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Abstract 

 

The knowledge of the martensite start (Ms) temperature of steels is sometimes important 

during parts and structures fabrication, and it can not be always properly estimated using 

conventional empirical methods. The additions in newly developed steels of alloying elements 

not considered in the empirical relationships, or with compositions out of the bounds used to 

formulate the equations, are common problems to be solved by experimental trial and error. If 

the trial process was minimised, cost and time might be saved. This work outlines the use of 

an artificial neural network to model the calculation of Ms temperature in engineering steels 

from their chemical composition. Moreover, a physical interpretation of the results is 

presented.  
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1. Introduction 

The Ms temperature is of vital importance for engineering steels. Hence great efforts have 

been made in predicting the Ms temperature of these steels. Obviously, chemical composition 

of steel is the main factor affecting its Ms although the austenitising state, external stresses 

and stored deformation energy may sometimes play and important role as well. Martensite 

start temperatures are usually relatively easy to calculate as long as the steels have a low alloy 

content 1-6). Even though empirical equations exists for high alloy steels, they are not 

sufficiently general and are known to provide inaccurate answers for the new steels which 

contain different alloying elements, or their compositional range are out of bounds of those 

used to formulate the equations.  

For instance, the interest of copper additions to the chemical composition of steels has 

increase in the last years. Copper-bearing low carbon steels are used in heavy engineering 

applications which demand a combinations of strength, toughness and weldability 7-11). 

Strength is achieved by precipitation of fine copper precipitates during ageing, instead of 

precipitation of carbide particles 12). Therefore, copper is not in this respect different from any 

secondary hardening element in steels. Likewise, it has been demonstrated that copper 

sulphide strongly enhance acicular ferrite formation, which induces a good combination of 

mechanical properties as compared to bainite and especially to ferrite-pearlite microstructures 

13-15).  

Likewise, power stations are nowadays designated to operate with steam temperatures in 

excess of 873 K. The steels currently being developed to cope with these requirements 

contain a total solute concentration which is often in excess of 14 wt.-%. The main solutes 

include carbide forming elements such as chromium and molybdenum. Chromium also 

provides the necessary corrosion and oxidation resistance for prolonged elevated temperature 

service. The main alloys under consideration include numerous variants of the classical 12Cr-



1Mo and 9Cr-1Mo steels 16-17). These alloys have a high hardenability and a microstructure 

which is predominantly martensitic on cooling from the austenitising temperature. Their 

martensitic start Ms temperature is therefore of considerable importance in deciding on the 

exact welding conditions necessary to avoid cracking 17). An important variant of the 9Cr-

1Mo steel is that in which tungsten is added to induce precipitation hardening 18).  

Gustafson and Agren 19) reported that Co has a remarkable influence on coarsening of M23C6 

carbides in the 9Cr-1Mo steel. Their results show that a final average radius of the carbides 

after 30 000 h at 873 K decreases in 30 % with a Co addition of 10 mass %. This raises the 

Orowan stress with 30 %. Moreover, it is assumed that slower particle coarsening also leads 

to a retard in the coarsening of the martensite lath structure. Thus, an improvement on creep 

life of the steels is expected 19). 

Likewise, it has been reported that the combined additions of cobalt and tungsten to the 

chemical composition strengthen the steel by precipitation of tungsten-cobalt (WC-Co) 

cemented carbides 20). These new steels are widely used as tool steels where a good 

combination between abrasion resistance and corrosion resistance is required 21-23).  

It is then followed that the investigation of how copper, tungsten, and cobalt additions may 

affect the Ms temperature is an important issue. Thus, the aim of this work is to develop an 

artificial neural network model to predict the Ms temperature of steels and to understand the 

influence of the chemical composition on this temperature. Neural networks are of use 

whenever the intricacy of the problem is overwhelming from a fundamental perspective and 

where simplification is unacceptable. They represent a powerful method of non-linear 

regression modelling. The present knowledge on the role of elements such as carbon, 

manganese, molybdenum, chromium, nickel and silicon in the formation of martensite was 

taking into account in this modelling, and new elements such as copper, tungsten, and cobalt 

have been also included in calculations.  



 

2. The experimental database 

 

The definition of the Ms temperature in any model ideally requires a complete description of 

the chemical composition. A search of the literature 24-29) allowed us to collect 748 individual 

examples where the chemical composition and Ms values were reported in detail. Table l 

shows the 14 input variables used for the analysis of Ms temperature. 

It was possible to find 670 cases where all of these variables were reported except for nitrogen 

content. It would be unreasonable to set nitrogen content to zero when its value is not reported 

since steels inevitably contain this impurity element in practice. Therefore, when the nitrogen 

content was missing its concentration was set to the mean value calculated for the 748 cases 

of the database. For other elements such as Mn, Ni, etc, their contents were set to zero when 

they were not reported. This is a reasonable procedure since they would not then be deliberate 

added or their concentrations were close to the limits of the chemical analysis techniques. 

 

3. Brief description of neural network 

 

Neural network analysis has been applied to estimate the Ms temperature as a function of the 

variables listed in Table 1. It is a general method of regression which it can be at first 

explained by using the familiar linear regression method. Chemical composition of each alloy 

element (xi) define the inputs nodes, and the martensite start temperature the output node. 

Each input is multiplied by a random weight wi and the products are summed together with a 

constant θ to give the output node ∑ +=
i

ii xwy θ . The weights are systematically changed 

until a best fit description of the output is obtained as a function of the inputs. This operation 

is known as training the network. 



The network can be non-linear. As before, the input with data xj are multiplied by weights 

( )1(
jw ), but the sum of all these products forms the argument of a hyperbolic tangent (tanh):  
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where w(2) is a weight and θ(2) another constant. The output y is therefore a non-linear function 

of xj. The function usually chosen being the hyperbolic tangent because of its flexibility 30-31). 

The exact shape of the hyperbolic tangent can be varied by altering the weights wj. 

A one hidden-unit model may not however be sufficiently flexible. Further degrees of non-

linearity can be introduced by combining several of the hyperbolic tangents, permitting the 

neural network method to capture almost arbitrarily non-linear relationships. The number of 

tanh functions is the number of hidden units. The function for a network of i hidden units is 

given by  
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Notice that the complexity of the function is related to the number of hidden units. The 

availability of a sufficiently complex and flexible function means that the analysis is not as 

restricted as in linear regression where the form of the equation has to be specified before the 

analysis. Figure 1(a) shows that as expected the inferred noise level of data (σv) decreases 

monotonically as the number of hidden units increases. However, the complexity of the model 

also increases with the number of hidden units. A high degree of complexity may not be 

justified if the model attempts to fit the noise in the experimental data. To find out the 

optimum number of hidden units of the model the following procedure was used. The 



experimental data were partitioned equally and randomly into a test dataset and a training 

dataset. Only the latter was used to train the model, whose ability to generalist was examined 

by checking its performance on the unseen test data. The test error (Ten) is a reflection of the 

ability of the model to predict the Ms values in the test data: 

( )∑ −=
n

nnen tyT 25.0         (5) 

where yn is the set of predictions made by the model and tn is the set of target (experimental) 

values. In Fig. 1(b), it can be seen that the calculated test error for this Ms model goes through 

a minimum at 1 hidden unit. Therefore, the optimum model is that which considers only one 

hidden unit. 

However, it is possible that a committee of models can make a more reliable prediction than 

an individual model. The best models were ranked using the values of their test errors as Fig. 

2(a) presents. Committee of models could then be formed by combining the prediction of the 

best L models, where L = l ,2,... The size of the committee is therefore given by the value of 

L.  

The test error of the predictions made by a committee of L models, ranked 1 ,2...q...L, each 

with n lines of test data, is calculated in a similar manner to the test error of a single model: 
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The test error of the committee as a function of the models considered is plotted in Fig. 2(b). 

It is seen that the test error goes through a minimum for the committee made up of seven 

models. Therefore, the neural network model used to calculate the Ms temperature in this 

paper is a committee of seven models.  

From a comparison between Fig. 1(b) and Fig. 2(b) it is clear a reduction in test error and 

hence improved predictions by using the committee model approach. Comparison between 



the predicted and measured values of Ms for the training and test data is shown in Figs. 3 for 

the best committee (consisting of seven best models).  

However, the practice of using a best-fit function does not adequately describe the 

uncertainties in regions of the input space where data are spare or noisy. MacKay 32-33) has 

developed a particularly useful treatment of neural networks in a Bayesian framework, which 

allows the calculation of error bars representing the uncertainty in the fitting parameters. The 

method recognises that there are many functions which can be fitted or extrapolated into 

uncertain regions of the input space, without unduly compromising the fit in adjacent regions 

which are rich in accurate data. Instead of calculating a unique set of weights, a probability 

distribution of sets of weights is used to define the fitting uncertainty. The error bars therefore 

become larger when data are spare or locally noisy. 

 

4. Influence of carbon 

 

Undoubtedly, carbon plays the strongest role in decreasing the Ms temperature. The 

phenomenological influence of carbon upon the Ms temperature is shown in Fig. 4. The 

decrease rate of Ms temperature reduces when the carbon concentration in the alloy increases, 

which is implied by the decrease in the slope of the Ms-C (wt.- %) line. This result is 

consistent with experimental observations carried out by Eichelman and Hull 34) which 

reported that a very low carbon concentration, where C-X interactions are very weak, the 

carbon-influencing factor tends to increase. However, as carbon concentration increases, the 

influence of binary interactions becomes more important and then the influence of carbon 

itself on Ms temperature decreases.  

 



5. Influence of substitutional alloying elements 

 

The main advantage of the neural network model as compared with other empirical models is 

the ability of analysing separately the influence on Ms temperature of each of the alloying 

elements. In this sense, the role of alloying elements such as Cr, Co, Mo, Si, Mn, Ni, Cu and 

W on Ms temperature has been analysed in this section.  

The alloying elements may be grouped into two categories. Those which expand the γ−field 

and encourage the formation of austenite over a wider compositional limits or γ-stabilisers 

(i.e., Mn, Ni and Cu), and those which contract the γ−field and encourage the formation of 

ferrite over a wider compositional limits of α−stabilisers (i.e., Cr, Co, Mo, Si and W). 

Figure 5 shows the influence of the γ−stabilisers alloying elements on Ms temperature for 

three different grades of carbon. It is clear from Fig. 5(a) and 5(b) that Mn and Ni are the 

elements which have the major influence on Ms after carbon. Likewise, the small error bars 

indicate that there is a low dispersion in the database and the number of data considered is 

enough to reduce the uncertainty in the predictions to the minimum. 

Nevertheless, the effect of the Cu on Ms is not as clear as the γ-stabiliser elements analysed 

above. Fig. 5(c) suggests that for copper concentrations up to 1 wt.-% this element does not 

influence on Ms temperature although the increase in error bars indicates a lack of data for 

high copper concentrations. 

Figure 6 shows the influence of α−stabilisers elements such as Co, W, Mo, Si and Cr for three 

different grades of carbon. It has been experimentally demonstrated the influence of cobalt 

promoting the formation of bainite in detriment of martensite in Fe-Cr-C weld deposits 35). 

This indicates that cobalt (in concentrations lower than 1 wt.-%) is a potentially good alloy 

element to develop a fully bainitic high strength steel. Likewise, large amount of cobalt (≈19 

wt.-%) is added to promote the precipitation of strong W-Co carbides in tool steels 20). It is 



suggested from Fig. 6(a) that cobalt concentrations lower than 3 wt.-% does not affect Ms 

temperature. However, for cobalt concentration between 3 and 30 wt.-% (that used when WC-

Co carbides are formed), the higher cobalt content, the higher Ms temperature.  

An important variant of the 9Cr-1Mo power plant steel is that in which tungsten is added to 

induce precipitation hardening. Since Ms temperature is of considerable importance in 

deciding on the exact welding conditions necessary to avoid cracking in these steels, it is 

necessary to study the influence of tungsten on Ms temperature. It is clear from Fig. 6(b) that 

tungsten increases the value of Ms for the three different grades of carbon analysed. However, 

the neural network predictions are in contrast to some experimental results which reveals that 

the addition of large concentration of tungsten (up to 3 wt.-%) to the 9Cr-1Mo power plant 

steel drops the Ms temperature 36-37). Further investigations revealed that the cause of this 

contradiction may be due to the presence of δ ferrite at the austenitising temperature selected 

(a temperature of 1373 K) 36). It is therefore not surprising that the neural network predicting 

Ms temperature does not agree with that measured in this 9Cr-1Mo power plant steels. 

Moreover, Figs. 6(c) and 6(d) show the influence of Mo and Si upon the Ms temperature, 

respectively. It is clear from these figures that molybdenum and silicon have opposite effects 

on Ms temperature. Molybdenum slightly increase Ms, whereas silicon decreases Ms 

temperature.  

It is possible to get a physical understanding of these results. According to their chemical 

properties, molybdenum and tungsten can be classified as strong carbide former meanwhile 

silicon is a non-carbide former. This behaviour may be attributed to the influence of alloying 

elements on the activity of carbon in the solid solution. Keeping this in mind, we can expect 

that interactions between carbon and molybdenum or tungsten tend to weaken the role of 

carbon, and rise Ms. In this sense, large amount of cobalt promotes the formation of complex 

carbides 21) and then cobalt also may behave as a carbide former. Therefore, an increase of Ms 



is expected. The interaction of carbon with non-carbide forming elements, such as silicon, 

may enhance the role of carbon, and lead to a further decrease in Ms. 

On the other hand, although Cr is an intermediate carbide former element, this element always 

decreases the Ms temperature as shown in Fig. 6(e). This result is fully consistent with those 

reported in the literature demonstrating the role of chromium decreasing Ms temperature 38). 

The small error bars in Fig. 6(e) indicate that this tendency it is well establish in the database 

and the scatter is very small. It is worthy to mention that although chromium is a weak 

α−stabiliser, its influence on Ms temperature is very strong. Actually, its effect on Ms is 

comparable to Mn and Ni which are γ−stabiliser elements.  

It is clear from Figs. 5 and 6 that Cr, Ni, Co and W have different effects on Ms temperature. 

Figure 7 shows the influence on Ms of different combinations between such elements. Figures 

7(a) and 7(b) suggest that the effect of Ni decreasing Ms is stronger than the raise produced 

by an increase in tungsten or cobalt concentrations. In this sense, Fig. 7(c) shows that tungsten 

additions are not able to compensate for the effect of chromium decreasing Ms. However, Fig. 

7(d) suggests that the additions of cobalt changes the tendency of Ms temperature depending 

on the chromium concentration. At chromium contents lower than 9 wt.-%, cobalt additions 

rise Ms temperature. However, chromium concentrations higher than 9 wt.-%, the addition of 

cobalt causes a decrease in Ms temperature. 

 

6. Thermodynamic validation of neural network results 

 

In this section, a thermodynamic explanation to the presented neural networks results is 

discussed. The thermodynamic calculations involved here have been performed using the 

commercial software package, MTDATA 39). The two sublattice model 40) was used to 

express the Gibbs free energies of ferrite and austenite phases. The first sublattice is occupied 



by substitutional atoms and the second is occupied by interstitial atoms and vacancies. The 

Gibbs free energies of austenite, Gγ, and ferrite of the same composition, Gα, were calculated 

separately by allowing only one phase to exist in the system. Then, the molar Gibbs free 

energy difference, ∆Gγα = Gα − Gγ, at different temperatures was obtained. The Gibbs free 

energies of both phases include unitary terms of free energies, mixing entropies, excess free 

energies describing the deviation from the regular solution model, and magnetic 

contributions. However, to calculate the driving force for martensite transformation (∆Gγα’) 

also requires an estimation of the Zener ordering energy 41), since carbon atoms in ferrite can 

in some circumstances order on one of available sublattices of octahedral interstitial sites, 

thereby changing the symmetry of the lattice from bcc to bct. The ordering temperature, Tc, is 

a function of the carbon concentration 42). If the Ms temperature exceeds Tc, then the 

martensite is bcc, but when it is below Tc, martensite is bct. The ordering energy is a 

complicated function of temperature and carbon concentration, and was calculated as in Ref. 

42). The required free energy is then given by ∆Gγα’= ∆Gγα + GZener.  

In the thermodynamic approach, martensite is said to be triggered when the chemical driving 

force (∆Gγα’) achieves some critical value at the Ms temperature ( 'γα
CG∆ ). Bhadeshia 43,44) 

evaluated 'γα
CG∆  for low alloy steels using the Lacher, Fowler and Guggenheim method 45,46) 

together with relatively accurate thermodynamic data. He concluded that 'γα
CG∆  varies 

between –900 to –1400 J mol-1 as a function of the carbon content. The presence of alloying 

elements is acknowledged by allowing for their effects on the magnetic and non-magnetic 

components of the free energy change accompanying the γ−α transformation in pure iron. 

Additionally, the carbon-alloying element interaction is taken into account by suitably 

modified the C−X pair interaction energy. 



However, this method does not work well when it is applied to high alloyed steels. Cool and 

Bhadeshia 36) proposed a new model to calculate 'γα
CG∆  which can be applied to the 

determination of the Ms temperature of highly alloyed steels. The model is based in the 

Ghosh and Olson 24) method which takes into consideration the strengthening of austenite 

caused by solute additions. Ghosh and Olson proposed that the critical martensite driving 

force is the addition of two terms. The former includes strain and interfacial energies, and the 

latter is the interfacial frictional work between the austenite matrix and martensite nucleus 

which is composition dependent. The critical value in J mol-1 of the driving force needed to 

trigger martensitic transformation is: 
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where ci
0.5 are the square root of the different alloying elements concentration in mole 

fraction. The coefficients were obtained by Ghosh and Olson by establishing the ci
0.5 

dependence and fitting over a wide range of compositions: the maximum concentrations were 

approximately 2 wt.-% for carbon and nitrogen, 0.9 wt.-% vanadium and about 2-28 wt.-% 

for all the other alloying elements 47) 

Figure 8 shows the evolution of ∆Gγα’ for different grades of Mn, Ni and Cu maintaining a 

constant concentration of carbon C=0.4 wt.-%. Superimposed to this calculations it is shown 

the corresponding calculated values of 'γα
CG∆  according to Cool and Bhadeshia model. It is 

clear that all the γ-stabiliser elements analysed reduces (in absolute value) ∆Gγα’, and 

therefore Ms temperature is reduced. Also, it is concluded form Figs. 8(a) and 8(b) that the 

effect of Mn and Ni is more pronounced that the effect of Cu, which is negligible (Fig. 8(c)). 

These results are consistent with those predicted by the neural network model presented 

above. Likewise, it is followed from these figures that the effect of Mn and Ni is quite 

different. Meanwhile Ni addition considerably reduces the value of ∆Gγα’ and hardly changes 



the value of 'γα
CG∆ , the effect of Mn addition is more pronounced increasing 'γα

CG∆  that 

decreasing ∆Gγα’.  

Figure 9 shows the evolution of ∆Gγα’ for different grades of Co, W, Cr, Si and Mo, 

maintaining a constant concentration of carbon C=0.4 wt.-%. It is suggested from Figs. 9(a) 

and 9(b) that cobalt and tungsten addition increases the Ms temperature, as the neural network 

predicted. Likewise, the addition of chromium and silicon drops Ms temperature (Figs. 9(c) 

and 9(d)). On the other hand, molybdenum addition hardly affects the chemical driving force 

for martensite transformation. Moreover, its effect on the value of 'γα
CG∆  is almost negligible 

leading to a slightly decreases in Ms temperature (Fig. 9(e)). It could be then concluded that 

molybdenum does not have a sensible effect on Ms temperature, which is consistent with the 

predictions of the neural network analysis.  

Finally, Fig. 10 shows the combined effect of cobalt and chromium on Ms temperature. It is 

followed from the Fig. 10(a) that concentration values of Co=12 and Cr=0 wt.-% increase Ms 

temperature as compared with Co=0 and Cr=0 wt.-%, as it was expected considering the 

influence of Co presented in Fig. 6(a) and 9(a). However, Fig. 10(b) shows that the combined 

addition of Co=12 and Cr=15 wt.-% decreases the Ms temperature at values even lower that 

those obtained for concentrations of Co=0 and Cr=15 wt.-%. This result is in accordance with 

the neural network prediction. 

 

7. Use of the model 

 

7.1. New empirical relationship describing the effect of steel chemistry 

 

It is well known that Ms of a steel can be estimated by statistical formulas in the general form 

of  



∑+= iio wkkMs          (8) 

ko is the offset parameter, i indicates the alloying element, wi stands for the concentration 

(wt.- %) of element i, and ki is its corresponding linear coefficient. The relationship between 

the martensite start transformation and steel composition has been investigated by Grange and 

Stewart 3), Payson and Savage 4),Kung and Rayment 5), and Andrews 6). Andrews used the 

largest number of samples and he reported the following linear relationship: 

MoCrNiMnC
o

s wwwwwCM 5.71.127.174.30423539)( −−−−−=    (9) 

In order to find out a similar linear dependence of the Ms upon the chemical composition, the 

results from the neural network analysis for Ms temperature were plotted by pairs of elements 

(C-Mn, C-Ni, C-Cu, C-W, C-Co, C-Cr, and C-Mo). Thus, Fig. 11 shows the evolution of Ms 

as carbon and chromium concentrations are varying from 0.001 to 0.9 wt.%, and from 0 to 17 

wt.-%, respectively. These values are fitted to a plane regression equation 

( byaxyM os ++= , where x correspond to carbon concentration values in wt.-%, and y 

correspond to the alloying element) by non-linear regression analysis. The regression 

coefficients a and b for the different alloying elements are listed in Table 2. R in Table 2 is the 

correlation factor between the neural network data and the parameters of the 

byaxyM os ++=  fitting equation. 

Therefore, the relative effect of other alloying elements is indicated in the following empirical 

relationship obtained from the neural network analysis  

SiWCoCu

MoCrNiMnCs
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  (10) 

 

7.2. Comparison with other Ms models 

 



In this section we compare the neural network model predictions with the Cool and Bhadeshia 

36) thermodynamic model. Likewise, a comparison is made between the predictions carried 

out by the Andrews’ empirical equation (equation (9)), and that made by the relationship 

derived above (equation (10)). This analysis is performed in six very different alloys whose 

actual compositions are listed in Table 3. S1 is a commercial martensitic stainless steel, S2 is 

a high carbon high strength steel, S3 is a low carbon HSLA steel, S4 is a medium carbon 

forging steel, S5 and S6 are both power plant ferritic steels. All of these steels are used for 

commercial purposes, and therefore, the Ms temperature is a critical parameter whose 

accurate determination is very important in the processing route of the steel.  

Figure 12 shows a comparison among the above mentioned models. It could be concluded 

from the figure that the neural network model presents the most accuracy on Ms temperature 

predictions.  

 

8. Conclusions 

 

1. A neural network method based within a Bayesian framework has been used to rationalise 

an enormous quantity of published experimental data on Ms temperature of steels. It is 

now possible, therefore, to estimate the Ms temperature as a function of the chemical 

compositions.  

2. The formulated neural network model has been applied towards the understanding of the 

role of the most important alloying elements in commercial steels on the Ms temperature. 

This model predicts properly the role of well known alloying elements such as carbon, 

manganese, nickel, chromium, molybdenum and silicon. Likewise, the effect of elements 

such as copper, tungsten and cobalt whose use has recently increased due to the good 



combination of mechanical properties induced in the steels has been also considered in 

this model.  

3. An empirical equation similar to that formulated by Andrews 6) was presented. The 

influence of the alloying elements is considered by means of the C-X pair interactions. 

The results predicted by this equation among those predicted by the neural network model 

were compared with the experimental Ms temperature of six very different commercial 

steels. It is concluded that an excellent agreement between experimental and predicted Ms 

temperature was found. 
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Figure 1. Variation of (a) infered noise level (σV), and (b) test error (Ten) as a function 

of the number of hidden units. 

 

Figure 2. Test error values of (a) the ten best Ms temperature models, and (b) the 

committee. 

 

Figure 3. Comparison between the predicted and measured values of Ms for the training 

and test data using the 7 models committee. 

 

Figure 4. Influence of C on Ms temperature. 

 

Figure 5. Influence of (a) Mn, (b) Ni, and (c) Cu on Ms temperature 

 

Figure 6. Influence of (a) Co, (b) W, (c) Mo, (d) Si and (e) Cr on Ms temperature. 

 

Figure 7. Combined effect of (a) Ni-W, (b) Ni-Co, (c) Cr-W, and (e) Cr-Co on Ms 

temperature. 

 

Figure 8. Effect of (a) Mn, (b) Ni, and (c) Cu on ∆Gγα’ and 'γα
CG∆ . Horizontal lines 

represent 'γα
CG∆ . 

 

Figure 9. Effect of (a) Co, (b) W, (c) Cr, (d) Si and (e) Mo on ∆Gγα’ and 'γα
CG∆ . 

Horizontal lines represent 'γα
CG∆ . 

 



Figure 10. Effect of Co in an alloy (a) without Cr, and (b) with Cr= 15wt.-%. Horizontal 

lines represent 'γα
CG∆ . 

 

Figure 11. Evolution of Ms as C and Cr concentrations varying from 0.001 to 0.9 wt.%, 

and from 0 to 17 wt.-%, respectively 

 

Figure 12. Comparisson between results predicted by Equation (10), Andrews equation 

6), Cool and Bhadeshia 36) model and Neural Network model. 

 



 

Table 1. Input variables of the Neural Network 

 Range 

(wt.-%) 

Average 

(wt.-%) 

Stardard 

deviation 

C 0.001 − 1.62 0.3587 0.2044 

Mn 0 − 3.76 0.8889 0.5258 

Si 0 − 3.40 0.3434 0.4064 

Cr 0 − 17.9 1.1824 2.4448 

Ni 0 − 27.2 1.3792 3.8072 

Mo 0 − 5.10 0.2984 0.5723 

V 0 − 4.55 0.0727 0.2465 

Co 0 − 30.0 0.4738 2.7788 

Al 0 − 1.10 0.0115 0.0784 

W 0 − 12.9 0.1108 0.8734 

Cu 0 − 0.98 0.0498 0.1040 

Nb 0 − 0.23 0.0016 0.0112 

B 0 − 0.01 0.0020 0.0004 

N 0.0001 − 0.06 0.0026 0.0088 

 



 

Table 2. Fitting parameters estimated by non linear regression analysis to a 

byaxyM os ++=  equation type 

 

 y0 a b R 

Ni 759,2159 -299,0917 -16,6297 0,99939313 

W 770,8468 -312,8751 7,4229 0,99876925 

Mo 769,8501 -306,0788 2,3693 0,99821097 

Mn 768,4008 -301,4898 -30,6161 0,99812820 

Cu 777,3075 -318,5246 -11,3436 0,99740703 

Cr 759,5538 -290,7917 -8,9864 0,99832584 

Si 769,8417 -311,3099 -14,4578 0,99867290 

Co 738,6257 -281,2029 8,5810 0,98232872 

 



 

Table 3. Chemical composition of the six steels analysed. 

 

 C Mn Si Cr Ni W Co Mo V Al Cu Nb Ti 

S1 0.45 0.4 0.32 13.0 0.38 0 0 0 0 0 0 0 0 

S2 0.8 3.52 1.67 1.1 0 0.99 1.44 0.24 0 0.01 0 0 0 

S3 0.07 1.5 0.37 0.039 0.49 0 0 0.021 0.004 0.045 0.039 0.03 0.01 

S4 0.31 1.22 0.253 0.138 0.098 0 0 0.03 0.004 0 0 0 0 

S5 0.09 1.03 0.16 9.1 0.99 0 0 0.99 0.19 0 0 0.04 0 

S6 0.09 0.99 0.18 8.94 0 0.98 1.87 0.96 0.18 1.87 0 0.05 0 
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Figure 1. Variation of (a) infered noise level (σV), and (b) test error (Ten) as a function of the 
number of hidden units. 
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Figure 2. Test error values of (a) the ten best Ms temperature models, and (b) the committee. 
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Figure 3. Comparison between the predicted and measured values of Ms for the training and test 
data using the 7 models committee. 
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Figure 4. Influence of C on Ms temperature. 
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Figure 5. Influence of (a) Mn, (b) Ni, and (c) Cu on Ms temperature 
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(e) 
Figure 6. Influence of (a) Co, (b) W, (c) Mo, (d) Si and (e) Cr on Ms temperature. 
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Figure 7. Combined effect of (a) Ni-W, (b) Ni-Co, (c) Cr-W, and (e) Cr-Co on Ms temperature. 
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(c) 
Figure 8. Effect of (a) Mn, (b) Ni, and (c) Cu on ∆Gγα’ and 'γα

CG∆ . Horizontal lines represent 'γα
CG∆ . 
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(e) 
Figure 9. Effect of (a) Co, (b) W, (c) Cr, (d) Si and (e) Mo on ∆Gγα’ and 'γα

CG∆ . Horizontal lines 
represent 'γα

CG∆ . 
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(b) 
 
Figure 10. Effect of Co in an alloy (a) without Cr, and (b) with Cr= 15wt.-%. Horizontal lines 
represent 'γα

CG∆ . 
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Figure 11. Evolution of Ms as C and Cr concentrations varying from 0.001 to 0.9 wt.%, and from 0 
to 17 wt.-%, respectively 
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Figure 12. Comparisson between results predicted by Equation (10), Andrews equation 6), Cool and 
Bhadeshia 36) model and Neural Network model. 
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