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ABSTRACT  13 

We synthesize a series of independent but integrated studies on the functioning of a mixed 14 

Mediterranean oak forest to demonstrate the tree-soil interactions underpinning a positive 15 

feedback process that sustains the coexistence of two oak species. The studies focused on the 16 

foliar functional traits, plant regeneration patterns, biogeochemical cycles, soil microbial 17 

biomass and ectomycorrhizal (ECM) fungal diversity associated with the co-dominant evergreen 18 

Quercus suber and deciduous Q. canariensis in a Mediterranean forest in southern Spain.  19 

Foliar attributes differed between oak species, with Q. canariensis having higher nutrient content 20 

and lower carbon to nutrient ratios and leaf mass per area than Q. suber. These attributes 21 

reflected their distinct resource use strategies and adaptation to high and low resource-22 

availability environments, respectively. Leaf-fall nutrient concentrations were higher in Q. 23 

canariensis than in Q. suber and were correlated with concentrations in the fresh leaves.  Leaf-24 

fall nutrient concentrations influenced nutrient return, leaf-fall decay rate and the proportion of 25 

nutrients released from decomposing leaf-fall, all of which were higher for Q. canariensis than 26 

for Q. suber. This generated a differential net nutrient input into the soil that led to increased soil 27 

nutrient concentrations under the canopy of Q. canariensis as compared to Q. suber. The fraction 28 

of slowly decomposing leaf-fall that builds up soil organic matter was higher for Q. canariensis, 29 

further  raising the nutrient and moisture retention of its soils. Differences between species in soil 30 

properties disappeared with increasing soil depth, which was consistent with the hypothesised 31 

leaf-fall-mediated effect. Tree-species-generated changes in soil properties had further impacts 32 

on soil organisms. Soil microbial biomass (Cmic) and nutrients (Nmic, Pmic) were higher under 33 

Q. canariensis than under Q. suber and were positively related to soil moisture content and 34 

substrate availability (particularly soil N).  The composition of the ECM fungal community 35 

shifted between the two oaks in response to changes in the soil properties, particularly soil Ca 36 

and pH. Lower ECM phylogenetic diversity and higher abundance of mycorrhizal species with 37 

saprophytic abilities were related to the greater soil fertility under Q. canariensis. Overall, the 38 

two oak species generated soil conditions that aligned with their resource-use strategies and 39 

would enhance their own competitive capabilities, potentially creating a positive feedback. The 40 

two Quercus created soil spatial heterogeneity that could enable their coexistence through spatial 41 
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niche partitioning. This study demonstrates the critical role of aboveground-belowground 42 

interactions underpinning forest community composition.  43 

Keywords 44 

feedback processes, microbial biomass, mycorrhizal fungi, nutrient cycling, plant-soil 45 

interactions, Quercus 46 

 47 
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1.  INTRODUCTION  48 

Plant species coexistence has always intrigued ecologists, particularly in relation to 49 

environmental variability (Grime, 1979; Tilman, 1988). Recently a call has been made to 50 

move from describing patterns to understanding the mechanisms driving coexistence 51 

(Agrawal et al., 2007). As a result there has been a rapid increase in the number of studies 52 

suggesting that aboveground and belowground processes, and particularly plant-soil 53 

feedbacks, are among the main mechanisms underpinning species abundance, coexistence 54 

and succession (Kardol et al., 2006; Kulmatiski et al., 2008; Miki et al., 2010; van der Putten 55 

et al., 2013). 56 

Plant-soil feedbacks occur whenever a plant causes species-specific changes to soil biotic or 57 

abiotic properties that in turn affect the establishment, growth or reproduction of their own 58 

species (Bever, 1994; Ehrenfeld et al., 2005). Both positive and negative feedbacks can 59 

promote coexistence: negative feedbacks diminish the fitness differences between species via 60 

equalising mechanisms (sensu (Barot, 2004) leading to dynamic coexistence whereas positive 61 

feedbacks generate multiple steady states and promote coexistence via space and/or time 62 

partitioning (Pacala and Levin, 1997; Barot, 2004). In both cases the underlying mechanisms 63 

rely on the ability of the species to generate environmental conditions that alter competitive 64 

interactions and facilitate or prevent other species establishment.  65 

Many studies have shown that trees are ecosystem engineers able to generate species-specific 66 

effects on soil properties and soil communities that could potentially lead to a feedback effect 67 

(Gómez-Aparicio and Canham, 2008; Vesterdal et al., 2008; Mitchell et al., 2012; Vesterdal 68 

et al., 2012; Prescott and Grayston, 2013 and references therein). However, few of them have 69 

investigated the processes underpinning those effects and their consequences for ecosystem 70 

properties (Reich et al., 2005; Mitchell et al., 2007; Ayres et al., 2009). Furthermore, these 71 

studies are often focused on a particular aspect of tree-soil interactions. For instance, studies 72 

have separately addressed tree species effect on light availability, soil chemical properties, 73 

decomposer community or the effects of soils on species distributions (Canham et al., 1994; 74 

Van Breemen et al., 1997; Hobbie et al., 2006; Turk et al., 2008). To our knowledge only a 75 

few studies have presented a holistic vision of the multiple concomitant tree-soil interaction 76 

processes occurring at a single site despite its importance to ecosystem functioning (Ayres et 77 

al., 2009). Thus a major effort is needed to integrate the current knowledge on the multiple 78 
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functional processes and ecological mechanisms that underpin ecosystems` composition and 79 

dynamics.   80 

To address this knowledge gap we bring together a series of independent but integrated 81 

studies on the functioning of a mixed Mediterranean forest ecosystem. The studies 82 

investigated the effects of the coexisting evergreen Quercus suber and the winter deciduous 83 

Q. canariensis on different ecosystem properties. In particular they characterized the foliar 84 

traits of both oak species (Domínguez et al., 2012) and addressed species effects on nutrient 85 

cycling (Aponte et al., 2011), litter decomposition (Aponte et al., 2012), and soil biota 86 

(Aponte et al., 2010a; Aponte et al., 2010b). The aim of this synthesis is to review the results 87 

of these studies and to discuss whether these interactions could sustain a feedback mechanism 88 

driving the coexistence of the two Quercus species. 89 

Our overarching hypothesis is that the two oak species, through differences in their leaf-fall 90 

nutrient concentration, generate species-specific changes in the soil abiotic properties that 91 

further affect the soil biota and that could ultimately increase their own fitness. To that end 92 

we sequentially examined the following hypotheses: 1) Q. canariensis has higher leaf 93 

nutrient content and different morphological traits than Q. suber, which reflect their different 94 

ecological strategies; 2) The attributes of the fresh leaves are inherited by the leaf-fall, 95 

resulting in Q. canariensis having higher leaf-fall quality and nutrient return than Q. suber; 3) 96 

Higher leaf-fall quality leads to higher decomposition rate and nutrient release into soil; 4) 97 

The higher nutrient return and release from Q. canariensis leaf-fall increases its soil fertility 98 

levels as compared to Q. suber; 5) Species-induced changes in soil nutrient content affect the 99 

size and properties of the soil microbial biomass and alter the species community 100 

composition of the ectomycorrhizal fungal community; 6) Tree species generate a soil 101 

environment where their competitive abilities are enhanced, thus increasing their fitness and 102 

leading to a positive feedback. At a stand scale, this creates a mosaic of soil conditions that 103 

allows for a spatial niche separation and sustains their coexistence. 104 

 105 

2. MATERIALS AND METHODS 106 

2.1. Study area 107 
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The studies were conducted in a mixed oak forest located in southern Spain, near the Strait of 108 

Gibraltar. This area of about 1000 km
2
 holds high ecological value. The rough relief and 109 

acidic nutrient-poor soils, which made the area unsuitable for cultivation, its frontier location, 110 

which limited deforestation and settlement during medieval times, and the rise of the value of 111 

the cork harvested from the Q. suber have contributed to the ecological maintenance of this 112 

area now protected as ―Los Alcornocales‖ (meaning the cork oak woodlands) Natural Park 113 

(Marañón and Ojeda, 1998).  114 

The forest grows on Oligo-Miocene sandstone bedrock that is interspersed with layers of 115 

marl sediments. The area has sub-humid Mediterranean climate, the annual mean temperature 116 

is 16.5 ºC and the annual rainfall ranges from 701 to 1331 mm (Anonymous, 2005). Two oak 117 

species coexist in the area distributed along a topographic gradient:  the evergreen Quercus 118 

suber dominates on the nutrient-poor soils on the ridges whereas the deciduous Q. 119 

canariensis dominates at the valley bottoms. Both species co-dominate in mixed stands on 120 

the midslope (Urbieta et al., 2008).  121 

The studies were conducted in two 1-ha mixed forest stands located on the midslope of two 122 

forest sites (30km apart) named San Carlos del Tiradero (36°9'46''N, 5°35'39''W)  and La 123 

Sauceda (36°31'54''N, 5°34'29''W).  The stand in Tiradero (335-360 m a.s.l) had a higher 124 

density of trees (768 stems ha
-1

) and a close canopy (LAI 2.26 m
2
 m

-2
) compared to La 125 

Sauceda (530-560 m a.s.l; 219 stems ha
-1

; LAI 1.84 m
2
 m

-2
).  Soils in Tiradero had similar 126 

carbon content (3.13 % vs. 3.27%), C/N ratios (15.6 vs. 16.1) and pH (4.0 vs. 4.8) but higher 127 

sand content (58% vs. 47%) than those in La Sauceda (mean values over the first 50 cm). At 128 

each 1-ha stand ten individuals of the evergreen Q. suber and ten individuals of the deciduous 129 

Q. canariensis were selected. The selected trees in the mixed forest stands had their nearest 130 

hetero-specific neighbour within approximately 4 to 10 m.  131 

2.2. Methods 132 

This study draw upon several datasets gathered over more than five years of studies in the 133 

above-mentioned forest stands (Tiradero and La Sauceda). Some of these datasets had been 134 

separately analysed to address specific questions on plant functional traits, litter 135 

decomposition or soil heterogeneity among others and the results have been previously 136 

published (Aponte et al., 2010a; Aponte et al., 2010b; Aponte et al., 2011; Aponte et al., 137 

2012; Domínguez et al., 2012). Other datasets had remained unpublished. Here we reviewed 138 
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the results of these studies and reanalysed the combined datasets to obtain an integrated view 139 

of the ecosystem functioning.   140 

Leaf traits, including four morphological and 19 chemical traits were analysed in 17 woody 141 

plant species (including both oak species) from the forest community in La Sauceda. Leaf 142 

mass per area (LMA, g m
−2

) and leaf dry matter content (LDMC, g g
−1

) were measured 143 

following methods in Cornelissen et al. (2003). Leaf carbon concentration was determined in 144 

an elemental analyser (CHNS Eurovector EA-3000). Nitrogen was analysed by Kjeldahl 145 

digestion (Jones and Case, 1990). Leaf macronutrients (Ca, K, Mg, P, and S) and 146 

micronutrients (Cu, Co, Fe, Mn, Ni and Zn) concentrations were determined by acid 147 

digestion followed by ICP-OES analysis. Isotopic analyses of C (δ
13

C) and N (δ
15

N) in leaf 148 

samples were performed using a continuous-flow elemental analyser – isotopic-ratio mass 149 

spectrometer (EA Thermo 1112-IRMS Thermo Delta V Advantage). For more details on leaf 150 

trait analysis see Domínguez et al. (2012).  151 

Tree species nutrient return and effects on soil fertility were examined for the 40 selected oak 152 

trees. Fresh leaves, leaf-fall, litter, topsoil (0–25 cm depth) and subsoil (25–50cm depth), 153 

were sampled in November 2006. Leaf-fall, litter and soil were sampled beneath the canopy 154 

of each selected oak. Accumulated annual leaf-fall was collected in four traps under each 155 

tree. Litter was considered dead plant material relatively undecomposed standing on the 156 

ground and it was harvested within two 30 x 30 cm quadrats. Soil cores were extracted with a 157 

cylindrical auger after removing the litter layer. Soil pH was determined in a 1:2.5 soil:CaCl 158 

0.01M solution. Soil carbon was estimated using a total organic carbon analyser (TOCVesh), 159 

available soil P was estimated using the Bray-Kurtz method and soil NH4
+
 was estimated by 160 

extraction with KCl (2M) and steam distillation. Total concentration of several nutrients (Ca, 161 

K, Mg, P, S, Mn, Cu and Zn) in plant tissues and soils was determined using  wet oxidation 162 

with HNO3 (for plants) or HCl + HNO3 (for soils) under pressure in a microwave digester 163 

followed by ICP- OES analysis. Plant and soil N was determined by Kjeldahl digestion. 164 

Further details on the methods can be found in Aponte et al. (2011). 165 

Leaf-fall decay and nutrient release were examined using a litterbag decomposition 166 

experiment. Litterbags containing freshly senesced leaves from Q. suber or Q. canariensis 167 

were incubated beneath the canopies of the selected oak trees, beneath shrubby cover and in 168 

open areas. Litterbags were harvested every 6 months for 2 years. Upon harvest, leaf litter 169 

was removed from the bags, dried and weighed for mass loss. Samples were ground and 170 
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analysed for C, N, Ca, K, Mg, P, S, Mn, Cu and Zn to assess changes in nutrient content over 171 

time. Biomass loss (in this case carbon loss) was fitted with an asymptotic model, Mt = m + 172 

(1 - m)*e
-kt

, where Mt was the proportion of remaining mass at time t, m was the fraction of 173 

the initial mass with a decomposition rate of zero (that is, the asymptote) and k was the 174 

decomposition rate of the remaining fraction (1 - m). The asymptotic model implied that 175 

there was a limit value (m) for mass loss. This value corresponded to a very stable fraction of 176 

the litter that decomposed extremely slow over the time span of the experiment (Berg et al., 177 

2003). See further methodological details in Aponte et al. (2012). 178 

Soil microbial C, N and P content were estimated on soil samples extracted at two depths (0–179 

8 cm and 8–16 cm after removing the litter layer) beneath the selected oak trees.  Soil 180 

samples were taken in spring (May–June), summer (September) and autumn (December) 181 

2007, and spring (May) 2008. Microbial C, N and P were estimated using a chloroform 182 

fumigation-extraction procedure (Brookes et al., 1982; Brookes et al., 1985; Vance et al., 183 

1987). Two soil subsamples were extracted using 0.5 M K2SO4 or 0.025 N HCl + 0.03 N 184 

NH4F for subsequent determination of microbial C and N or microbial P, respectively. Other 185 

two soil subsamples were fumigated with chloroform for 24 h in a vacuum desiccator, 186 

followed by the same extraction procedure as the unfumigated samples.  Carbon and N in 187 

fumigated and unfumigated soil extracts were determined using a Total Dissolved Organic 188 

Carbon and Nitrogen Analyzer (TOC-Vesh). Microbial C and N were estimated as the 189 

difference in K2SO4-extractable dissolved organic carbon or nitrogen between fumigated and 190 

unfumigated soils using as extractability correction factors: KC = 0.45 for C and KN = 0.40 191 

for N (Jonasson et al., 1996).  Available P in NH4F soil extracts was measured using the 192 

Bray-Kurtz method (Bray and Kurtz, 1945). Microbial P was estimated as the difference in 193 

available P between fumigated and unfumigated soil using a correction factor KP = 0.40 194 

(Brookes et al., 1982). For more methodological details see Aponte et al. (2010b).  195 

The community composition of the ectomycorrhizal fungi associated with the roots of the 196 

selected oak trees was identified using PCR-based molecular method. Superficial roots (15 197 

cm depth) approximately equal in length (20 cm) were taken from each selected tree, close to 198 

the litter and soil sampling points, in November 2007. From each tree 20 mycorrhizal root 199 

tips were randomly picked. Mycorrhizal DNA was extracted using the Wizard Genomic 200 

DNA Purification Kit (Promega, Charbonnieres, France) and the internal transcribed spacer 201 

regions I and II and the nuclear 5.8S rRNA gene were amplified using the primer sets ITS-202 
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1F/ITS-4B (Gardes and Bruns, 1993) or ITS-1F/ITS-4 (White et al., 1990). The sequencing 203 

of the final amplification products was done by MilleGen (Labège, France). Ectomycorrhizal 204 

species (―Operational taxonomic units‖ sensu (Blaxter et al., 2005) were determined by 205 

BLAST searches against GenBank and the UNITE database. See methodological details in 206 

Aponte et al. (2010a). 207 

2.3. Data analysis 208 

A range of multivariate ordination techniques, namely Principal Component Analysis (PCA), 209 

Canonical Correspondence Analysis (CCA) and path analysis, were used to better understand 210 

the multivariate patterns present in the data. Principal Component Analysis was applied to 211 

single tables to explore the variability within datasets. Canonical Correspondence Analysis 212 

was used to analyse the relationship between the ECM community composition and 213 

environmental conditions. Path analysis with d-sep tests was used to evaluate alternative 214 

causal relationships among the properties of the ecosystem components (Shipley, 2000). 215 

Differences between Quercus species in the univariate or multivariate space were evaluated 216 

using Analysis of Variance (ANOVA) or Mann-Witney non-parametric test for small sample 217 

sizes. 218 

 219 

3. RESULTS AND DISCUSSION 220 

3.1. Leaf traits  221 

The traits of the fresh leaves of Q. canariensis and Q. suber, together with other 15 woody 222 

species of the plant community in La Sauceda, were studied by Domínguez et al. (2012) 223 

using a principal component analysis (Fig 1, a). The first PCA axis accounted for 26% of the 224 

variability of the traits attributes and it was negatively related to leaf nutrient concentration 225 

and positively related to leaf mass per area (LMA), leaf dry matter content (LDMC), carbon 226 

concentration, δC
13

 and carbon to nitrogen ratio. We analysed the differences between the 227 

two Quercus in the multivariate space defined by the PCA and observed that the two species 228 

had significantly different scores along the first axis (Mann-Whitney U test, n=10 229 

individuals,  P < 0.009): the evergreen Q. suber grouped with other sclerophyllous species at 230 

the positive end of the first axis, whereas Q. canariensis was on the negative side of the same 231 

axis (Fig 1, a). Similar results were obtained when we analysed the attributes of the fresh 232 

leaves sampled from the 40 oak trees (20 Q. suber and 20 Q. canariensis) in the two forest 233 
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sites (La Sauceda and Tiradero; Fig 1, b); the first PCA axis accounted for 36% of the 234 

variability of the dataset and clearly separated the two Quercus species (P < 0.001). Both 235 

analyses indicated that Q. suber had a higher LMA, LDMC, C, C:N and δC
13

 and lower 236 

nutrient concentrations than Q. canariensis.  237 

Species leaf trait values reflect their functional strategy to manage resources such as water, 238 

light and nutrients (Poorter et al., 2009; Pérez-Ramos et al., 2012). Two main opposite 239 

strategies can be distinguished from the global range of traits variation that defines the leaf 240 

economics spectrum (Wright et al., 2004): a conservative resource-use strategy and resource-241 

acquisition strategy. The first one is defined by slow rates of resource acquisition and 242 

minimum resource loss and it is characteristic of species adapted to resource-limited 243 

environment, whereas the opposite is true for the second one (Aerts, 1995). The differences 244 

in the foliar attributes of the studied oaks align each species with one of the divergent 245 

ecological strategies. That is, Q. suber could be considered to have a conservative-resource 246 

strategy because of its higher values of LMA, higher density tissues, higher efficiency in the 247 

use of water (high C
13

 (Farquhar et al., 1989)) and higher carbon-to-nutrient ratios. In 248 

contrast Q. canariensis, which exhibited opposite attributes, would be ascribed to the 249 

resource-acquisition strategy (Wright et al., 2005; Villar et al., 2006).  The divergence in 250 

their strategies is consistent with their distinct decomposability (lower for Q. suber), which 251 

would lead to slower nutrient loss during decomposition (Gallardo and Merino, 1993; Aponte 252 

et al., 2012). 253 

Species resource-use strategies are the result of their adaptive evolution to environmental 254 

conditions (Reich et al., 2003), which suggests that the two Quercus would be adapted to 255 

environments with distinct resource (water, light and nutrients) availability. This was 256 

sustained by Urbieta et al. (2008) who examined the dominance of both oak species along a 257 

topographic gradient in a 284-ha mixed forest stand within Los Alcornocales National Park. 258 

They observed that the abundance of Q. suber increased with altitude and distance from the 259 

valley bottom (i.e., decreasing water and nutrient availability) whereas the opposite was 260 

observed for Q. canariensis. Higher water availability also increased seedling performance 261 

and survival rate of Q. canariensis but did not affect Q. suber in greenhouse and field 262 

experiments (Quero et al., 2006; Pérez-Ramos, 2007). Studies on the regeneration of both 263 

oak species demonstrated that in low-light environments (i.e., dense plant cover, high litter 264 

depth and nutrient availability) Q. canariensis had higher survival and growth rate than Q. 265 
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suber. However in high-light, nutrient-poor environments the evergreen Q. suber seedlings 266 

outgrew the deciduous species (García et al., 2006; Gómez-Aparicio et al., 2008b; Pérez-267 

Ramos et al., 2010). The differential response of Q. canariensis and Q. suber to resource 268 

availability suggests that their coexistence might be mediated through niche partitioning.   269 

Species leaf attributes are not only a response to environmental conditions but also determine 270 

species effect on the ecosystem properties (Diaz et al., 2004; Ayres et al., 2009). For 271 

instance, the chemical and morphological attributes of fresh leaves and senesced leaves (leaf-272 

fall) influence soil nutrient availability through its effects on biogeochemical processes (e.g., 273 

nutrient throughfall, decomposition) (Facelli and Pickett, 1991; Prescott, 2002; Hobbie et al., 274 

2006). Therefore the distinct foliar attributes of the studies species would likely generate 275 

contrasting effects on the ecosystem properties. 276 

3.2.   Leaf-fall and nutrient return  277 

The nutrient concentration of the fresh leaves and leaf-fall of the 40 oak trees in the two 278 

forest sites was highly correlated (Aponte et al., 2011), resulting in Q. canariensis having 279 

higher leaf litter quality than Q. suber (Fig 2). This was consistent with results from the leaf-280 

fall decomposition study by Aponte el at. (2012), who reported higher concentrations of N, 281 

Ca, Mg, P and S (P < 0.001) in the leaf-fall of Q. canariensis as compared to Q. suber.   282 

Differences between species were particularly high for macronutrients such as Ca (51% 283 

higher in Q. canariensis leaf-fall), P (28%) and Mg (26%).  These results indicate that fresh 284 

leaf attributes, and thus differences between species, were inherited by the leaf-fall. However, 285 

the relationship between fresh leave and leaf-fall mineral content cannot be generalised since 286 

leaf-fall nutrient content might be influenced by nutrient resorption during the senescing 287 

process (Aerts, 1996). Nutrient resorption minimizes nutrient losses and therefore high 288 

resorption efficiency would be expected from species exhibiting a conservative use of 289 

resources. Conversely, in our study Q. suber and Q. canariensis did not differ in proportional 290 

resorption of N (39% Q. canariensis vs. 36% Q. suber ) or P (39.7% Q. canariensis vs. 41% 291 

Q. suber). Other nutrients measured (Ca, Mg, S, Mn, Cu, Fe, Zn) were not resorbed but 292 

instead accumulated in the leaf-fall. Aerts et al. (1996) also observed small (47% vs. 54%) or 293 

no differences in the resorption of N and P between evergreen and deciduous trees and 294 

concluded that the lower nutrient concentration in evergreen leaf-fall contributed more to 295 

nutrient conservation than did nutrient resorption.  296 
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Annual leaf-fall production of Q. canariensis and Q. suber was similar in amount (0.30 and 297 

0.29 kg/m
2
 respectively). Comparable leaf-fall production values were found for the winter 298 

deciduous Q. pyrenaica (0.237 kg/m
2
) in the centre of Spain (Salamanca), and the evergreens 299 

Q. lanuginose (0.246 kg/m
2
) and Q. ilex (0.243 kg/m

2
) in the south of France (Montpellier) 300 

(Rapp et al., 1999), suggesting that, at least for this genus, leaf-fall productivity is not 301 

necessarily related to foliar habit. Both leaf-fall nutrient content and leaf-fall quantity 302 

determine tree species nutrient return and their impact on ecosystem properties (Facelli and 303 

Pickett, 1991; Washburn and Arthur, 2003). Leaf-fall quantity could be more influential than 304 

quality in terms of net nutrient return to soil if the different masses of leaf-fall overrode the 305 

differences in nutrient concentrations (Chabot, 1982; Cuevas and Lugo, 1998). However this 306 

was not the case for Q. suber and Q. canariensis, which had comparable leaf-fall production. 307 

Therefore the nutrient concentration of the leaf-fall created the distinct nutrient return of the 308 

two species.  309 

3.3. Leaf-fall decomposition and nutrient release 310 

Leaf-fall decomposition of Q. suber and Q. canariensis were measured in a two-year litterbag 311 

experiment (Aponte et al. 2012). During the early stages of decomposition leaf-fall of Q. 312 

canariensis had higher chemical quality, particularly the higher concentrations of N (lower 313 

C:N) and Ca, and decayed faster than that of Q. suber . Leaf-fall quality largely controls leaf 314 

litter decomposition and release of nutrients into soil and thus could potentially explain 315 

species effects on soil fertility (Norris et al., 2012). High leaf-fall quality has been related to 316 

high nutrient content and low carbon to nutrient ratios but also to low non-structural and 317 

recalcitrant carbohydrate concentrations (e.g. lignin, tannins, phenolic) and low leaf mass per 318 

area and foliar toughness (Gallardo and Merino, 1993; Pérez-Harguindeguy et al., 2000; 319 

Aerts et al., 2003; Hättenschwiler and Jørgensen, 2010). Most of these properties differed 320 

between Q. suber and Q. canariensis in keeping with their distinct decay rates (Gallardo and 321 

Merino, 1993).  322 

In contrast to the pattern observed during early decomposition, the limit value of  323 

decomposition, i.e. the fraction of leaf litter mass that remains stable at late stages of 324 

decomposition and builds up soil organic matter, was higher for Q. canariensis than for Q. 325 

suber (40% vs. 31%, p<0.0001; Aponte et al. 2012). This was consistent with the larger 326 

concentrations of soil organic matter measured under the canopy of Q. canariensis than under 327 

Q. suber (Aponte et al., 2010b; Aponte et al., 2011). Differences in species limit value were 328 
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related to their distinct N, Ca and Mn content. Nitrogen and Ca, which enhanced early decay 329 

rates, hindered late stage decomposition, thus exerting counteracting effects over time. In 330 

high-N substrates microbes are not N-limited and have higher substrate use efficiency. This 331 

results in a faster initial decomposition but also in a greater accumulation of microbial 332 

products and residues over the long term. These microbial products, when bonded with metal 333 

polyvalent cation such as Ca, are the precursors of stable SOM formation (Davey et al., 2007; 334 

Cotrufo et al., 2013).  Manganese was the only nutrient which concentration was higher in Q. 335 

suber than in Q. canariensis leaf-fall and it emerged as the most important driver of carbon 336 

loss during late decomposition.  The effect of Mn was related to its role as a cofactor in a 337 

lignin degrading enzyme (Eriksson et al., 1990; Davey et al., 2007). 338 

Aponte et al. (2012) also observed that the rate and proportion of nutrients loss from 339 

decomposing leaf-fall was higher for Q. canariensis than for Q. suber. For example, after 6 340 

months Q. canariensis leaf-fall had lost 49% and 17% of its P and N content respectively. In 341 

contrast Q. suber had lost 29% of its P content and none of its N. The species differences in 342 

their relative nutrient loss during decomposition added to the differences in species nutrient 343 

return. As a result, Q. canariensis released a higher net amount of nutrients into the soil than 344 

Q. suber (Fig 3). For instance, after two years Q. canariensis  would have released 12 kg ha
-

345 

1
of N (31% of the initial input), 8.6 kg ha

-1
of Ca (19%) and 2.1 kg ha

-1 
of P (67%) whereas Q. 346 

suber would have released 2.1 kg ha
-1

 of N (8%), 3.1 kg ha
-1

 of Ca (11%) and 0.9 kg ha
-1

 of P 347 

(50%). Nutrient return from Q. canariensis could have been slightly higher since, due to its 348 

marcescent habit, a fraction of the soluble nutrients in its leaf-fall could have been leached 349 

over the winter before our sampling (Ibrahima et al., 1995). Nevertheless this would further 350 

increase the differences in nutrient release between oak species.  351 

Leaf-fall decomposition is not only influenced by its quality it can also be affected by the soil 352 

biota and environmental conditions (i.e., moisture, UV radiation, temperature (Hobbie, 1996; 353 

Austin and Vivanco, 2006; Negrete-Yankelevich et al., 2008). Aponte et al. (2012) evaluated 354 

the relative importance of subtrate (leaf-fall) quality versus tree-generated environmental 355 

conditions on the decomposition of Q. suber and Q. canariensis leaf-fall by incubating 356 

litterbags beneath the canopies of both species. Leaf-fall quality explained a greater 357 

percentage of the variation of early and late decay parameters (35.2% and 19.6 % 358 

respectively) than topsoil environmental conditions (4.4% and 4.5%). Nevertheless, the 359 

higher moisture content and higher N and P concentration of the soils beneath Q. canariensis 360 
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positively influenced leaf-fall decay of both species. These results are in accordance with 361 

other studies that suggest that long term tree-soil interactions can shape topsoil properties and 362 

organisms thus allowing for a potential indirect effect of trees species on leaf-fall decay via 363 

changes in soil environment (Mitchell et al., 2007; Vivanco and Austin, 2008; Freschet et al., 364 

2012). For instance, Reich et al. (2005) and Hobbie et al.(2006) showed that tree species 365 

affected leaf-fall decomposition through variation in leaf-fall quality, soil temperature and 366 

earthworm community. Chadwick et al. (1998) observed that leaf-fall decay rate was 367 

influenced by the nutrient content of the layer of litter on which leaf-fall was incubated. 368 

Recently Vesterdal et al. (2012) correlated the leaf-fall quality (N, Ca and Mg) and 369 

microclimatic conditions generated by five deciduous tree species with forest floor C 370 

turnover rates.  371 

Overall, the distinct nutrient return and decay patterns of both Quercus species, controlled by 372 

their leaf-fall quality, resulted in a differential nutrient input into the soils that could in turn 373 

alter soil nutrient availability. In addition, the higher limit value of decomposition of Q. 374 

canariensis lead to higher levels of SOM and thus higher retention of nutrients and moisture, 375 

further reinforcing the ability of Q. canariensis to change soil conditions.  376 

3.4. Soil nutrient content  377 

We analysed the chemical and textural characteristics of the subsoil (25-50 cm) sampled 378 

beneath the 40 Q. canariensis and Q. suber trees within each forest site as a proxy of the 379 

original soil conditions. No differences were found between the two species (Supplementary 380 

figure S2), suggesting that the parent material i.e. the original soil conditions, within stands 381 

was homogeneous. In contrast, topsoil (0-25 cm) carbon and nutrient concentration and pH 382 

were significantly (P<0.05) higher under Q. canariensis than under Q. suber, consistent with 383 

the differences in nutrient return and decomposition dynamics. The multivariate analysis of 384 

the chemical composition of the leaf-fall and topsoil of the two species (Fig. 4) indicated that 385 

nutrient concentration in the topsoil was strongly related to that measured in the leaf-fall, as 386 

evidenced by the correlation of all variables along the main axis. This meant that the foliage 387 

attributes (in this case chemical composition) of each tree were mirrored in the topsoil, which 388 

was consistent with a leaf-fall-mediated tree species effect on soil properties.  389 

We conducted a more detailed study on the chemical composition along the soil profile 390 

beneath Q. canariensis and Q. suber in La Sauceda (Fig 5). Samples were taken every 10 cm 391 
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along the first 0-60 cm of soil. In accordance to the previous results, differences in soil 392 

nutrient concentration between species were larger in the uppermost soil layers but they 393 

gradually disappeared with soil depth.  394 

One of the key issues when examining tree species induced soil changes is the confounding 395 

effect of soil variability prior to species establishment. If experiments are conducted on an 396 

initially homogeneous substrate, then any changes in soil variables between species can be 397 

fully attributed to species effects. Otherwise differences in the soils under different species 398 

may not conclusively confirm the species ability to modify soil conditions, but could be the 399 

result of the initial species distribution governed by the differences in species soil and 400 

nutrient requirements. As a result most studies investigate tree species influence on soil 401 

conditions using experimental plantations with monocultures in common garden designs on 402 

homogeneous subtrates (Menyailo et al., 2002; Hagen-Thorn et al., 2004; Oostra et al., 2006; 403 

Vesterdal et al., 2008). Descriptive studies from mixed forests overcome this limitation by 404 

assessing the homogeneity of the deeper soil layers, as a surrogate of the initial substrate 405 

conditions (Boettcher and Kalisz, 1990; Finzi et al., 1998a; Finzi et al., 1998b). In mature 406 

(50-100 years old), stands species influence can be found in the deeper mineral soils layer 407 

(Nordén, 1994). However changes in soil chemistry due to differences in leaf-fall quality are 408 

much more distinct in the upper most layers, as was the case in the studied forest (Hagen-409 

Thorn et al., 2004). 410 

Our study focussed on the effects via leaf-fall properties but other concurrent mechanisms 411 

might also induce changes in the soil conditions, such as differences in interception of 412 

atmospheric deposition, canopy interactions, leaching and root exudates as well as alterations 413 

to microclimate (Augusto et al., 2002; Berger et al., 2009).  However, the strong relationship 414 

between the chemical composition of the leaf-fall and the soil beneath the canopy of each 415 

tree, and the finding that the differences between oak species declined with depth in the soil 416 

profile suggest that the changes in soil chemistry were largely due to leaf-fall properties.  417 

3.5. Soil microbial biomass 418 

Soil microbial biomass (Cmic) and microbial nutrients (Nmic, Pmic) were higher under Q. 419 

canariensis than under Q. suber (18%; 24%; 9% respectively), as reported by Aponte et al. 420 

(2010b). To determine whether this effect was mediated by tree species influence on soil 421 

properties we analysed the covariation of microbial nutrients and soil properties (Fig 6). Two 422 
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main significant axes accounting for 34% and 18% of the variance emerged from the 423 

ordination analysis as determined by the broken stick method. The variables loading on these 424 

two axes revealed that microbial C, N and P variability was strongly related to the abiotic soil 425 

properties. The analysis of bivariate relationships indicated that among all soil parameters, 426 

soil total N was the best predictor of Cmic (R
2
=0.84), Nmic (R

2
=0.87) and Pmic (R

2
=0.69).   427 

Several studies have reported differences in microbial C, N and P in soils from under 428 

different tree species (Malchair and Carnol, 2009; Smolander and Kitunen, 2011; Huang et 429 

al., 2013). In most cases the mechanisms underlying those effects remain unclear, while 430 

others found that microbial biomass was positively related to the availability of limiting 431 

resources such as water, organic matter and nutrients (Billore et al., 1995; Nielsen et al., 432 

2009; Lucas-Borja et al., 2012). Therefore the increased levels of soil microbial C, N and P 433 

under Q. canariensis could be explained by the higher nutrient concentrations (particularly 434 

total N), soil organic matter content and soil water-holding capacity of its soils as compared 435 

to Q. suber. Furthermore, Aponte et al. (2010b) observed a positive correlation between 436 

microbial and available inorganic N and P (r=0.44 and r=0.37 respectively; p<0.001). These 437 

relationships suggest that tree species, through their influence on soil microorganisms, can 438 

affect nutrient mineralization and availability further reinforcing their effect on soil fertility 439 

(Smolander and Kitunen, 2011; Huang et al., 2013). 440 

The differences observed by Aponte et al. (2010b) in the microbial pools between Quercus 441 

species were only significant in the uppermost soil layer (0-8 cm) whereas they diluted with 442 

soil depth (8-16 cm). The pattern of differences in microbial nutrients (being greatest in the 443 

upper soil and disappearing along the soil profile) mirrored that found for soil nutrient 444 

concentrations (Fig. 5). Furthermore, these layers (0-8 cm and 8-16 cm) would roughly 445 

correspond to the organic F and H layers, as the average depth of the organic soil in these 446 

sites was 20 cm. The F layer often shows the largest differences in microbial communities 447 

composition and activity among tree species as opposed to the H layer and the mineral soil, 448 

which are less influenced by tree species and thus show less detectable differences (Grayston 449 

and Prescott, 2005; Ushio et al., 2010). Root litter and root exudates could also influence 450 

microbial communities through input of labile C and nutrients (Billore et al., 1995; 451 

Brimecombe et al., 2000). However the correlation between soil and microbial nutrients and 452 

the dilution of differences between species along the vertical soil profile suggest that species 453 



17 

 

indirectly affected soil microbial biomass through leaf-fall-mediated changes in soil abiotic 454 

properties. 455 

Both Nmic and Pmic showed a strong seasonal variability, with differences between species 456 

being significant in spring but not in summer (Aponte et al., 2010b). This was attributed to 457 

changes in soil water content, which varied almost two-fold from spring (21%) to summer 458 

(12%). That is, drought limited microbial activity during summer, equalising the levels of 459 

Nmic and Pmic between species. However high soil water availability in spring increased the 460 

accessibility of nutrients (Nielsen et al., 2009), thus allowing for a differential microbial 461 

growth beneath the two Quercus. Higher microbial activity in the wet than in the dry season 462 

had been previously found in the same forest (Quilchano and Marañón, 2002). The effect of 463 

changes in water availability could further interact with seasonal differences in substrate 464 

availability associated to species phenology (Rinnan et al., 2008). In the studied forest, the 465 

evergreen Q. suber showed a clear seasonal pattern, shedding most of its annual leaf-fall 466 

during early summer as a strategy to reduce evapo-transpiration and withstand summer 467 

drought (Supplementary Figure S1). In contrast the winter deciduous Q. canariensis had 468 

marcescent habit and shed most (60%) of its leaf-fall throughout the winter and spring 469 

(Navarro et al., 2005). Therefore, Q. canariensis provided more and higher quality substrate 470 

at the peak time of microbial activity, explaining why the differences observed in the soil 471 

microbial properties between the two oaks were significant only in spring. 472 

3.6. Ectomycorrhizal community composition 473 

The ECM community on the roots of Q. canariensis and Q. suber was examined to evaluate 474 

to which extent host species and host-generated soil conditions influenced the symbiotic 475 

community (Aponte et al. 2010a). The ECM community composition of the two oaks was 476 

largely dissimilar with only 13 of the 69 identified species (18%) occurring in both Quercus 477 

species.  Thelephoraceae species dominated the roots of Q. canariensis (38.9% of the 478 

identified mycorrhizae) whereas species from Russulaceae family dominated the roots of Q. 479 

suber (46.6%). The taxonomic distinctness (Warwick and Clarke, 1995) and the phylogenetic 480 

structure of the community also shifted between oak species (P<0.001):  Q. canariensis 481 

harboured a segregated phylogeny (lower taxonomic distinctness) with a high abundance of 482 

the resupinate tomentelloid species and a lack of epigeous taxa. In contrast, Q. suber ECM 483 

community showed a high taxonomic distinctness (i.e., lower phylogenetic relatedness 484 

among species) and a higher abundance of epigeous species.   485 
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The shift in ECM species composition was related to changes in litter and topsoil properties 486 

(Aponte et al. 2010a). In particular, Ca concentration emerged as the best predictor of the 487 

ECM community composition (P< 0.001; 8% of the overall ECM species variance). Calcium 488 

concentrations were strongly related to soil pH suggesting that calcium-induced changes in 489 

soil acidity could also be driving the shift observed in the fungal communities. Based on their 490 

observations of distinct Ca contents of the leaf-fall, litter and topsoil of Q. canariensis and Q. 491 

suber they conducted a path analysis to evaluate whether the changes in the ECM 492 

composition could be attributed to the leaf-fall mediated changes on the litter and topsoil Ca 493 

concentrations (Supplementary Figure S3). Several alternative models were tested but only 494 

those which included the indirect effects of host species on litter and topsoil properties via 495 

leaf-fall Ca were significant as opposed to those which only included the direct effects of soil 496 

or host species. These results suggested that Q. canariensis and Q. suber influenced the ECM 497 

community composition by altering litter and topsoil acidity and Ca concentration.   498 

Other studies have observed shifts in the composition of the ECM fungal communities, such 499 

as changes in species richness and dominance from epigeous to resupinate and from 500 

Basidiomycetes to Ascomycetes, related to variations in soil nutrient availability (Avis et al., 501 

2008; Buée et al., 2011; Kluber et al., 2012). Under high nutrient availability tree dependence 502 

on ECM symbiosis for nutrient uptake decreases and so might the transference of 503 

carbohydrates to the symbionts. This would favour the presence of tomentelloid species, 504 

which have certain saprophytic capacity and are able to obtain part of their carbon through 505 

litter and soil organic matter decomposition (Kõljalg et al., 2000; Pena et al., 2013). Thus the 506 

soil conditions generated by Q. canariensis imposed an environmental filter selecting for a 507 

cluster of closely related ‗tolerant‘ species. On the other hand, the higher taxonomic 508 

distinctness observed in the nutrient-poor soils under Q. suber suggests a functional 509 

diversification of the ECM community driven by limiting resources and competitive 510 

interactions. Soil acidity has also been shown to affect species performances (e.g., production 511 

of fruit bodies, mycelial growth, enzymatic capabilities) and thus influence their competitive 512 

abilities leading to changes in the community composition (Agerer et al., 1998; Rosling et al., 513 

2004 ; Courty et al., 2005). Nonetheless, these changes were treated as abiotic host-514 

independent influence. Morris et al. (2008) conducted a similar study to Aponte et al. (2010a) 515 

and also found differences in the abundance and diversity of epigeous ECM species between 516 

the roots of coexisting evergreen and deciduous oaks and related those differences with 517 

changes in host species and soil nutrient content. However, in contrast to Aponte et al. 518 
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(2010), they did not attempt to demonstrate the soil-mediated indirect effect of host tree 519 

species on ECM fungal assemblages.  520 

Tree species effect on ECM fungi could further lead to changes in the microbial community 521 

activity and composition as their production of exudates can further affect other soil 522 

microorganisms (Högberg and Högberg, 2002; Jones et al., 2004; Frey-Klett et al., 2005). 523 

Some studies have related changes in the microbial community composition (PLFA, TRFLP) 524 

with variation in litter and soil pH and Ca (Ayres et al., 2009; Thoms et al., 2010). Whether 525 

these changes are mediated by shifts in the ECM community composition remains unclear. 526 

The recent increase in the number of studies exploring the indirect effects of plant species on 527 

soil communities highlights the important role that these interactions have in the ecosystem 528 

functioning (Thoms et al., 2010; Sagova-Mareckova et al., 2011; Lucas-Borja et al., 2012; 529 

Mitchell et al., 2012; Vesterdal et al., 2012).  530 

3.7. Feedback effects and species coexistence 531 

The mechanisms sustaining evergreen and deciduous species coexistence are still unclear 532 

(Givnish, 2002). Most studies suggest that species coexistence is maintained by differences in 533 

their regeneration niche, demographic characteristics, susceptibility to soil pathogens or 534 

responses to gap disturbance regime (Tang and Ohsawa, 2002; Taylor et al., 2006; Gómez-535 

Aparicio et al., 2012). In a recent analysis of the mechanisms promoting species coexistence 536 

Barot et al.(2004) suggested that species-induced spatial heterogeneity of resources 537 

(‗endogenous heterogeneity‘) could sustain species coexistence through self-generated niche 538 

differentiation. For example, if the species-specific changes in ecosystem properties 539 

generated a positive feedback by leading to soil conditions in which the species are more 540 

competitive, then the endogenous environmental heterogeneity would promote stable species 541 

coexistence through space partitioning (Pacala and Levin, 1997; Brandt et al., 2013). Our 542 

results indicated that coexisting deciduous Q. canariensis and evergreen Q. suber, through 543 

their capacity to modify the soil properties and communities beneath their canopies, created a 544 

mosaic of soil conditions, i.e. endogenous environmental heterogeneity. However, only if the 545 

species‘ self-generated soil conditions increased their own fitness in a positive feedback 546 

would this heterogeneity promote coexistence. Aponte et al. (2011) tested the feasibility of 547 

this positive feedback effect using a path analysis that fitted several alternative causal models 548 

to the empirical data collected on the field. In particular they analysed the causal relationships 549 

between the oak species and the chemical composition of the fresh leaves, leaf-fall, topsoil 550 
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and subsoil (Supplementary Figure S4). The main hypothesis underlying the models tested 551 

were (1) oak species affect soil conditions via nutrient return, and in turn this affects species 552 

distribution and generates a positive feedback effect; (2) species modify topsoil conditions 553 

via nutrient return but species distribution is only affected by subsoil properties, thus there 554 

are no feedback effects; and (3) soil affects species distribution, but trees have no effect on 555 

soil conditions. Only the model based on the feedback hypothesis matched field data. Also, 556 

observational and experimental works in the study area have shown that the studied Quercus 557 

species differ in their regeneration niches, as mentioned above (section 3.1). The probability 558 

of successful recruitment, growth rate and abundance of seedlings and saplings of both oaks 559 

was positively related to the presence of conspecific adults and negatively related to the 560 

presence of the other species (Maltez-Mouro et al., 2005; Pérez-Ramos et al., 2010). In 561 

addition, the emergence and recruitment of Q. canariensis increased with soil fertility 562 

(Maltez-Mouro et al., 2009; Pérez-Ramos and Marañón, 2012). Furthermore, the soil 563 

conditions generated by each species aligns with their life-history and nutritional strategies 564 

and reflect, at a local scale, the different environments where each species dominate (Gómez-565 

Aparicio et al., 2008b; Urbieta et al., 2008; Pérez-Ramos et al., 2010). All of the above 566 

suggest that each oak species generates a space where it is the best competitor, leading to a 567 

potential positive feedback effect that would underpin species coexistence (Catovsky and 568 

Bazzaz, 2000; Barot, 2004; Brandt et al., 2013). 569 

The importance of the role of plant-soil feedbacks as drivers of plant community composition 570 

and species coexistence is increasingly being recognized (Gómez-Aparicio et al., 2008a; 571 

Kulmatiski et al., 2008; Kardol et al., 2013). For instance, Brandt et al. (2013) observed that 572 

soil heterogeneity generated by plant-soil feedbacks had species-specific effects on 573 

germination and establishment, with consequences for recruitment dynamics. Interestingly, 574 

most reported plant-soil feedback effects are negative, often mediated by soil pathogens and 575 

root herbivores (Bever, 2003; Bonanomi et al., 2005; Kardol et al., 2006; Kulmatiski and 576 

Kardol, 2008). Gómez-Aparicio et al. (2012) analysed the spatial patterns of soil pathogens in 577 

Q. canariensis – Q. suber mixed forests and found no evidence of plant-soil feedback effects 578 

via soil pathogens. Furthermore, as stated in a recent review on plant-soil feedbacks (van der 579 

Putten et al., 2013), most negative feedbacks results emerge from simulations, monoculture 580 

experiments under controlled indoor conditions or field studies in agricultural systems. 581 

Feedback studies in natural forest systems are still scarce and essential to understand plant 582 

population dynamics and functioning of forest ecosystems.  583 
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Although this empirical evidence sustains our hypothesis regarding the capacity of oak 584 

species to modify ecosystem properties, our conclusions on the positive feedback processes 585 

and coexistence mechanisms are tentative. Reciprocal field-based transplant experiments 586 

where species are planted next to con- and hetero-specific individuals are pathways for future 587 

investigations into the tree-soil feedbacks in these mixed oak forest. Glasshouse experimental 588 

approaches such addition of soil inocula in sterilized soils and soil conditioning by ‗own‘ vs. 589 

‗foreign‘ plant species could further help teasing apart the influence of the biotic and abiotic 590 

soil conditioning on the feedback processes (Brinkman et al., 2010; Brandt et al., 2013)}. 591 

4. CONCLUSIONS  592 

We have reviewed the existing knowledge on multiple and concurrent tree-soil interactions in 593 

a mixed forest of deciduous Q. canariensis and evergreen Q. suber. In this forest, oak species 594 

leaf-fall quality (particularly nutrient content) determined nutrient return, leaf-fall 595 

decomposition and nutrient release into soil, leading to different levels of soil fertility. In turn 596 

oak species generated changes in soil nutrient concentrations, particularly N and Ca, further 597 

affected the size and composition of the soil microbial community. Through this integration 598 

we have gained a comprehensive understanding of the mechanisms underlying oak species 599 

effect on soil abiotic properties and soil communities. In addition, we have presented 600 

evidence supporting the hypothesis that tree-species-induced changes in soil conditions create 601 

a positive feedback which favours tree species coexistence though niche partitioning. 602 

Understanding the mechanisms sustaining long-term species coexistence in mixed 603 

communities is critical to foresee changes in the structure and composition of plant 604 

communities. Our results reinforce the suggestion that plant-soil feedbacks influence species 605 

abundance, persistence and succession and thereby underpin species coexistence (Bonanomi 606 

et al., 2005; Brandt et al., 2013; van der Putten et al., 2013). 607 
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FIGURE LEGENDS 963 

Figure 1. a) . PCA ordination of leaf traits of the woody plant species sampled at La Sauceda, 964 

including Q. canariensis (filled symbol) and Q. suber (hollow symbol). Species scores 965 

represent the centroid of 5 individuals of the same species except for the Quercus (modified 966 

from Domínguez et al., (2012).  b) PCA ordination of 20 individuals of Q. canariensis and Q. 967 

suber sampled in La Sauceda and Tiradero. Abbreviations are LMA: leaf mass per area, 968 

LDMC: leaf dry matter content, d15N: isotope N
15

, d13C: isotope C
13

 and symbols of each 969 

element indicating their concentration in fresh leaves. 970 

 Figure 2. Correlation between the chemical composition of the fresh leaves and leaf-fall for 971 

the evergreen Q. suber and the deciduous Q. canariensis. Dots represent the average value of 972 

the element concentration for 20 evergreen and 20 deciduous trees. 973 

Figure 3. Differences in nutrient loss from litter during decomposition of leaf-fall of the 974 

deciduous Q. canariensis (filled symbol) and the evergreen Q. suber (hollow symbol). 975 

Figure 4. PCA ordination of the chemical composition of the leaf-fall (LF) and topsoil (TOP) 976 

of 20 Q. canariensis (filled symbols) and 20 Q. suber (hollow symbols) sampled in La 977 

Sauceda and Tiradero. Differences (ANOVA) between Q. canariensis and Q. suber scores 978 

along the factor1 axis are indicated. 979 

Figure 5. Variation in N, Ca and P concentrations along the soil vertical profile beneath the 980 

canopy of the deciduous Q. canariensis (filled symbol) and the perennial Q. suber (hollow 981 

symbols). 982 

Figure 6. PCA ordination of the properties of soil and soil microbial biomass in the upper 0-8 983 

cm measured in spring (Sp) and summer (Su) under Q. canariensis  (filled symbols) and Q. 984 

suber (hollow symbols). Differences (ANOVA) between Q. canariensis and Q. suber scores 985 

along the factor1 axis are indicated. 986 

 987 

 988 
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Figure 2.  
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Figure 3. 
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Figure 4.   
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Figure 5.  
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Figure 6.  
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