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Abstract8

Increasing oil temperature and heating duration in deep-fat frying of potato

chips can improve textural quality but worsen the chemical safety of acry-

lamide formation. Optimal design of this complex process is formulated as a

non-linear constrained optimization problem where the objective is to com-

pute the oil temperature profile that guarantees the desired final moisture

content while minimizing final acrylamide content subject to operating con-

straints and the process dynamics. The process dynamics uses a multicom-

ponent and multiphase transport model in the potato as a porous medium

taken from literature. Results show that five different heating zones offer a

good compromise between process duration (shorter the better) and safety

in terms of lower acrylamide formation. A short, high temperature zone at

the beginning with a progressive decrease in zone temperatures was found

to be the optimal design. The multi-zone optimal operating conditions show

significant advantages over nominal constant temperature processes, opening

new avenues for optimization.
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optimization10

1. Introduction11

Frying generates tasty products that have crispy crusts, tempting aromas12

and visual appeal. These unique properties make fried foods a major part13

of the prepared foods market and therefore deep-fat frying is still one of the14

most important unit operations in the food processing industry.15

Type of oil, oil temperature, and duration of cooking greatly affect the16

final quality attributes of fried foods. Often in literature, the quality is re-17

lated to the oil uptake and oil deterioration. Oil uptake occurs during frying18

due to replacement evaporated water by oil and during post frying when it19

is absorbed due to the vacuum from cooling. Hydrolysis and oxidation con-20

tribute to the development of rancid flavors deteriorating oil quality (Saguy21

and Dana, 2003).22

Recent works showed that fried foods are a significant source of dietary23

acrylamide (Tareke et al., 2002; Zhang et al., 2005), an emerging factor that24

has been associated with cancer risk and neurotoxic effects. Although the25

details of acrylamide synthesis are not fully understood, the Maillard-driven26

generation of flavor and color in the frying process can be linked to the27

formation of acrylamide (Medeiros-Vinci et al., 2011).28

The increased awareness of the consumers to the relationship between29

food, nutrition and health has emphasized the need to design (pre-)process30

conditions, product specifications and type of oil so as to improve product31

quality and to minimize oil uptake and acrylamide formation. In this regard32

some recommendations may be found in, for example, Alvarez et al. (2000);33
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Mestdagh et al. (2008); Brigatto-Fontes et al. (2011).34

However, these recommendations are often obtained by means of response35

surface models thus having a number of important drawbacks due to the36

empirical, local and stationary nature of the simple algebraic models used.37

A fundamental understanding of the deep-fat frying process and the appli-38

cation of adequate optimization techniques could lead to new equipment and39

operation designs that may improve safety and quality of the final product.40

To understand the mechanisms involved in the process, mathematical41

models were developed, from the first attempts that included heat, moisture42

and fat transfer in the frying of foods (Ateba and Mittal, 1994; Moreira et al.,43

1995; Farkas et al., 1996) to the most recent porous media based models44

which also account for texture and acrylamide evolution (Halder et al., 2007;45

Thussu and Datta, 2012; Warning et al., 2012).46

Bassama et al. (2012) considered, via simulation, two types of transient47

oil temperature profiles in order to asses the impact on the final acrylamide48

content. The first oil temperature profile started at a high temperature,49

followed by a lower one and the second frying oil temperature profile was50

vice-versa. Their work concludes that the first type of profile results in51

significant reductions on the final acrylamide content.52

However at the time of designing processing profiles, not only should53

have acrylamide content been taken into account, but quality attributes and54

processing time. Of course solving such a problem via simulation is rather55

complicated, if not impossible, due to the numerous degrees of freedom and56

constraints. This work proposes the use of advanced model based optimiza-57

tion techniques (Banga et al., 2003, 2008) to design optimized frying processes58
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to ensure appropriate safety through minimized final acrylamide content and59

quality by guaranteeing the desired specifications in terms of color and tex-60

ture.61

2. Theory62

2.1. Formulation of the optimization problem63

In industry, the traditional operation conditions for frying potato chips64

consist of immersing the chips in continuous fryers where the frying oil is65

held at high temperatures. The process duration is long enough (typically66

between 1-3 minutes) to guarantee a desired final color, texture, and a final67

moisture level less than 2% of the initial moisture content (Brennan, 2006).68

The objective of the present work is to formulate and solve a general69

dynamic optimization problem to find the operating conditions (oil tempera-70

ture and process duration) that produces the desired quality attributes while71

minimizing the final acrylamide content. Mathematically stated as:72

73

Find Toil(t) and tf to minimize cAA(tf) such that:74

Toilmin
≤ Toil ≤ Toilmax

(1)

tf ≤ tf,max (2)

QC(tf ) <= 0 (3)

Φ(Sw, So, Sg, T,M, P, w, cAA, Toil,κ, ξ, t) = 0 (4)

where Toil, tf , and cAA are the oil temperature, process duration, and acry-75

lamide content respectively. QC stands for the quality constraint defined in76

equation 5.77
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Equation 3 defines the constraints for quality as defined by color, texture,78

and moisture content. Pedreschi et al. (2005, 2006) showed that the color79

in the product during the frying process follows a first order kinetics. The80

higher the red component of the color, the darker the potato and the worse81

the commercial acceptance of the final product. In addition, these authors82

show how acrylamide content is linearly correlated with the color at 1.8%83

of the initial moisture content whereas Pedreschi et al. (2005) show a clear84

correlation between the increase of acrylamide content and the increase of85

redness. In this optimization work, it is assumed that the minimization of86

acrylamide content also minimizes redness of the product. Regarding texture,87

Thussu and Datta (2012) presented a mechanistic model to predict Young’s88

module development during frying. Their results suggest that there is not89

critical difference in considering the texture or the moisture content to control90

the process duration. Therefore, the constraint imposed in the optimization91

will be related to the moisture content at the end of the process. In this92

way, the solution of the equations to predict texture evolution is not really93

necessary. The quality related inequality constraint now becomes:94

M(tf )− 2 ≤ 0. (5)

where M is the percentage of the final moisture content, which is intended95

to be 2% or lower at the end of the process.96

There is an additional set of constraints (Equations 4) which corresponds97

to the system dynamics from the mathematical model of the process which98

describes the evolution of the saturation of water, oil and vapor (Sw,So, Sg),99

product temperature (T ), moisture content (M), pressure (P ), water vapor100
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mass fraction (ωv) and acrylamide content cAA; the corresponding spatial101

and temporal derivatives, as functions of the spatial coordinates (ξ); time102

(t) and oil temperature (Toil). The vector κ keeps all model thermo-physical103

and kinetic parameters.104

2.2. Mathematical model of the process105

In the deep-fat frying process, water containing foodstuff is immersed into106

oil or fat at high temperatures (typically between 160 and 180oC, Pedreschi107

et al. (2005) ). The high temperature induces water evaporation and the108

formation of a thin crust. Due to the evaporation, the water is gradually109

transported to the boundary layer whereas the oil is absorbed by the food110

replacing some of the lost water. As soon as the transfer of water ends, the111

temperature inside the food starts to rise and the typical deep-frying sensory112

characteristics begin to develop.113

A multiphase porous media based model describing heat, mass and mo-114

mentum transfer and acrylamide kinetics within a potato chip will be used.115

The potato chip is assumed to be a porous media where the pores are filled116

with three transportable phases: liquid water, oil, or gas (mixture of wa-117

ter vapor and air). The model considers a 2D geometry as illustrated in118

Figure 1, the potato chip is assumed to be cylindrical and heated from out-119

side therefore axi-symmetry can be assumed. The physical mechanisms and120

corresponding equations derivation are described in detail in Warning et al.121

(2012) and Halder et al. (2007). The final system of equations is presented122

in Appendix A.123

It should be noted that most of the thermo-physical and kinetic param-124

eters present in the model may be found in the literature (see Table A.1125
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in the Appendix) but the heat transfer (h) and the surface oil saturation126

So,surf . Previous works provided different parameter values for different oil127

temperature values. However for the purpose of dynamic optimization either128

a unique value for the parameters or a functional dependency with the oil129

temperature is required. In either case, unknown model parameters have to130

be identified from experimental data.131

2.2.1. Model parametric identification132

The objective of parametric identification (model calibration or param-133

eter estimation) is to compute a unique value for the vector of unknown134

parameters (θ), which either coincides or is included in the vector κ, so as135

to minimize the distance among experimental data and model predictions.136

In this work, this distance is quantified by the sum of the weighted squared137

differences among experimental and simulated data (weighted least squares).138

The problem is thus formulated as a non-linear constrained optimization139

problem, as follows:140

Find θ ∈ Rnθ so as to minimize:141

Jwlsq(θ) =

ne∑
i=1

ne
o∑

j=1

ne
s,o∑

k=1

qi,j,k(ỹi,j,k − yi,j,k(θ))
2, (6)

subject to the system dynamics plus bounds on the parameters:142

Φ(Sw, So, Sg, T,M, P, w, cAA, Toil, θ, ξ, t) = 0 (7)

θmin ≤ θ ≤ θmax (8)
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where ne, n
e
o and ne

s,o correspond to the number of experiments, the number of143

observed quantities per experiment and the number of samples (in time and144

space) per observed quantity and experiment, respectively. The weight values145

qi,j,k quantify the relative importance that is assigned to a given experimental146

data. θmin and θmax correspond to the minimum and maximum acceptable147

value for the parameters. ỹi,j,k corresponds to a given experimental data and148

yi,j,k corresponds to the model prediction. Hence, 6 represents the result of149

simulating the model and evaluating the measured quantities at sampling150

time k under the experimental conditions e. The observed quantities in this151

case correspond to the acrylamide, moisture Eq. 9 and oil content Eq. 10:152

M(t) = 100×
1

M(0)

∫
S

Swρwϕ

ρs(1− ϕ)
dS (9)

oil(t) =

∫
S

Soρoϕ

ρs(1− ϕ)
dS (10)

and the parameters to be estimated are the convective heat transfer coeffi-153

cient (h) and the surface oil saturation So,surf .154

Therefore the parameter estimation problem reads:155

Find h and So,surf to minimize:156

Jwlsq(h, So,surf) =
ne∑
i=1

ne
s,AA∑
k=1

(
c̃AAi,k

− cAAi,k

max(c̃AAi
)

)2

+ (11)

ne∑
i=1

ne
s,M∑
k=1

(
M̃i,k −Mi,k

max(M̃i)

)2

+

ne∑
i=1

ne
s,o∑

k=1

(
õili,k − oili,k

max(õili)

)2

(12)

(13)

8



subject to:157

Φ(Sw, So, Sg, T,M, P, w, cAA, Toil, h, So,surf , ξ, t) = 0 (14)

40 ≤ h ≤ 160(Wm−2K−1) (15)

0.055 ≤ So,surf ≤ 0.22 (16)

The weights qi,j,k were selected so as to take into account the different orders158

of magnitude of the observed quantities. ne
s,AA, n

e
s,M and ne

s,o correspond159

to the number of sampling points for acrylamide, moisture and oil content,160

respectively, for the experiment e. The total amount of experimental data161

used is represented as Nd.162

In order to asses the quality of the parameter estimates, several possibil-163

ities exist (Walter and Pronzato, 1997). Bootstrap or jack-knife approaches164

allow to compute robust confidence intervals. However, the associated com-165

putational cost make it difficult to use these methods for large scale models.166

Alternatively, confidence intervals may be obtained through the covariance167

matrix. The confidence interval of a given parameter θ∗

i is then given by:168

±t
γ
α/2

√
Cii (17)

where t
γ
α/2 is given by Students t-distribution, γ = Nd − nθ corresponds to169

the number of degrees of freedom and α is the (1-α) 100% confidence interval170

selected, typically 95% is used.171

For non-linear models, there is no exact way to obtain C. Therefore172

the use of first or second order approximations to the function Jwlsq in the173

vicinity of the optimal solution θ∗

i has been suggested to compute covariance174

matrix estimations. The Crammèr-Rao inequality establishes that under175
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certain assumptions on the number of data and non-linear characters of the176

model, the covariance matrix may be approximated by the inverse of the177

Fisher information matrix. The Fisher information matrix is a first order178

approximation to the weighted least squares function. However, for highly179

non-linear models, a first order approximation to the weighted least squares180

seems inappropriate. Instead, the Hessian of the weighted least squares as181

evaluated in the optimum (H(θ∗)) can be used to estimate the covariance182

matrix as follows:183

C(θ∗) =
2

γ
Jwlsq(θ

∗)H(θ∗)−1 (18)

3. Materials and methods184

3.1. Experimental data185

For the purpose of parameter estimation data taken from the works by186

Garayo and Moreira (2002) and Granda (2005) were used. The data consists187

on three times series data for acrylamide, moisture and oil content obtained188

at ne = 3 different oil temperatures (150, 165 and 180oC), with ne
s,AA = 9,189

ne
s,M = 7 and ne

s,o = 9.190

3.2. Numerical methods191

3.2.1. Simulation192

The equations of the model have been solved in COMSOL Multiphysics193

3.5a , a commercial finite element software. The Convection and Diffusion194

module was used to solve for water , oil , and acrylamide mass conservation195

whileMaxwell-Stefan Diffusion and Convection was used to gas mass fraction196
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and Darcy’s Law and Convection and Conduction were used to solve for197

pressure and temperature respectively. Since the solution of the parametric198

identification and the dynamic optimization problems require the solution of199

the model hundreds of times, the spatial and temporal mesh were selected200

so as to offer a good compromise between the quality of the solution as201

compared to a dense mesh and the computational effort. The selected mesh202

consists of 20×10 rectangular elements and the initial time step size is 1e−6s203

being output time step of 1s. This translates into a computational cost of204

approximately 40 s to simulate 1.5 min of frying process on a standard PC205

(4 Cores and 3.25GB RAM, processor speed of 2.83GHz).206

3.2.2. Dynamic Optimization207

Both the parametric identification and the process optimization problems208

presented in Section 2 can be formulated as non-linear programming prob-209

lems (NLP) with dynamic and algebraic constraints. For the case of process210

optimization under transient oil temperature profiles, and taking into account211

the distributed nature of the model at hand, the control vector parameteri-212

zation (CVP) approach can be used to transform the original problem into213

a constrained NLP. In this work, a piece-wise constant approximation of the214

oil temperature profile was considered, which translates, in practice, to the215

case where the chips are moving through different regions in the fryer that216

may be set at different temperatures.217

To solve the resulting NLP problems, it is important to take into account218

that non-linear constrained problems may be non-convex, therefore the use219

of global optimization methods is required (Banga et al., 2003). In this220

regard, and considering that the computational effort devoted to simulation221
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is rather significant a hybrid global-local method is suggested to enhance the222

efficiency of the optimization process. In this work, a scatter search based223

approach (SSm) presented by Egea et al. (2007) has been selected since it224

has demonstrated to offer a good compromise efficiency-robustness in the225

solution of complex optimization and dynamic optimization problems (Egea226

et al., 2009).227

The parametric identification problem was formulated and solved using228

the recently developed MATLAB toolbox AMIGO (Advanced Model Iden-229

tification using Global Optimization, Balsa-Canto and Banga (2011)). The230

control vector parameterization was implemented in MATLAB to solve the231

process dynamic optimization problem with SSm. In both cases, COM-232

SOL was called from MATLAB to perform the model simulations. Figure 2233

presents a schematic representation of the solution approaches for both types234

of problems.235
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4. Results and discussion236

4.1. Model parametric identification237

The parametric identification resulted in the following optimal parameter238

values h∗ = 83.7Wm−2K−1 and S∗

o,surf = 0.1377. The best fit is shown in239

Figures 3.240

It should be noted that despite the fact that the parameters do not depend241

on the experiment as in previous works, the value of the cost function has242

improved from Jwlsq = 4.4 to Jwlsq = 3.5. Figures 4 illustrate the differences243

between previous and current approximations in terms of the mean relative244

prediction error, revealing that the use of the optimal value for h and So,surf245

results in a considerable improvement in the overall predictive capabilities of246

the model and enables the possibility of using the model throughout the range247

of operation conditions with unique values on the parameters. Following248

the same procedure, a functional dependency of the parameters on the oil249

temperature could be identified if more data became available.250

Confidence intervals for the parameters were calculated through the Hes-251

sian of the weighted least squares as evaluated in the optimum (Equations 17252

and 18). The confidence interval around h is ±21.14 W m−2K−1 (around the253

25%) and for So,surf , ±0.0117 (around the 9%). The weighted least squares254

contours in the vicinity of the optimal solution (Figure 5 reveal that the pa-255

rameters are highly correlated. This may be explained taking into account256

the low sensitivity of the states to modifications in the parameter values257

for the given experimental conditions. Figure 6 presents more detail about258

the evolution of the acrylamide, moisture and oil content together with the259

temperature for 10 different combinations of the parameter values within260
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the confidence region, showing how some of the curves are not distinguish-261

able. To improve sensitivity and thus confidence intervals further, optimally262

designed (Balsa-Canto et al., 2007), experiments are required.263

4.2. Process optimization264

4.2.1. Constant processing temperature265

The typical industrial process at constant oil temperature was first con-266

sidered. The degrees of freedom are the processing temperature and the267

process duration. Figure 7 presents the optimal oil temperature obtained for268

each process duration and the predicted acrylamide content for each value of269

the decision variable. As expected, the lower the oil temperature the lower270

the acrylamide content and the longer the process.271

Results reveal that a reduction in the oil temperature from 1800C to272

1500C translates into a reduction of around the 70% in acrylamide content273

and an increase of the 25% in the process duration. Since the process duration274

is critical for the production rate, and no recommendations or constraints275

are yet available on the maximum admissible acrylamide content, a good276

compromise would be to use intermediate temperature values (165− 170oC)277

during 80-85 s.278

4.2.2. Variable processing temperature279

Results from the previous section raise the question, is it possible to280

further reduce acrylamide content and process duration by manipulating op-281

erating conditions? The recent work by Bassama et al. (2012) shows, via282

simulation, that the application of a two-step temperature profile, with a283
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higher temperature at the beginning of the process may help to control acry-284

lamide formation in plantain.285

The general dynamic optimization problem was solved for different max-286

imum process durations (80, 85, 90 and 95 seconds) and different numbers287

of maximum heating zones. First, the simplest case with two heating zones288

is considered assuming a fixed duration (t1) for the first heating zone. Re-289

sults (Table 1 and Figure 8 ) reveal that reductions of up to 16.5% can be290

achieved by using two different heating zones. For all cases, the optimum291

corresponds to using a larger temperature at the beginning of the process and292

a lower temperature at the end of the process. As expected, for the shortest293

processes, higher temperatures have to be used in order to assess the final294

moisture content constraint. Using higher temperatures and shorter process295

durations induces a significant increase on the acrylamide content. For in-296

stance, comparing results for processes lasting 80s and 85s, an increase of297

the 6% in process duration translates into an increase of around the 30% in298

final acrylamide content. Regarding the duration of the first heating zone,299

it seems reasonable to use 30 − 40 s, since the process is flexible enough to300

comply with the constraints and minimize acrylamide content while reducing301

energy consumption as compared to the case with t1 = 20 s.302

Further improvements may be achieved if more flexibility is allowed (see303

Tables 2 and Figures 9 and 10). In this regard, the optimal profiles confirm304

that using a larger number of heating zones may improve results for shorter305

processes. In principle, five different heating zones offer the best compromise306

process duration and acrylamide reduction. Optimal profiles result in the307

use of a high temperature at the beginning of the process during a short308
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period of time and a gradual decrease of the temperature until the end of309

the process. For the longest process, the use of two heating zones is again310

the optimum, but note that, using shorter heating times calls for the use of311

higher temperatures.312

5. Conclusions313

This work presented the formulation of a general dynamic optimization314

problem devoted to compute the oil temperature profile that guaranties the315

desired moisture content while minimizing final acrylamide content subject to316

operation constraints and the process dynamics which is described by means317

of a rigorous porous media based model taken from the literature.318

In a first step, the unknown model parameters were identified by means319

of experimental data fitting. The problem was formulated as a general opti-320

mization problem to compute the value of the heat transfer coefficient and the321

oil saturation constant that minimize the distance between the experimental322

data and model predictions as measured by the weighted least squares func-323

tion. The quality of the parameter estimates was assessed with confidence324

intervals obtained using the Hessian of the weighted least squares function at325

the optimum. The fitted model presents satisfactory predictive capabilities326

therefore being suitable for process optimization purposes.327

A dynamic optimization problem was then defined to compute optimal328

process operation conditions. Several scenarios were tested to decide on the329

number of maximum heating zones and process duration. Results revealed330

that the simplest case, using two optimally designed heating zones, already331

reduces the final acrylamide content up to 16.5% when comparing with the332
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traditional operation conditions. Further improvements may be achieved if333

the number of heating zones is increased to 5.334

As a general conclusion the use of a short high temperature zone at the335

beginning with a progressive decrease in zone temperatures was found to336

be the optimal design showing significant advantages over nominal constant337

temperature processes; thus opening new avenues for the design of industrial338

frying processes.339
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Appendix A. Mathematical model of the frying process428

A multiphase porous media model describing heat, mass, and momen-429

tum transfer within a potato chip during atmospheric frying, based on the430

formulation by Warning et al. (2012), was used in this work. Mass and431

energy conservation equations include diffusive, capillary, and convective432

transport. Momentum conservation was introduced by means of Darcy’s433

equation. A non-equilibrium water evaporation rate and a kinetic model for434

acrylamide formation based on chip temperature are also considered. Here435

a brief overview of the most important model assumptions and equations436

is presented. Warning et al. (2012) provides an indepth description of the437

model equations.438

Mass conservation439

The following three equations solve for the liquid water, oil, and gas440

saturation in the pores.441

∂

∂t
(ϕρwSw) +∇(uwρw) = ∇(Dw,cap∇(ϕρwSw))− I (A.1)

∂

∂t
(ϕρoSo) +∇(uoρo) = ∇(Do,cap∇(ϕρwSo)) (A.2)

Sg = 1− Sw − So (A.3)

To solve for the mass water vapor fraction of air and water vapor, binary442

diffusion equation is used.443

∂

∂t
(ϕρgSgωv) +∇(ugρgωv) = ∇(ϕSg

C2
g

ρg
MaMvDeff,g∇xv) + I (A.4)

ωa = 1− ωv (A.5)
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Momentum conservation444

The pressure and fluid velocities are calculated using Darcy’s equation445

where pressure increases and decreases with the evaporation of liquid water.446

∂

∂t
(ϕρgSg) +∇(−ρg

k
p
in,gk

p
r,g

μg
∇P ) = I (A.6)

ui = −
k
p
in,ik

p
r,i

μi

∇P (A.7)

Energy conservation447

The temperature is calculated using effective properties as shown by448

Warning et al. (2012) and where evaporation of water uses a non-equilibrium449

formulation.450

∂

∂t
(ρeffcp,effT ) +∇((ρcpu)fluidT ) = ∇(keff∇T )− λI (A.8)

I = K(ρv,eq − ρv)Sgϕ (A.9)

Acrylamide formation and degradation451

The transport of acrylimide is assumed only in the liquid water and solid452

component while the rate of formation is given by Granda (2005) in A.11.453

∂

∂t
cAA +∇(uwSwϕcAA) = ∇(DAA∇({Swϕ+ (1− ϕ)}cAA)) + rAA(A.10)

d(cAA(t))

dt
= rAA =

14.9Aexp(−2625.8
T

)exp{−14.9exp(2625.8
T

)(t− to)}

(1 + exp{−14.9exp(−2625.8
T

)(t− to)})2
(A.11)
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Boundary and initial conditions454

The top and left of the potato chip is heated as shown in Figure 1. The455

other boundaries of the chip are insulated and impermeable. The boundary456

conditions (B.C.) are then given as:457

B.C. for eq. A.2: nw,surf = uwρw + hmϕSw(ρg,surfωv,surf − ρv,fryer)458

B.C. for eq. A.3: So,surf = 0.145459

B.C. for eq. A.5: nv,surf = ugρgωv + hmϕSg(ρg,surfωv,surf − ρv,fryer)460

B.C. for eq. A.7: Psurf = Pfryer461

B.C. for Equation A.9: qsurf = h(Toil−T )−(λ+cp,wT )nw,surf−cp,vTnv,surf−462

cp,oToilno,surf463

B.C. for Equation A.11: nAA,surf = 0464

465

So,surf is estimated in this work by means of multi-experiment parametric466

identification.467

The initial conditions at t = 0 are zero for oil saturation, zero for acry-468

lamide concentration, and 298 K for temperature. The initial water satura-469

tion is assumed to be 0.8 and the water vapor fraction is calculated as shown470

in Warning et al. (2012).471

Appendix A.0.3. Model parameters472

Input parameters are shown in Table A.3. Physical and thermal proper-473

ties are for a raw potato. For the this model, h and So,surf were estimated by474

a constant value that gave reasonable fit to the experimental moisture and475

oil content data respectively.476

477
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Figure captions

Figure 1. 2-Dimensional computational domain and geometry of the

potato chip.

Figure 2. Optimization procedures: a) Parametric identification and b)

Dynamic optimization.

Figure 3. Best fit: experimental data (dots) and model data (lines) of

acrylamide, oil and moisture content at different process temperatures.

Figure 4. Mean relative prediction errors: a) Model with the original set

of parameters, b) Model with the optimal value of the parameters.

Figure 5. Contour plot of the Jwlsq in the vicinity of the optimal solution.

Figure 6. Evolution of the states for different combinations of parameter

values within the confidence region.

Figure 7. Results of the process optimization problem under constant oil

temperature: a) Process duration and final acrylamide content for different

oil temperatures b) Pareto front.

Figure 8. Optimal oil temperature profiles for a maximum of two heating

zones and different process durations.

Figure 9. Optimal operation conditions (oil temperatures) for the pro-

cess using different numbers of heating zones and different maximum process

durations.

Figure 10. Final acrylamide content at the optimal solutions for different

numbers of maximum heating zones and process durations.
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Highligths 

 

� We approach the dynamic optimization of the deep-fat frying of potato chips. 
� The unknown parameters of a porous media based model are identified from data. 
� The model presents good predictive capabilities and is thus used for optimization. 
� We compare constant (traditional) with variable processing temperatures. 
� Variable profiles maximize quality and safety while minimizing process duration.  

*Highlights (for review)



Table 1: Final Acrylamide content at the optimal solutions (2steps).

tf,max=80 s tf,max=85 s tf,max=90 s tf,max=95 s

t1=20 s 119.7 87.7 68.2 53.2

t1=30 s 116.38 87.50 70.14 54.80

t1=40 s 115.085 90.14 70.00 55.23

t1=70 s 122.31 93.43 71.47 55.24

Table 2: Final Acrylamide content at the optimal solutions.

tf=80 s tf85 s tf=90 s tf=95 s

mhz=1 137.87 100.16 77.06 59.55

mhz=2 116.38 87.50 70.14 54.80

mhz=5 113.16 87.43 67.03 53.72

mhz=8 112.60 85.24 65.72 52.35
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Appendix A.

Table A.3: Input parameters used in simulations.

Parameter Symbol Value Units Source

Heat transfer coefficient h 65 Wm−2K−1 Estimated

Mass transfer coefficient hm Eq. 50 m s−1 (Warning et al., 2012)

Latent heat vaporisation λ Eq. 49 J kg−1 (Warning et al., 2012)

Porosity ϕ 0.880 (Ni and Datta, 1999)

Vapour diffusivity in air Deff,g Eq. 35 m2s−1 (Warning et al., 2012)

Evaporation constant K 100 s−1 (Warning et al., 2012)

Surface oil saturation So,surf 0.145 Estimated

Density

water ρw Eq. 44 kg m−3 (Warning et al., 2012)

vapor ρv Ideal gas kg m−3

air ρa Ideal gas kg m−3

oil ρo 879 kg m−3 (Tseng et al., 1996)

solid ρs Eq. 45 kg m−3 (Warning et al., 2012)

Specific heat capacity

water cp,w Eq. 36 Jkg−1K−1 (Warning et al., 2012)

vapor cp,v Eq. 37 Jkg−1K−1 (Warning et al., 2012)

air cp,a Eq. 38 Jkg−1K−1 (Warning et al., 2012)

oil cp,o 2223 Jkg−1K−1 (Choi and Okos, 1986)

solid cp,s 1650 Jkg−1K−1 (Choi and Okos, 1986)

Thermal conductivity

water kw Eq. 39 Wm−1K−1 (Warning et al., 2012)
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vapor kv 0.17 Wm−1K−1 (Choi and Okos, 1986)

air ka 0.026 Wm−1K−1 (Choi and Okos, 1986)

oil ko 0.026 Wm−1K−1 (Choi and Okos, 1986)

solid ks 0.21 Wm−1K−1 (Choi and Okos, 1986)

Intrinsic permeability

water k
p
in,w 1 ∗ 10−15 m2 (Ni and Datta, 1999)

air and vapor k
p
in,g 0.17 m2 (Warning et al., 2012)

oil k
p
in,o 1 ∗ 10−15 m2 (Ni and Datta, 1999)

Relative permeability

water kp
r,w Eq. 41 (Warning et al., 2012)

air and vapor kp
r,g Eq. 40 (Warning et al., 2012)

oil kp
r,o Eq. 42 (Warning et al., 2012)

Capillary diffusivity

water Dw,cap Eq. 32 m2s−1 (Warning et al., 2012)

oil Do,cap Eq. 33 m2s−1 (Warning et al., 2012)

Viscosity

water μw Eq. 46 Pa s (Warning et al., 2012)

air and vapor μg Eq. 47 Pa s (Warning et al., 2012)

oil μo Eq. 48 Pa s (Warning et al., 2012)
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