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Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups.
Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows.
Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our
results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.
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I. INTRODUCTION

A. Universality classes in social systems

The application of mathematical models to social sciences
has a long and distinguished history [1]. One may speak
of empirical data from scientific collaboration networks [2],
citations of physics journals [3], internet traffic [4], Linux
packages links [5], popularity of chess openings [6], as well
as electoral results [7,8], urban agglomerations [9,10], and
firm sizes all over the world [11]. An especially relevant
issue is that of universality classes defined by to the so-called
Zipf’s law (ZL) in the cumulative distribution or rank-size
distributions [3–6,9–15]. Maillart et al. [5] have found that
links’ distributions follow ZL as a consequence of stochastic
proportional growth. Such growth assumes that an element
of the system becomes enlarged proportionally to its size,
being governed by a Wiener process. The class emerges from
a condition of stationarity (dynamic equilibrium) [15]. ZL
also applies for processes involving either self-similarity [6] or
fractal hierarchy [13], all of them mere examples amongst very
general stochastic ones [14]. A second universality class was
found by Costa Filho et al. [7], who studied vote distributions
in Brazil’s electoral results. Therefrom emerge multiplicative
processes in complex networks [8]. Such behavior ensues as
well in (i) city-population rank distributions [16], (ii) Spanish
electoral results [16], and (iii) the degree distribution of social
networks [17]. As shown in Ref. [18], this universality class
encompasses Benford’s Law [19]. In the present vein, still
another kind of idiosyncratic distribution is often reported:
the log-normal one [20], which has been observed in biology
(length and sizes of living tissue [21]), finance (in particular,
the Black and Scholes model [22]), and firm sizes. The latter
instance obeys Gibrat’s rule of proportionate growth [23],
which also applies to cities’ sizes.

Together with geometric Brownian motion, there is a variety
of models arising in different fields that yield Zipf’s law and
other power laws on a case-by-case basis [9,10,15,24–26],
as preferential attachment [4] and competitive cluster growth
[8,17] in complex networks, used to explain many of the
scale-free properties of social networks. For instance, we
may mention detailed realistic approaches in urban modeling
[27,28], opinion dynamics [29], and electoral results [7,30].
Of course, the renormalization group is intimately related to

scale invariance and associated techniques have been fruitfully
exploited in these matters (as a small sample see Refs. [26,31]).

It has been recently shown, in Ref. [32], that a variational
principle based on the maximum entropy principle (MaxEnt)
can be successfully applied to scale-invariant social systems.
Used in the present context, it allows for a classification of the
above-cited behaviors on the basis of inferences drawn from
objective observables of the system. We had also shown in
Ref. [33] that, including some dynamical information in the
variational scheme [34], one is able to reproduce the shape
of empirical city-population’s distributions, going beyond the
customary universality classes conventionally used in such
regards. Indeed, a connection between explicit microscopic
growth equations and the macroscopic characterization exists,
illustrated for a logistic growth in Ref. [35]. We will here
describe the manner in which the methods of that paper can be
generalized to a first-principles theoretical framework describ-
ing population flows in terms of thermodynamic concepts.

B. Motivation, statement of the problem, and goals

We are looking here for more than models: what we aim
for is to discover physical principles that may underlie some
social phenomena. Our system is a specific geographical area
whose population is distributed amongst several population
nuclei (cities, villages, towns, etc.) Each nucleus’s population
is time dependent due to migration, birth, death, etc. Our aim
is to quantitatively describe the population nuclei’s variation.
Microscopic variables are plentiful, but our main goal is to
be able to identify macroscopic variables that can give a
reasonable account of urban population variations.

We will proceed in seven steps, as indicated in the scheme
below.

(i) Introduce the basic observables and the empirical data
sets.

(ii) Identify the stochastic nature of the city-population
growth rates.

(iii) Postulate dynamic microscopic equations and empiri-
cally validate them.

(iv) Perform numerical experiments with random walkers
following these dynamical equations. Parameterize the macro-
scopic diffusion process for free evolution or evolution under
constraints.
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(v) Show that equilibrium configurations of such evolution
can be predicted by the maximum entropy principle, using few
macroscopic parameters.

(vi) Derive thermodynamiclike relations between these
macroparameters.
(vii) Exhibit the applicability of our thermodynamic descrip-

tion by modeling empirical urban flows as a scale-invariant
ideal gas.

The paper is organized as follows. Step (i) is addressed in
Sec. II. Section III deals with step (ii), Sec. IV with step (iii),
Sec. V with step (iv), and Sec. VI with steps (v) and (vi).
Finally, applications are dealt with in Sec. VII. Discussions
are given in Sec. VIII, and we conclude in Sec. IX.

II. PRELIMINARY MATTERS

The basic ingredients we need in our approach, following
Refs. [33,34], are

(a) n, the total number of “population-nuclei”;
(b) xi(t), the population of the ith nucleus at time t (and

x(t) = {xi(t)}ni=1 a vector with all the populations). Since
we are interested in populations of the order of hundreds
and millions, we will consider, following the example of the
references cited above, the continuous limit of this variable,
with no significant loss of accuracy.

(c) x0 and xM , the minimum and maximum allowed
nucleus’s population (in general x0 = 1 and xM = ∞);

(d) NT , the total area’s population [NT = ∑n
i=1 xi(t)];

(e) ẋi(t), the time derivative of xi(t) [thus the pairs
{(xi,ẋi)}ni=1 compose the “urban phase space”]; and

(f) some a priori knowledge of the dynamics at hand,
expressed via

ẋi(t) = ki(t)gi[x(t)] (1)

where gi are population-functions to be determined and ki(t)
growth rates independent of the gi . This hypothesis about the
dynamics will be empirically justified below.

The raw data used in our analysis are mainly obtained
from the Spanish state institute INE [36] and cover annually
the period 1996–2010 (with the exception of 1997). It
encompasses 8116 municipalities (the smallest Spanish ad-
ministrative unit) distributed within 50 provinces (the building
blocks of the autonomous communities). We use provinces
and municipalities as the closest representatives of the ideal
of a closed system’s fundamental elements. Other regions of
the world are also used as examples. In this scenario, the total
population NT of a province is distributed into n nuclei. The
ith nucleus accounts for a population of x0 � xi(t) � xM at
time t . The pertinent time evolution obeys Eq. (1).

III. STOCHASTIC NATURE OF POPULATION
GROWTH RATES

We begin dealing with step (ii) of our scheme. We focus
attention on the form of the growth rates ki(t) of Eq. (1). The
value of ki above depends upon millions of individual decisions
so that one would expect stochastic, a priori unpredictable,
behavior. However, we will show in this section that: given the
form of Eq. (1), the growth rates ki are population-independent;
and some level of universality underlies these rates.

We start by considering an arbitrarily small time window
δt around t (of the order of a few years). We define the
time average of the population change for the ith city
as mi = 〈ẋi(t)〉δt = 〈ki(t)gi(t)〉δt , and its variance as s2

i =
〈(ki(t)gi(t) − mi)2〉δt . We assume now that the variation of
the functions gi in the time window for which one evaluates
the pair mi-si is negligible with respect to the variation of the
growth rates (a fact that will be justified a posteriori below,
after defining the form of the gi functions). This is equivalent
to assuming that

σ 2
ki
〈gi(t)〉2

δt � 〈ki(t)〉2
δtσ

2
gi
, (2)

where σ 2
ki

and σ 2
gi

are the variances of ki and gi , respectively.
We write then

mi ≈ 〈ki(t)〉δt × 〈gi(t)〉δt , (3)

s2
i ≈ σ 2

ki
〈gi(t)〉2

δt . (4)

We study now the distribution of a new variable defined via
the scaling law ξi(t) = (ẋi(t) − mi)/si , immediately finding

ξi(t) = ki(t) − 〈ki(t)〉δt
σki

. (5)

The variable ξi(t) has null average and unit standard
deviation, but the shape of the distribution p�(ξ ) must be the
same of that of the growth rate k. If our assumptions are correct,
the shape of these distributions should not depend upon xi(t).
We have verified the hypothesis, as our first result here, with
reference to all of Spain’s municipalities in the time window
δt = 15 years. Indeed, we have calculated the ξ quantiles of
the p� distribution as a function of the population (top panel
Fig. 1). No apparent x dependence can be detected. The shape
of the overall distribution p�(ξ ) looks like a normal one

p�(ξ ) = e−ξ 2/2

√
2π

, (6)

with cumulative distributions of the form

P�(ξ ) = 1

2

[
1 + erf

(
ξ

2

)]
. (7)

Save for some fluctuations, we have not found, for the
different provinces (bottom panel Fig. 1), any dependence on
the shape of p�(ξ ). Changing the time window δt and the
reference time t does not change these results. Further, note
that they are seemingly independent of the population, the
geographical area, or the time, so that one might speak, with a
grain of salt, of “universality” (our second result here).

Consequently, we will consider herefrom that our variable
ξ can be regarded as that of a stochastic process simulated via
the standard Brownian motion. For the sake of simplicity, we
assume in the following that the growth rates do not exhibit
significant correlations and that can be reproduced by a Wiener
process (we discuss in detail this issue in Sec. VIII).

IV. INTRODUCING MICROSCOPIC EQUATIONS
OF MOTION

A. Proportional growth

We are now at step (iii). We will, for the sake of simplicity,
assume (and a posteriori justify), that gi’s shape depends only
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FIG. 1. (Color online) Top: quantiles from 0.1 (red) to 0.9 (blue)
(each of 0.1) for the distribution of the scaled growth rates p�(ξ ) (see
text) as a function of the population x (the median is shown in black).
Bottom: cumulative distribution of the scaled growth rates P�(ξ ) for
each of Spain’s provinces.

on its own xi’s population, (i.e., gi[x(t)] � gi[xi(t)]). In order
to obtain an educated guess for the explicit analytical form, we
appeal to a successful cluster-growth model in networks [8,17],
before describing city-population distributions. We consider
first a network of nodes (that eventually represents the social
network) and a single node as seed of a cluster. Initially, the
first neighbors of the seed will belong to the cluster with a
given probability P (t = 0). At a subsequent time t , the first
neighbors of the members of the cluster become also members
with probability P (t). Proceeding in this vein, it is reasonable
to conjecture that the time variation of the cluster size ẋ at time
t acquires the form

ẋ(t) =
x(t)∑
j=1

P (t)cj (t), (8)

where cj (t) is the number of first neighbors associated to node
j at time t . We appeal now to the central limit theorem to write

ẋ(t) = P (t)[c(t)x(t) + σc(t)
√

x(t)χ (t)]. (9)

Here c(t) is the mean neighbor’s number at time t , σc(t)
its standard deviation, and χ (t) an independent normally
distributed number. This last summand, usually neglected for
very large sizes, is associated to finite-size effects. The first
term, size proportional, generates proportional growth. In view
of this result, we consider the form

gi(xi) = [xi]
α (10)

with α = 1 or 1/2. Considering then both terms in the
microscopic dynamics we write

ẋi(t) = k1i(t)xi(t) + k 1
2 i(t)

√
xi(t), (11)

where k1i(t) and k 1
2 i(t) are two (a priori) independent Wiener

coefficients. This dependence is checked out by comparison
of the previously employed si numbers with a functional form
of the type

s2
i (xi) = 〈

[ẋi]
2 − 〈ẋi〉2

δt

〉
δt

= σ 2
1ix

2
i + σ 2

1
2 i

xi, (12)

where σ1i and σ 1
2 i are the associated deviations of k1i and k 1

2 i ,
respectively. Rewriting (12) in a more convenient way we have

s2
i (xi)/xi = σ 2

1ixi + σ 2
1
2 i

, (13)

which, for sizes small enough reduces to

s2
i (xi)/xi ≈ σ 2

1
2 i

, (14)

while for very large sizes one has

s2
i (xi)/xi ≈ σ 2

1ixi . (15)

The transition between these two regimes should take
place at a value xT = σ 2

1
2 i

/σ 2
1i . Figure 2 displays, as our
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FIG. 2. (Color online) Variance s2/x vs population x (see text),
each dot representing one municipality. Red lines: quantiles from 0.1
to 0.9 (each of 0.1). Solid black line: fit to the median value following
Eq. (13). Dashed black lines: extrapolation of the finite-size term
[Eq. (14)], and extrapolation of the multiplicative term [Eq. (15)].
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third result, the [xi,s
2
i (x)/xi] pairs for all the Spanish mu-

nicipalities, together with appropriate quantiles. The median
med[si(xi)/xi] nicely fits things with σ1i = 0.0119 years−2

and σ 1
2 i = 0.47 population years−2. We appreciate the fact

that finite-size fluctuations are larger than multiplicative ones,
the later dominating, of course, for large sizes. Our transition
occurs at population values of the order of 1500 inhabitants.
Surprisingly enough, the distribution of the variable s ′

i =
ln[si(xi)/

√
xi] − ln[med(si(xi)/

√
xi)] becomes independent

of xi , being of a Gaussian nature.
At this point, we need still to address two further questions.

The first of them concerns the validity of the assumption (16),
made to derive Eq. (5). For cities with a population >1500
inhabitants, we use gi(t) = xi(t), so that the condition can be
recast as

〈(ẋi/xi)2〉δt
〈ẋi/xi〉2

δt

〈xi〉2
δt〈

x2
i

〉
δt

� 1. (16)

Using the empirical data for a time window of 15 years, we
have found that the mean value of the left-hand side is 6 × 1015

(with 9 × 1011 for the geometric mean), a result that justifies
our assumption. We have also verified it, for cities containing
less than 1500 inhabitants, by using gi(t) = √

xi(t) instead,
with analogous results.

Our second issue revolves around the time averages of the
growth rates. The finite-size term’s average is 〈k 1

2 i(t)〉δt = 0
by definition, but this is not so for the multiplicative term
〈k1i(t)〉δt 
= 0, that is a priori regarded as constant and size
independent. This is indeed empirically true on occasion, but
not always. For instance, such assumption cannot account for
the migration from the countryside to big cities. To reproduce
such behavior, the mean relative growth should depend on the
population. We intend to tackle this issue below.

B. Taking into account internal flow

It is a fact that small populations tend to diminish while
large towns tend to increase their population. We encounter
this scenario for most of the 50 provinces of Spain, as
discussed in Ref. [33]. We will appeal below to the line of
reasoning presented there, that we repeat here for the sake of
completeness.

This effect can be described by recourse to a smooth
dependence of the mean relative growth 〈ẋi/xi〉 on ln(〈x〉)
that generates what we will call internal flow. A second-order
expansion in ln(〈x〉) reads

〈ẋ/x〉 � a + b ln(〈x〉) + c ln(〈x〉)2 (17)

where the values of a, b, and c are derived from the
corresponding Taylor coefficients. Assuming b � c we can
safely write

〈ẋ/x〉 � 〈k1〉 + 〈kq〉[〈x〉]q−1, (18)

where we have defined, for convenience sake, 〈k1〉 = a −
b2/2c, 〈kq〉 = b2/2c, and q − 1 = 2c/b. To validate our
assumptions, we fitted empirical provincial data to Eq. (18) via
〈k1〉, 〈kq〉, and q. This was done whenever it was feasible, since,
in some cases, a quasilinear relation is found that generates
large uncertainties in the optimal values. We have found for
the exponent q a mean value of 1.2 and a standard deviation

of 0.45, with |q − 1| < 1 in all cases. This result confirms the
assumption b � c, validating the second-order expansion of
〈ẋi/xi〉. Moreover, as seen in Fig. 3 (our fourth result), nice
fits are found in general, with very few exceptions.

With this last hypothesis our complete dynamic equation
turns out to be

ẋi(t) = kqi(t)[xi(t)]
q + k1i(t)xi(t) + k 1

2 i(t)
√

xi(t), (19)

with kqi(t), k1i(t) and k 1
2 i(t) independent Wiener processes.

Summing up, we have assumed
(a) a finite-size term that dominates for low population

levels (<1500),
(b) a multiplicative term that accounts for population’s

growth/diminution (births, death, or external migration, and
(c) a power-law (exponent q ∼ 1 but q 
= 1) accounting for

internal migration.

V. FROM MICROSCOPIC TO MACROSCOPIC
DESCRIPTIONS

We arrive to stage (iv), having discussed above a micro-
scopic population dynamics. We try now to ascertain whether
a macroscopic description is also feasible. Our goal is to reduce
the 2n microscopic degrees of freedom [x(t) and ẋ(t)] to a few
macroscopic ones. We will separately consider each of the
three terms of the dynamic equation. The ensuing results will
be valid in the domains in which each term dominates.

Consider n random walkers characterized by a dynamic
coordinate xi(t) obeying

ẋi(t) = ki(t)[xi(t)]
q, (20)

with 〈(ki(t) − k)(kj (t) − k)〉 = σkδij δ(t − t ′). Parameter q

will take as special possible values 1/2 or 1, or in general,
0 � q. The observed diffusion pattern is expected to depend
on the value of q. We first explore in analytical detail the case
of free diffusion, and secondly we add adequate constraints
so as to find stationary states (this issue is also studied in
Ref. [34]).

A. Brownian motion and diffusion equation

We start with q = 0 as our control case. One has ẋi(t) =
ki(t) so that we deal with the well-known Brownian random
walkers. Consider this numerical procedure: initially, the n

walkers are located at, say, x = x(0). ρ(x,t)dx will refer
to the walkers’ normalized histogram, at time t , which
indicates the (relative) number of walkers positioned within
the interval dx around x. The associated initial density would
read ρ(x,0) = δ[x − x(0)]. A discrete version of the pertinent
dynamic equation is

xi(t + 
t) = xi(t) + 
tki(t), (21)

which forces the walkers to “move” during the period 
t

in a amount given by 
tki(t), with ki(t) a random number
generated from a Gaussian distribution determined by a
standard deviation σk and mean k, as defined above. We have
at t = M
t

xi(t = M
t) = x(0) + 
t

M∑
m=1

ki[(M − 1)
t], (22)
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FIG. 3. (Color online) ẋ/x vs population (see text) for 12 Spanish provinces (each dot represents one municipality per year). The mean
〈ẋ/x〉, and the limits of the standard deviation as functions of the population, are drawn with black lines. The fit to an expression of the type
represented by Eq. (17) is displayed using red lines. The results correspond, respectively, to: Asturias, Almerı́a, Cáceres, Cuenca, Baleares,
Lleida, Badajoz, Ávila, Guipúzcoa, Castellón, Valladolid, and Guadalajara.

i.e., after M iterations the walkers’ distributions coincides
with that of a random number generated by summing up M

Gaussian numbers characterized by 
tσk and 
tk. Remember
that a distribution that follows a random number composed of
two other numbers of that character is the convolution of the
distributions associated to these later numbers. Thus, x(t) is
described by the Mth convolution of the k’s Gaussian distri-
bution. By recourse to a Fourier transform F for convolutions,
and setting x(0) = 0 with no loss of generality, we have

F[ρ(x,t)] =
(
F

[
e−(x−
tk)2/2(
tσk )2

√
2π
tσk

])M

= (
e−
t2σ 2

k ω2/2+i
tkω
)M

= e−M
t2σ 2
k ω2/2+iM
tkω, (23)

where ω is the frequency variable. Appealing now to the
inverse transformation leads to

ρ(x,t) = e−(x−M
tk)2/(2M(
tσk )2)

√
2πM
tσk

= e−(x−tk)2/(4Dt)

√
4πDt

, (24)

where we have introduced for convenience 2D = 
tσ 2
k . An

arbitrary density ρ(x,t) will evolve in 
t , via the convolution
of that density with a Gaussian of deviation 
tσk = √

2
tD

and mean 
tk, as

F[ρ(x,t + 
t)] = F[ρ(x,t)]e−
tDω2+i
tkω

� F[ρ(x,t)](1 − 
tDω2 + i
tkω), (25)

where we take 
t arbitrarily small. A simple manipulation
involving division by 
t leads now to

F[ρ(x,t + 
t)] − F[ρ(x,t)]


t
= (−Dω2 + ikω)F[ρ(x,t)].

(26)

By recourse again to the inverse transformation and taking
the limit 
t → 0 we get

∂tρ(x,t) = D∂2
xρ(x,t) − k∂xρ(x,t), (27)

which is a diffusion equation. Accordingly, we reach an
important result here (our fifth one): Our original 2n degrees
of freedom problem can now be tackled via just a few
macroscopic parameters.

B. q-metric Brownian motion

We deal now with the general instance q 
= 0. Following
the recipe of Refs. [33,34], we define first the generalized
functions,

logq(x) = x1−q − 1

1 − q
; (x > 0),

(28)
eq(v) = [1 + (1 − q)v]1/(1−q)

+ ,

also known as Tsallis’s q logarithm and q exponential, re-
spectively [38] (by definition log1(x) ≡ ln(x) and e1(v) ≡ ev).
We use them to introduce a new variable ui = logq(xi). The
Jacobian of the transform is du/dx = 1/xq so that u̇ = ẋ/xq ,
and the associated dynamical equation Eq. (20) becomes

u̇i(t) = ki(t). (29)
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In the set {(ui,u̇i)}ni=1, the variables ui and u̇i are now
independent of each other. We regard them, of course, as our
dynamical variables. Note that we have transformed the initial
q symmetry of Eq. (20) into a translational one, recovering the
well-known Brownian motion for the variable u. Indeed,

ui(t = M
t) = ui(0) + 
t

M∑
m=1

ki[(M − 1)
t], (30)

and then the demonstration of the preceding subsection
becomes valid, now for u and ρ(u,t)du. Our new diffusion
equation reads

∂tρ(u,t) = D∂2
uρ(u,t) − k∂uρ(u,t), (31)

and, starting from a density ρ(u,0) = δ(u − u0) we end up
with

ρ(u,t)du = du

4πDt
exp

[
− (u − u0 − kt)2

4Dt

]
. (32)

The x density is, accordingly, governed by a q log-normal
distribution

ρX(x,t)dx = ρ[u(x),t]
dx

du
du

= dx√
4πDtxq

exp

[
− [logq(x) − u0 − kt]2

4Dt

]
.

(33)

In particular, for q = 1/2 one has

ρX(x,t)dx = dx√
4πDtx

exp

[
− [2(

√
x − 1) − u0 − kt]2

4Dt

]
,

(34)

and, for q = 1 the well-known log-normal

ρX(x,t)dx = dx√
4πDtx

exp

[
− [ln(x) − u0 − kt]2

4Dt

]
.

(35)

We have again reduced the large number of microscopic
degrees of freedom to just a few macroscopic parameters.

C. Examples of diffusion

Numerical experiments confirm our findings above. We
start with our dynamical equation in discrete form

xi(t + 
t) = xi(t) + 
tki(t)[xi(t)]
q (36)

using ki(t) = √
2D/
tξi(t) + k, where the random numbers

ξ follow a normal distribution such that 〈ξi(t)ξj (t)〉 = δij δ(t −
t ′). We have taken q = 1/2 and 1 for our examples, and find
that the associated distributions exactly follow the diffusion
equation’s predictions. We have used in the former case u0 =
log1/2(220), k = 0, and σ 2

k = 10, in intervals of 
t = 0.01.
In the later instance we had u0 = ln(4400) instead. Indeed,
the walkers’ histograms’ evolution follows Eqs. (34) and (35),
respectively, with D = 
tσ 2

k /2 as defined above [see Fig. 4
for the cumulative distributions P (x) = ∫ x

0 dx ′ρ(x ′)].
As empirical examples we discovered that for small pop-

ulations (<1500 inhabitants) the finite-size noise dominates.

10 100 1000
x (Population)

0

0.2

0.4

0.6

0.8

P
(x

)

0

0.2

0.4

0.6

0.8

1

4 5 6 7
ln(x)

0

0.02

0.04

s/
x

q = 0.5

10
2

10
3

10
4

10
5

10
6

x (Population)

0

0.2

0.4

0.6

0.8

P
(x

)
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
ln(x)

0

0.1

0.2

s/
x

q = 1

10

FIG. 4. (Color online) Top: cumulative distribution P (x) at three
different times, pertaining to a simulated q-metric diffusion process
with q = 1/2. We start with the green-dotted distribution. Things
evolve and one reaches the red-dashed distribution. Finally, one
arrives to the blue-solid configuration. This last distribution is
compared with the cumulative distribution of Salamanca’s towns’
population (blue dots). Inset: variance of the relative growth (in
years−1) vs log population (dots), confirming the

√
x dependence for

q = 1/2 dynamics (red line) (see text). Bottom: geometric diffusion
q = 1 compared with the population distribution of Florida (US).
Inset: same as top panel’s inset, confirming this time the size
independence of our results and thus the proportional nature of the
underlying dynamics (see text).

Provinces for which most towns are scarcely populated will
obey the dynamical equation with q = 1/2. Such is the
case for the province of (i.e., Salamanca) as shown in the
top panel of Fig. 4. The ensuing dynamics confirms this
assertion. The relative growth of most of the towns follows a
dynamics with a variance s2/x ∝ 1/

√
x (red line of the inset).

The ensuing distribution fits the final state predicted by the
diffusion equation for that dynamics, Eq. (34), with u0 + kt =
log1/2(216.3) and 2Dt = 95.6 for year 2010 (see Fig. 4). We
remark that the 1/2-log-normal can be easily confused with the
usual log-normal, although the former exhibits asymmetries in
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FIG. 5. (Color online) Equilibrium rank distributions for q-metric diffusion processes with maximum size constraints for (from left to
right), q = 0.5, 1, 1.5, and n = 10000. Insets: evolution of the density distribution of the diffusion process, starting with a δ configuration in
x and passing through the red and green configurations, until equilibrium is attained for the black distribution (see text).

log scale. As a q = 1 example we mention the state of Florida
in the US [39] (see also bottom Fig. 4). Using data from
1990, 2000, and 2010, we have verified that the microscopic
dynamics confirms the proportional growth assumption (with
a variance of the relative growth independent of the size,
as illustrated in the inset). The city-populations distribution
follows a log-normal distribution, that of Eq. (35), which can be
the one pertaining to geometrical random-walkers’ diffusion,
with u0 + kt = ln(4380) and 2Dt = 2.96.

D. Constrained diffusion

q-log-normal distributions do not set any limits to popula-
tion sizes. However, it is reasonable to assume that physical
space does pose limits to a city’s population growth. Unlimited
growth is unrealistic since in the case of internal migrations
the total population NT should remain constant and a free-
diffusion model is, again, unrealistic. Constrained diffusion
must be contemplated instead.

We pass now to consider numerical experiments with ran-
dom walkers that fix lower and upper bounds for population.
These are denoted by x0 and xM , respectively. Now, walkers’
moves leading to values outside the range x0 < x < xM are to
be rejected in our simulations. Figure 5 shows that a q-metric
walkers’ evolution begins by faithfully following the diffusion
equation Eq. (31) until they bump off these extreme values.
Now their density deviates from that of “free” evolution. After
some time has elapsed, an equilibrium x distribution is reached
that follows a power law with exponent q, independently of
the initial state. The origin of this systematic result can not be
unravelled by the simulations, so a higher level of theory is
needed.

Now we use a total population constraint. This is equivalent
to making the walkers move under the rule of a q-generalized
multicomponent logistic equation

ẋi(t) = [xi(t)]
q

[
ki(t) −

∑n
i=1 ki(t)[xi(t)]q∑n

i=1[xi(t)]q

]
. (37)

Indeed, it is easy to check that ∂tNT = ∑n
i=0 ẋi(t) = 0,

thus preserving the value of NT in time. Also the original
q symmetry of the dynamics is preserved. This equation is
the q generalization of the scale-invariant multicomponent

logistic equation presented in Ref. [35]. Results are displayed
in Fig. 6 for q = 0, 1 and 2, using n = 100 000 walkers and a
total population of N = 250 000 inhabitants (with x0 = 1).
Remarkably enough, equilibrium is always reached, to a
density that does not depend upon the initial state or the k

parameters. The shape of the distributions resembles x power
laws with exponential cutoff. Again, the simulation can not
unravel the origin of this form. Finding the properties and
the exact analytical form of those macroscopic equilibrium
distributions is our goal in the sext section.

VI. MACROSCOPIC CONUNDRUM

We deal now with step (v). Our simulations with random
walkers suggest that it is indeed possible to pass from a
description that uses 2n microscopic variables to a description
involving just a few macroscopic parameters. The big question
is: do they behave in thermodynamic fashion, satisfying the
pertinent partial derivatives relationships? We wish to tackle
this issue now, looking for a way to reduce the number
of microscopic degrees of freedom to a few manageable
macroscopic ones while keeping a coherent, reasonable de-
scription of our system, mimicking the kind of scenario that
links statistical mechanics to thermodynamics. This requires
appropriate constraints, a topic to be addressed below by
enumerating the appropriate “social” constraints we need.

A. Macroscopic constraints

Total number of cities n. Since there is some confusion
in the available data about what the administrative meaning
of city is, we wish to ascertain that this issue is not of great
importance for proportional growth. Consider xi = ∑ni

j xij ,

where ni is the number of sub-administrative units included
in the administrative unit i, with xij their subadministrative
populations. Considering proportional growth, we write for
the time evolution

ẋi(t) =
ni∑
j

ẋij (t) =
ni∑
j

kij (t)xij (t)

=
∑ni

j kij (t)xij (t)∑ni

j xij (t)

ni∑
j

xij (t) = k′
i(t)xi(t), (38)
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FIG. 6. (Color online) Evolution of the density distribution from
an initial δ state (gray solid bar), passing through intermediate
nonequilibrium configurations red-green-blue, until reaching equi-
librium (solid black line). We deal with N -constrained, q-metric
diffusion processes for (from top to bottom), q = 0, 1, and 2. The
smooth black lines follow Eq. (73) in u space, for each q value.

where we have defined k′
i(t) as a new variable defined as an

average weighted by the populations xij . If the growth rates kij

are random variables with approximately the same mean and
variance, it is easy to check that k′

i(t) is in turn a random
variable of the same mean and variance. The dynamical
behavior of the ensemble of administrative units x is thus
equivalent of that of the subunits, and the procedure described
in this work is still applicable.

Maximum/minimum population xM/x0. It is well known
that a typical minimum population size equals the Dunbar
number [40] (∼150), heuristically associated to the maxi-
mum (allowable by our neocortex) number of stable human
relationships. Thus, it is reasonable to think of a minimum
size x0 ∼ 150. In many cases a maximum number for a
city population xM can be established via consideration of
geographical peculiarities as mountains [41] or oceans [42]
(see Fig. 7 for an example). In such cases it is convenient to
employ the transform u = logq(x/x0). An associated, valuable

macroscopic parameter is uM = logq(xM/x0). We will be
dealing then with a “volume” 0 < u < uM .

Total population NT . We have NT = ∑n
i=1 xi that gets

transformed into NT = x0
∑n

i=1 eui
q . A useful quantity be-

comes then N = NT /x0.
Total variance of u̇. With reference to the dynamics, a

useful observable is the total variance for relative growth
σ 2 = ∑n

i=1〈(u̇i − 〈u̇i〉t )2〉/n. For a Gaussian form (see Fig. 1)
this quantity measures fluctuation intensities. Generalizing,
this quantity can be defined by the covariance matrix with
elements Qij = 〈(u̇i − 〈u̇i〉)(u̇j − 〈u̇j 〉)〉. We use its trace as a
thermodynamical variable Tr(Q) = ∑n

i=1 Qii defining

U = τ

2
Tr(Q) = τ

2

n∑
i=1

〈(u̇i − 〈u̇i〉)2〉 = τ

2
nσ 2, (39)

where we add for dimensional convenience a factor τ/2.

B. Fundamental hypothesis for urban thermodynamics

Let us discuss the three hypothesis that we need in our
scheme:

H-I. Microscopic hypothesis. We adopt as fundamental
dynamical equation Eq. (20) [ẋ = kxq] for the population of
a center, linearized via the variable u = logq(x/x0). We will
think of the pair (u,u̇) as constituting our social phase space
coordinates. We can speak of an:

H-II. A priori phase space equiprobability in (u,u̇)
[37]. The probability density distribution for the ith phase
space cell centered at (ui,u̇i) of size dudu̇ is defined
as ρ[{(ui,u̇i)}ni=1]dnudnu̇. According to H-II, the system’s
entropy is written as

S[ρ] = −
∫

dnudnu̇ρ
[{(ui,u̇i)}ni=1

]
ln

[
ρ
[{(ui,u̇i)}ni=1

]]
.

(40)

Since none of our macroscopic observables is able to distin-
guish amongst population nuclei, towns are thus indistinguish-
able. In this case, the useful distribution is the one-body density
ρ(u,u̇) defined as

ρ(u,u̇) =
∫

dn−1udn−1u̇ρ
[{(ui,u̇i)}ni=1

]
, (41)

and thus,

S[ρ] = −
∫

dudu̇ρ(u,u̇) ln [ρ(u,u̇)] . (42)

Macroscopic observables are written in terms of the one-body
density as

n =
∫

dudu̇ρ(u,u̇), (43)

N =
∫

dudu̇ρ(u,u̇)eq(u), (44)

U = τ

2

∫
dudu̇ρ(u,u̇)u̇2. (45)

H-III. Maximum entropy principle (MaxEnt) [37]. Equi-
librium is determined via constrained entropic maximization
using n, uM , N , and U . This determines the equilibrium density
ρ(u,u̇) that is a solution of the entropic variational problem

δ {S[ρ] − βA[ρ]} = 0, (46)
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FIG. 7. (Color online) An example of population restriction arising out of geographical reasons, as a mountainous or island landscape.
Left: d’Aosta valley (Italy) [41]. Right: Marshall islands [42].

with

A = U − μn + puM + �N, (47)

where β, μ, p and � stand for the pertinent Lagrange
multipliers, that will be seen below to acquire the character
of intensive thermal-quantities.

C. Thermodynamical relations

We enter step (vi) by considering the Lagrangian A[ρ] [and
Lagrangian density a(u,u̇)]. It reads

A[ρ] =
∫

dudu̇ρ(u,u̇)a(u,u̇)

=
∫

dudu̇ρ(u,u̇)

{
τ

2
u̇2 − μ + pv(u) + �eq(u)

}
,

(48)

where the volume condition is enforced by an infinite-well
potential

v(u) =
{

uM/n for 0 < u < uM ;
∞ otherwise (49)

The well-known general solution to the entropic problem
Eq. (46) is [37] ρ(u,u̇) = exp[−βa(u,u̇)], so that

ρ(u,u̇) = n

Z
e− βτ

2 u̇2−β�eq (u)(0 < u < uM ), (50)

where the normalization factor Z (partition function) becomes

Z =
∫ ∞

−∞
du̇

∫ uM

0
due− βτ

2 u̇2−β�eq (u)

=
√

2π

βτ
Eq(β�,uM ), (51)

with Eq(l,m) defined as

Eq(l,m) = Eq(l) − e(1−q)mEq(lem), (52)

where Eq(l) is the exponential function of order q. Our
constraints in U and N determine the multipliers β and �

values. Indeed, on the one hand, we have the u̇ variance

U = τ

2
n

∫ ∞

−∞
du̇

√
βτ

2π
e− βτ

2 u̇2
u̇2 = n

2β
, (53)

and on the other hand, we deal with the total population

N = n

∫ uM

0
du

eq(u)e−β�eq (u)

Eq(β�,uM )

= n
Eq−1(β�,uM )

Eq(β�,uM )
= nFq(β�,uM ), (54)

where we use the function Fq(l,m) = ∂l ln[Eq(l,m)]. We
obtain from the former the direct result

β = n

2U
, (55)

and, via inversion of the latter equation [defining first
Lq(f,m) = F−1

q (f,m) and thus Fq[Lq(f,m),m] = f ], we
finally obtain the relation between the system variables
(equation of state)

β� = Lq(N/n,uM ). (56)

Note that we have intensive quantities on the left-hand side,
while extensive ones appear in the right-hand side. The entropy
becomes

S = n ln

[
1

n

√
2π

βτ
Eq(β�,uM )

]

+ n

[
1

2
+ β�Fq(β�,uM )

]
. (57)

Using now Eq. (56) we can recast things in term of the
natural variables as

S(U,n,uM,N ) = n ln

[
2

n

√
πU

nτ
Eq[Lq(N/n,uM ),uM ]

]

+ n

2
+ Lq(N/n,uM )N. (58)

It is easy to verify, but crucial to our present goals, that
macroscopic observables and Lagrange multipliers become
linked entropicwise via

β = ∂S

∂U

∣∣∣∣
n,uM,N

, (59)

μ = 1

β

∂S

∂n

∣∣∣∣
U,uM,N

, (60)
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p = 1

β

∂S

∂uM

∣∣∣∣
U,n,N

, (61)

� = 1

β

∂S

∂N

∣∣∣∣
U,uM,n

. (62)

The first relation leads to Eq. (55), also showing that the β

multiplier is the inverse of the variance β = 1/τσ 2. The last
relation takes us to Eq. (56) and is indeed one of our equations
of state. The other two are

βμ = ln

[
2

n

√
πU

nτ
Eq[Lq(N/n,uM ),uM ]

]
− 1

− 2L(1,0)
q (N/n,uM )

(
N

n

)2

(63)

and

βp = n
exp[−Lq(N/n,uM )eq(uM )]

Eq[Lq(N/n,uM ),uM ]

+ 2L(0,1)
q (N/n,uM )N. (64)

where the superscripts label the argument which is being
differentiated.

At this stage the reader will agree that it is fair to assert
that our goal has been successfully reached. We have indeed
constructed a social thermodynamics for urban population
flows.

VII. APPLICATION: SCALE-FREE IDEAL GAS (SFIG)

This is our final step (vii), where we apply our formalism to
empirical systems. We envision two main regimes, according
to the � value: � = 0 and � > 0.

A. SFIG-in-a-box

We will consider in some detail the first case here. Different
scenarios can be associated to � → 0: (i) the system is
not isolated and exchanges population with its surroundings,
with a maximum-size constraint, (ii) the triplet n, N , uM is
such that the equation of state yields � = 0 (i.e., N/n =
logq−1[eq(uM )]/uM ), or (iii) no size limitation exists (uM →
∞) but N/n is large enough so that � ∼ 0. In the latter case
one can obtain an effective uM value from normalization such
that uM = Eq(β�). When � = 0 the Lagrangian A is written
as

A = U − μn + puM, (65)

so that we do not need knowledge of N . The equilibrium
density is

ρ(u,u̇)dudu̇ = n

uM

√
βτ

2π
e− βτ

2 u̇2
dudu̇(0 < u < uM ). (66)

The partial density ρ(u) = ∫
du̇ρ(u,u̇) = n/uM is constant

in u so that x is given by a power law

ρX(x)dx = ρ[u(x)]
du

dx
dx = n

x
q−1
0

uM

dx

xq
, (67)

with an associated rank plot given by

x(r) = x0eq[uM (1 − r/n)], (68)

TABLE I. Macroscopic parameters for the four SFIG-in-a-box
examples (τ = 100 years2).

Marshall Islands Agosta Valley Huelva

n 160 74 79
x0 2.14 126 206
uM 0.038 0.048 0.059
β 0.504 2.05 11.7
p 0.829 0.0133 0.0115

where r is the rank from 1 to n. Comparing with the equilibrium
densities found above in our numerical experiments with
random walkers, a very nice fit ensues as seen in Fig. 5, which
validates our methodology. The entropy becomes

S(U,n,uM ) = n ln

[
2

n

√
πU

nτ
uM

]
+ n

2
, (69)

resembling that of the one-dimensional ideal gas. The state
equations are

βμ = ln

[
2

n

√
πU

nτ
uM

]
− 1, (70)

and

βp = n

uM

, (71)

in exact agreement with the ideal gas scenario.
As empirical q = 1 examples we discuss the cases of (i)

Marshall Islands [43], (ii) d’Agosta Valley (Italy) [44], and
(iii) Huelva province (Spain) [36] (Fig. 8). In all instances,
the relative growth is nearly independent of the population.
Remarkably, low-populated cities can (i) follow the general
trend, as in Marshall Islands, (ii) insinuate a secondary
constant trend, as for d’Agosta Valley, or (iii) be affected by
finite-size noise, as in the case of Huelva. Thus, we consider
that the overall microscopic dynamics fits the proportional
growth hypothesis, with densities ρ(u,u̇) nicely adapted to the
ensuing thermodynamic predictions. In all cases, geographical
conditions set strong limits to the city sizes. The values for the
macroscopic parameters are shown in Table I. Remarkably
enough, the pressure p due to the limited space is highest for
the Marshall Islands. Indeed, this system exhibits the lowest
volume uM and the lowest β (highest “temperature”) for a
large number of units n.

B. SFIG under total population constraint

We now consider � > 0, with uM → ∞ for simplicity. This
case describes regions where internal migration dominates
the microscopic dynamics, and no upper limit is encountered
for the city size. This situation can be found when the total
population changes relatively slowly in comparison with the
fluctuations of cities’ population (i.e., the change in N is of
a quasistatic nature). According to the equation of state (64),
one has p = 0 in this limit, so that we deal with the Lagrangian

A = U − μn + �N. (72)
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FIG. 8. (Color online) SFIG-in-a-box examples, from top to
bottom: rank distribution of Huelva province, Spain (2010), D’Aosta
Valley, Italy (2000 in red and 2010 in blue), and Marshall Islands
(2010), compared with distribution (68), plotted as a continuous
curve. In the insets, the relative growth u̇ in years−1 vs the log
population u.

The equilibrium density is

ρ(u,u̇)dudu̇ = n

Eq(β�)

√
βτ

2π
e− βτ

2 u̇2−β�eq (u)dudu̇(0 < u).

(73)

TABLE II. Macroscopic parameters for the SFIG-under-
population-constraint examples (τ = 100 years2).

Alicante Almerı́a Girona Lleida

n 140 101 220 230
x0 83.9 147 141 105
N 18355.7 3245.53 4597.37 2818.12
ln(β�) −6.26 −5.35 −5.18 −4.02
� 4.0310−3 1.8310−4 7.8910−5 4.110−4

β 0.47 25.9 71.1 43.8
q 0.862 1.135 1.27 1.16

Navarra Vizcaya Zaragoza Granada

n 271 111 292 167
x0 47.6 219 40.7 263
N 8976.55 3571.01 6906.03 2539.5
ln(β�) −5.16 −5.18 −5.06 −4.01
� 6.6910−4 1.1810−4 6.2210−4 2.0310−3

β 8.57 47.4 10.2 8.91
q 1.06 1.08 1.18 1.02

The partial density for x is given by a power law with
exponential cutoff

ρX(x)dx = n
x

q−1
0

Eq(β�)

e−�x

xq
dx, (74)

with an associated rank plot

x(r) = x0

�
E−1

q [Eq(�)r/n]. (75)

Again, this result fits the numerical equilibrium densities
found above in our numerical simulations (Fig. 6), validating
again our methodology.

This is a typical situation for the Spanish provinces (more
details are given in Ref. [33]). We have found a nice agreement
between (i) the q value obtained from a fit to the microscopic
dynamics and (ii) the q value obtained from the fit of the
rank plot to Eq. (75). We show some examples in Fig. 9, and
the associated macroscopic numerical results in Table II. In the
examples presented below, using the parameter � as a measure
of the pressure generated by the total population constraint, it
turns out that Alicante is the province with the highest pressure
and Girona that with the lowest one, correlated with a highest
and a lowest temperature, respectively.

VIII. DISCUSSION

We have shown here how an explicit thermodynamics for
population flows can be built from scratch in a data-driven
fashion (i.e., proposing hypothesis and validating them with
empirical data). We have parameterized first the microscopic
dynamics (H-I) by choosing a functional form that best fits the
empirical observations. The general form Eq. (20) is a power
law and thus entails nonlinear dynamics that loses translational
symmetry. However, we present a transformation of variables
that linearizes the dynamical equation [Eq. (29)]. The result is
that traditional diffusion can be described with the new set of
variables (u,u̇). We use them to define our phase space, and
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FIG. 9. (Color online) Empirical rank distribution of SFIGs under total population constraint. These examples refer, respectively, to:
Navarra, Lleida, Zaragoza, Girona, Granada, Almerı́a, Alicante, and Vizcaya (dots) compared with Eq. (75) (continuous lines). Insets: relative
growth ẋ/x in years−1 vs log population ln(x), fitted to Eq. (17) with the same value of q used for the rank distribution.

formulate an a priori probability hypothesis (H-II) for it. An
entropy measure can be adequately defined so that the MaxEnt
principle (H-III) can be appealed to. Given the principle, a new
thermodynamics can be formulated if objective macroscopic
observables are well defined. However, we need still to address
some further questions below.

A. Potential correlations of the noise

We have assumed in our derivation that all noises involved
are (i) Gaussian and (ii) δ correlated. Although (i) is well
motivated (see Fig. 1), point (ii) has been assumed just for
the sake of simplicity. Disregarding correlations leads us to
formulate the ideal gas scenario and equations of state can
be straightforwardly derived. However, we should expect (i)
some level of correlation between neighboring cities and (ii)
also some kind of memory, or time correlation. Correlations
entail the existence of a nondiagonal covariance matrix Q.
Since our macroscopic observable is the trace of this matrix,
invariant under a basis transformation, the observable U can be
expressed in the eigenbasis of Q that diagonalizes this matrix.
Thus, the macroscopic observables do not change and our
formalism remains applicable. Time correlations in physics
usually appear in the guise of inertia. In such case, instead
of a dynamical equation as (20), a Langevin-like equation
should be formulated to extend our formalism, in analogy to
statistical physics. We have studied this phenomena elsewhere
(see Ref. [45]).

B. Foundation/abandonment of cities

We have assumed in this work that the number of settle-
ments remains constant. Indeed, we fix a minimum population
x0 that prevents the total abandonment of a city (to zero

population). The abandonment of a city, or its disappearance as
an autonomous administrative unit, is something statistically
rare: in 15 years, less than 10 municipalities have been
created/deleted in Spain, which is less that a 0.12% of the total
number of municipalities (8116). However, there were some
historical periods in which the creation of new settlements was
something crucial, as in America or Australia. A model able
to describe these phenomena would be indeed very useful for
disciplines as quantitative history. Since we have formulated
a thermodynamics, we can appeal to the theory of ensembles.
The macrocanonical ensemble of urban population flows, in
which cities can appear and disappear, is the ideal framework
for such models.

C. Out of equilibrium

All results presented here (with the exception of those
for diffusion) correspond to system in equilibrium. Although
some social systems might be in equilibrium, or at least
suffer a quasi-static evolution, not all of them will. However,
knowing the statistical properties at equilibrium allows one
to easily detect nonequilibrium by comparison. Formulation
of a nonequilibrium thermodynamics of social phenomena
constitutes a formidable challenge.

D. Other applications

We have applied our theoretical formulation to city pop-
ulation, but it is expected that other social systems based on
groups of people might be also tractable using our formalism.
In Ref. [17] both city-population distributions and electoral
results were studied using the same procedure. Large data sets
are also available for electoral results, so that the hypothesis
presented here may be, accordingly, verified and/or modified.
Work along such lines is in progress.
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IX. SUMMARY

After initially introducing some useful social-macroscopic
and social-stochastic quantities we have:

(i) Postulated social, dynamic microscopic equations.
(ii) Validated them using urban population data.

(iii) Performed numerical simulations with random walkers
that conclusively demonstrated that a description using many
microscopic variables has as a counterpart a macroscopic one
with few parameters.

(iv) Showed that such macroscopic description can be
given an appropriate maximum-entropy-principle’s form after

constructing a social phase space, which allows one to derive
thermodynamiclike relations amongst our macroparameters.

(v) Finally, as an application, we successfully analyzed
urban flows as modeled by a scale-invariant ideal gas.
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