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Abstract 

L-arginine (L-Arg) deficiency results in decreased T-cell proliferation and impaired T-cell 

function. Here we have found that L-Arg depletion inhibited expression of different 

membrane antigens, including CD3 , and led to an ER stress response, as well as cell cycle 

arrest at G0/G1 in both human Jurkat and peripheral blood mitogen-activated T cells, without 

undergoing apoptosis. By genetic and biochemical approaches, we found that L-Arg depletion 

also induced autophagy. Deprivation of L-Arg induced eIF2 , JNK, Bcl-2 phosphorylation, 

and displacement of Beclin 1 binding to Bcl-2, leading to autophagosome formation. 

Silencing of IRE1α prevented the induction of autophagy as well as JNK activation, Bcl-2 

phosphorylation, and XBP1 splicing, whereas led T lymphocytes to apoptosis under L-Arg 

starvation, suggesting that the IRE1α-JNK pathway plays a major role in the activation of 

autophagy following L-Arg depletion. Autophagy was required for survival of T lymphocytes 

in the absence of L-Arg, and resulted in a reversible process. Replenishment of L-Arg made T 

lymphocytes to regain the normal cell cycle profile and proliferate, whereas autophagy was 

inhibited. Inhibition of autophagy by IRE1α, Beclin 1 and ATG7 silencing, or by 

pharmacological inhibitors, promoted cell death of T lymphocytes incubated in the absence of 

L-Arg. Our data indicate for the first time that depletion of L-Arg in T lymphocytes leads to a 

reversible response that preserves T lymphocytes through ER stress and autophagy, while 

remaining arrested at G0/G1. Our data also show that the L-Arg depletion-induced ER stress 

response could lead to apoptosis when autophagy is blocked. 
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Introduction 

L-arginine (L-Arg) is a conditionally essential amino acid for adult mammals, and thereby it 

must be supplied in the diet during certain physiological or pathological conditions, in which 

the requirements exceed the production capacity. This amino acid is used for the biosynthesis 

of proteins, creatine and agmatine, and it is mainly catabolized by the enzymes arginase and 

nitric oxide synthase to produce urea and L-ornithine, and nitric oxide and L-citrulline, 

respectively 
1
. L-Arg levels are profoundly reduced in cancer patients 

2
, following liver 

transplantation 
3
, or in severe trauma 

4
, correlating with increased arginase I serum levels. L-

Arg deficiency results in decreased T-cell proliferation and impaired T-cell function 
5,6

. Many 

of the adverse effects of L-Arg deficiency can be reversed by enteral or parenteral 

supplementation of L-Arg 
7
. An increasing number of pathologies as well as physiological 

conditions are being associated to an arginase-mediated T cell hyporesponsiveness. Arginase 

level has been reported to be significantly increased in the peripheral blood of pregnant 

women and placenta, leading to the temporary suppression of the maternal immune response 

during human pregnancy 
8
. High levels of arginase activity have been suggested to contribute 

to T cell dysfunction in human immunodeficiency virus-seropositive patients 
9
. High arginase 

activity, a hallmark of nonhealing leishmaniasis, is primarily expressed locally at the site of 

pathology and causes local depletion of L-Arg, resulting in impaired T cell responses 
10

. 

Two major cell types have been reported to be particularly abundant in arginase I 

activity, namely human neutrophils 
11

 and the so-called myeloid-derived suppressor cells 

(MDSCs) 
12

, which turned out to be a subpopulation of activated neutrophils 
13

. Recent 

studies demonstrated that activated T cells cultured in medium without L-Arg 
14

, co-cultured 

with MDSCs isolated from tumors 
5
, or exposed to neutrophil lysate 

15
, showed decreased 

proliferation, low expression of T-cell receptor CD3  chain and impaired production of 

cytokines. However, the mechanisms by which L-Arg starvation blocks T-cell proliferation 

and function have not yet been determined. 
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Because the endoplasmic reticulum (ER) is the primary site where proteins are 

synthesized, folded and sorted, and arginine plays an important role in protein synthesis and 

folding 
16

, it could be envisaged that a deficiency in this amino acid might affect ER-related 

functions. Protein folding in the ER is a highly regulated process. Only properly folded 

proteins can pass the quality control surveillance and traffic to the Golgi complex. When 

misfolded proteins accumulate in the ER, cells activate a self-protective mechanism, termed 

the ER stress response, which is signaled through the unfolded protein response (UPR) 
17

. In 

mammalian cells, PERK, IRE1, and ATF6 are activated after sensing the presence of 

unfolded proteins in the ER. PERK activation leads to phosphorylation of the α-subunit of 

eukaryotic translation initiation factor 2 (eIF2 ) and inhibits protein synthesis. Activation of 

IRE1 and ATF6 promotes transcription of UPR target genes. IRE1 induces X-box binding 

protein 1 (XBP1) mRNA processing to generate mature spliced XBP1 (sXBP1) mRNA, which 

in turn activates transcription of ER molecular chaperones, such as GRP78/BiP, or ER-

associated degradation (ERAD)-related genes, such as ER degradation-enhancing alpha-

mannosidase-like 1 (EDEM1). ATF6 is cleaved by site 1 and site 2 proteases (S1P and S2P) 

in response to ER stress. IRE1 recruits TNF receptor-associated factor 2 (TRAF2), which in 

turn recruits apoptosis signal-regulating kinase 1 (ASK1) that activates c-Jun amino terminal 

kinase (JNK). The cleaved ATF6 N-terminal fragment migrates to the nucleus to activate the 

transcription of GRP78/BiP through direct binding to the ER stress response element. 

A number of reports have shown that autophagy is induced by ER stress and is critical 

for cell survival under conditions of ER stress 
18,19

. Autophagy is the primary cellular pathway 

by which long-lived proteins, cytoplasmic organelles and intracellular pathogens undergo 

degradation. Autophagy involves sequestration of these cellular constituents in double- or 

multimembrane cytoplasmic vesicles called autophagosomes, which are subsequently 

delivered to the lysosome, where they are degraded and recycled. During this process, 

autophagosomes enclose cytosol as well as organelles. Induction of autophagy is regulated by 
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the complex of class III PI3K with Beclin 1 (yeast Atg6). Later steps required for the 

formation of autophagosomes involve the autophagy genes Atg3, Atg5, Atg7, microtubule-

associated protein 1 light chain 3 (LC3, yeast Atg8), Atg10, and Atg12 in two ubiquitin-like 

conjugation pathways 
20

. Autophagy promotes cell survival by enabling cells to keep 

macromolecule synthesis and the energy requirements during nutrient deprivation and other 

forms of cellular stress. Autophagy also plays a role in differentiation and development, 

aging, innate and adaptive immunity, and cancer 
21

. 

Our present study shows that depletion of L-Arg downregulates a number of proteins 

in human T-cells, in addition to CD3 , leading to a ER stress response. Subsequent triggering 

of autophagy keeps T-cells alive under ER stress conditions, thus preventing the onset of 

apoptosis. 

 

Results 

Depletion of L-Arg inhibits expression of CD3ζ and additional membrane antigens, 

arrests cells in G0/G1, and blocks cell proliferation in Jurkat cells and peripheral blood 

mitogen-activated T cells. L-Arg deficiency has been reported to downregulate CD3ζ in 

activated T cells, thus preventing the normal expression of the T cell receptor (TCR) 
22

. This 

downregulation of CD3ζ was reported not being accompanied by any alteration in the 

expression of other surface molecules, such as CD4 and CD69 
23

. However, we found that the 

effect of L-Arg deficiency on cell surface protein expression in activated lymphocytes was 

more general than previously reported. Incubation of both human Jurkat T-cell line and 

peripheral blood mitogen-activated T cells in a L-Arg-deficient medium for 72 hours led not 

only to TCR CD3  downregulation, but additional membrane antigens, including CD2, CD5, 

CD11a, and CD45, were also downregulated (Fig. 1A and B), as assessed by fluorescence 

flow cytometry. Jurkat and peripheral blood mitogen-activated T cells, cultured in the absence 

of L-Arg, underwent an arrest in G0/G1 and cell proliferation was blocked (Fig. 1C and D). 
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After 72 h in culture without L-Arg, most lymphocytes ( 80-90%) were arrested at G0/G1 

(Fig. 1C), and cells stopped proliferation (Fig. 1D). In contrast, Jurkat and activated T cells 

remained growing (to about 700,000 cells/ml) in the presence of L-Arg after 72-h incubation, 

with a normal cell cycle profile (data not shown). However, no apoptotic response was 

observed, as assessed by the lack of any increase in the sub-G0/G1 population in cell cycle 

analysis by flow cytometry (Fig. 1C).  

 

L-Arg depletion induces ER stress in Jurkat and peripheral blood mitogen-activated T 

cells. Because the absence of L-Arg in the culture medium had a rather general effect on 

down-regulating a number of different cell surface proteins, and ER is critical for protein 

synthesis as well as for posttranslational protein modification, folding and export, we 

analyzed whether L-Arg deprivation could lead to an ER stress response. 

ER stress signaling cascades lead to oligomerization of IRE1, which results in trans-

autophosphorylation and activation of its RNase domain, thus acting on the mRNA of XBP1 

to excise a 26-nucleotide internal sequence from uXBP1 (unspliced XBP1) and producing 

mature sXBP1 mRNA (spliced XBP1). The presence of a PstI restriction site in this 26-

nucleotide fragment allows to distinguish between both forms by restriction analysis of PCR-

amplified cDNA, and thus to assay for ER stress response activation 
24

. After culturing both 

Jurkat and peripheral blood mitogen-activated T cells with and without L-Arg, we observed an 

equilibrium between the two splicing variants of XBP1 between 6 and 24 hours, whereas at 48 

hours only sXBP1 was present (Fig. 2A). These data suggest that L-Arg depletion triggers an 

IRE-1-mediated ER stress response. 

sXBP1 encodes an active leucine zipper transcription factor that regulates the 

transcription of several genes involved in ER quality control mechanisms, ER/Golgi 

biogenesis, as well as ERAD components 
25

. We next analyzed the effect of L-Arg deprivation 

on the expression of XBP1 downstream genes in both Jurkat cells and peripheral blood 
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mitogen-activated T cells by semiquantitative RT-PCR. We found upregulation of EDEM1 

(Fig. S1), which has been reported to increase degradative rates of certain misfolded proteins 

26
. We also detected a slight downregulation of GRP78/BiP and upregulation of CHOP 

(C/EBP homologous protein, also named DDIT3, DNA damage-inducible transcript 3, or 

GADD153, growth arrest- and DNA damage-inducible gene 153), both genes being involved 

in ER stress signaling (Fig. S1). 

Another consequence of ER stress is translational arrest, signaled through 

phosphorylation of eIF2α at Ser51, which leads to decreased formation of the ternary complex 

required for the binding of Met-tRNA to the 40S ribosomal subunit 
27

. The protein kinase 

GCN2 is activated when the level of any amino acid diminishes sufficiently to cause the 

accumulation of uncharged tRNAs, which are direct activators of the GCN2 kinase. GCN2 

phosphorylates eIF2α at Ser51, resulting in the sequestration of eIF-2B, which greatly reduces 

the rate of general translational initiation, while upregulates the translation of a subset of 

mRNAs. As shown in Fig. 2B, depletion of L-Arg induced phosphorylation of GCN2 and 

eIF2α in both Jurkat and peripheral blood mitogen-activated T cells. Phosphorylation of 

eIF2  results in preferential translation of selected mRNAs, such as activating transcription 

factor 4 (ATF4) 
28

, which promotes expression of an array of genes including those coding for 

amino acid biosynthetic proteins and autophagy genes like ATG12 
29

. In this regard, we found 

that the absence of L-Arg induced the synthesis of ATF4 in both Jurkat and peripheral blood 

mitogen-activated T cells (Fig. 2B), as well as upregulation of ATG12 expression in 

microarray analysis (data not shown). In addition, the absence of L-Arg promoted the 

downregulation of GRP78 protein in Jurkat cells, but not in peripheral blood mitogen-

activated T cells (Fig. 2B). 

EDEM1 is an ER stress-inducible regulator of glycoprotein disposal from the ER 
30

. 

Here, we found that L-Arg depletion induced upregulation of EDEM1 in Jurkat and peripheral 

blood mitogen-activated T cells at both mRNA and protein levels (Fig. S1 and Fig. 3A). 
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In addition, 20S proteasome activity was assayed in lysates of Jurkat and peripheral 

blood mitogen-activated T cells incubated in the presence and absence of L-Arg. 20S 

proteasome activity was increased after 3-6 h incubation without L-Arg, followed by a gradual 

decrease in both Jurkat and peripheral blood mitogen-activated T cells (Fig. 3B). This 

proteasome activity was inhibited by lactacystin in both Jurkat and activated T cells (Fig. 3B). 

 

L-Arg depletion induces autophagy in Jurkat and peripheral blood mitogen-activated T 

cells. We found that the rate of apoptosis in Jurkat cells and peripheral blood mitogen-

activated T cells, maintained in L-Arg-deficient RPMI-1640 culture medium for 7 days, was 

lower than 7% (data not shown). On these grounds, we hypothesized that T lymphocytes 

adapted to this new situation of L-Arg deprivation through the ER stress response we have 

found here. The initial intent of the UPR is to adapt to the changing environment, and restore 

normal ER function. Cell adaptation to these changes is provided by transcriptional programs 

that upregulate genes, including the prosurvival UPR marker GRP78/BiP, that enhance the 

protein folding capacity of the ER, and promote ER-associated protein degradation to remove 

misfolded proteins 
17

. However, we found that L-Arg deprivation did not induce GRP78 

expression (Fig. S1, and Fig. 2B). In addition, recent studies show that ER stress induces 

autophagy 
18

, as a major mechanism for survival 
19

. A primary role of autophagy in a variety 

of organisms is to adapt to nutrient starvation by releasing amino acids through the catabolism 

of existing proteins, and in this regard, autophagy is a cellular response to adverse 

environment and stress. On these grounds, we wondered whether cells undergoing ER stress 

upon L-Arg deprivation might survive through the triggering of an autophagic program. 

Autophagy is featured by the formation of autophagosomes and autolysosomes. 

Acridine orange (AO) is a fluorescent weak base that accumulates in acidic spaces, such as 

autolysosomes and lysosomes, which are called acid vesicular organelles (AVOs) and 

fluoresce bright red, whereas the cytoplasm and nucleolus fluoresce bright green and dim red. 
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After incubating the cells with or without L-Arg, AO was added, and the increment of red 

fluorescence was quantified by flow citometry. As shown in Fig. 4A, AVO fluorescence was 

increased in both Jurkat and activated T cells following L-Arg depletion, suggesting the 

induction of autophagy. A major marker of autophagy activation is the conversion of the 

microtubule-associated protein 1 light chain 3 (LC3) from the unconjugated form (LC3-I), 

which is in the cytosol, to the phosphatidylethanolamine-conjugated form (LC3-II), that 

targets to the autophagosomal membrane 
31

. We found that incubation of Jurkat T cells and 

peripheral blood mitogen-activated T cells in L-Arg-deficient culture medium elicited a strong 

formation of the lipidated LC3-II along the incubation time (Fig. 4B). Sequestosome 1 

(SQSTM1, p62) is a polyubiquitin-binding protein that binds autophagosomal membrane 

protein LC3/Atg8, bringing SQSTM1-containing protein aggregates to the autophagosome 

and thus facilitating degradation of ubiquinated protein aggregates by autophagy 
32

. 

Lysosomal degradation of autophagosomes leads to a decrease in SQSTM1 protein level, and 

so this protein can be considered as a substrate of autophagy. In this regard, we found a 

decrease in the SQSTM1 protein level in Jurkat T and peripheral blood mitogen-activated T 

cells incubated in the absence of L-Arg (Fig. 4B), supporting the involvement of autophagy. 

In order to further assess the autophagic response, Jurkat cells were transfected with EGFP-

LC3, and peripheral blood mitogen-activated T cells were immunostained with specific anti-

LC3, and then cells were analyzed by fluorescence microscopy. Jurkat-EGFP-LC3 cells and 

peripheral blood mitogen-activated T cells were incubated with and without L-Arg for 48 h, 

before fixation for microscopy analysis. Consistently with the above data, we found that LC3 

displayed a transition from the diffusive cytoplasm pattern to the punctuated membrane 

pattern following L-Arg depletion, as assessed by confocal microscopy (Fig. 4C), suggesting 

the generation of autophagosomes. Next, we analyzed the autophagic flux by using a 

previously reported method 
33

 involving saponin extraction, which is specific for non-

autophagosome-associated LC3, coupled to flow cytometry. Jurkat-EGFP-LC3 cells and 
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peripheral blood mitogen-activated T cells were incubated without L-Arg in the presence and 

absence of 10 µM chloroquine (CQ), and then cells were treated with 0.05% saponin, that 

results in extraction of the soluble LC3-I form, and subsequently they were subjected to flow 

cytometry analysis. Because saponin treatment selectively extracted non-autophagosome-

associated LC3, the remaining fluoresecence allowed determination of autophagosome 

formation by flow cytometry (Fig. 4D and E). We found an increase in fluorescence until 24 

and 48 hours, and then a decrease over time, indicating degradation of autophagosome-

associated LC3-II protein, measured by using the EGFP-LC3-II reporter in Jurkat cells (Fig. 

4D) and immunostaining with an anti-LC3 antibody in peripheral blood mitogen-activated T 

cells (Fig. 4E). In contrast, this loss of fluorescence was not observed in CQ-treated cells, 

indicating an accumulation of autophagosomes (Fig. 4D and E).  

 

Effect of L-Arg deprivation on signaling pathways regulating autophagy. Akt and mTOR 

signaling molecules are major regulators of autophagy 
34

. As shown in Fig. 5A, the basal 

levels of Akt and mTOR phosphorylation were decreased along the incubation of human 

Jurkat T cells and peripheral blood peripheral blood mitogen-activated T cells in L-Arg-

deficient culture medium. Because both Akt and mTOR act as major autophagy inhibitors, 

their down-modulation leads to an increase in autophagy (Fig. 4). Unlike Akt and mTOR, 

extracellular signal-regulated kinase 1/2 (ERK1/2) activation has been previously shown to 

contribute to autophagy-induced prosurvival function 
35

. Interestingly, we detected an 

increase in ERK1/2 phosphorylation when Jurkat cells were incubated in L-Arg-depleted 

medium (Fig. 5A). In addition, a slight increase in ERK1/2 phosphorylation was also detected 

in peripheral blood mitogen-activated T cells, although to a much lesser extent than in Jurkat 

cells, following L-Arg depletion (Fig. 5A). 

 Despite the involvement of autophagy in cell death and survival is controversial, there 

is an increasing number of evidences that suggest a protective role for autophagy against 
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nutrient stress, aggregates of misfolded proteins, organelle damage and microbes 
36-39

. 

Because autophagy activity generates energy, autophagy is often induced under nutrient 

limiting conditions, providing a mechanism to maintain cell viability, which may be exploited 

by cancer cells for survival under metabolic stress 
40

. 

 Protracted activation of IRE1 results in the phosphorylation of the MAPK (mitogen-

activated protein kinase) JNK (c-Jun N-terminal kinase) 
41

. Depending on the cellular context, 

activation of JNK can either allow the cells to adapt to ER stress by initiating autophagy, or to 

promote apoptosis 
19

. As shown in Fig. 5B, L-Arg depletion induced a sustained JNK 

activation in both Jurkat and peripheral blood mitogen-activated T cells. JNK positively 

regulates autophagy through direct phosphorylation of Bcl-2 that leads to the release of the 

inhibitory lock on Beclin 1 
42

. Interestingly, only the ER-localized pool of Bcl-2 is subjected 

to regulation by this mechanism 
42

. Beclin 1 is essential for the initiation of the early stages of 

autophagy 
43

, and its function is inhibited by the interaction of Beclin 1 BH3 domain with the 

BH3-binding groove in Bcl-2/Bcl-XL 
44

. Although endogenous Beclin 1 is found at 

mitochondria, ER and trans-Golgi network, the interaction between Bcl-2 and Beclin 1 was 

found to take place exclusively on the surface of the ER. This suggests that the regulatory 

hold held by Bcl-2 over Beclin 1 is particularly responsive to alterations in ER homeostasis 
45

. 

Here, we found that L-Arg depletion induced Bcl-2 phosphorylation (Fig. 5B). Because we 

found that L-Arg starvation prompted JNK activation and Bcl-2 phosphorylation (Fig. 5B), 

whereas Beclin 1 protein level was preserved, we wondered whether the ER stress response 

induced by depletion of L-Arg affected the interaction between Bcl-2 and Beclin 1. By 

immunoprecipitation assays, we found that the interaction between Bcl-2 and Beclin 1 was 

lost after incubation of Jurkat and activated T cells in medium deficient in L-Arg (Fig. 5C). 

 

Inhibition of JNK and ERK signaling blocks L-Arg-induced autophagy. To further 

investigate the role of JNK and ERK in L-Arg depletion-mediated autophagy, Jurkat cells 
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were pretreated with 10 μM of SP600125 (JNK specific inhibitor) and 10 μM U0126 

(inhibitor of both MEK1 and MEK2, upstream activators of ERK) for 1 h, and then incubated 

in L-Arg-deficient culture medium. Immunoblotting analysis showed that phosphorylation of 

JNK and ERK was inhibited following pretreatment with SP600125 and U0126 (data not 

shown). We found that both inhibitors prevented the autophagic flux in Jurkat (Fig. 6A) and 

peripheral blood mitogen-activated T cells (data not shown). Treatment of cells with 

chloroquine led to the accumulation of LC3-II following L-Arg deprivation, as this compound 

inhibits the formation of autophagolysosomes, and therefore LC3-II is not degraded. In 

addition, we found that preincubation with SP600125 blocked LC3-II formation (Fig. 6B). 

U0126 was a weaker inhibitor than SP600125 in the initial processes of autophagy, as a low 

generation of LC3-II was still detected (Fig. 6B). Furthermore, the inhibition of the formation 

of autophagolysosomes by SP600125 and U0126 resulted in enhanced apoptotic cell death 

under L-Arg depletion, as assessed by an increase in the percentage of Annexin V-positive 

cells by flow cytometry (Fig. 6C). 

 

Autophagy protects lymphocytes from apoptosis in the absence of L-Arg. To examine 

whether the autophagic response induced by ER stress plays a role in cell survival or cell 

death, Jurkat cells incubated in culture medium without L-Arg were treated with chloroquine 

(CQ), bafilomycin A1 (BF), 3-methyladenine (3-MA) or wortmannin (WM) to block 

autophagy. The inhibition of the formation of autophagolysosomes by CQ and BF resulted in 

enhanced apoptotic cell death under L-Arg depletion, as assessed by an increase in the 

percentage of Annexin V-positive (Fig. 7A) and hypodiploid sub-G0/G1 (data not shown) 

cells by flow cytometry. Inhibition of the fusion of lysosomes with autophagosomes by CQ or 

BF resulted in the accumulation of LC3-II, which was detectable by Western blot (Fig. 7B). 

Induction of apoptosis in lymphocytes following L-Arg depletion in the presence of 

autophagy inhibitors was further assessed by caspase 3 activation and breakdown of its 
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substrate poly(ADP-ribose) polymerase (PARP) (Fig. 7B). Similarly, inhibition of the early 

stages of autophagy, using 3-MA or WM, which acted before autophagosome formation and 

thereby without LC3-I to LC3-II conversion, sensitized cells to undergo ER stress-induced 

apoptosis following L-Arg depletion, as assessed by an increase of Annexin V-positive (Fig. 

7A) and hypodiploid sub-G0/G1 (data not shown) cells, as well as by activation of caspase-3 

and PARP cleavage (Fig. 7B). Likewise, three additional markers of ER stress-mediated 

apoptosis, such as CHOP upregulation, caspase 4 activation and Bap31 cleavage 
46

, were also 

observed following L-Arg depletion in the presence of autophagy inhibitors (Fig. 7B). Thus, 

our data indicate that, irrespective of the stage at which autophagy was inhibited, disabled 

autophagy prompted L-Arg starvation-induced death via a common final pathway involving 

biochemical features of apoptosis (Fig. 7). These data also indicate that autophagy plays a 

pivotal role in protecting against cell death induced by ER stress caused by L-Arg depletion. 

To further investigate if the above apoptotic response was the result of inhibition of 

the autophagic process, we targeted by small interfering RNA (siRNA) two established 

autophagic proteins, namely Beclin 1 and ATG7, in Jurkat cells (Fig. 8A and B). The 

autophagic flux was largely abrogated following Beclin 1 and ATG7 silencing in Jurkat cells 

incubated in L-Arg-deficient culture medium, as assessed by measuring the remaining 

fluorescence of EGFP-LC3 through a saponin/flow cytometry-based assay (Fig. 8C). 

Comparison of these data with those obtained when Jurkat cells were cultured in the presence 

of CQ, indicated the blockage of the initial stages of autophagy, with no formation of 

autophagosomes, following Beclin 1 and ATG7 silencing (Fig. 8C). Inhibition of autophagy 

by Beclin 1 and ATG7 siRNA induced an apoptotic response when Jurkat cells were 

incubated in L-Arg-depleted medium (Fig. 8D), which was accompanied by CHOP 

upregulation and caspase 3 activation, that in turn led to the cleavage of the caspase 3 

substrate PARP (Fig. 8E). These results suggest that the L-Arg depletion-mediated autophagic 
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response in Jurkat cells is a cell-protective mechanism whose inhibition enables the induction 

of apoptotic. 

 

IRE1 signaling pathway, but not GCN2 signaling, is required for activation of L-Arg-

induced autophagy. In mammalian cells, IRE1, PERK, and ATF6 sense the presence of 

unfolded proteins in the ER lumen and transduce signals to the cytoplasm and nucleus 
47

. 

PERK activation leads to the phosphorylation of eIF2α, and GCN2 is another eIF2α kinase 

that is activated by amino acid starvation. A certain controversy has been raised regarding the 

involvement of either eIF2α or IRE1 signaling pathways as the crucial mediator of ER stress-

induced autophagy 
48

. On these grounds, we next analyzed the role of IRE1α and GCN2 in the 

autophagy response triggered by L-Arg depletion through RNA silencing (Fig. 9A and B). 

Jurkat cells transfected with IRE1α siRNA largely downregulated IRE1α (Fig. 9A), which led 

to inhibition of JNK and Bcl-2 phosphorylation as well as LC3-II formation, whereas 

SQSTM1 was not degraded following L-Arg starvation (Fig. 9C). In contrast, silencing of 

GCN2 (Fig. 9B) did not affect the generation of the autophagosome-bound LC3-II form and 

the degradation of SQSTM1 upon L-Arg depletion (Fig. 9D). PERK phosphorylation was 

hardly detected, if any, when Jurkat cells were incubated in a L-Arg-depleted medium, but 

phosphorylation of PERK was readily observed in GCN2-silenced cells (Fig. 9D). These data 

suggest that PERK could act as an alternative route to GCN2 to phosphorylate eIF2α when 

Jurkat cells were incubated in the absence of L-Arg. IRE1α silencing also blocked XBP1 

splicing, thus preventing the generation of sXBP1 (Fig. 9E). Furthermore, we found that 

downregulation of IRE1α, but not of GCN2, Jurkat cells 

incubated in the absence of L-Arg (Fig. 9F). These results suggest that IRE1α is required for 

autophagy activation after L-Arg-induced ER stress. 
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Depletion of L-Arg, L-Met and L-Tyr leads to XBP1 splicing and autophagy. We next 

analyzed whether the above induction of ER stress on T lymphocytes was specific to L-Arg 

depletion. To this aim, we examined the capacity of nine different amino acids to elicit an ER 

stress response in Jurkat cells. We found that depletion of L-Arg, L-Met and L-Tyr, out of nine 

amino acids tested, induced splicing of XBP1 (Fig. 10A). This suggests that the ability to 

prompt ER stress was not a general response to deprivation of any single amino acid, and that 

cells show a differential ability to mount an ER stress response depending on the depleted 

amino acid. Furthermore, we found that depletion of the above three amino acids L-Arg, L-

Met and L-Tyr led to autophagic flux as assessed with Jurkat-EGFP-LC3 cells (Fig. 10B). 

However, we also detected that deprivation of some additional amino acids induced 

autophagy without triggering an ER stress response (data not shown). 

 

Replenishment of L-Arg restores cell proliferation and antigen expression, and inhibits 

autophagy induced by L-Arg deficiency. In order to assess whether the above effects of 

depletion of L-Arg on autophagy induction were reversible, we replaced the L-Arg-deficient 

culture medium for L-Arg-containing RPMI-1640 culture medium, and then we performed a 

time-course assay to analyze the expression of membrane antigens in Jurkat cells, cell cycle, 

cell proliferation and autophagy. We found that after 96 hours of restoring L-Arg to the 

medium, cells recovered the expression of membrane antigens (Fig. 11A), the normal cell 

cycle distribution profile (Fig. 11B), and their proliferation capacity (Fig. 11C). In addition, 

LC3-II formation was downregulated following L-Arg replenishment, as assessed by both 

confocal microscopy (Fig. 11D) and Western blot (Fig. 11E). Thus, these results indicate that 

the autophagic stress response caused by the absence of L-Arg is a reversible process in T 

lymphocytes.  
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Discussion 

Here, we report for the first time that depletion of L-Arg leads to a reversible response that 

preserves the life of the T lymphocytes through ER stress and autophagy, while cells remain 

arrested at G0/G1. Replenishment of L-Arg drives T lymphocytes to proliferate again and they 

recover the normal cell cycle profile, whereas autophagy is inhibited and no further required. 

Our results suggest that depletion of L-Arg induces ER stress through IRE1α signaling, which 

results in activation of its RNase domain and removal of a 26-nt sequence from uXBP1, 

producing mature sXBP1 mRNA, which in turn activates genes responsible for ER-associated 

degradation of misfolded glycoproteins, like EDEM1. 

Amino acid starvation has been shown to promote autophagy through the eIF2α kinase 

signaling pathway 
49

, and ER stress induced by protein aggregates can lead to autophagy 

through PERK/eIF2α phosphorylation 
50

. Our data reported here show phosphorylation of 

eIF2α following depletion of L-Arg, which could lead to the upregulation of ER stress 

markers and the induction of autophagy promoting proteins, such as ATF4 and ATG12. There 

are four distinct eIF2α-kinases in mammals, namely GCN2, PKR, PERK, and HRI, which are 

activated by amino acid starvation, viral infection, ER stress, and heme depletion, respectively 

51
. Here, we observed GCN2 phosphorylation, whereas PERK phosphorylation was only 

detected upon GCN2 downregulation following L-Arg deprivation. However, we found that 

GCN2 silencing did not affect the generation of the autophagosome-bound LC3-II form and 

SQSTM1 degradation upon L-Arg depletion. Taking together, these results suggest that GCN2 

activation is not critical for the induction of autophagy following L-Arg depletion, and when 

GCN2 is absent, its putative role in eIF2  phosphorylation could be carried out by alternative 

routes, such as the PERK-mediated pathway, which otherwise remains inactive. In addition, 

we also found that depletion of L-Arg increased the proteasome activity, and this might be a 

consequence of the herein reported ER stress response. 
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There is a growing body of evidence supporting the notion that ER stress is a potent 

inducer of autophagy, however the precise molecular pathways linking ER stress to 

autophagy remain to be fully elucidated. Furthermore, a persistent bone of contention is 

whether autophagy acts as a cytoprotective mechanism or a precursor to cell death 
52

. 

Sustained autophagy may be detrimental to cell survival because of excess of organelle and 

macromolecule catabolism, but conversely, autophagy may play an important role in 

cytoprotection by degrading protein aggregates during ER stress. Beclin 1, the mammalian 

ortholog of yeast Atg6 and essential for autophagy, was initially identified as a Bcl-2-

interacting protein in a yeast two-hybrid screen 
53

. A point of convergence in the regulation of 

apoptotic and autophagic pathways was provided for the first time through the finding that 

Bcl-2 suppressed starvation-induced, Beclin 1-dependent autophagy in both yeast and 

mammalian cells 
54

. The interaction between Bcl-2 and Beclin 1 takes place exclusively on 

the surface of the ER, and thereby the ability of Bcl-2 to reduce Beclin 1's capacity to induce 

autophagy is particularly responsive to alterations in ER homeostasis 
55

. We found here that 

the interaction between Beclin 1 and Bcl-2 is lost following L-Arg depletion, leading to the 

formation of the autophagosome. Activation of JNK by L-Arg deprivation might be related to 

the displacement of Bcl-2 from the complex Beclin 1-Bcl-2. Fig. 12A depicts a model for the 

involvement of ER stress in the induction of autophagy by L-Arg depletion in T lymphocytes 

based on the data reported here. In addition to the IRE1α and GCN2-eIF2α signaling 

pathways shown in Fig. 12A, we found here that L-Arg depletion might also promote 

autophagy through inhibition of Akt and mTOR.  

Recently there has been an increasing number of studies showing that the activation of 

the ERK1/2 pathway induces autophagy 
56

. Our data showed that Jurkat cells incubated 

without L-Arg induced the phosphorylation of ERK1/2, and inhibition of this signaling 

pathway inhibited autophagy, suggesting a role for ERK route in the process. In addition, we 

have found here that JNK activation, mediated by IRE1α in the early phase of ER stress, is 
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required for autophagosome formation after ER stress and is sufficient for the induction of 

autophagy. Furthermore, in IRE1α-deficient cells, we were unable to detect LC3-II formation, 

indicating that a signaling pathway IRE1α-JNK plays a major role in the activation of 

autophagy following L-Arg depletion. 

Our present study demonstrates that L-Arg triggers an ER stress-dependent autophagic 

response as a means for survival in T lymphocytes. This pro-survival autophagic response can 

be maintained for rather protracted times, and it is reversed once L-Arg levels are back to 

normal. Interestingly, we also found that inhibition of autophagy, at early or late stages, 

promoted cell death of T lymphocytes cultured in the absence of L-Arg. Thus, the ER stress 

response triggered by deprivation of L-Arg leads preferentially to autophagy-dependent 

survival, but the final outcome can be diverted to apoptosis when autophagy is blocked (Fig. 

12B). In this regard, it is worthy to note that L-Arg depletion in T cells hardly affect or 

slightly downregulates the expression of the survival UPR marker GRP78/BiP, whereas it 

upregulates the death-promoting transcription factor CHOP/GADD153 (a.k.a DDIT3). Thus, 

the ER stress induced by L-Arg depletion is ready to promote cell death when autophagy is 

prevented. Autophagy is a cellular defense mechanism associated with ER stress, but 

prolonged ER stress may induce autophagic and apoptotic cell death 
57,58

. Here, as stated 

above, we have found that the ER stress response in T lymphocytes induced by L-Arg 

depletion leads to apoptosis when autophagy is blocked (Fig. 12B), highlighting a major role 

for autophagy in T cell survival under L-Arg starvation. These results square with a major role 

of autophagy in T cell survival during T lymphocyte development, function and homesotasis 

59-62
. 

Our results provide an explanation for the arrest and survival of activated T 

lymphocytes, as well as for the inhibition of the lymphocyte-dependent immune response in 

the absence of L-Arg. Our data also provide new insights on how T cell survival or death is 
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regulated, through modulation of ER stress and autophagy following L-Arg depletion, which 

could be of relevance for autoimmune and immune-dependent diseases.  

 

Materials and Methods 

Cell culture and reagents. Human T-cell leukemia Jurkat cells and human peripheral blood 

T lymphocytes were cultured in RPMI-1640 supplemented with 10% (v/v) heat-inactivated 

fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml of penicillin, and 100 μg/ml 

streptomycin (GIBCO-BRL) at 37ºC in a humidified atmosphere of air containing 5% CO2. 

Jurkat-EGFP-LC3 cells were generated by transfection of Jurkat cells with pEGFP-LC3 

(Addgene, plasmid 21073) using Lipofectamine 2000, according to the manufacturer's 

instructions (Invitrogen). Transfected cells were selected with 1 mg/ml G418 (Sigma), and the 

EGFP-positive population cells was maintained under G418 selection. RPMI-1640 medium 

without L-Arg was purchased from GIBCO-BRL, and supplemented with MnCl2 to a 

physiologic concentration (4 µM), and 5% dialyzed (10 kDa cutoff) serum (Sigma). Medium 

deficient in one single amino acid, apart from L-Arg, was prepared by addition of all amino 

acids, except the one of interest, into Earle’s balanced salt solution (EBSS, GIBCO-BRL) at 

concentrations as in αMEM medium. 3-Methyladenine, bafilomycin A1, chloroquine, 

wortmannin, and U0126 were purchased from Sigma-Aldrich. JNK Inhibitor II (SP600125) 

was purchased from Calbiochem. 

 

Cell transfection. 10
7
 Jurkat cells were transfected using Lipofectamine 2000 according to 

the manufacturer's instructions (Invitrogen). Beclin 1 and ATG7 siRNA SMARTpool 

oligonucleotide mixtures, and scrambled siRNA, used as control, were from Dharmacon. 

GCN2 siRNA and nontargeting siRNA, used as control, were from Santa Cruz 

Biotechnology. IRE1  siRNA was from AbGene. Transfection with siRNAs (50 nM) was 
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performed using Lipofectamine 2000, according to the manufacturer's instructions 

(Invitrogen). 

 

Isolation of peripheral blood lymphocytes and mitogen activation of T cells. Mononuclear 

cells were isolated from fresh human peripheral blood by dextran sedimentation and 

centrifugation on Ficoll-Paque density gradients as previously described 
63

. Mononuclear cells 

were saved, washed twice with phosphate-buffered saline (PBS), and resuspended in RPMI-

1640 culture medium containing 10% heat-inactivated FBS, 2 mM L-glutamine, 100 μg/ml 

streptomycin and 100 U/ml penicillin, and incubated overnight at 37°C in a humidified 

atmosphere of 5% CO2 and 95% air. Monocytes were depleted by culture dish adherence. 

After overnight incubation at 37°C, the nonadherent cells (lymphocytes) were washed with 

PBS and collected. Lymphocyte preparations were typically 65–71% CD3
+
, 27–29% CD19

+
, 

and <0.4% CD14
+
. To further purify T-cells, the non-adherent cells were washed with PBS 

and passed twice through a nylon wool column to deplete residual B cells and monocytes as 

previously described 
63

. T-cell purity was checked by flow cytometry analysis. These purified 

T-cell preparations were typically >95% CD3
+
, <0.3% CD14

+
 and <4% CD25

+
. Proliferation 

of T lymphocytes was induced by incubation of peripheral blood lymphocytes for 4 days with 

0.5 μg/ml phytohemagglutinin (PHA), which primarily stimulates T-cell proliferation, 

followed by one day treatment with both 0.5 μg/ml PHA and 50 U/ml interleukin-2 (IL-2) in 

RPMI-1640 culture medium containing 10% heat-inactivated FBS, 2 mM L-glutamine, 100 

μg/ml streptomycin and 100 U/ml penicillin. Activated T cells were more than 80% CD25
+
. 

 

Antigen detection by flow cytometry. Cells were then incubated with monoclonal antibodies 

against CD45, CD2, CD5, CD3 , and CD11a (BD Biosciences PharMingen) at 1:100 dilution 

in PBS for 15 min at room temperature, washed with PBS, stained for 15 min with Cy2-

conjugated anti-mouse IgG antibody at 1:50 dilution (Jackson ImmunoResearch Laboratories, 
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Inc.), and analyzed in a Becton Dickinson fluorescence-activated cell sorting (FACS)Calibur 

flow cytometer. For intracellular proteins cells were fixed and permeabilized by means of the 

Fix & Perm cell permeabilization kit (CALTAG Laboratories) following the manufacturer's 

instructions. Mean fluorescence intensity was measured for each antigen, which was corrected 

for unspecific staining by subtracting the fluorescence of cells stained with negative controls. 

P3X63 myeloma culture supernatant, kindly provided by F. Sánchez-Madrid (Hospital de La 

Princesa, Madrid, Spain), and an isotype-matched nonrelevant IgG monoclonal antibody were 

used as negative controls, leading to virtually identical background values. 

 

20S proteasome activity.  Proteasome activity in Jurkat and activated T cells was measured 

in duplicate using a 20S Proteasome Activity Assay Kit (Chemicon International, Millipore). 

20S proteasome chymotrypsin activity was measured by incubating 20 μg of each cell lysate 

with fluorophore 7-amino-4-methylcoumarin (AMC)-labeled peptide substrate LLVY-AMC 

at 37°C for 60 min. The free AMC released by proteasome activity was quantified using a 

380/460-nm filter set in a fluorometer (ULTRA Evolution; XFLUOR4 Version: V 4.50). The 

AMC standard curve was generated with a series dilution of AMC standard solution. 

Proteasome activity was confirmed using purified 20S proteasome as the positive control, and 

was reported as μmol/l AMC per mg protein per h. Each sample/substrate combination was 

measured both in the presence and in the absence of lactacystin (10 μM) to account for any 

nonproteasomal degradation of the substrate. 

 

Autophagic flux by Flow cytometry. Autophagic flux was measured as previously described 

33
. Briefly, Jurkat-EGFP-LC3 cells were harvested by centrifugation, washed with PBS, and 

then washed with either PBS containing 0.05% saponin or with PBS alone, and analyzed by 

flow cytometry. For intracellular staining of endogenous LC3 in peripheral blood activated T 

cells, these latter were harvested by centrifugation, washed with culture medium and PBS, 
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and washed with PBS containing 0.05% saponin. Cells were then incubated with mouse anti-

LC3B monoclonal antibody (Cell Signaling) for 30 minutes, rinsed with PBS, incubated with 

Cy2-conjugated anti-mouse IgG antibody at 1:50 dilution (Jackson ImmunoResearch 

Laboratories, Inc.), and washed twice with PBS. More than 30,000 events were captured for 

each analysis. FACS data were collected using a FACSCalibur flow cytometer (Becton 

Dickinson) with CellQuest Pro software. Data analysis was carried out with FlowJo. For 

detection of acidic vesicular organelles (AVOs), cells were stained with 2.5 mg/ml acridine 

orange (Molecular Probes, Invitrogen Corporation) for 10 min at 37ºC, and analyzed for both 

green and red fluorescence by flow cytometry. 

 

Cell cycle and apoptosis. Quantification of cells in each phase of cell cycle and of apoptotic 

cells was determined by flow cytometry as previously described 
64,65

. Apoptotic cells were 

quantitated as the percentage of cells in the sub-G0/G1 region (hypodiploidy) in cell cycle 

analysis as previously described 
64,65

. Briefly, cells (5 × 10
5
) were centrifuged and fixed 

overnight in 70% ethanol at 4°C. Then, cells were washed three times with PBS, incubated for 

1 h with 1 mg/ml RNase A and 20 μg/ml propidium iodide at room temperature, and analyzed 

for the distinct cell cycle phases with a Becton Dickinson FACSCalibur flow cytometer. 

Apoptosis was also assessed using the Annexin V/7-ADD kit (BD Biosciencies), and the 

whole cell population was labeled with fluorescein isothiocyanate (FITC)-conjugated 

Annexin V/7-ADD without prior fixation, according to the manufacturer's instructions. Cells 

were analyzed using a FACSCalibur flow cytometer (Becton Dickinson) with CellQuest Pro 

software. At least 10,000 events were analyzed for each sample. Data analysis was carried out 

with FlowJo.  

 

Reverse transcriptase-polymerase chain reaction (RT-PCR). Total RNA from 10
7
 cells 

was extracted using the TRIZOL reagent following the manufacturer's instructions. RNA 
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preparations were carefully checked by gel electrophoresis and found to be free of DNA 

contamination. Total RNA (5 µg), primed with oligo-dT, was reverse-transcribed into cDNA 

with SuperScriptTM III First-Strand Synthesis System for RT-PCR (Invitrogen). The PCR 

mixture (25 µl) contained the template cDNA (1-2 µl), 10 pmol of the corresponding primers, 

0.2 mM dNTP, 2.5 mM MgCl2, and 5 units of EcoTaq DNA polymerase derived from 

Thermus aquaticus (ECOGEN). PCR reactions were performed in GeneAmp PCR System 

model 9600 (PerkinElmer). The primers used are listed below, where the nucleotide numbers 

indicate the primer location in the corresponding human sequences obtained from the 

GenBank/EMBL database: 

 

XBP1 (accession number: NM_001079539) 

(forward; nt 423–432)   5'- CCTTGTAGTTGAGAACCAGG -3' 

(reverse; nt 819–838)   5'- GGGGCTTGGTATATATGTGG -3' 

 

EDEM1 (accession number: NM_014674) 

(forward; nt 776–796)   5'- TTGACAAAGATTCCACCGTCC -3' 

(reverse; nt 1075–1094)  5'- TCCCAAATTCCACCAGGAGG -3' 

 

GRP78 (accession number: NM_005347) 

(forward; nt 1824-1846)   5'- AGATCACAATCACCAATGACC -3' 

(reverse; nt 2129-2151)   5'- CTTCCAGTTCCTTCTTCTTAGC -3' 

 

CHOP (accession number: NM_004083) 

(forward; nt 194–215)   5'- CATTGCCTTTCTCCTTCGGAC -3' 

(reverse; nt 555–575)   5'- GCAACTAAGTCATAGTCCGC -3' 
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β-actin (accession number: X00351) 

(forward; nt 936–955)      5'- CTGTCTGGCGGCACCACCAT -3' 

(reverse; nt 1170–1189)  5'- GCAACTAAGTCATAGTCCGC -3' 

 

Primers were designed by using the DS Gene 1.5 program for DNA analysis from Accelrys 

Scientific. The conditions for semiquantitative PCR amplification using a thermal cycler were 

as follows: 1 cycle at 95°C for 5 minutes as an initial denaturation step, then denaturation at 

95°C for 30 seconds, annealing at 58°C for 30 seconds, and extension at 72°C for 90 seconds 

(18 cycles for β-actin, 25 cycles for CHOP and GRP78, 35 cycles for XBP1, 20 cycles for 

EDEM1), followed by further incubation for 15 minutes at 72°C (1 cycle). An aliquot of the 

PCR reaction was analyzed on a 2% agarose gel in 1 × TAE (40 mM Tris-acetate, 1 mM 

EDTA, pH 8.0) and checked for the expected PCR products. 

 

Coimmunoprecipitation. 10
7
 cells were lysed with 200 µl lysis buffer (20 mM Tris-HCl, 100 

mM KCl, 0.9% Triton X-100, 10% glycerol, 2 mM orthovanadate, and 2 mM PMSF). Lysates 

were precleared with 500 µl protein A-Sepharose at 4°C for 2 h, and immunoprecipitated by 

incubation for 2 h at 4°C with anti-Beclin 1 antibodies, precoupled to protein A-Sepharose. 

After extensive washing with lysis buffer, the precipitates were subjected to SDS-PAGE and 

Western blot analysis. P3X63 was used as a negative control for immunoprecipitation, and no 

signal was detected. 

 

Western blot. Cells (5 x 10
6
) were lysed with 60 µl 25 mM Hepes (pH 7.7), 0.3 M NaCl, 1.5 

mM MgCl2, 0.2 mM EDTA, 0.1% Triton X-100, 20 mM ß-glycerophosphate, 0.1 mM sodium 

orthovanadate supplemented with protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 

20 µg/ml aprotinin, 20 µg/ml leupeptin). Forty micrograms of proteins were run on SDS-

polyacrylamide gels, transferred to nitrocellulose filters, blocked with 5% (w/v) defatted milk 
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in TBST (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.1% Tween 20) for 90 min at room 

temperature, and incubated for 1 h at room temperature or overnight at 4°C with specific 

antibodies: rabbit anti-38 kDa eIF2  (1:1000 dilution), anti-38 kDa phospho-eIF2α (1:1000 

dilution), anti-60 kDa phospho-Akt (1:1000 dilution), anti-54 and 46kDa SAPK/JNK 

(1:1000), anti-289 kDa phospho-mTOR (1:1000 dilution), anti-16-14 kDa LC3 (1:1000 

dilution), anti-60 kDa Beclin-1 (1:1000 dilution), anti-220 kDa phospho-GCN2 (1:1000 

dilution), anti-62 kDa SQSTM1/p62 (1:1000), anti-28 kDa phospho-Bcl2 (1:1000 dilution) 

polyclonal antibodies, and mouse anti-27 kDa CHOP (1:1000 dilution) monoclonal antibody 

from Cell Signaling; mouse anti-44 and 42 kDa phospho-ERK (1:1000 dilution), anti-44 and 

42 kDa ERK (1:1000 dilution) monoclonal antibodies from Santa Cruz Biotechnology; rabbit 

anti-78 kDa GRP78/BiP (1:500 dilution), anti-60 kDa Akt (1:500 dilution), anti-125 kDa 

phospho-PERK (1:500 dilution) polyclonal antibodies from Santa Cruz Biotechnology; goat 

anti-31 and 20 kDa Bap31 (1:500 dilution), anti-20 kDa cleaved caspase 4 (1:1000 dilution) 

anti-125 kDa PERK (1:500 dilution) polyclonal antibodies from Santa Cruz Biotechnology; 

mouse anti-116 and 85 kDa PARP (1:500 dilution), anti-26 kDa Bcl-2 (1:250 dilution) 

monoclonal antibodies from BD Pharmingen; rabbit anti-20 kDa cleaved caspase 3 (1:500 

dilution) polyclonal antibody from BD Pharmingen; rabbit anti-37 kDa ATF4 (1:500 dilution) 

polyclonal antibody from Abcam Plc; rabbit anti-65 and 75 kDa EDEM1 (1:500 dilution), 

anti-110 kDa IRE1α dilution, anti-78 kDa ATG7 (1:500 dilution) polyclonal antibodies, and 

mouse anti-42 kDa β-actin (1:5000 dilution) monoclonal antibody from Sigma. Anti-mouse, 

rabbit (GE Healthcare) and goat (Santa Cruz Biotechnology) IgG secondary HRP-antibodies 

were incubated at 1:5000 dilution in 5% (w/v) defatted milk in TBST for 1 h at room 

temperature. Signals were developed using an enhanced chemiluminescence detection kit 

(Amersham). 
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Immunofluorescence microscopy. T lymphocytes were incubated with or without L-Arg and 

then settled onto slides coated with poly-L-lysine, fixed in 4% formaldehyde and 

permeabilized with 0.1% Triton X-100 for 10 min at room temperature. Activated T cells 

were then incubated with 1 g/ml rabbit anti-human LC3 antibody overnight at 4ºC (Cell 

Signaling). Samples were further processed using FITC-conjugated anti-rabbit antibody 

(Pharmacia) (diluted 1:200 in PBS) for 1 hour at room temperature, and analyzed by 

immunofluorescense microscopy. Negative controls were prepared by either omitting the 

primary antibody or by using an irrelevant antibody, showing no fluorescence staining of the 

samples. 

 

Statistical analyses. Results given are the mean ± SD of the indicated number of 

experiments. 
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FIGURE LEGENDS 

 

Figure 1. L-Arg depletion induces downregulation of CD3ζ and additional membrane 

antigens, arrests cells in G0/G1, and inhibits cell proliferation in human Jurkat and 

peripheral blood mitogen-activated T cells. Jurkat (A) and peripheral blood mitogen-

activated T cells (B) were incubated in the absence of L-Arg for the indicated times, and then 

cells were subjected to flow cytometry to determine the expression of the indicated membrane 

antigens, measured as mean fluorescence intensity (MFI), and compared with respect to 

control cells (C) grown for the same periods of time in the presence of L-Arg. (C) Cells 

incubated in the presence (Control) and in the absence of L-Arg for 24 and 72 h were 

analyzed for cell cycle profiling. Representative histograms, from at least 5 different 

experiments, show cell cycle arrest in G0/G1 following L-Arg deprivation, and the percentages 

of T cells at G0/G1 phase are shown in each cell cycle profile. (D) Cells incubated with and 

without L-Arg were counted at the indicated times as a measurement of cell proliferation. 

Data in A and D are means ± SD of 3 independent experiments.  

 

Figure 2. L-Arg depletion induces ER stress in Jurkat cells and peripheral blood 

mitogen-activated T cells. (A) Cells were incubated with (C) or without L-Arg for the 

indicated times, and then total RNA was isolated and subjected to RT-PCR using specific 

primers for the XBP1 gene. PCR amplicons were incubated with PstI, and then run in agarose 

gel electrophoresis and stained with ethidium bromide. Only cDNA derived from sXBP1 

mRNA was not cut with PstI, because of the loss of a 26-bp intron in response to ER stress. 

The positions of the amplification products uXBP1 and sXBP1 are indicated. (B) Jurkat and 

peripheral blood mitogen-activated T cells were incubated with (C) or without L-Arg for the 

times shown, and then cells were analyzed by immunoblotting with antibodies directed 
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against the indicated proteins. Total -actin was used as a loading control for Western blots. 

Data shown are representative of 3 experiments performed. 

 

Figure 3. L-Arg depletion induces EDEM1 expression and 20S proteasome activity. (A) 

Jurkat and activated T cells were incubated with (C) and without L-Arg for selected times and 

the expression of EDEM 1 was determined by Western blot. -Actin was used as a loading 

control. Data shown are representative of 3 experiments performed. (B) 20S proteasome 

activity was measured in 20 µg of protein extract of Jurkat and activated T cells incubated in 

the absence or presence of the proteasome inhibitor lactacystin (10 μM) and performed in 

triplicate. 20S proteasome activity was measured as the hydrolysis of the fluorogenic peptidyl 

substrate LLVY-AMC, and reported as μmol/l AMC per mg protein per h. Data are means ± 

SD of 3 independent experiments preformed in triplicate. 

 

Figure 4. L-Arg depletion induces autophagy in Jurkat and peripheral blood mitogen-

activated T cells. (A) The formation of acidic vesicular organelles (AVOs) was detected in 

acridine orange-stained cells by flow cytometry. The increment in red fluorescence represents 

formation of AVOs. (B) Cells were incubated with (C) or without L-Arg for the indicated 

times, and then conversion of LC3-I to LC3-II and degradation of SQSTM/p62 was 

determined by Western blot using antibodies specific to LC3 and SQSTM/p62. -Actin was 

used as a loading control. (C) Immunofluorescence images of Jurkat-EGFP-LC3 cells and 

activated T cells incubated in L-Arg-containing (Control) and L-Arg-free medium for 48 h, 

and then activated T cells were immunostained for intracellular LC3. Bar, 10 µm. Data shown 

are representative of 3 experiments performed. (D, E) Measurement of autophagic flux. 

Jurkat-EGFP-LC3 (D) and activated T cells (E) were incubated without L-Arg in the presence 

or absence of chloroquine (CQ) for the indicated times, washed briefly with 0.05% saponin in 

PBS, and analyzed for autophagosome-bound LC3 fluorescence. Activated T cells were 
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immunostained with anti-LC3B antibody and a Cy2-conjugated secondary antibody, and then 

analyzed by flow cytometry for total fluorescence. Data are presented as a percentage of the 

total fluorescence intensity before saponin treatment (% remaining fluorescence) and are 

means ± SD of three independent experiments.  

 

Figure 5. Downregulation of Akt/mTOR signaling and dissociation of Beclin-1/Bcl-2 

complex in response to L-Arg depletion. (A) Jurkat and peripheral blood mitogen-activated 

T cells were incubated with (C) or without L-Arg for the indicated times, and then analyzed 

by immunoblotting with antibodies directed against the indicated proteins. (B) Lysates from 

Jurkat and activated T cells treated as above were analyzed by Western blot for the total 

content of JNK, p-JNK, p-Bcl-2, Bcl-2 and Beclin-1 using specific antibodies. β-Actin was 

used as a loading control in A and B. (C) Western blot analysis of anti-Beclin-1 

immunoprecipitates (IP), derived from total lysates of Jurkat and activated T cells (500 μg) 

incubated with (C) or without L-Arg for the indicated times, and then probed with anti-Bcl-2 

and anti-Beclin 1 antibodies. Data shown are representative of 3 experiments performed. 

 

Figure 6. Inhibition of JNK and ERK in Jurkat cells leads to inhibition of autophagic 

flux and induction of apoptosis following L-Arg depletion. (A) Jurkat-EGFP-LC3 cells 

were incubated without L-Arg in the presence or absence of chloroquine (CQ, 10 µM), and 

inhibitors of JNK (SP600125, 10 µM) and ERK (U0126, 10 µM) signaling pathways for the 

indicated times, washed briefly with 0.05% saponin in PBS, and then analyzed by flow 

cytometry for total fluorescence. Data are presented as a percentage of the fluorescence 

intensity before saponin treatment (% remaining fluorescence), and are means ± SD of three 

independent experiments. (B) Jurkat cells were incubated with (C) or without L-Arg in the 

presence or absence of chloroquine (CQ, 10 µM), and inhibitors of JNK (SP600125, 10 µM) 

and ERK (U0126, 10 µM) signaling pathways for the indicated times, and then conversion of 
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LC3-I to LC3-II was determined by Western blot. β-Actin was used as a loading control.  

Results shown are representative of 3 experiments performed. (C) Cells were incubated in 

RPMI-1640 medium with and without L-Arg in the presence of the indicated inhibitors of 

JNK (SP600125 10 µM) and ERK (U0126 10 µM) signaling routes for 6, 15, 24, 48 and 72 h. 

Control cells were cultured with L-Arg and inhibitors for 72 h. At the indicated times cells 

were stained with FITC-Annexin V and 7-ADD. Annexin V-positive populations were 

analyzed by flow cytometry, and represented the percentage of apoptosis. Data are means ± 

SD (C) of 3 independent assays.  

 

Figure 7. Inhibition of the autophagic-lysosomal pathway in Jurkat cells leads to 

apoptosis following L-Arg depletion. (A) Cells were incubated in RPMI-1640 medium 

without L-Arg in the presence of the indicated inhibitors of the autophagic-lysosomal route for 

6, 15, 24, 48 and 72 h. Control cells were grown with L-Arg and inhibitors for 72 h. At the 

indicated times cells were stained with FITC-Annexin V and 7-ADD. Annexin V-positive 

populations were determined by flow cytometry, and represented the percentage of apoptosis. 

Data are means ± SD of 3 independent experiments. (B) Cells treated as above were analyzed 

by Western blot for the expression of CHOP, activation of caspases 3 and 4, as well as for the 

cleavage of PARP and Bap31. Control Jurkat cells (C), incubated for 72 h in medium without 

L-Arg in the absence of the above inhibitors, were run in parallel. β-Actin was used as a 

loading control. Data shown are representative of 3 experiments performed. 

 

Figure 8. Downregulation of Beclin 1 and ATG7 in Jurkat cells leads to apoptosis and 

inhibition of autophagic flux upon L-Arg depletion. Jurkat cells were transiently 

transfected with 50 nM of either control siRNA, siRNA specific to Beclin 1 (A), or siRNA 

specific to ATG7 (B), and then analyzed by immunoblotting for Beclin 1 and ATG7 

expression. β-Actin was used as a loading control. (C) To evaluate the autophagic flux, 
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Jurkat-EGFP-LC3 cells were transiently transfected with 50 nM either control siRNA or 

siRNA specific to Beclin1 and ATG7. At 24 h after transfection, cells were incubated in 

medium without L-Arg for the indicated times, washed briefly with 0.05% saponin in PBS, 

and analyzed by flow cytometry for total fluorescence. Data are shown as the percentage of 

the fluorescence intensity before saponin treatment (% remaining fluorescence). (D) At 24 h 

after transfection, cells were incubated in medium without L-Arg for the indicated times cells, 

and then stained with FITC-Annexin V and 7-ADD. Annexin V-positive populations were 

analyzed by flow cytometry and representated the percentage of apoptosis. (E) Jurkat cells, 

transiently transfected with 50 nM either control siRNA or siRNA specific to Beclin1 and 

ATG7, were subjected to either immunoblot analysis for LC3, CHOP, caspase 3 (using an 

antidody recognizing cleaved caspase 3), and PARP (using an antidody recognizing both 

intact and cleaved forms). β-Actin was used as a loading control. Data shown are means ± SD 

or representative experiments of three performed. 

 

Figure 9. Downregulation of IRE1α, but not GCN2, leads apoptosis and inhibition of 

autophagic flux in Jurkat cells upon L-Arg depletion. (A) Jurkat cells were transiently 

transfected with 50 nM either control siRNA, siRNA specific to IRE1α and then analyzed by 

immunoblotting for IRE1α expression. (B) Jurkat cells were transiently transfected with 50 

nM either control siRNA, siRNA specific to GCN2, and then analyzed by immunoblotting for 

GCN2 expression. (C, D) Cells transiently transfected with control siRNA, siRNAs specific 

to IRE1α (C) or GCN2 (D) were incubated with or without L-Arg for 24 h, and then analyzed 

by immunoblotting with antibodies directed against the indicated proteins. β-Actin was used 

as a loading control. (E) Cells transiently transfected with control siRNA or siRNA specific to 

IRE1α were incubated with or without L-Arg for 24 h, and then total RNA was isolated and 

subjected to semiquantitative RT-PCR using specific primers for the XBP1 gene. PCR 

amplicons were incubated with PstI, and then run in agarose gel electrophoresis and stained 
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with ethidium bromide. Only cDNA derived from sXBP1 mRNA was not cut with PstI, 

because of the loss of a 26-bp intron in response to ER stress. The positions of the 

amplification products uXBP1 and sXBP1 are indicated. Expression of β-actin was used as a 

loading control. (F) At 24 h after transfection, cells transiently transfected with siRNA IRE1α 

and siRNA GCN2 were incubated in medium without L-Arg for 24, 48 and 72 h. At the 

indicated times cells were stained with FITC-Annexin V and 7-ADD. Annexin V-positive 

populations were determined by flow cytometry, and represented the percentage of apoptosis. 

Data shown are means ± SD or representative experiments of three performed. 

 

Figure 10. Induction of ER stress response and induction of autophagy by removal of 

specific single amino acids from the medium. (A) Jurkat cells were incubated in the 

absence of the indicated amino acids, and analyzed for XBP1 splicing in order to determinate 

induction of ER stress. Data shown are representative of three experiments. (B) Jurkat EGFP-

LC3 cells were incubated for 24 and 48 h in amino acid-rich medium (20aa), in EBSS 

medium in the absence of all amino acids (EBSS), in EBSS + CQ, or in the absence of the 

indicated amino acids. Autophagic flux was then measured by flow cytometry of EGFP-LC3 

as indicated in the Materials and Methods section. Data shown are means ± SD of 3 

experiments performed. 

 

Figure 11. Replenishment of L-Arg restores expression of membrane antigens, cell cycle 

profile, cell proliferation, and blocks autophagosome formation. (A) Jurkat cells 

incubated in medium without L-Arg for 72 h were washed with PBS, and then resuspended in 

culture medium with L-Arg for the indicated times. Membrane antigen expression was 

determined by flow cytometry at different incubation times, and shown as mean fluorescence 

intensity (MFI), and compared with respect to control cells (C) grown for the same periods of 

time in the presence of L-Arg. Data are expressed as the percentages of antigen cell surface 
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expression with respect to control cells grown for 96 h in the presence of L-Arg. (B) For cell 

cycle analysis, cells treated as above were fixed, stained with propidium iodide and the 

percentage of cells in each cell cycle phase was assessed by flow cytometry. Control cells (C) 

always grown in the presence of L-Arg were run in parallel. (C) Jurkat cells were counted to 

determine cell proliferation when incubated for the indicated times in a medium without L-

Arg and then after L-Arg replenishment. (D) Confocal images of Jurkat cells immunostained 

for intracellular LC3 to detect autophagy. Bar, 10 µm. (E) Induction of autophagy was also 

determined in Jurkat cells, incubated in the absence of L-Arg and after L-Arg replenishment, 

through conversion of LC3-I to LC3-II by Western blot, using an antibody specific to LC3. 

Data in A-C are means ± SD of 3 independent experiments. Data shown in D and E are 

representative of 3 experiments performed. 

 

Figure 12. Schematic model of ER involvement in L-Arg depletion-induced autophagy, 

survival and apoptosis. (A) This is a schematic outline to portray a plausible mechanism of 

how L-Arg deprivation induces autophagy via ER stress. Activated IRE1α splices a 26 

nucleotide sequence from XBP-1, resulting in a translational frame-shift to generate sXBP1, a 

potent transcription factor involved in the expression of ER-associated degradation (ERAD) 

genes, such as ER degradation-enhancing mannosidase-like protein 1 (EDEM1). At the same 

time, JNK is phosphorylated, allowing the release of Beclin 1 (BECN1) from the Beclin 

1/Bcl-2 complex, and the generation of the autophagosome. In addition, phosphorylation of 

eIF2  by GCN2, or by PERK in absence of GCN2, induces the expression of genes as ATF4 

and other genes involved in the activation of the autophagy pathway. (B) Apoptosis and 

survival responses triggered by L-Arg depletion are dependent of ER stress and autophagy. 

Depletion of L-Arg induces an ER stress response that triggers autophagy as a way for 

survival. When autophagy is inhibited, ER stress signals lead to apoptosis. See the text for 

further details. 


