
 1 

Neural Network Model for Isothermal Pearlite Transformation.  

Part II: Growth Rate Model 

 

 

C. CAPDEVILA, F. G. CABALLERO, and C. GARCÍA DE ANDRÉS 

 

Dr.  C. Capdevila and Dr. F. G. Caballero, Tenured Scientist, and Dr. C. García de Andrés, 

Research Scientist, are in the Department of Physical Metallurgy, Centro Nacional de 

Investigaciones Metalúrgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid, 

Spain.. 

 



 2 

Abstract  

 

The pearlite growth rate during the isothermal austenite-to-pearlite transformation has been 

analyzed using a neural network technique within a Bayesian framework. An extensive 

database consisting of the detailed chemical composition considering elements such as Mn, 

Cr, Ni, Si and Mo, and isothermal temperature was compiled for this purpose using data from 

the published literature. With the aim of modeling the pearlite growth rate during the 

austenite-to-pearlite transformation a neural network has been proposed. The model allows us 

to examine the relative importance of the alloying elements in pearlite growth. The results 

from the network analysis were consistent with those expected from phase transformation 

theory. 
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1. Introduction 

 

Pearlite is a lamellar structure of ferrite and cementite, which forms below the eutectoid 

temperature. The austenite transforms by a reconstructive mechanism, in which carbon and 

substitutional elements redistribute between ferrite and cementite. Pearlite nodules can 

nucleate on austenite grain boundaries, allotriomorphic ferrite grains or on cementite particles, 

depending upon steel composition. It is now generally agreed that during pearlite growth the 

alloying elements redistribute between the ferrite and cementite at low supersaturations (LE 

mechanism), and the growth is controlled by alloying element boundary diffusion. At higher 

supersaturations, pearlite growth occurs without any partitioning of the alloying element 

(NPLE mechanism) and it is controlled by carbon volume diffusion 1). The partitioning of 

alloying elements has been experimentally observed by Razik et al. 2), Al-Salman et al. 3), and 

Chance and Ridley 4) in a number of Fe-C-Mn, Fe-C-Si, and Fe-C-Cr alloys. In all these 

studies, partitioning was detected at low supersaturations, whereas below a characteristic 

temperature of the steel, no-partition was found.  

Most of the models reported in the literature deal with the theoretical calculation to determine 

the pearlite growth rate in steels such as Fe-C-X where X is the alloying element. This paper 

deals with analyzing the influence of alloying elements such as Mn, Cr, Ni, Si, and Mo, 

separately and together, on pearlite growth rate.  

In this work a different approach is adopted involving the use of an artificial neural network 

to ‘blindly’ model a large set of published experimental data on pearlite growth rate in 

eutectoid steels. The results are then compared extensively against what might be expected on 

the basis of physical metallurgy theory. 
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2. Build of the model 

 

2.1. The experimental database 

 

To ideally model the pearlite growth rate, G, a complete description of the chemical 

composition and the isothermal transformation temperature is required. A search of the 

literature -10) allows us to collect 320 individual cases where detailed chemical composition, 

isothermal temperature, and growth rate values were reported. Table l shows the list of 6 input 

variables used for the pearlite growth rate analysis.  

 

(Table I) 

 

2.2. Brief description of neural network 

 

An extensive description of neural network modeling was presented in the Part I of the 

present work. However, a brief summary of the method is described below as reminder. 

The aim is to be able to estimate the pearlite growth rate as a function of the variables listed in 

Table I. In the present case, the network was trained using a randomly chosen of 160 

examples from a total of 320 available; the remaining 160 examples were used as new 

experiments to test the trained network. Linear functions of the inputs xj are operated by a 

hyperbolic tangent transfer function  
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so that each input contributes to every hidden unit. The bias is designated θi
(1) and is 

analogous to the constant that appears in linear regression. The strength of the transfer 

function is in each case determined by the weight wij
(1). The transfer to the output y is linear  
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This specification of the network structure, together with the set of weights, is a complete 

description of the formula relating the inputs to the output. The weights were determined by 

training the network and the details are described by MacKay 11-12). The training involves a 

minimization of the regularized sum of squared errors. The term σv 13) used below was the 

framework estimation of the noise level of the data.  

Figure 1 shows that the inferred noise level decreases monotonically as the number of hidden 

units increases in the model of pearlite growth rate. However, the complexity of the model 

also increases with the number of hidden units. A high degree of complexity may not be 

justified, and in an extreme case, the model may in a meaningless way attempt to fit the noise 

in the experimental data. MacKay 14) has made a detailed study of this problem and defined a 

quantity (the ‘evidence’) which comments on the probability of a model. In circumstances 

where two models give similar results for the known data, the more probable model would be 

predicted to be the simplest one; this simple model would have a higher value of evidence. 

The evidence framework was used to control σv. The number of hidden units was set by 

examining performance on test data. A combination of Bayesian and pragmatic statistical 

techniques were used to control the complexity of the model -15). Figure 1 also shows that a 

large number of hidden units did not give significantly lower values of σv; indeed, five hidden 

units were found to give a reasonable level of complexity to represent the variations of 

pearlite growth rate as a function of the input variables of Table I.  
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(Fig. 1) 

 

However, it is possible that a committee of models can make a more reliable prediction than 

an individual model. The best models were ranked using the values of their test errors as Fig. 

2(a) presents. Committee of models could then be formed by combining the prediction of the 

best L models, where L = l ,2,... Therefore, the size of the committee is given by the value of 

L.  

The test error (Ten) 13) of the predictions made by a committee of L models, ranked 1 ,2...q...L, 

each with n lines of test data, is calculated in a similar manner to the test error of a single 

model 13): 
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where ny  is the output of the committee, )(q
ny is the set of predictions made by the model, 

and tn is the set of target (experimental) values. 

The test error of the committee as a function of the models considered is plotted in Fig. 2(b). 

It is seen that the test error goes through a minimum for the committee made up of five 

models. Therefore, the neural network model used to calculate the pearlite growth rate in this 

paper is a committee of five models.  

 

(Fig. 2) 
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From a comparison between Fig. 2(a) and Fig. 2(b) it is clear a reduction in test error and 

hence improved predictions by using the committee model approach instead of the best model 

alone. Comparison between the predicted and measured values of pearlite growth rate for the 

training and test data is shown in Fig. 3 for the best committee (consisting of five best 

models).  

However, the practice of using a best-fit function does not adequately describe the 

uncertainties in regions of the input space where data are spare or noisy. MacKay 13-14) has 

developed a particularly useful treatment of neural networks in a Bayesian framework, which 

allows us the calculation of error bars representing the uncertainty in the fitting parameters. 

The method recognizes that there are many functions which can be fitted or extrapolated into 

uncertain regions of the input space, without unduly compromising the fit in adjacent regions 

which are rich in accurate data. Instead of calculating a unique set of weights, a probability 

distribution of sets of weights is used to define the fitting uncertainty. The error bars therefore 

become larger when data are spare or locally noisy. 

 

(Fig. 3) 

 

Figure 4 illustrate the significance (σw) 13) of each of the input variables, as perceived by the 

neural network, in influencing the pearlite growth rate. The metallurgical significance of the 

results predicted by the model is discussed below, but a first approximation of the influence of 

each one of the variables studied could be drawn from a close observation of Fig. 4. The 

transformation temperature clearly has a large intrinsic effect, which is consistent with 

experimental evidences reported in the literature over many decades. The content in 

manganese also has a strong effect on pearlite growth rate; the change on growth mechanism 

control from manganese diffusion at high temperatures (low supersaturation) to carbon 
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diffusion at low temperatures (high supersaturation) is dependent on manganese content and 

temperature as it was well established in literature. 2) Chromium and molybdenum content in 

the steel also have a large effect on pearlite growth rate, as it was also established in literature. 

1,16) The influence of strong carbide forming elements on pearlite growth rate is two fold: first, 

the change from alloying element diffusion to carbon diffusion as the rate controlling 

mechanism, and second the solute drag effect on austenite→pearlite transformation front. On 

the other hand, the influence on pearlite growth rate of silicon is moderate, and nickel has the 

lowest effect on pearlite growth rate.  

 

(Fig. 4) 

 

3. Results and discussion 

 

3.1. Pearlite growth rate in plain carbon steels 

 

The goal of this paper is to model the growth rate of pearlite, and therefore to evaluate the 

influence of different alloy elements on the isothermal austenite-to-pearlite transformation. 

First of all, the neural network model was used to analyze the growth rate of pearlite in plain 

carbon steel. In this sense, Fig. 5 shows the evolution of the pearlite growth rate, G, with the 

isothermal temperature predicted by the model (solid line). The dashed lines represent the 

error bounds in calculations, i.e. the range of uncertainty on G predictions. Likewise, 

superimposed to the calculated trends the experimental data reported by Ridley and Brown 17) 

are also presented in Fig. 5. It is clear that a good agreement between calculated and 

experimental results is obtained. 
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(Fig. 5) 

 

3.2. Influence of alloying elements on pearlite growth rate 

 

Figure 6 shows the neural network predictions for the evolution of pearlite growth rate with 

temperature for different steel grades. The influence of Mn and Ni decreasing the pearlite 

growth rate is clear from this figure. However, the effect of Cr, Mo, and Si on pearlite growth 

rate is not evident from Fig. 6 since the differences in pearlite growth rate between the 

different grades of Fe-C-X steels tested are due to the combination of the effect of alloying 

additions on Ae1 temperature, and in the growth rate itself. In this sense, to isolate the effect 

of alloying elements on G, the evolution of pearlite growth as a function of undercooling 

(∆T = TE–T) has been represented in Fig. 7. The comparison between graphs in Fig. 6 and 

Fig. 7 clearly illustrates this concern. For instance, the growth rate at 670 ºC varies from 12.5 

to 0.3 µm s-1 when the Ni content is increased from 0.5 to 2.0 wt.-% (Fig. 6(c)). However, the 

temperature of 670 ºC corresponds to an undercooling of 44 ºC for a Fe-C-0.5Ni steel, 

meanwhile it corresponds to an undercooling of 20 ºC for a Fe-C-2.0Ni steel (Fig. 7(c)). 

Figure 7 shows that all alloying elements decrease the pearlite growth rate. Moreover, it is 

shown that Mo yields the strongest decrease in the pearlite growth rate. Even a small amount 

of Mo such as 0.15 wt.-% reduces the growth rate by a factor of four relative to plain carbon 

steels, meanwhile the other strong-carbide former element, i.e. Cr, only modestly reduce the 

growth rate for a chromium content of 0.2 wt.-%. On the other hand, the results for Cr 

indicates that there are no significant differences between in growth rate when the alloy 

content is increased from 1 to 2 wt.-%.  

Figure 8 compares the growth rate of pearlite in a Fe-C-X with the alloying element 

concentration for an undercooling of 50 ºC. The concentration in this graph has been 
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considered as X*, which is the ratio between the X−element concentration ([X]) and the 

maximum concentration considered in at.-% ([X]max, see Table I), i.e. X* = [X]/[X]max. One 

might conclude from this figure that Ni is the element with a minor effect on pearlite growth 

rate. By contrast, Si, Mn, Cr and Mo have a strong effect on pearlite growth rate. Such 

behavior from Cr and Mo is expected since both elements are very strong carbides formers 

and then are prone to solute drag effect, but it is interesting to note that Mn and Si affect 

pearlite growth in the same extent. Likewise, considering the concentration values tested, it is 

worth mentioning that Mo has the strongest effect decreasing pearlite growth rate. A 

molybdenum concentration of 0.4 in weight pct decreases in a hundred times the pearlite 

growth rate as compared with plain carbon steel for the same undercooling. These results are 

consistent with the well-established effect of molybdenum and chromium on isothermal 

transformation and hardenability. 

 

(Fig. 6) 

 

(Fig. 7) 

 

(Fig. 8) 

 

3.3. Analysis of pearlite growth rate in a Fe-C-X-Y steel 

 

The ability to predict the evolution of pearlite growth rate in multicomponent steels is one of 

the main advantages of the model presented in this work against other models. In this sense, it 

has been compared the predictions of the model presented in this paper with the experimental 

values reported by Brown and Ridley 18) in a 0.61C-2.28Cr-2.02Ni-0.48Mo-0.28Mn-0.11Si 
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steel (Fig. 9). This figure shows the comparison between the predicted and experimental 

pearlite growth rate values. It could be concluded form this figure that there is an excellent 

agreement between predictions and measurements.  

 

(Fig. 9) 

 

It is observed in Fig. 9 a dramatic decrease in the pearlite growth rate as compared with plain 

carbon steel. This behavior has been attributed in the literature to solute drag effects which 

retard both nucleation and growth rates to similar extents. The mechanism of solute drag is 

uncertain but may be due to segregation of strong carbide forming element in carbon rich 

boundary regions ahead of the growing ferrite lamellae, where drastically carbon activity in 

austenite is reduced slowing down growth. 19) Nevertheless, other mechanism has been 

suggested by Sharma and Purdy: 20) the existence of clusters of strong carbides formers 

inhibits the growth of pearlite because of the necessity of carbon dissociate from the clusters 

before ferrite can grow.  

An alternative explanation to this behavior might be suggested. The results presented in Fig. 9 

could suggest that the growth of pearlite at very low temperatures is not a volume diffusion 

controlled reaction but rather an interface controlled process. The movement of an interface 

could be controlled both by diffusion of atoms, which provide the chemical concentration 

differences within each phase, and by a sluggish transfer of atoms across the interface, which 

does not give rise to any large concentration differences. The former is referred to as volume 

diffusion-controlled process, and the latter as an interface-controlled. 21)  

The rate of reaction controlled by interface process is given by the following equation: 22) 
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where δ is the width of the interface, R is the ideal gas constant, T is the absolute temperature, 

∆Q and ∆Gβα are the activation energy and the driving force for the transformation per atom, 

and ν is a characteristic frequency which is given by kT/h where k and h are Boltzmann’s and 

Plank’s constants respectively. 

The value of ∆Gβα is calculated as the free energy change due to the formation of pearlite 

from austenite as follows: 23) 
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where xγ
 is the carbon concentration in austenite, and 

 

TG

TTGFe
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Both expressions in J mol-1. Assuming that δ being the lattice parameter of austenite, ν being 

kT/h = 1.57×1013 s-1, the growth rate controlled by interface process can be calculated using 

equation (4) as a function of the activation energy ∆Q. Since the growth rate of pearlite at 570 

ºC of 0.61C-2.28Cr-2.02Ni-0.48Mo-0.28Mn-0.11Si steel was measured to be 1.25×10-9 m s-1 

by Brown and Ridley 18), the activation energy ∆Q can be calculated from the equation (4). 
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Values of θG∆  and αγ →∆ FeG  are 5829 and –1086 J mol-1, hence ∆Gβα = −1721 J mol-1, 

respectively. Using the data δ = 3.573×10–10 m and ν = 1.57×1013 s-1, ∆Q is calculated to be 

194 kJ mol-1, which is close to the activation energies of the self diffusion of iron in austenite 

and ferrite, i.e. 286 and 240 kJ mol-1, respectively. Although the activation energy calculated 

from the observed growth rate at 570 ºC is close to that for self-diffusion of iron, it is still 

uncertain if reaction is controlled by the interface process. Further work is necessary. 

 

3.4. Growth mechanism control 

 

The growth rate of pearlite is believed to be controlled by either volume diffusion of 

carbon 24-25) or by grain boundary diffusion of substitutional alloying element. 6,26) The two 

theories are summarized as follows. 

When the growth rate of pearlite is controlled by the bulk diffusion of atoms in austenite 

ahead the interface, the diffusion of carbon may play a more important role than that of 

substitutional alloying elements, since the diffusivity of the substitutional alloying elements 

may not diffuse a long distance during the reaction. The growth rate of pearlite (GC) is 

expressed as follows: 6) 
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where g is a geometric factor equal to 0.72; γ
CD  is the carbon diffusion coefficient in 

austenite; γα
1x  is the carbon concentration at the austenite−ferrite interface in austenite; γθ

1x  is 

the carbon concentration at the austenite−cementite interface in austenite; αγ
1x  is the carbon 
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concentration at the austenite−ferrite interface in ferrite; θγ
1x  is the carbon concentration at the 

austenite−cementite interface in cementite; Sc is the theoretical critical spacing at which the 

growth rate becomes zero; Sθ and Sα are the thickness of cementite and ferrite lamellae, 

respectively. The ratio between Sθ and Sα was assumed to be 7.  

When the partitioning of the substitutional alloying elements is substantial during the growth 

event of pearlite, boundary diffusion of the alloying elements may control the growth rate of 

pearlite, since the boundary diffusivity of the substitutional alloying elements may become 

comparable to the bulk diffusivity of carbon in austenite, and, as a result, a long range 

diffusion of the substitutional alloying elements may become possible during the reaction. 

The growth rate in the case (GX) is expressed as follows: 19) 
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where K is the boundary segregation coefficient which is the ratio between alloying element 

concentration in austenite near the boundary and that in the boundary; γ
BD  is the boundary 

diffusion coefficient of substitutional alloying element; δ is the thickness of the boundary; 

γα
2x  is the substitutional alloying element concentration at the austenite−ferrite interface in 

austenite, γθ
2x  is the substitutional alloying element concentration at the austenite−cementite 

interface in austenite; and 2x  is the average substitutional alloying element concentration in 

the alloy concerned. 

Equations (7) and (8) give the relationship between growth velocity, spacing, concentration 

gradient and diffusivity. Since the concentration gradient term is approximately proportional 

to undercooling, and undercooling is proportional to reciprocal spacing, 1/So, (eq. (6) and (7) 
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in Part I paper of this work) for volume diffusion control growth the equation (7) may be 

rewritten as: 

 

γ
CoC DkSG 1

2 =           (9) 

 

while for boundary diffusion control equation (8) may be rearranged to give 

 

γ
BoX DkSG 2

3 =           (10) 

 

where k1 and k2 are constants. Hence, logarithmic plots of γ
CC DG or γ

BX DG  versus 1 / So 

should give straight lines with slopes of 2 or 3, depending on whether growth is controlled by 

volume or boundary diffusion.  

As reported by Fridberg et al 27), the boundary diffusivities of the closest neighbors of iron in 

the periodic system, such as Cr, Mn, Ni, and Mo, are the same as the self-boundary diffusion 

coefficient of iron in austenite. Thus, δγ
BD  in eq. (8) can be expressed as 5.4×10-14 exp (-

155500 / RT) in m3 s-1 where δ is the grain boundary thickness (reasonable value of 2.5 × 10-10 

m). 22) Regarding Si, there is lack of boundary diffusivities data in literature. Therefore, since 

it is well known that boundary diffusion is much more faster than bulk diffusion, it is a 

sensible approximation to consider the activation energy as the half of that for silicon self-

diffusion. 28) In this case, γ
BD  could be considered as 0.03×10-4 exp(-101000 / RT) in m2 s-1.  

On the other hand, calculations of γ
CD  have been carried out according to Bhadeshia. 29)The 

author considers both the kinetic and equilibrium thermodynamic behavior of carbon in 

austenite. These calculations also takes into account the concentration dependence of the 
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activity of carbon in austenite, and the repulsive interactions between the nearest neighboring 

carbon atoms located in octahedral interstitial sites. Thus, γ
CD  is calculated by two factors: 

one of them is a concentration dependent factor and the other one is independent, 
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where ξ(θ) is the carbon concentration dependent factor obtained according to Bhadeshia’s 

calculations 29); ∆G* is the activation energy for diffusion; γm is an activity coefficient 

assumed constant; λ is the distance between the {002} austenite planes and h is the Planck's 

constant. Bhadeshia 29) found that ∆G* / kB = 21230 K and ln (γm / λ2) = 31.84. 

 

(Fig. 10) 

 

Figure 10 shows the logarithmic plots of γ
CC DG  against 1 / So for a plain carbon steel. 

Likewise, Figs. 11 and 12 show the logarithmic plots of γ
CC DG  and γ

BX DG  versus 1 / So 

for each one of the alloying elements considered, respectively. The values of the interlamellar 

spacing were calculated according to the Part I paper of this work.  

Data presented in Fig. 10 fall clearly in a straight line with a slope m=2. Therefore, it is clear 

that volume diffusion of carbon in austenite is the dominant process controlling pearlite 

growth in pure Fe-C steels.  

 

(Fig. 11) 
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(Fig. 12) 

 

From the results presented in Figs. 11 and 12 some conclusions can be drawn. Some authors 

have reported 2) that Mn partitions preferentially into the pearlitic cementite at the 

transformation interface above a certain temperature (no-partition temperature) which 

depends on manganese concentration of the steel, i.e. manganese partitions into pearlitic 

cementite at high reaction temperatures, but not at lower temperatures. Above the no-partition 

temperature manganese diffusion is rate controlling and below this temperature carbon 

diffusion controls the rate of pearlite growth. These results are consistent with the analysis 

from the data presented in Fig. 11(a) and 12(a). It is clear that the data fitted well to a straight 

line of slope m=2 at low temperatures (high values of Log (1 / So)) for increasing manganese 

content (Fig. 11(a)), meanwhile the data are fairly good adjusted to a straight line of slope 

m=3 in Fig. 12(a) at high temperatures (low values of Log (1 / So)) for increasing manganese 

content. However, the results are no clear for a manganese concentration of Mn=0.25 wt.-% 

since the data fall with the same level of accuracy to a straight line of slopes m equal 2 (Fig. 

11(a)) or 3 (Fig. 12(a)), which might indicate that both growth control mechanisms act 

simultaneously. 

Figure 13 shows the evolution of the ratio between the growth rate calculated for two very 

different degree of undercooling, i.e. an undercooling of 120 ºC and 20 ºC, with manganese 

content. This figure indicates a change in the rate controlling mechanism as Mn content 

increases. As it is shown in the figure, as Mn increases, the ratio increases, which indicates 

that growth rate at high undercooling is faster than at low undercoolings. It could be 

concluded that a change in rate controlling process is produced and it is likely that the rate of 

pearlite is carbon diffusion rate controlling at high undercooling, since boundary diffusion is a 

sluggish mechanism as compared with volume diffusion of carbon. 



 18 

 

(Fig. 13) 

 

Figures 11(c) and 12(c) show that data predicted by the neural network model for a Fe-C-Ni 

steel fall perfectly over a straight line of slope m=2. Hence, the growth control in pearlite of 

steels containing additions of Ni is by carbon diffusion at all temperatures. The effect of Ni in 

decreasing the rate of pearlite growth is primarily due to constitutional effects i.e. to its effect 

on the Ae1 temperature. Carbon diffusion is rate controlling and the partitioning of Ni 

observed experimentally has gone together with the rate controlling process (carbon 

diffusion). 17) 

Results for Si are in full agreement with predictions reported by Hillert 8). This author 

proposed that for most of the examined temperatures range, the rate of formation of pearlite is 

controlled by interfacial diffusion of silicon, since the data presented in Fig. 12(d) follow a 

straight line with slope m=3. Maybe, this behavior is caused by the growth of pearlite in a 

silicon steel depends more critically upon lowering of the silicon content in the cementite than 

the increase in the ferrite. This is because cementite cannot grow with too much silicon. 30-32) 

In order to satisfy this practical requirement it is sufficient to diffuse silicon over distances 

comparable with the thickness of the cementite lamellae rather than the ferrite lamellae which 

are about seven times large. This might be the reason why the effect of silicon on 

hardenability is not as substantial as partitioning of substitutional elements would normally 

lead to.  

It has been reported in the literature that both Cr and Mo partition at the pearlite reaction front 

over a wide range of temperatures. 4,16) Hence, for chromium steels at higher reaction 

temperatures calculations which assume interfacial diffusion of chromium to be rate 

controlling give good agreement (Fig. 12(b) for low values of Log (1 / So)), as was previously 
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reported by Chance and Ridley. 4) By contrast, the predicted pearlite growth rates agree fairly 

well with the assumption of carbon diffusion as rate controlling at low temperatures (high 

values of Log (1 / So) in Fig. 11(b)). However, Chance and Ridley argued that this agreement 

may be fortuitous, and it is likely that the divergence is attributed to ‘solute drag’ which 

retards interface movement. The solute drag effect is associated with the development of an 

austenite bay in the isothermal transformation curve which pushes the pearlite nose to higher 

temperatures. This assumption might explain the situation presented in Figs. 6 and 7 where it 

seems that growth rates are concentration dependent at lower temperatures.  

A similar behavior is observed for the other strong carbide former element studied, i.e. 

molybdenum. It could be concluded from the results presented in this work that at higher 

reaction temperatures molybdenum diffusion seems to be the rate controlling process in Fe-C-

Mo steels (low values of Log (1 / So) in Fig. 12(e)). However, no conclusive results are 

obtained for low temperatures (high values of Log (1 / So) in Fig. 11(e)) where the results 

seems to fall on a straight line of slope m=2, and hence carbon diffusion could be the rate 

controlling mechanism. The divergence in the results presented for low temperatures in Fig. 

12(e) (high values of Log (1 / So)) could be attributed again to ‘solute drag’ effects. 

 

4. Conclusions 
 

1. A neural network method based on a Bayesian framework has been used to rationalize the 

published experimental data on pearlite growth rate of steels. Neural networks are clearly 

useful in recognizing pattern in complex data. The resulting quantitative models are 

transparent; they can be interrogated to reveal patterns and the model parameters can be 

studied to illuminate the significance of particular variables. A trained network embodies 

the knowledge within the training dataset, and can be adapted as knowledge is 

accumulated. It is now possible, therefore, to estimate the role of elements such as Mn, Cr, 
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Ni, Si and Mo which are traditionally used as alloying elements in steel industry. The 

results of this work demonstrate that an increase of Mn, Cr, Ni, Si and Mo content drops 

the velocity at which pearlite grows. 

2. It has been shown that boundary diffusion at high temperatures and volume diffusion at 

low temperatures are the respective growth mechanism control in a Fe-C-Mn steel. 

Likewise, it could be concluded that an increase in manganese content dramatically 

decreases pearlite growth rate.  

3. The influence of nickel on pearlite transformation in a Fe-C-Ni steel is not as dramatic as 

chromium and manganese. The effect of Ni in decreasing the rate of pearlite growth is due 

primarily to constitutional effects i.e. to its effect on the Ae1 temperature. Carbon diffusion 

is rate controlling. 

4. Silicon diffusion is the rate controlling mechanism in Fe-C-Si steels. This is consistent 

with the partition of silicon to pearlitic ferrite reported in literature 3) for a wide range of 

temperatures but diffusion is rapid and the diffusion path is short so that the retardation of 

pearlite growth is not appreciable.  

5. Interfacial diffusion of the strong carbide formers elements such as Cr and Mo partition at 

the whole pearlite formation temperature range is the rate controlling mechanism in Fe-C-

Cr and Fe-C-Mo steels, respectively. The growth rate is markedly retard by the necessity 

for molybdenum and chromium to partition which is consistent with the well-established 

effect of both elements on isothermal transformation and hardenability of Fe-C-Mo and 

Fe-C-Cr steels. On the other hand, carbon diffusion could be the rate controlling 

mechanism at low temperatures, although the existence of solute drag effects make 

difficult to obtain some conclusions to this respect.  
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 1 

 

Table I. Variables that influence Pearlite Growth Rate. SD is standard deviation 

  Minimum Maximum Average SD 

  wt.-% wt.-% at.-%   

 Mn 0.00 1.80 1.77 0.4204 0.64100 

 Cr 0.00 3.28 3.41 1.8675 0.5213 

Inputs 
Ni 0.00 3.00 2.77 1.0089 0.6044 

Si 0.00 2.50 4.71 0.2538 0.6314 

 Mo 0.00 0.50 0.28 0.4801 0.2456 

 T, ºC 570.00 752.00 660.0000 40.3861 

      Output LogG, µm/s -2.15 1.79 0.3690 0.8249 
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Figure 1. Variation of inferred noise level (σV) as a function of the number of hidden units. 
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Figure 2. Test error values of (a) the twelve best pearlite growth rate models, and (b) the committee. 
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Figure 3. Comparison between the predicted and measured values of pearlite growth rate using the 

five models committee. 
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Figure 4. Histogram showing the significance of input variables in influencing pearlite growth rate 

perceived by the model. 
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Figure 5. Evolution of pearlite growth rate in Fe-C steels. 
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(a)       (b) 

 
(c)        (d) 

 
 (e) 

Figure 6. Predicted pearlite growth rate as a function of temperature for different grades of (a) Mn, 

(b) Cr, (c) Ni, (d) Si, and (e) Mo. 
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(a)        (b) 

 
(c)        (d) 

 
 (e) 

Figure 7. Pearlite growth rate vs. undercooling for different grades of (a) Mn, (b) Cr, (c) Ni, (d) Si, 

and (e) Mo. 
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Figure 8. Effect of Mn, Cr, Ni, Si and Mo on pearlite growth rate for a fixed undercooling of 50 ºC 
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Figure 9. Evolution of pearlite growth rate in a Fe-C-Mn-Cr-Ni-Si-Mo steel 
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Figure 10. Spacing-velocity relationship for plain carbon steels. 
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(a)        (b) 

 
(c)        (d) 

 
(e) 

Figure 11. Log( γ
CC DG ) vs Log (1 / So) plots for (a)Mn, (b)Cr, (c)Ni, (d)Si, and (e)Mo eutectoid 

steels. 



 12 

 
(a)        (b) 

 
(c)        (d) 

 
(e) 

Figure 12. Log( γ
BX DG ) vs Log (1 / So) plots for (a)Mn, (b)Cr, (c)Ni, (d)Si, and (e)Mo eutectoid 

steels. 
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Figure 13. Ratio between growth rates for 120 ºC and 20 ºC of undercooling. 
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