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Dispersal is a key process for the population dynamics of spatially structured populations (at local and metapopulation 
levels), so the understanding of the mechanisms underlying the movement of individuals in space and time is important 
for evolutionary and ecological studies. Here we analyzed, for the first time, a long-term (1992–2009) multi-site capture– 
recapture database collected at four local populations of a long-lived seabird, the Audouin’s gull Larus audouinii, covering 
90% of its total world population. Those local populations show different ecological and demographic features that allow  
us to assess the influence of several key factors involved in breeding dispersal patterns at large spatio-temporal scales.  
A recently developed analytical tool in mark–recapture modelling, the multi-event approach, allowed us to obtain sepa-
rate departure and settlement probabilities and test different biological hypotheses for each step of the dispersal process. 
Our results revealed that site fidelity was the most common strategy among breeders, and dispersal was only high from 
the site with the lowest population size and habitat quality. However, departures from the two largest local populations 
increased  over  the  study  period  in  response  to  severe  ecological  perturbations.  Dispersers  chose  different  settlement 
patches depending on their site of origin, with settlement choices determined by the population size of the destination 
colony  rather  than  by  the  local  reproductive  performance,  foraging  area  (a  proxy  of  food  availability)  or  distance  to   
the destination site. Our results indicate that a breeding site is not abandoned by breeders unless a series of cumula-
tive perturbations occur; once dispersing, settlement is directed towards densely populated sites, with dispersers using  
population size to rapidly assess the quality of the breeding patch.

Dispersal  is  the  movement  of  individuals  between  patches  
in  space  and  time  and  guarantees  connectivity  of  spatially  
structured populations (Hanski 1999, Clobert et al. 2001). 
Dispersal, together with birth and mortality, plays a major 
role in the dynamics of populations at local and metapopu-
lation  levels:  for  instance,  dispersal  events  are  responsible  
for  the  formation  of  populations  (i.e.  colonization)  and  
are  also  important  for  their  growth  (Brown  and  Kodric-
Brown 1977, Gotelli 1991, Oro and Ruxton 2001, Kildaw 
and  Irons  2005).  Nevertheless,  compared  to  the  factors  
influencing  reproduction  and  mortality,  dispersal  and  its 
determinants  still  remain  poorly  understood  (Greenwood 
and  Harvey  1982,  Hanski  1999,  Clobert  et  al.  2001,  
Liu  and  Zhang  2008)  but  this  knowledge  has  much  
improved  in  recent  years  thanks  to  the  advances  in  the  
large-scale  monitoring  of  multiple  populations  and  the 
development of new analytical tools (Nathan 2001).

Dispersal can be seen as a sequential two-step process in 
which  individuals  have  first  to  decide  whether  or  not  to 
remain in the current site (fidelity decisions) and secondly, 
where  to  go  once  they  have  left  their  previous  site  (settle-
ment  decisions)  (Forero  et  al.  1999,  Clobert  et  al.  2001). 
The partition of dispersal into fidelity and settlement deci-
sions  permits  investigation  of  the  key  factors  involved  in 
each  step  of  the  dispersal  process  (Grosbois  and Tavecchia 
2003).  Fidelity  may  be  preferred  because  it  promotes  
kinship  (Friesen  et  al.  1996)  and  it  improves  foraging  
efficiency  and  predator  defence  thanks  to  a  better  know-
ledge  of  the  environment  (Greenwood  and  Harvey  1982), 
but it can be negatively affected by factors such as individ-
ual  or  colonial  breeding  failure  by  predation  or  food  
depletion,  mate  loss  and  risk  of  inbreeding  (Danchin  
et al. 1998, Forero et al. 1999, Serrano et al. 2001, Parejo 
et  al.  2006).  On  the  other  hand  settlement  decisions  may  



be  influenced  by  the  presence,  larger  density  or  higher  
breeding  success  of  conspecifics  or  heterospecifics  in  a  
patch  (Smith  and  Peacock  1990,  Mönkkönen  et  al.  1997, 
Danchin  et  al.  1998,  Cam  et  al.  2004,  Parejo  et  al.  2006, 
Péron et al. 2010) and negatively affected by spatial factors 
such  as  distance  between  patches  (Forero  et  al.  1999,  
Oro and Pradel 1999, Serrano et al. 2001).

Here  we  examined  the  fidelity  and  settlement  
components  in  the  dispersal  of  the  Audouin’s  gull  Larus 
audouinii,  a  long-lived  colonial  seabird  showing  high  
fidelity but also high dispersal capabilities when the quality 
of  environment  deteriorates  (Oro  and  Muntaner  2000,  
Oro et al. 2011). An evolutionary history linked to unstable 
and  ephemeral  breeding  environments  has  selected  for  
the strong mobility and nomadic behaviour recorded in the 
species  (Martinez-Abrain  et  al.  2003,  Parejo  et  al.  2006), 
with  both  philopatric  and  dispersing  individuals  showing 
similar  demographic  rates  and  hence  relatively  low  
dispersal costs (Oro et al. 2011). Owing that populations of 
Audouin’s gulls are known to be connected through disper-
sal  of  individuals  (Oro  and  Pradel  1999,  Tavecchia  et  al. 
2007),  we  assess  here  the  ecological  factors  influencing  
dispersal  decisions.  We  focused  on  the  breeding  dispersal 
(i.e.  the  dispersal  of  established  breeders)  among  four  
local populations monitored simultaneously from 1992 to 
2009, covering the 90% of the world population and thus 
increasing  the  spatio-temporal  scale  of  previous  studies 
(Cam  et  al.  2004).  Each  of  these  sites  showed  particular  
ecological  and  demographic  features  influenced  by  local 
environmental stochasticity (see below), providing a useful 
model to study the determinants of fidelity and settlement 
in breeding dispersal. Capture–recapture data collected dur-
ing  the  study  period  at  each  site  were  analysed  using  a 
recently developed analytical tool in mark–recapture model-
ling, the multi-event approach (Pradel 2005), which permits 
to split the dispersal process in fidelity and settlement prob-
abilities  (Grosbois  and Tavecchia  2003)  and  yields  a  more  
robust estimation of the parameters of interest by including 
extra parameters for latent (i.e. not observable) processes.

Biological hypotheses

The first step in the decision-making dispersal process con-
cerns fidelity to the breeding site. Assuming that decisions 
regarding  where  to  breed  in  year  t  1  are  made  in  year  t, 
conditions  experienced  in  the  current  breeding  patch  may 
influence  site  fidelity  as  a  first  order-Markovian  process. 
Under  this  assumption,  deterioration  in  habitat  quality 
should  trigger  dispersal  as  a  response  to  a  poor  breeding  
output (Danchin et al. 1998, Forero et al. 1999, Oro et al. 
1999,  Serrano  et  al.  2001,  Schaub  and  von  Hirschheydt 
2009).  However,  it  is  known  that  experienced  breeders  of 
many  seabirds,  including  gulls,  show  high  site  tenacity 
(Greenwood and Harvey 1982), so a low breeding dispersal 
probability,  regardless  of  the  current  habitat  conditions, 
could also be expected (Oro et al. 1999, Cam et al. 2004). 
Therefore, we first tested a general null hypothesis of invari-
ant fidelity among years or colonies. We then tested for vari-
ability in fidelity among colonies and years as a response to 
colony-specific habitat quality and/or changing environmental 

conditions.  For  instance,  fidelity  should  be  higher  at  sites 
with denser population sizes and large foraging areas, which 
should  translate  into  a  better  protection  against  predators, 
higher  food  supply  and  good  breeding  performance  (Oro 
et al. 2006). Finally, we tested for a temporal negative trend 
in  fidelity  at  the  sites  where  habitat  quality  deteriorated  
during the study (see below).

The second step in the dispersal process concerns settle-
ment  decisions,  which  require  a  previous  assessment  of  
the quality of the available breeding sites. This pace is time 
demanding  and  requires  an  energy  investment  (Clobert 
et  al.  2001),  and  individuals  may  rely  on  cues  such  as  
the  density  of  conspecifics  or  heterospecifics  (Smith  and 
Peacock 1990, Mönkkönen et al. 1997) and their breeding 
performance (Boulinier and Danchin 1997). We tested the 
effects of colony size, surface of foraging area and breeding 
success  as  indicators  of  habitat  quality  for  settlement  
in  Audouin’s  gulls.  In  our  study  system,  local  population 
size may be a good indicator of habitat quality because of 
the  generally  more  suitable  habitat  of  the  sites  containing 
the  largest  colonies  (see  below).  Moreover,  high  immigra-
tion rates have been recorded at sites with high population 
densities  (Cam  et  al.  2004,  Tavecchia  et  al.  2007)  and  
larger  densities  have  been  linked  with  higher  abundance  
of  resources  per  capita  (Ruiz  et  al.  1998,  Oro  and  Pradel 
2000,  Tavecchia  et  al.  2007,  Almaraz  and  Oro  2011). 
Accordingly,  the  surface  of  foraging  area  or  continental  
shelf around a colony might also be seen as an indicator of 
habitat  quality  (via  food  availability)  that  may  influence 
settlement  decisions.  Breeding  performance  can  be  also  
a  useful  cue  for  habitat  selection  if  it  is  temporally  auto-
correlated, but this information needs to be gathered before 
settlement  by  prospecting  the  different  habitat  patches  
during the previous breeding season (Danchin et al. 1998, 
Clobert  et  al.  2001)  a  behaviour  documented  on  pre- 
breeders  or  failed  breeders  (Cadiou  et  al.  1994,  Boulinier 
et  al.  1997,  Schjørring  et  al.  1999).  Because  breeding  
activity  limits  the  ability  of  breeders  to  prospect  potential 
future  breeding  sites  within  the  same  season  (Oro  and 
Ruxton 2001, Hénaux et al. 2007), dispersing individuals 
may  be  forced  to  settle  in  patches  close  to  their  former 
breeding site due to ‘information barriers’, sensu Forbes and 
Kaiser  (1994)  (see  also  Oro  and  Pradel  1999).  Previous 
studies in Audouin’s gull show that breeding adults may for-
age  at  distances  up  to  ca  200  km  (Arcos  and  Oro  1996,  
J. M. Arcos pers. comm.), so prospecting other sites while 
breeding  should  be  rather  limited  in  our  study  system  
(Fig. 1). In addition, breeding success seems not to be tem-
porally  auto-correlated  in  this  species  (Oro  and  Ruxton 
2001, Cam et al. 2004), so cueing on reproductive perfor-
mance may be unreliable. Based on our previous knowledge 
of the species’ population dynamics in the study system, we 
expected colony size (i.e. the number of breeding pairs) to 
perform better than the other variables as indicator of local 
habitat quality and show a positive association with settle-
ment. We also predicted a positive association between set-
tlement  and  foraging  area  around  each  breeding  site,  but 
not  between  breeding  success  and  settlement  probability 
(see above). Finally, we also tested the hypothesis that settle-
ment probabilities would decrease with distance (Oro and 
Pradel 1999, Péron et al. 2010).



In summary, the aims of the present study are not only  
to  estimate  breeding  dispersal  in  Audouin’s  gulls  with  reli-
ability,  but  especially  to  identify  the  mechanisms  driving 
breeding dispersal at large spatio-temporal scales by testing 
meaningful biological hypotheses on fidelity and settlement 
probabilities in a system with a high heterogeneity in habitat 
quality.

Material and methods

Study populations

We  studied  four  local  Audouin’s  gull  populations  in  the 
western  Mediterranean  (Fig.  1):  Punta  de  la  Banya  at  the 
Ebro  Delta  (40°33′N,  0°39′E,  2500  ha),  Columbretes 
islands  (39°54′N,  0°41′E,  19  ha),  Chafarinas  islands, 
(35°11′N, 2°26′W, 50 ha) and southern Mallorca islets, in 
the Balearic islands (39°11′N, 2°58′E, 347 ha). This assem-
blage  holds  ca  the  90%  of  the  world’s  total  population  
of  the  species,  with  the  remaining  10%  found  in  other  
localities  of  the  western  Mediterranean  (Balearic  archipel-
ago, North African coast, south eastern Iberia) as well as in 
the  eastern  and  central  parts  of  the  basin.  The  Chafarinas 
islands, off the Moroccan coast, harbour the most distantly 
located  population  in  our  study  area  (more  than  600  km 
from  the  Ebro  Delta),  whereas  the  Ebro  Delta  and 
Columbretes  islands  hold  the  two  closest  populations,  
separated  by  80  km  of  sea  and  partially  sharing  feeding 
grounds  in  the  Eastern  Iberian  continental  shelf. 
Heterogeneity  is  high  in  the  study  system  and  colonies  

show  very  different  number  of  breeding  pairs,  average  
breeding  success  and  size  of  foraging  areas  (Table  1).  All 
study  sites  except  that  in  the  Ebro  Delta  are  located  in  
offshore small rocky islets and are free of terrestrial preda-
tors.  Habitat  suitability  is  the  highest  in  the  Ebro  Delta 
owing  to  its  larger  surface  of  breeding  habitat  and  
larger foraging areas with relative high marine productivity. 
Here,  gulls  colonized  the  site  in  1981  and  population 
growth  rate  followed  a  logistic  shape  with  extremely  high 
growth rates in the first years (Tavecchia et al. 2007, Almaraz 
and  Oro  2011).  However,  since  1999,  a  small  number  
of red foxes Vulpes vulpes are regularly present in this colony 
and  prey  on  gulls,  so  deteriorating  their  breeding  perfor-
mance over the last years (Tavecchia et al. 2007). Ecological 
features  at  Chafarinas  are  intermediate  between  those  
found  at  mainland  and  island  populations;  free  of  carni-
vores, relatively small surface but lying within a productive 

Figure 1. Distribution and size (number of breeding pairs) of the main local populations of Audouin’s gull in the western Mediterranean. 
Black  circles  indicate  the  location  of  the  four  study  sites,  with  their  corresponding  names,  and  white  circles  represent  other  colonies  
known to exist (or have existed at some point in time) out of our study area.

Table  1.  Population  sizes,  foraging  areas  and  breeding  success  
values  for  each  study  site.  Population  sizes  correspond  to  the  
mean  number  (median  in  parenthesis)  of  breeding  pairs  at  each 
colony  during  the  period  1995–2009.  Breeding  success  shows  
the mean values (variance in parenthesis) calculated for the same 
period at each colony. Foraging areas are calculated as the surface 
of continental shelf (in km2) within a 100 km radius from each local 
population.

Study site Population size Foraging area Breeding success

Ebro Delta 11 560 (11 328) 10 371.51 0.57 (0.10)
Columbretes 157 (75) 9647.13 0.20 (0.08)
Chafarinas 2360 (2124) 3976.74 0.35 (0.06)
Mallorca 291 (303) 5106.71 0.66 (0.30)



(Pradel  2005,  Choquet  and  Nogue  2010).  Multi-event  
models (Pradel 2005) relate the true state of the individual 
(i.e.  breeding  at  a  given  colony  –  dead)  with  the  observed 
event (i.e. seen – not seen) through a series of conditional 
probabilities (Supplementary material Appendix 1).

We  took  advantage  of  the  multi-event  approach  to  
split  the  dispersal  process  in  fidelity  and  settlement  prob-
abilities  and  to  incorporate  unobservable  states  in  our  
modelling,  such  as  an  unknown  location  (hereafter  ‘ghost 
site’) to model dispersal out of our system and obtain more 
reliable  estimates  of  model  parameters  (Jenouvrier  et  al. 
2008,  Sanz-Aguilar  et  al.  2011).  Models  included  the  
following  eight  states:  four  breeding  states  (one  for  each 
breeding  site),  the  state  ‘alive  elsewhere’  (i.e.  the  ghost  
site),  a  dead  state  and  two  additional  recapture  states  
(see below). Note that the last three states are also unobserv-
able. Transition probabilities between states were modelled 
in  a  three  step  approach  to  estimate  three  underlying  
parameters:  survival,  departure  (the  complement  of  site- 
fidelity, conditional on survival) and settlement probabili-
ties (conditional on survival and departure).

We first performed a goodness-of-fit (GOF) test to check 
if our data followed the assumptions of a departure model,  
in  our  case,  the  Arnason–Schwarz  (AS)  model  which  
assumes all parameters being time-dependent (Brownie et al. 
1993, Pradel et al. 2003). GOF tests were developed using 
program U-CARE (Choquet et al. 2009), which allowed us 
to detect the source of heterogeneity (i.e. transience or trap 
dependence)  and  incorporate  this  information  into  our 
departure  model  by  increasing  its  complexity  (i.e.  number  
of  underlying  states).  Because  we  detected  significant  
trap  dependence  at  the  Ebro  Delta  and  Chafarinas  sites 
(Results),  this  effect  had  to  be  included  in  our  departure 
model. Following Pradel and Sanz-Aguilar (2012), we intro-
duced two additional recapture states (trap-aware and trap-
unaware  states)  in  our  modelling  by  means  of  a  fourth  
step included after settlement, which allowed us to estimate 
transitions between the two recapture states for the indivi-
duals  settling  at  the  Ebro  Delta  and  Chafarinas  colonies 
(Supplementary material Appendix 1). At these sites, recap-
ture  probabilities  refer  to  the  transitions  between  trap- 
unaware  and  trap-aware  states,  whereas  for  the  remaining 
colonies,  recapture  and  event  probabilities  are  synonyms 
(Pradel  and  Sanz-Aguilar  2012).  In  order  to  correct  for 
remaining  sources  of  lack  of  fit,  a  variance  inflation  factor 
(ĉ ), was used to scale model deviances (Lebreton et al. 1992, 
Tavecchia  et  al.  2001).  Model  selection  was  based  on  
the Akaike’s information criterion, corrected for overdisper-
sion  (QAIC). We  selected  our  best  model  as  the  one  with  
the  lowest  QAIC  value,  whereas  models  that  differed  in  
less  than  2  points  of  QAIC  (ΔQAIC  2)  were  arbitrarily 
considered as statistically equivalent.

Model  construction  followed  a  step-wise  approach  to  
find the most parsimonious structure for the testing of our 
biological  hypotheses.  We  assessed  colony  (noted  by  ‘c’),  
and time (‘t’) effects in survival (‘S’), departure (d ), settle-
ment  (Y)  and  recapture  probabilities  (p)  by  combining  
constancy  (‘.’)  or  interaction  (‘*’)  between  these  effects.  
To avoid larger model sets including all the various combi-
nations  of  potential  effects,  additive  effects  of  colony  with 
time were not included in the analyses as synchrony among 

marine area and close to the coast, where secondary prey are 
available. Here, deterioration of the habitat has also occurred 
since 2000 caused by several socio-ecological factors: first, 
an eradication programme aimed at black rats Rattus rattus 
has  resulted  in  the  weed  Lavatera  mauretanica  invading 
Audouin’s  gull  breeding  habitat  (own  data).  Secondly,  
cessation in the activity of purse-seine fisheries during the 
spring  months,  from  which  gulls  easily  obtain  food 
(Pedrocchi  et  al.  2002,  González-Solís  2003),  may  have 
caused  food  shortage  most  of  the  years;  and  finally,  the 
recovery  of  the  local  population  of  the  predatory  and  
dominant yellow-legged gulls Larus michahellis after culling 
during the 90’s might have increased the number of com-
petitive  interactions  between  this  species  and  Audouin’s 
gulls (González-Solís 2003).

Data collection

From 1992 to 2009, a total of 27 215 chicks were ringed in 
the  study  colonies,  and  more  than  19  500  resightings  of 
marked  individuals  were  obtained  during  the  breeding  
season  (from  April  to  June).  Details  about  field  protocols  
can  be  found  elsewhere  (Cam  et  al.  2004, Tavecchia  et  al. 
2007).  Data  on  marked  and  resighted  individuals  at  each 
colony  was  used  to  build  up  a  capture–recapture  dataset 
where the first capture occasion in an individual encounter 
history  corresponded  to  the  time  it  was  ringed  as  a  chick,  
and  the  first  recapture  corresponded  to  the  first  re- 
observation in a breeding site. For this study, we analysed the 
dispersal  of  breeders  and  thus  we  focused  in  the  sequence  
of encounters after the first resighting of a marked individual 
in a breeding colony. We omitted the first capture as chick 
and  only  one  resight  per  season  was  retained.  Given  that  
in ground-nesting gulls it is not always possible to confirm 
their breeding status, we assumed all of them to be breeding 
when  observed.  However,  to  reduce  the  bias  caused  by 
resighted  non-breeders,  we  removed  from  our  data  eight 
cases  in  which  an  individual  was  resighted  in  more  than  
one colony in the same breeding season and their breeding 
status could not be assessed and all the observations corre-
sponding  to  immature  birds  (individuals  younger  than  
3  yr  old).  This  makes  the  earliest  possible  resighting  of  a 
marked bird in a monitored colony to be year 1995, which 
corresponds to the first possible breeding attempt of an indi-
vidual belonging to the first cohort (i.e. 1992). Hence, from 
our 18-yr long capture–resighting data collection, we gener-
ated a 15-yr dataset with 7399 individual histories of adult 
breeders for the analysis of breeding dispersal. The number 
of breeding pairs at each colony was estimated by perform-
ing an annual census of nests, and annual breeding success 
was estimated as the ratio of the number of chicks fledged 
per breeding pair (see details in Oro and Pradel 2000, Oro 
and Ruxton 2001). Sizes of foraging areas (as a proxy of food 
availability)  were  calculated  as  the  surface  of  continental 
shelf within a 100 km radius from each local population.

Modelling framework

Our  capture–recapture  dataset  was  analyzed  using  a  
multi-event  modelling  approach  with  program  E-SURGE 



covariates,  and  removing  the  least  significant  ones  until  
all  remaining  covariates  in  the  model  were  significant. 
Transitions from a study site to the ghost site or vice versa 
were  not  included  in  the  response  variable  because  this  
ghost site is not an identifiable location and its local features 
are  unknown.  All  predictor  variables  used  in  the  post-hoc 
analysis were previously standardized.

Results

Gof testing

The AS model did not fit our data adequately (c2
261  939.4, 

p  0.005)  and  we  detected  significant  transience  (3Sr  
test), trap-dependence (2MITEC test) and memory effects 
(WBWA  test).  A  closer  inspection  revealed  that  the  Ebro 
Delta  and  Chafarinas  colonies  were  mostly  responsible  for 
this  lack  of  fit;  in  particular,  trap-dependence  at  the  Ebro 
Delta  was  large  (test  2CT; c2

12  225.34,  p  0.005). 
Following  Pradel  and  Sanz-Aguilar  (2012),  transience  
and trap-dependence effects were integrated into our depar-
ture  model.  Incorporating  these  effects  reduced  the  struc-
tural  failure  of  the  model  (c2

199  422.9,  p  0.005,  ĉ    
2.125)  and  yielded  a  lower  overdispersion  coefficient  
that was implemented to scale model deviances.

Multi-event modelling

Model  selection  began  by  fitting  the  departure  model  
(model 7, Table 2). This model considered state (site, here-
after) and time interactions in survival, departure, settlement 
and  recapture  probabilities  and  distinguished  survival  
of  newly  and  previously  seen  birds.  Model  parsimony 
increased  (i.e.  the  AIC  value  decreased)  when  time  effects 
were  removed  from  settlement  probability  (model  7  vs  
model  6),  survival  (model  6  vs  model  4)  and  departure  
probabilities  from  Columbretes  and  Mallorca  (model  4  vs 
model  2),  keeping  full  site  and  time  interactions  only  in 
recapture  probability.  At  this  point,  we  kept  the  structure  
of  model  2  to  assess  our  hypothesis  concerning  departure 
probabilities  from  the  Ebro  Delta  and  Chafarinas.  Model 

breeding  colonies  was  very  unlikely.  No  age  effects  were  
considered,  as  we  focused  only  on  one  (adult)  age  class;  
however, a permanent effect of time since-marking or rela-
tive age of the individual (denoted ‘a’) was left in survival, 
distinguishing  two  classes  of  individuals  (newly-seen  vs  
resident  or  previously  seen  individuals),  a  common  proce-
dure  to  control  for  transient  effects  (Pradel  et  al.  1997).  
We assessed the importance of the identity of the colony of 
origin  on  departure  probability  and  the  identity  of  both  
the  departure  and  destination  sites  on  settlement  prob-
abilities.  Subsequently,  we  assessed  changes  in  dispersal  
probability associated with changing environmental condi-
tions  at  Chafarinas  and  the  Ebro  Delta  during  the  second 
part of the study by testing two kinds of trends in departure 
probabilities  (d ):  a  ‘fox’  trend  in  Ebro  Delta  (starting  in 
1999) and an ‘habitat change’ trend in Chafarinas (starting 
in  2000).  We  also  tested  the  hypothesis  of  two  periods  of 
distinct d (before and after fox arrival in Ebro Delta and before 
and  after  the  first  socio-ecological  changes  in  Chafarinas). 
Since  we  only  obtained  four  estimates  of  site  fidelity,  we  
could not test the effects of covariates on that parameter due 
to a lack of power. Instead, we addressed the effect of external 
covariates  on  settlement  due  to  the  larger  number  of  settle-
ment  transitions  resulting  from  the  various  combination  of 
movements from and to the different breeding colonies.

The  effect  of  covariates  on  settlement  probabilities  
cannot  be  built  in  the  multi-event  modelling  because 
E-SURGE lacks a generalized logit with linear effect of site-
covariates.  Following  Péron  et  al.  (2010)  we  run  a  post- 
hoc  analysis  retrieving  the  settlement  estimates  from  the 
selected  model  and  took  into  account  their  variances  and 
covariances  with  a  generalized  least  square  approach  using 
the  function  lscov  implemented  in  MATLAB  ver.  7.0 
(Supplementary  material  Appendix  2).  Following  this 
approach,  we  assessed  the  effects  and  significance  of  each 
predictor  variable  (distance  between  sites,  mean  number  
of breeding pairs, foraging area and mean breeding success  
at  destination)  on  settlement  probability  by  conducting 
regression  analyses  and  performing  t-tests,  using  the  
obtained  slopes  and  their  standard  errors.  The  selection  of 
the  best  predictor(s)  of  settlement  followed  a  backward 
approach, departing from the full regression containing all 

Table 2. Ranking of multi-event models of multisite capture–recapture data on Audouin’s gull (most parsimonious model in bold), showing 
the model structure for survival (S), departure (d), settlement (Y) and recapture probabilities (p), the number of parameters (np), deviance 
(DEV)  and  QAIC  values  for  each  one. ΔQAIC  is  the  difference  in  QAIC  value  when  comparing  the  current  model  with  the  selected  
best  model. Akaike  weight  (wi)  is  calculated  using  the  relative  likelihoods  of  the  models  and  represents  the  probability  that  a  model  is  
the best one of the set.

Model S d Y p np Deviance QAIC ΔQAIC wi

1 a  c c(EFox, XHab) c c  t 155 49 571.548 23 637.787 0.000 0.999
2 a  c c(Et, Xt) c c  t 179 49 529.566 23 666.031 28.244 0.000
3 a  c c(E2T, X2T) c c  t 155 49 659.424 23 681.141 43.354 0.000
4 a  c c  t c c  t 216 49 453.317 23 704.149 66.362 0.000
5 a  c c c c  t 153 49 756.973 23 721.046 83.259 0.000
6 a  c  t c  t c c  t 310 49 275.968 23 808.691 170.904 0.000
7 a  c  t c  t c  t c  t 426 49 072.557 23 944.968 307.181 0.000
8 a  c c c c   79 51 284.051 24 291.671 653.884 0.000
9 a . . .   51 53 244.909 25 158.428 1520.640 0.000

Model notation: E  Ebro Delta. X  Chafarinas. 2T  two periods of constant values; before and after the start of habitat deterioration in 1999 
(Ebro Delta) and 2000 (Chafarinas). Fox  linear trend in departure probability since year 1999. Hab  linear trend in departure probability 
since year 2000 (‘habitat change’ trend). Age, time, colony effects and constancy on model parameters were denoted as ‘a’, ‘t’, ‘c’ and ‘.’ 
respectively (Methods).



Columbretes (0.264  0.027). Mean population sizes in the 
study  system  ranged  from  157  to  11  560  breeding  pairs 
(Table 1) and fluctuated across the study period (Fig. 2).

Departure and settlement probabilities

Departure probabilities were very low at all sites indicating 
high site fidelity of resident breeders except at Columbretes 
(0.656,  SE:  0.115,  Table  3),  the  site  with  the  lowest  
population  size.  Estimates  from  the  time-varying  models 
showed  that,  as  expected,  departure  probability  increased 
during  the  last  years  of  the  study  at  Chafarinas  (with  up  
to 35% of breeders dispersing in 2008) and the Ebro delta 
(Fig.  3).  Settlement  estimates  from  the  retained  model 
revealed  different  behaviours  among  dispersers  depending 
on  where  they  bred  the  year  before  (Table  4).  Most  birds 
(82%) leaving the Chafarinas islands chose areas out of the 
study  system  to  settle  (ghost  site),  whereas  those  leaving 
southern Mallorca  and Columbretes dispersed to the Ebro 
Delta  (100  and  96%,  respectively).  Around  87%  of  birds 
leaving  the  Ebro  Delta  chose  the  Columbretes  islands  
as their next breeding location.

selection  revealed  that  models  including  temporal  trends  
in departures from Chafarinas and the Ebro Delta (‘habitat 
change’  and  ‘fox’  respectively)  were  more  parsimonious  
than  those  considering  two  periods  of  constant  departure 
probabilities at these sites (model 3 vs model 1).

Survival, transience and recapture probabilities,  
and population sizes

All  survival  estimates  were  high,  ranging  from  0.860  
(SE:  0.040)  to  0.906  (SE:  0.037, Table  3).  In  contrast  to 
survival,  the  proportion  of  transients  (individuals  never  
seen  again  after  first  recapture)  was  very  different  among 
patches  (Table  3)  and  increased  with  decreasing  popula-
tion  size (log model, R2  0.9232, F1,2  37.08, p  0.01). 
In  the  retained  model  (model  1,  Table  2),  recapture  
probabilities were time and site dependent, with the highest 
mean  values  corresponding  to  individuals  from  the  
Ebro  Delta  colony  (0.632  0.017).  Compared  to  the  
Ebro Delta, Chafarinas showed lower mean recapture rates 
(0.339  0.021),  but  still  higher  than  that  of  the  smaller 
colonies  of  southern  Mallorca  (0.282  0.023)  and 

Table 3. Survival estimates and their standard errors obtained from model 1 for newly seen (S1) and resident individuals (S2). The percentage 
of transients (individuals never seen again after 1st resighting) was calculated from the ratio 1 – (S1/S2). Departure probabilities conditional 
on survival (d) obtained from the model without trend forcing (model 2) are also shown, with their standard errors, for each study site.

Study site S1 S2 Transients (%) d

Ebro Delta 0.839  0.011 0.898  0.008 6.611 0.029  0.018*
Columbretes 0.656  0.109 0.906  0.037 27.527 0.656  0.115
Chafarinas 0.793  0.043 0.863  0.015 8.089 0.064  0.047*
Mallorca 0.656  0.078 0.860  0.040 23.799 0.027  0.014

*Average estimates because the retained model included time effects in departure probability at these sites.
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p  0.109 and t10  1.707; p  0.119 respectively) although 
the  two  factors  showed  a  positive  relationship  with  settle-
ment (b slope  8.762; SE  4.632; b slope  8.5006; SE   
3.7942 respectively, Fig. 4).

Discussion

Our  study  addresses  questions  on  the  factors  shaping  
animal dispersal at large spatio-temporal scales (Paradis et al. 
1998, Clobert et al. 2001). We were able to decompose the 
dispersal process into leaving and settlement decisions, which 
we  have  shown  can  be  influenced  by  different  ecological  
factors.  Moreover,  the  multi-event  modelling  approach 
allowed us to account for settlement out of our study area by 
considering  an  unobservable  state  and  helped  us  to  solve 
problems  with  recapture  heterogeneity  by  including  addi-
tional recapture states in the model structure. Those metho-
dological improvements resulted in more reliable estimates 
of survival, recapture, fidelity to the colony and dispersal.

We  detected  a  positive  and  statistically  significant  rela-
tionship between settlement probabilities and size of the des-
tination  colony  (t10  3.797;  p  0.0035),  with  settlement 
probabilities  increasing  with  the  number  of  conspecifics  
(b  slope  11.613  (SE:  3.058,  Fig.  4).  The  size  of  the  
destination  colony  was  the  last  remaining  predictor  of  
settlement after removing the least significant covariates in a 
backward  approach  departing  from  the  full  regression  
model. Foraging area was removed in the first step, followed 
by breeding success and distance between sites in the second 
and  third  steps  respectively  (Supplementary  material 
Appendix  3).  By  conducting  separate  regression  analyses, 
 we also assessed the significance of the relationship between 
each  predictor  variable  and  settlement.  Distance  alone  did 
not explain the observed settlement patterns (t10  21.549; 
p  0.152),  although  this  relationship  was  negative,  with 
reduced  probability  of  settlement  the  greater  the  distance  
to  the  destination  site  (b  slope  27.717;  SE  4.981,  
Fig.  4).  Neither  foraging  area  nor  breeding  success  at  the  
destination site influenced settlement decisions (t10  1.759; 

Table 4. Mean settlement probabilities (SE) for Audouin’s gulls in our population network, including the ghost site, (Methods). Estimates were 
obtained from the most parsimonious model (i.e. with the lowest AIC value) in the multi-event modelling.

From/to Ebro Delta Columbretes Chafarinas S. Mallorca Ghost site

Ebro Delta 0.870 (0.043) 0.120 (0.039) 0.012 (0.009) 0.000*
Columbretes 0.960 (0.029) 0.000 (0.000) 0.035 (0.023) 0.007*
Chafarinas 0.150 (0.032) 0.02 (0.029) 0 (0.000) 0.832*
Mallorca 1 (0.000) 0 (0.000) 0 (0.000) 0.000*
Ghost site 0 (0.000) 0.026 (0.070) 0.970 (0.070) 0.000*

*Probabilities  that  were  computed  as  complement  to  1  of  the  other  estimates  (complementary  transitions;  see  Supplementary  material 
Appendix 1).
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patch and habitat quality was confirmed also when depar-
ture  probabilities  increased  at  the  two  largest  colonies  
(Ebro Delta and Chafarinas) following increasing local eco-
logical  perturbations,  suggesting  that  the  dynamics  of 
source-sink  metapopulations  or  any  other  spatially  struc-
tured population depend on particular temporal stochastic 
environments  at  each  patch  of  those  systems  (Doncaster 
et  al.  1997,  Oro  et  al.  2004).  Strikingly,  departure  prob-
abilities increased several years after habitat quality began to 
deteriorate,  showing  a  delayed  response.  This  suggests  
that  only  when  cumulative  perturbations  go  beyond  a 
threshold  value  above  which  buffering  is  not  possible  for 
longer,  site-fidelity  starts  to  decrease  (Kildaw  and  Irons 
2005).  A  series  of  bad  years  in  terms  of  breeding  perfor-
mance (Oro et al. 2006) may have triggered the high depar-
ture probabilities recorded from Chafarinas colony, owing 
to  a  large  decrease  in  both  individual  and  conspecific  
success (Danchin et al. 1998, Serrano et al. 2001, Kildaw 
and Irons 2005, Parejo et al. 2006).

Settlement choices and habitat selection processes

We  found  a  significant  positive  relationship  between  
settlement probability and population density that confirms 
the  hypothesis  of  attraction  towards  patches  with  more  
density  of  conspecifics  (Forbes  and  Kaiser  1994,  Oro  and 
Ruxton 2001, Serrano et al. 2005). Settlement probabilities 
appeared  to  decrease  with  distance  to  the  recipient  site,  
but this relationship was not statistically significant due to 
some distant sites being settled more frequently than others 

Spatial differences in survival, transience and trends 
in fidelity

Because  Audouin’s  gull  is  a  long-lived  species,  it  was  
expected  that  adult  survival  should  be  the  less  variable 
demographic  trait  (Stearns  1992).  Indeed,  survival  was  
high  and  very  similar  among  all  local  populations  despite 
the  ecological  perturbations  (terrestrial  predation  and  
deterioration  in  resource  availability)  occurred  in  the  
last decade at the two patches with highest population den-
sities  (Tavecchia  et  al.  2007,  Almaraz  and  Oro  2011).  
In  contrast,  transience,  a  demographic  parameter  that  in 
Audouin’s gull has been identified with permanent dispersal 
(Oro et al. 1999, 2011, Tavecchia et al. 2007), was much 
higher at the two patches with lower population densities, 
arguably  because  of  the  both  their  relative  low  habitat  
quality  and  the  higher  attractiveness  of  larger  colonies 
(Hanski  1999,  Oro  and  Pradel  2000,  Cam  et  al.  2004, 
Serrano  et  al.  2005).  At  Columbretes,  the  site  with  the  
lowest area of breeding habitat and the lowest mean breed-
ing  success  and  population  densities,  fidelity  of  resident 
breeders was much lower than in the other sites, confirming 
previous  studies  showing  that  habitat  quality  influences 
transience  and  fidelity  to  the  patch  (Serrano  et  al.  
2001,  Hoover  2003,  Cam  et  al.  2004).  At  the  remaining  
study sites, fidelity was much higher or remained high for 
most of the study years, probably because individuals with 
breeding  experience  in  a  given  site  are  generally  reluctant  
to  disperse  due  to  the  benefits  of  a  better  knowledge  of  
the  local  environment  (Friesen  et  al.  1996,  Forero  et  al. 
1999).  The  association  between  fidelity  to  the  breeding 
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Figure  4.  Relationship  between  settlement  probabilities  and  the  corresponding  (standardized)  predictor  variables  used  in  the  post-hoc 
analyses: (A) number of breeding pairs at destination (averaged over years), (B) distance between sites, (C) foraging area at destination  
and (D) breeding success at destination (averaged over years). Each point represents an independent logit-transformed estimate of Y from 
the most parsimonious model obtained in the multi-event modelling (model 1, Table 2).
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located  at  shorter  distances,  a  finding  consistent  with  the 
low dispersal costs and nomadic behaviour displayed by the 
species  (Oro  and  Muntaner  2000,  Martinez-Abrain  et  al. 
2003,  Parejo  et  al.  2006,  Oro  et  al.  2011).  Inter-colony  
distance  also  performed  poorly  as  predictor  of  settlement  
in  a  multisite  study  on  roseate  terns  (Spendelow  et  al.  
1995), another seabird breeding in unstable environments. 
In other colonial seabirds studied using the same methodo-
logy, such as cormorants (Hénaux et al. 2007) and black-
headed gulls (Péron et al. 2010), both inter-colony distance 
and  size  of  the  destination  colony  appeared  to  influence 
settlement  of  breeders,  but  in  all  of  them,  including  
terns,  there  was  a  preference  to  settle  in  large  colonies.  
Our  results  suggest  that  dispersers  used  the  density  of  
conspecifics as an informative cue that integrates the local 
availability  of  resources  (e.g.  abundance  of  food,  suitable 
breeding  habitat,  potential  mates;  Doligez  et  al.  2004).  
This  is  why  neighbouring  sites  such  as  Columbretes  and 
Mallorca are not well connected, with disperses from these 
sites  settling  rather  at  the  Ebro  Delta.  Individuals  from 
Chafarinas,  the  most  distant  study  site,  remained  less  
connected to the other patches in the system and dispersed 
out  of  the  study  area.  This,  together  with  the  increase  in 
dispersal  from  the  large  Ebro  Delta  colony,  may  explain  
the  increasing  colonization  rates  ( 90%  relative  to  the 
existing  and  extinct  patches,  unpubl.)  of  new  patches  in 
recent  years  (Oro  et  al.  2011).  In  our  study  system,  the 
mean  breeding  success  of  the  recipient  patch  was  not  a  
significant  driver  of  habitat  choice  and  settlement  for  
dispersing breeders and this may confirm the unreliability 
of breeding success as indicator of habitat quality in systems 
where  local  productivity  is  unpredictable  (Doligez  et  al. 
2003, Parejo et al. 2006).

In  summary,  our  results  have  showed  that  breeding  
dispersal is a relatively uncommon process in our study sys-
tem,  with  the  movement  of  breeders  increasing  when  
cumulative  perturbations  (such  as  predation  and  lower  
availability  of  resources)  occurred.  Whereas  deterioration  
in habitat quality decreases site fidelity and enhances disper-
sal,  settlement  decisions  are  primarily  ruled  by  the  density  
of conspecifics. Despite the low breeding dispersal probabil-
ity  in  this  species,  the  relative  large  numbers  of  breeders  
dispersing from densely populated patches may have impor-
tant  implications  for  the  persistence  and  growth  of  other 
smaller populations both in and out of our study area.
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