PROCESSING AND INTERPRETATION OF MULTICHANNEL SEISMIC REFLECTION DATA (SWIM-06 CRUISE): FROM THE HORSESHOE TO SEINE ABYSSAL PLAINS (GULF OF CADIZ)

Sara Martínez (1), Eulàlia Gràcia (1), Rafael Bartolomé (1), Juanjo Dañobeitia (1), Valentí Sallarès (1) and SWIM-06 cruise party

1. Introduction
During June 2006 we carried out the ESF-EuroMargins SWIM marine geophysical cruise on board the Spanish RV Hesperides (PI. E. Gràcia) with the main objective to characterize the geometry, deep structure and timing of deformation of the active faults located at the westernmost Gulf of Cadiz (SW Iberian Margin). This region is where the epicentres of recent large magnitude earthquakes are located, such as the 28 February 1969 (Mw 8.0) and the 12 February 2007 (Mw 6.0) [1], as a consequence of the convergence (about 4-5 mm/yr) [2] between the European and the African Plates. We acquired sixteen high-resolution multi-channel seismic (MCS) profiles together with Simrad EM120 swath-bathymetry and TOPAS sub-bottom profiler, totaling more than 2700 km of data. Here we will focus on the Coral Patch Ridge (CPR) and the adjacent Horseshoe and Seine Abyssal Plain corresponding to the profiles SW8 to SW16 (Fig.1).

The structure of the basement follows a horst and graben geometry corresponding to the Mesozoic tectonic pattern, reactivated during the Neogene [2, 5]. The CPR is composed of a series of positive reliefs corresponding to the eastern prolongation of the Coral Patch Seamount which abruptly ends against towards a NW-SE trending fault. The CPR consists of a series of narrowly spaced ENE-WSW trending folds and thrusts mainly with NW vergence, although conjugated faults are also observed, corresponding to the Seine Abyssal Hills. We have also identified a 300 km long WNW-ESE trending lineament corresponding to an active dextral strike-slip fault that cut across most of the HAP, the Horsehoe Fault and the western part of the Gulf of Cadiz accretionary wedge (Fig. 2).

Present-day active faulting is observed at the HAP and SAP, mainly subvertical faults cutting the whole sedimentary sequences up to the surface [6, 7]. They are also associated with earthquake swarms.

4. Conclusions
The MCS profiles reveal recent tectonic activity. We can identify seafloor ruptures of active faults, potential sources of large seismic events in the Gulf of Cadiz. The uppermost units of Plio-Quaternary age show evidence of recent activity. The most likely mechanism of landslide triggering in the SW Iberian Margin is seismic activity; therefore, the filling of the HAP will give us valuable information about the past-earthquake event history of the region. Forthcoming pre-stack migration of selected MCS profiles in the frame of the EU-NEAREST project will allow us to obtain the corrected geometry for detailed neotectonic interpretation and calculation of fault seismic parameters.

5. Acknowledgements
The authors acknowledge the support of the SWIM project (REN2002-11234-E-MAR), National project EVENT (CGL 2006-12861-C02-02) and the EU-NEAREST project (Ref. 037110).

6. References
NON-DESTRUCTIVE SCANNERS TO STUDY MARINE SEDIMENT

E. Piñero, A. Vizcaino, E. Gràcia, J.J. Dañobeitia

UTM: Unitat de Tecnologia Marina - CSIC, Centre Mediterrani d’Investigacions Marines i Ambientals, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona
e-mail: epinero@cmima.csic.es

Keywords: marine instrumentation, direct samples, core analyses methodology, half section analyses

1. Introduction

Marine geology constitutes a specific scientific field submitted to continuous advances. These advances are directly related to constant developments of new technology and instrumentation. New approaches of marine geological studies and technologies imply a potential increase in the number of analytical measures on the sediment. Thus, because the acquired amount of sample is very low, the main handicap of marine geologists is to apply the major number of analytical measurements on the same sediment sample. To avoid the fatal consequences generated by the irreparable lost of sediment by a single analysis, new non-destructive techniques have been developed and implemented in the last decade. Nowadays, interdisciplinary studies may be carried out based in a single sample to obtain a high resolution dataset keeping the stratigraphical order.

2. Methods and Instrumentation

Continuous non-destructive analyses can be applied during four different stages since the onboard sediment recovery, keeping the stratigraphical characteristics of the sediment. The four main stages are: (1) drilling, (2) whole-section core, (3) half-section core and (4) U-Channel.

During the first stage, drilling of the sediment deposits, a number of sensors are incorporated into the tube and are able to measure different physical properties (e.g. resistivity, porosity, density). Once the core is on board, the liners with sediment are usually divided in 1.5m sections for easy working.

The second stage starts with the cores onboard and liners with sediment divided into sections of 1.5m. Sediment sections are recorded and can be imaged using an Infra-Red camera, which is usually used in studies about temperature conditions of sediment. Furthermore, analyzing the whole section core using a Multi-Sensor Core Logger (MSCL) (Fig. 1), we can obtain in a single logging several physical properties of the sediment which include magnetic susceptibility, density, P-wave velocity, P-wave amplitude, impedance, fractional porosity, and electrical resistivity.

In the third stage, after core section splitting, new data can be acquired from the half section cores. Images on visible (Fig. 1), Infra-Red and X-Ray wavelengths of the sediment surface give information about the stratigraphical features and temperature of the record. Afterwards, the visible image can be processed obtaining RGB diagrams for spectral analyses. RGB diagrams together with the color parameters (lightness, a* and b*) obtained with the spectral photometer, allow us to characterize different sedimentary facies. In this stage, geochemical analyses can be applied on the sediment surface as the XRF scan. Using this method we obtain the chemical composition in relative values (cps) of each measurement in few seconds. The XRF scan can be run at resolution ranging from decimeters down to one millimeter.