than the other 4 points if the schema of the botpmimt is
used.

2%
14
18
17F

161

Fig. 1. lllustration of the replacement mechanism

Therefore, our mechanism is that when a high quelitid
solution, which has the ability to replace mostte current

solutions inT, appears, instead of randomly choosimg

current solutions, we rank their distances to tigh lguality
child solution in the objective space and replake n
solutions with the smallest distances.

C. Random scale search in DE mutation

MOEA/D-DE uses the DE/best/1/bin [8] mutation, whis
as follows:

y =X @)+ FX (1) - x (1) (4)

where indices, andr,(r,r, OP) are randomly chosen and

mutually different, and also different from the i@mnt index.
F 0O(0,1] is a constant called the scaling factor, which

controls the amplification of the differential vation
X (t) - x"2(t) .

DE is with no doubt, a very powerful searclyiaa for
single objective optimization. But when it comes to
multiobjective problems, it seems to converge Jasy to the
vicinity of the true PF, but presents problemsdtually reach
it [11]. A recent study using a scaling factor tisatiniformly
distributed from 0.5 to 1 is shown to have highgecessful
rate to reach the global optimization point in #&ngbjective
problems [12].

In this work, we use a Gaussian distributed randoating
factor with mean valug/ and variance : F, = norm(y, o),
i =1,...,N andk =1,---,n. For each variable in the search

space, the scaling factorF, of each differential

variation x'(t) - x'(t) is different. F is continuously
generated randomly in each iteration. Eqn. (4hanged to:

(5)



Samples for
different F values

di
Fig. 2. lllustration of mutant vectors obtainedtbg random-scale operator

The random amplification induces two advantaBsThe
algorithm has a lower probability of providing prature
solutions because of the reasonable diversityT () vicinity
of the mutant vector is investigated by the randeahi

amplification of the differential variatiox* (t) - x"*(t) . Even
when stagnation appears, a new trial vector hasHainces of
pointing at an even better location on the multialod
functional surface. Fig. 2 shows the effect of @mmizingF. It
can be seen that a cloud of potential points cedtaround the
mutant vector could be generated.

IV. EXPERIMENTAL RESULTS

have a range of 0.24mto 100u#m, 5 of which have a range
of 0.18um to 10um and 1 of which has a range of/A to
2.5mA.
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Fig. 3. Folded-cascode amplifier

For UF1 to UF10 in [13], the number of decisioniahles is
30. For the analog sizing problem, the number cfigie
variables is 11. The number of sub-problems (pdmriasize),
N, is 300 for 2 objective problems, 500 for thregective

To show the effects of the two mechanisms, we coenpaProblems and 148 for the analog sizing problemugho4

original MOEA/D-DE (OD), MOEA/D-DE with new objectives, considering the computational effiirts reduced
replacement rules (RD), MOEA/D-DE with stochastialsng 10 148).T issetto0.1IN, n issett00.0IN, J issetto0.9.
factor (FD) and MOEA/D-DE with both new replacemenin DE operators, CR is set to 1, F is a Gaussiatriblited
rules and stochastic scaling factor (FRD). The peeblem vector with a mean of 0.5 and a variance of 0.B5GIA
instances are UF1 to UF10 in CEC 2009 competit3 ( operators,7 and p_ are the same as MOEA/D-DE. For

objectives) [13] an(-j. a real- Wprld problem, - sizing benchmark problems, the algorithm stops after 1000
folded-cascode amplifier (4 objectives). generations for 2 objective problems, and 1200 geioes

for 3 objective problems. For the analog sizingbtem, the
algorithm stops after 200 iterations.

A. Performance Metric

The inverted generational distance (IGD) [14] igdigo
assess the performance of the algorithms.R'ebe a set of C. Results
uniformly distributed points in the objective spadeng the For UF1 to UF10 in [13], the s& [ PF is available. For

PF. LetA be an approxi*mation to the PF, the inverteghe anai0g sizing problem, 30 runs are first pentent using
generational distance frof@ to A is defined as: each method, whose results are combined to appateithe

ZVJPA d(v,A) . P’ using the method in [10]. Table | shows the mesnas of
P | (5) IGD results for each problem in 20 runs. The rurithw
. - , , smallest IGD values are drawn in Fig. 4.
whered(v, A) is the minimum Euclidean distance betwegen
and the points ir\.

IGD(A,P) =

Table I. The IGD statistics based on 20 runs (ayexalues)

Tests FRD FD RD oD

B. Test Problems and Parameter Setting UF1 0.0096 0.0064 0.0025 0.0027
The test problems include benchmark problems afwdira | YF2 0.0084 0.0072 0.0094 0.0098
objective analog sizing problem. The benchmark i@k UFs3 0.0472 0.0311 0.0093 0.0105
; N T | UF4 0.0592 0.0788 0.0881 0.0858

are UF1 to UF10 in [13]. The multiobjective anakiging is |55 05577 0.7650 0.8476 0.9247
optimization of a folded-cascode amplifier (Fig.@here the ["urs 0.1795 0.2726 0.2381 0.2665
DC gain, GBW, phase margin and power are the 4ctitags. | UF7 0.0056 0.0063 0.0054 0.0032
In the analog sizing problem, there is no analyticd)F8 0.0660 0.0611 0.0569 0.0562
formulation of the optimization goals. They are dw®n the [ Y52 0.1304 0.1299 0.1170 0.1501
SPICE simulation. There are 11 design variablesf, which XE;I%Q g:igig g:ggzg g:gi;g g:gg%




D. Discussions

increasingn . The random scaling factor improves the search
ability of the MOEA/D-DE. When these two techniquee

Here are some observations of the results. For eacbmbined, higher performance can be obtained. Ewtorks

problem, we can rank the different methods accgrtinthe
IGD values and get Table Il and Table IlI.

Table Il. Ranking of the IGD values

Tests FRD FD RD OD
UF1 Rank 4 Rank 3 Rank 1 Rank 2
UF2 Rank 2 Rank 1 Rank 3 Rank 4
UF3 Rank 4 Rank 3 Rank 1 Rank 2
UF4 Rank 1 Rank 2 Rank 4 Rank 3
UF5 Rank 1 Rank 2 Rank 3 Rank 4
UF6 Rank 1 Rank 4 Rank 2 Rank 3
UF7 Rank 3 Rank 4 Rank 2 Rank 1
UF8 Rank 4 Rank 3 Rank 2 Rank 1
UF9 Rank 3 Rank 2 Rank 1 Rank 4
UF10 Rank 1 Rank 3 Rank 2 Rank 4
Analog Rank 1 Rank 2 Rank 3 Rank 4
Table Ill. Statistics of the ranking
Methods Rank 1 Rank 2 Rank 3 Rank 4
FRD 5 1 2 3
FD 1 4 4 2
RD 3 4 3 1
oD 2 2 2 5

It can be seen that the improvement of the nevaogphent

mechanism is obvious. In 7 cases out of 11, the RBI

(MOEA/D-DE with new replacement) method ranks 12¢r
FRD (RD plus random scaling factor) method hassgsavith
rank 1 or 2, FD (MOEA/D-DE with random-scale F) bav
cases with rank 1 or 2 and the original MOEA/D-Dé&s
cases. If only considering the rank 1 column, it b@ seen
that RD and FRD have more distinct advantages.

If only adding a random scaling factor, slight impements
have been observed in high rank region (rank 1)oBat we
can see that the FD method ranks 3 in 4 casesaaikd 4 in 2
case, while the original MOEA/D-DE (OD) ranks 2liicases,
and ranks 4 in 5 cases.

When the two mechanisms are combined togetheanibe
seen that FRD have 5 cases with rank 1, which fsiat
advantage compared with other methods. On the b#ret, it
has 3 cases with rank 4. Therefore, we can conc¢hatd-RD
is a method which can obtain very good result,Rbdnethod
is more stable.

E. NSGA-II Result of the folded-cascode amplifier
NSGA-Il is also implemented for the analogrsigproblem
using the same population sizg,and p_. The distribution

index in SBX is set to 20. The average IGD valug5$3656,
which is much larger than MOEA/D-based methods.

V. CONCLUSIONS

will concentrate on applying the enhanced MOEA/D-DE
framework(s) to more real world applications.
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