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Abstract 

This paper proposes a separation of variables solution to the Equation for heat transfer 

by conduction in simply-shaped, homogeneous and isotropic bodies subjected to cooling 

or heating processes without a phase change and with an internal heat source that is a 

linear function of temperature and subject to homogeneous external conditions of the 

3rd kind. The solution is given by the sum of an infinite Fourier series. Starting from 

this solution, the paper also proposes a simple calculation of chilling time based on an 

approximation to the first term of that solution (exponential zone); it further proposes a 

first approximation to the maximum value attained by the temperature history, and to 

the corresponding time. 

(Key words: Transient heat transfer; Cooling; Heat of respiration, Chilling times.) 

Nomenclature 

0A  = Constant of the heat source. 13 s mJ   

1A = Slope of the heat source. -1-13  Ks mJ 

 

c

k
a





 = Thermal diffusivity. 12 s m   

exTAAB 100  . 13 s mJ   

k

hR
Bi  = Biot number 

c = Thermal capacity per unit of mass. 11 KkgJ   

DDD Sfx ,, = Displacement corrections (dimensionless) 

2

.

R

ta
Fo  = Fourier number (dimensionless time)  

iJJ , = Coefficients of expansion of the series  

 
i

JJJ i 
, = Product of iJ multiplied by the average value of   

k = Heat conductivity. 11 KmW   

R  = Characteristic length. m 

T = Temperature. K 

exT = External temperature. K  
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SfT = Temperature at surface. K 

exTTT  . K 

t = Time. s 

x = Dimensionless distance 

Greek symbols 

k

RA 2

12  = Dimensionless slope of the heat source 

0

2

0

Tk

RB




  = Dimensionless number of the heat source 

1  = First root of the boundary equation 

0T

T




  = Dimensionless temperature  

s = Dimensionless temperature, steady-state solution 

Sf = Dimensionless temperature at surface  

 = Density. 3m kg   

 = Solution to the time-related part of the equation 

 = Solution to the spatial part of the equation 
  xx 








1
'   

Introduction 

Calculation of heat transfer by conduction through temperature-dependent internal heat 

sources as in fruits and vegetables, where there are additional problems of geometry, 

packaging, stowage, respiration heat, etc., is generally a highly complex problem 

requiring sophisticated numerical procedures only available on a computer. In this 

context, respiration heat is generally considered to be a function that increases 

exponentially with temperature (Campañone et al., 2002, Tanner et al., 2002, part 1 and 

part 2), but various authors use other models in practical cases. For instance, some 

authors take heat generation to be a constant value (Dincer 1994, 1997, Meffert et al., 

1971, Stela et al., 2005); then others treat it as a constant in theory but in practice 

consider it to be negligible in comparison with other more powerful heat sources (Wang 

2001). Other authors take a potential model (Sadashive Gowda et al., 1997, and Tanner, 

et al., 2002 part 1 and part 2), or even a function of time (Campañone et al., 2002). 

There are regression models like those of Kole & Prasad 1994 (regression to a fourth-

grade polynomial) or Rao et al., 1993 (regression to a sigmoidal model). Exact 

analytical solutions have been derived for some particular cases, including heat 

generation. Jakob (1949), for example, considered the case of conduction with a linear 

heat source under steady state conditions, and Carslaw & Jaeger (1959) proposed a 

solution to the problem in transient conditions for an infinite slab. A solution was also 

proposed for an infinite cylinder and infinite Biot number. 

This study proposes a single general solution based on analysis by separation of 

variables, which is valid for the three elementary geometries and in a general way for 

the coefficient of heat transmission. 
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The reason for adopting a linear rate model for heat generation is that an exact solution 

is still feasible using separation of variables; moreover, there is an abundance of data in 

the literature supporting the adoption of such a linear model as a first approximation, for 

example in Xu & Burfoot, 1999, who adopt a linear approach in the case of potato 

chilling. 

Without ruling out other possible applications, the solution proposed here targets the 

study of cooling of plant foods whose respiratory process constitutes a heat source. 

Theoretical analysis 

The one-dimensional Fourier equation for heat transfer in a single dimension, with 

constant, homogeneous and isotropic coefficients and a linear heat source may be 

written thus: 

t

T
cTAA

r

T
r

rr
k




















 


.

1
10  

With the boundary condition of the third kind 

 exSf

Rr

TTh
r

T
k 









 


 

 is the geometric constant taking values 0  for an infinite slab, 1 for an infinite 

cylinder and 2  for a sphere. 

Table I shows the values of 0A  and 1A  obtained by linear regression of the average 

values taken from the ASHRAE tables (1998) 

Table I: Summary of regression values calculated from ASHRAE 

The above equations may be written in dimensionless form, thus: 

Fox
x

xx 


















 






 21
     (1) 

Sf

x

Bi
x





.

1












       (2) 

Where: 

ex

ex

TT

TT

T

T











00

  

exTAAB .100   

R

r
x  = Dimensionless distance 

2R

ta
Fo


  = dimensionless time (Fourier number) 

Bi
hR

k
  Biot number (dimensionless) 

c

k
a





 = Thermal diffusivity 

R = Semithickness in the direction of propagation 

The heat source is expresse by two new dimnesionless numbers: 



 4 

k

RA 2

12          (3) 

0

2

0

Tk

RB




          (4) 

General solution for simple geometries 

Equation (1) has to be integrated with the boundary condition (2). Denominating the 

steady function as s , the general solution may be written as follows (see appendix 1): 

       





i

Fo

iis
iexJxFox

22

,
    (5) 

The steady solution  xs  is (see appendix 2): 

 
















 1

'

.
2

0  








Bi

xBi

T

TT exs
s  

i is the solution to the classical transcendental equation (as in the no heat generation 

case): 

    .'. Bi  

and coefficients iJ (see appendix 3): 













220, 1




i

ii JJ  

where 

0,iJ  is the coefficient in the absence of heat generation: 

  BiBi

Bi
J

i

i

i
1

2
220,




 

 

and the function   has the following expressions: 

       xxxx ii  cos;cos   for an infinite slab

       xJxxJx ii  00 ;   for an infinite cylinder

 
 

 
 
x

x
x

x

x
x

i

i
i











sin
;

sin
  for a sphere 

Therefore, the temperature function becomes: 

 
   






















i

Fo

ii
ex iexJ

Bi

xBi

T

TT 22

1
'

.
2

0













  (6) 

Threshold Biot number 

As shown in appendix 2, 2 must satisfy the condition: 
222

M           (7) 

Also, given that in most fruits and vegetables the value of ² is in the region of 10
–2

, an 

approximate value can be found for this threshold Biot number. The first value of 2

i  

may be approximated in elementary geometries for Biot numbers close to zero (Cuesta 

& Lamua 1995) with the equation (to facilitate writing, when working exclusively with 
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the first term of the series we drop subscript 1, which denotes the order number, and the 

function’s argument whenever this leaves no room for doubts): 

 













Bi

2
1

12

11
2

 

From this equation and relationship (7) we can deduce: 

  2

2

12

2






Bi        (8) 

And, when the value of ² is very small, this is reduced to: 

1

2





Bi         (9) 

Average value 

The mass average temperature of the product at constant density is as follows (see 

appendix 4): 

 





I

Fo

is
ieJ

22      (10) 

With: 











220, 1




i

ii JJ  

and 

 
  BiBi

Bi
JJ

ii

ii
i 1

12
222

2

0,0,







   

Therefore, the mass average temperature function becomes : 

   
























I

Fo

i
ex ieJ

Bi

Bi

T

TT 22

1
1

2

0














  (11) 

Chilling times 

As in the case of chilling without an internal heat source, when the time is long enough 

the calculation can be done with the first term of the series. In this case equation (5) 

may be rewritten approximately as follows: 

    Fo

s eJxY 
22       (12) 

If the subscript c denotes the values at the thermal core: 

  Fo

c JeY 
22   

We have that: 

cYY   

Similar to the case with no internal source, chilling times for sufficiently large Fourier 

numbers can be calculated using a very simple linear analytical expression. Thus, from 

the exponential equation (12): 

    FoJY  22lnln   

and the Fourier number (dimensionless time) can immediately be found: 

 
22

ln








YJ
Fo       (13) 

In the cases of the thermal core and average value these equation will be: 
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 
22

ln

 


YJ
Foc       (14) 

And for the mass average value: 

 
22

ln








YJ
Fo  

Displacement correction 

Equation (13) can be rewritten thus: 

     
222222

lnlnln


















YJYJ
Fo  

The first term is the value of the Fourier number corresponding to the core ( cFo ), and 

the second term represents the increase in that number due to displacement to the x  

coordinate. 

   
2222

1lnln













 cc FoFoFo  

xYYx DFoFo  ,0,        (15) 

with 

  
22

1ln








x
Dx  

Clearly this term is dependent not on time but solely on the coordinate. Hence, other 

than for low Fourier numbers, if we wish to calculate the time required at a coordinate x 

to reach a given temperature , it will suffice to know the time needed to calculate it at 

the core and adjust this with the appropriate term for displacement. In the particular 

cases of the surface and the average value we get: 

A) Surface: 

 
22

1ln



 


SfD       (16) 

B) Average value: 

 
 22

1ln






D       (17) 

Summary of the procedure 

Hence, in the exponential zone (where the first term is enough), if we wish to know the 

time Fo needed to attain the absolute dimensionless difference  , it will suffice to 

apply the following procedure: 

i) Take the difference value: sY    

ii) Calculate the time for the core (equation 14) 

 
22

ln

 


YJ
Foc  

iii) Carry out the appropriate displacement if applicable (equation 16 or 17): 

 
22

1ln






xD  

and finally import to (15) 

xYYx DFoFo  ,0,  
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Illustrative example 

Let us take the case of an individual potato which we wish to cool from 25ºC to 5ºC. 

According to Xu & Burfoot (1999), we may assume that this potato is like a sphere 

0.065 m in diameter (that is, 31 ) with respiration heat rising linearly with 

temperature. 

TAAqr 10   

where the parameters 0A and 1A , as previously stated in SI units, are 

W/kg 0.017390 A  and  KkgW 0.0019421 A  

Since the parameters 0A  and 1A  in this work are measured in: 

  3

0 mWA and    KmW 3

1 A , 

the first two will have to be multiplied by the density to get the last two. Table 3 in 

ASHRAE (1998) gives us the following components for potato: 

79.0Waterx ; 0207.0Pr otx ; 001.0Fatx ; 1798.0Carbohx ; 0089.0Ashx  

From these, taking the equations in tables 1 and 2 as reference, we get the following 

values for the thermophysical parameters: 

 = 1123.5 kg m
-3, 

, k = 0.485 W m
-1

 K
-1

, a = 0.1253 10
-6

 m
2
 s

-1
, cp = 3636.6 J kg

-1
 K

-1
 

so that the respective values of A0 and A1 are finally: 
3

0 W/m 19.541123.50.01739 A  

 KW/m 2.18 1123.50.001942 3

1 A  

With this and the conductivity value deduced previously, it is possible to calculate the 

dimensionless parameters 2  and   (equations 3 and 4): 

47500.0
WKm

KmmW

0.485

2

0.065
2.1816

3

2

2

2

12 














k

RA
 whose value depends solely on 

the specific fruit and not on the process. The external temperature is 5ºC and the total 

temperature difference is Cº205250 T . So, the value of  will be: 

 
0.00331

204854.0

0325.030.45 2

0

2

10

0

2

0 















ΔTk

RTAA

ΔTk

RB ex  

which depends both on the potato itself and on the cooling/heating process, since it is 

affected by the external temperature and the total temperature difference. 

Since this is only an illustrative example, we shall further assume that cooling takes 

place with an air velocity such that the value of the Biot number is 2.0Bi ; the 

corresponding value of 7593.0 , and hence 0.57652  , which is greater than the 

value calculated previously for 2 . Thus the condition is satisfied. 

The parameter 0J corresponding to the Biot number 2.0Bi  is 0592.10 J . 

Hence: 

1.0531
00475057650

00331.0
10592.11

220 






















..
JJ




 

The steady temperature at the core is: 
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  0.006110
2














 




Bi

Bi
s  

The displacement of Fo on the surface will be: 

0.1714

sin
ln

22




















SfD  

and the displacement for the average value: 

 

 

 

 
0.1017

00475.05765.0

5765.0

2.012
ln

0.1714

1
ln

22

2









 









 






Bi

DD SfY
 

If we take 2/1Y as the reference for the core, the half-cooling time will be: 

 
 

 
 

1.3026
00475.05765.0

0530.12ln2ln
2221 











J
Fo  

Let us imagine that we wish to attain the absolute dimensionless temperature 3.0 . 

This means that 

0.29390061.03.03.0  sY   

and hence the dimensionless time required to attain the dimensionless temperature 

3.0 at the core is: 

   
2.2320

00475.05765.0

0.29392ln
1.3026

2ln
2221 











Y
FoFoY  

which coincides with the value derived using the entire series. 

As we have seen, the term of displacement to the surface is: 

1714.0Sf,YD  

and hence the dimensionless time needed to attain 3.0  at the surface is: 

2.06061714.02.2320,0,  SfYYSf DFoFo  

The value produced by the complete series is: 

2.0575Fo  

Therefore, the error is 0.15 % 

As we have seen, the average value of its displacement is 1017.0YD . Therefore, the 

time needed to attain the average value 3.0 will be: 

2.13031017.02320.2.0  YYY DFoFo  

The value of the complete series is 2.1284Fo , and therefore the error is 0.09 % 

The values for this example in the case when there is no respiration are: 

Core: 1879.2Fo  (difference -1.98 %) 

Surface: 0079.2Fo  (difference -2.47%) 

Average value: 0770.2Fo  (difference -2.41 %) 

That is, in this particular case because the values of A0 and A1 are low, the mass 

considered is small (an individual potato) and the Biot number is much larger than the 

threshold value, the influence of the respiration heat is relatively small. 
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Figures 1 and 2 illustrate the influence of the parameters 2 and   by plotting the 

temperature history for a fixed Biot number (Bi = 5) and for different values of 2  and 

 . In figure 1 the value of  ( 1 ) is fixed and that of 2 varies between 12   and 

52   (always lower than the first value of 2 corresponding to the Biot number), 

while in figure 2  is fixed ( 12  ) and  varies between 1  and 5 . 

By way of illustration, figure 3 depicts the temperature history for the three elementary 

geometries for the values 5Bi , 5.02  and 5.0  

Figure 1: Temperature history for .1 Cte and different values of 2  

Figure 2: Temperature history for .12 Cte and different values of   

Figure 3: Temperature history for the three elementary geometries  

Approximation to maximum value at the core 

As we can see in both figures, depending on the particular conditions in each case the 

temperature may rise at the outset up to a given maximum value M in a time MFo , 

falling thereafter down to its steady value. A first approximation to this value can be 

achieved by considering that its time derivative must also vanish. Hence, at this point 

the following condition is required: 

     
0

22
22  



i

Fo

iii

Fo

Mi

M

exJ
dFo

dY   

To calculate a first approximation to this value, the first two terms of the series can be 

taken as significant: 

           
0

22
2

22
1

22

22

211

22

1   MM

M

FoFo

Fo

exJexJ
dFo

dY  

 

Specifically, at the core 1 , which leaves: 

       
0

22
2

22
1

2

22

21

22

1   MM

M

FoFo

Fo

eJeJ
dFo

dY    

and from this we can find the value of MFo : 

 
 
 2

1

2

2

1

22

1

2

22

2ln
























J

J

FoM      (18) 

If we substitute this value in the sum of the first two terms of the series, we get an 

approximation to the maximum value attained. 

    MM FoFo

sM eJeJ  
22

2
22

1

210,

   (19) 

Table II shows the maximum values of the Fourier number ( MFo ) calculated with 

equation (18) for the cases depicted in figure 1, and table III shows the corresponding 

maximum values attained by ( M ) calculated with equation (19). Both tables also show 

the values derived using the complete series and the differences expressed in %. 

Table II: Time required to attain maximum temperature 

Table III: Value of maximum temperature 
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Conclusions 

1. This paper describes the analytical Fourier series solution to the equation for heat 

transfer by conduction in simple geometries with an internal heat source linearly 

dependent on temperature. 

2. The threshold condition for chilling is established. 

3. A simple method based on the first term is proposed for calculation of chilling times 

at the core, mass average and surface. 

4. Two simple equations are proposed for approximate calculation of the maximum 

temperature value attained at the core, and also the corresponding time.  

Appendix 1. General solution 

Equation (A1-1) is to be integrated: 

Fox
x

xx 


















 






 21
    (A1-1) 

with the boundary condition (A1-2): 

Sf

x

Bi
x





.

1












      (A1-2) 

By definition the steady-state solution does not depend on time, and therefore the 

second term of equation (A1-1) is cancelled when applied to that case. If we mark the 

steady-state function with subscript “s”, we get: 

0
1 2 




































Fo

s
s

s

Fox
x

xx





   (A1-3) 

 
Sfs

x

s Bi
x





.

1












      (A1-4) 

where: 

ex

exs
s

TT

TT






0

  

If we subtract equations (A1-3) and (A1-4) from equations (A1-1) and (A1-2) 

respectively, this leaves: 

 
 

 
Fox

x
xx

s
s

s




















 






 21
  (A1-5) 

 
 

Sfs

x

s Bi
x



















.
1

    (A1-6) 

(A1-5) admits a solution in separation of variables in the same way as without a heat 

source. The complete solution will therefore be a serial expansion in the form: 

        Fo

i

i

i

is
iexJxFox

.

1

22

..,
 





     (A1-7) 

where i  are the infinite solutions of the boundary equation: 

    .'. Bi  

and where (see appendix 2) if 02  : 
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 











 1

2

 








Bi

xBi
s        (A1-8) 

The iJ constants may be written as follows (see Appendix 3): 













220, 1




i

ii JJ       (A1-9) 

where the values 0,iJ  are the constants of the serial expansion for the case with no heat 

source: 

  BiBi

Bi
J

i

i

i
1

2
220,




 

     (A1-10) 

Appendix 2. Steady-state 

Equation (A1-7) will be the desired solution if the function e corresponding to Fo =  

is known, for which it is necessary to solve the equation: 

0
1 2 















 





s

s

x
x

xx
     (A2-1) 

with the transcedental equation: 

 
Sfs

x

s Bi
x





.

1












      (A2-2) 

where: 

ex

exs
s

TT

TT






0

         (A2-3) 

The homogeneous differential equation corresponding to (A2-1) will be: 

0
1 2 















 

 h
h

x
x

xx



      (A2-4) 

As the constant source case ( 0  ;0 10  AA ) was considered by Beek & Meffert, in this 

paper we consider only the case where 02  . In this case the solution is the same as 

in the case with no heat source, except that here the coefficient 2 is imposed by the 

product’s internal heat source and hence is unique. In this case a particular solution of 

(A2-1) is: 

2


 p  

The steady solution is then equal to: 

 
2

.



  xMs        (A2-5) 

So that (A2-1) will be satisfied except for the constant M. 

Hereafter, as long as there is no risk of confusion, we will use the notation: 

 

      xx 











''
 

To derive the constant M , (A2-5) is substituted in the boundary condition (A2-2). After 

rearranging terms this leads to: 
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  



Bi

Bi
M




'

.
2

     (A2-6) 

If eq. (A2-6) is substituted in (A2-5) we have: 

 











 1

2

 








Bi

xBi
s      (A2-7) 

which is the same expression as found by Jakob (1949) for the same particular case in 

each of the three elementary geometries. 

Following the reasoning of Jakob (1949), at this point we can state that the conditions 

that equation (6) must meet to remain positive are: 

    BixBi  '.  

and 

0'    Bi  

The first relationship can also be written as: 

       '. xBi      (A2-8) 

This is always true, since the left hand side of equation (A2-8) is always positive or 

null, whereas the right hand side is always null or negative. In fact     x  given 

that because 10  x ,  x  (e.g. in the case of a flat slab  coscos x ), and hence 

the left hand side of equation (A2-8) is always positive or null. And within this range 

  '  (in the infinite slab case sin ) and so the right hand side, is always 0 ) 

The second relationship indicates that there is a lower threshold Biot number for each 

value of  , so that the Biot number must satisfy the condition: 

 
 

 '
Bi  

At the same time, the transcendent equation for the general case is 

    0.'.   Bi  

so that: 

 
 

 '
Bi  

In other words: 















 '' 



 

Since the general function 

 
 x

xx
y



 '
  

is continuous and monotonously positive within the range Mx 0  for all three 

elementary geometries, this condition is only fulfilled if: 

   

which for convenience will be expressed in the form: 
22          (A2-9) 
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and obviously  will always be less than its maximum value M (for an infinite Biot 

number): 
22

M   

So, the conditions are finally: 
222

M   

Thus, as the Biot number decreases,  approaches  and the denominator   Bi'  

will approach   Bi' , which is zero, and therefore in the limit case 

0'    Bi , s  – and hence also equation (6) for  – will tends towards infinity. 

Following both Jakob’s (1949) and Carslaw’s (1959) reasoning, all this means that in 

such a hypothetical case, extraction of heat via the surface would not be sufficient to 

eliminate the heat generated in the interior and the temperature rise would be 

unbounded. 

Appendix 3. Core: Deducing the expansion constants 

At the starting point ( 0Fo ) the solution may be written as: 

     
i

iiss xJxx  00,    (A3-1) 

where (see appendix 2, eq. (A2-5)): 

 
2

.



  xMs        (A3-2) 

and: 

  



Bi

Bi
M




'

.
2

      (A3-3) 

(A3-3) may be written: 

 
2

.
'




 

Bi
BiM        (A3-4) 

To calculate the coefficients iJ , we multiply both sides of equation (A3-1) by 

 x x
j

   and integrate between 0x  and 1x . This gives: 

        
 

i

jiijs dxxxxJdxxx

1

0

1

0

0   

For two solutions i and j corresponding to the same Biot number, the following two 

integral orthogonality properties are deduced: 

    0   ;
1

0
 

 dxxxx jiji   

 
 

  BiBidxxx i

i

i
iji  

 1
2

   ; 22

2

2
1

0

2 



  

So that: 
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   

  

   

 
  BiBi

dxxx

dxxx

dxxx

J

i

i

i

is

i

is

i





















1
2

22

2

2

1

0

0

1

0

2

1

0

0












  (A3-5) 

As 

  .10 ctex   

we have, by substituting (A3-2): 

 

 
  

   

 
  BiBi

dxxxxM

BiBi

dxxx

J

i

i

i

i

i

i

i

i

i






















1
2

1
2

1

22

2

2

1

0

22

2

2

1

0

2


















 

The first term in the right hand side contains the iJ coefficient for the case without 

internal heat sources (Cuesta et al. 1990): 

 

 
     BiBi

Bi

BiBi

dxxx

J
i

i

i

i

i

i

i
1

2

1
2

22
22

2

2

1

0
0,






















 

         (A3-6) 

so that iJ may be written: 

   

 
  BiBi

dxxxxM

JJ

i

i

i

i

ii


















1
2

1
22

2

2

1

0
0,2











  (A3-7) 

If we solve the integral of the numerator of the second term (considering the boundary 

condition 
ii

Bii    ) and equation (A3-4) and rearrange terms, this gives: 

  BiBi

Bi

JJ
ii

i
ii

i












1

2
1

22

2

22

2

0,2 














 

Taking (A3-6) into account, we have that: 













220, 1




i

ii JJ       (A3-8) 

Appendix 4. Average temperature: deducing the expansion constants 

In simple geometries, the mass average temperature of the product is calculated 

according to the expression: 

   


1

0
,1 dxFoxx         (A4-1) 

 may be written as: 

   





Fo

iis
iexJ

22   

And therefore: 
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   





Fo

iis
ieJ

22   

which again is composed of two terms. The first corresponds to the average steady 

temperature: 

     
1

0
1 dxxx ss         (A4-2) 

and the second formally corresponds to the average value for the case with no 

respiration, except that the coefficients iJ is now given by equation (A3-12). Hence, the 

average value of  i , 
i

 , will be: 

   
2

' 11








  Bi




      (A4-3) 

so that, for 10  , the products 
iii JJ   become: 













220, 1




i

ii JJ        (A4-4) 

 
  BiBi

Bi
JJ

ii

ii
i 1

12
222

2

0,0,







      (A4-5) 

As to the average steady value: 

         







 

1

0 2

1

0
.11 dxxMxdxxx ss




  

      21

1

02

1

0
11 IIdxxdxxxMs  






  

which can be shown to have the following solutions: 

 








21

1M
I  

 
2

1

022 1







 

dxxI  

And hence: 

 
221

1







  




M
IIs       (A4-6) 

and if we introduce (A2-6): 

 













 1

1
2














Bi

Bi
s       (A4-7) 

Thus, the average temperature is: 

 





Fo

is
ieJ

22   

That is: 

   
























Fo

i
ex ieJ

Bi

Bi

T

TT 22

1
1

2

0














 (A4-8) 

with: 
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











220, 1




i

ii JJ  

and 

 
  BiBi

Bi
JJ

ii

ii
i 1

12
222

2

0,0,







   
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Figure 1: Temperature history for .1 Cte and different values of 2  

 

Francisco J. Cuesta & Manuel Lamúa 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Fo



No source


 = 1


 = 2


 = 3

 = 4

 = 5

Bi = 5;  = 1

 

Figure 2: Temperature history for 12  and different values of   
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Table 1. 

Summary of regression values calculated from ASHRAE  

Variety A0 (W/kg) A1 W/(kg.K) 

Apples «Y transparent» 0.0097 0.0073 

Apples Average 0.0061 0.0037 

Apples Early Cultivars  0.0101 0.0040 

Apples Late Cultivars 0.0052 0.0025 

Apricots 0.0060 0.0038 

Artichokes Globe 0.0723 0.0124 

Asparagus 0.1040 0.0478 

Beans Lima Unshelled 0.0232 0.0211 

Beans Lima Shelled 0.0303 0.0334 

Beans Snap -0.0153 0.0189 

Beets Red Roots 0.0160 0.0026 

Black Berries 0.0251 0.0213 

Blue Berries 0.0028 0.0097 

Broccoli 0.0291 0.0506 

Brussels Sprouts 0.0436 0.0179 

Cabbage Penn State 0.0080 0.0048 

Cabbage Red Early 0.0168 0.0070 

Cabbage Savoy 0.0165 0.0182 

Cabbage White Spring 0.0235 0.0085 

Cabbage White Winter 0.0104 0.0045 

Cauliflower 0.0284 0.0089 

Cauliflower 0.0298 0.0117 

Celery 0.0120 0.0060 

Gooseberries 0.0214 0.0039 

Peas Green 0.0486 0.0400 

Potatoes
a
 0.0174 0.0019 

Raspberries -0.0028 0.0222 

Strawberries -0.0033 0.0213 
a 
From Xu & Burfoot, 1999   

 

Table 2. 

Time MFo  taken to reach maximum temperature M  

2  MFo (estimated, eq. 28) MFo (Complete series) Error (%) 

1 0,068 0,059 14,68 

2 0,077 0,072 6,97 

3 0,090 0,087 3,14 

4 0,110 0,109 1,10 

5 0,152 0,152 -0,02 
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Table 3. 

Maximum temperature value M  

2  M (estimated, eq. 29) M (Complete series) Error (%) 

1 1,081 1,094 -1,19 

2 1,159 1,166 -0,59 

3 1,256 1,259 -0,23 

4 1,381 1,382 -0,06 

5 1,558 1,558 0,00 

 

 

 

 

 


