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Abstract

A local electrode atom probe has been used to analyze the solute partitioning during 

bainite transformation in a novel, nanocrystalline bainitic steel. Atom probe results 

show the absence of any partitioning of substitutional elements between the phases 

involved. The results are fully consistent with the diffusionless transformation of 

austenite to bainite. However, substitutional elements are expected to redistribute 

approaching an equilibrium phase boundary as the mixture of bainitic ferrite and 

retained austenite is tempered. The compositional analysis of the austenite/ferrite 

interface by atom probe tomography indicates that retained austenite decomposes during 

tempering before equilibrium is reached at the interface.

Key words: Atom probe tomography, Phase transformation, Bainite, Steels. 
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1. Introduction

Phase transformation theory has been used to create a steel in which the crystals of 

ferrite, embedded in a matrix of austenite are finer than that of carbon nanotubes. The 

microstructure is generated at temperatures which are so low that iron diffusion does not 

occur during the austenite-to-ferrite transformation. The result is an extraordinary 

combination of strength and toughness (UTS of 2500MPa and KIC in excess of 30–

40MPam1/2); the bainite has the highest hardness ever reported [1].

The bainite transformation progresses by the diffusionless growth of tiny platelets 

known as "sub-units". One consequence of diffusionless growth in a bainitic 

transformation is that the plates can be supersaturated with carbon, in which case the 

carbon partitions into the residual austenite soon after the growth event. Diffusionless 

growth of this kind can only occur if the carbon concentration of the parent austenite is 

less than that given by the oT   curve. The To curve is the locus of all points, on a 

temperature versus carbon concentration plot, where austenite and ferrite of the same 

chemical composition have the same free energy. The oT   curve is defined similarly, 

taking into account the stored energy (400 J mol-1) of the ferrite due to the displacive 

mechanism of transformation [2]. Consistent with thermodynamic theory, the carbon 

concentration of the austenite, as determined from X-ray analysis at the termination of 

the bainite reaction for different transformation temperatures, lies closer to the oT   value 

boundary and far from the paraequilibrium phase boundary [3]. The reaction is said to 

be incomplete since transformation stops well before the phases achieve their 

equilibrium compositions.

In this work, a local electrode atom probe has been used to analyze the solute 

partitioning during bainite transformation in the novel, nanocrystalline bainitic steel
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described above. Moreover, the redistribution of substitutional elements approaching an 

equilibrium phase boundary has been examined as the mixture of bainitic ferrite and 

retained austenite is tempered.

2. Experimental Procedure

The chemical composition of the steel studied is given in Table I. Homogenized 

specimens were austenitized for 15 min. at 1000ºC, and then transformed to bainite at 

200ºC for different times before quenching into water. The fully bainitic microstructure 

obtained at 200ºC for 144 h was tempered between 400ºC and 500ºC for 30 or 60 

minutes.

The bainitic microstructure of the steel and its evolution during tempering were 

characterised by transmission electron microscopy (TEM) using thin foils 

electropolished at room temperature in a mixture of 5 % perchloric acid, 15 % glycerol 

and 80 % methanol at 40 V until perforation occurred.

Retained austenite volume fraction in the microstructure was evaluated by X-ray 

experiments conducted on etched samples [4]. Moreover, austenite and ferrite carbon 

content were calculated from the measured lattice parameters [5-7]. 

Atom probe tomography specimens were electropolished using the standard double 

layer and micropolishing methods [8]. Atom probe analyses were performed in the 

ORNL local electrode atom probe operated at a specimen temperature of 60K, a pulse 

repetition rate of 200 kHz, and a pulse fraction of 0.2.
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3. Results and Discussion

3.1 Low Temperature Bainite. Microstructural Evolution during Tempering 

The evolution of phases present in the microstructure formed after isothermal 

transformation of austenite to bainitic ferrite at 200ºC at different time intervals are 

illustrated in graph and light optical micrographs of Fig. 1. After 24 h of holding time at 

200ºC, bainite transformation has not started and a mixture of martensite and retained 

austenite is obtained by quenching (Fig. 1b). Martensitic plates are not parallel sided, 

instead they are lenticular as a result of constraints in the matrix which oppose the shape 

change resulting from the transformation. Another feature of higher carbon martensites 

illustrated in Fig. 1b is the burst phenomenon, in which one martensite plate nucleates a 

sequence of plates presumably as a result of stress concentrations set up when the first 

plate reaches an obstruction such as a grain boundary or another martensite plate.

A longer isothermal transformation time (48 h) at 200ºC was required to obtain a 

significant amount of bainite, as shown in Fig. 1c. The plates of bainite grow in clusters 

called sheaves. Within each sheaf of bainite the plates are parallel and of identical 

crystallographic orientation, each with a well-defined crystallographic habit. The 

individual plates in a sheaf are often called sub-units of bainite. They are usually 

separated by low-misorientation boundaries. Bainite reaction stopped after holding for 

144 h , leaving untransformed austenite (Fig. 1d). 
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X-ray analysis results on the evolution of carbon in austenite during transformation at 

200ºC are shown in Fig. 2. The measured concentrations in austenite lie closer to the oT 

value boundary [9] and far from the paraequilibrium phase boundary. This trend is 

consistent with a mechanism in which the bainite grows without any diffusion, but with 

excess carbon partitioning into the austenite soon after transformation. The reaction is 

said to be incomplete since transformation stops before the phases achieve their 

equilibrium compositions. 

The TEM micrograph in Fig. 3a shows the fully carbide-free bainitic microstructure 

formed at 200ºC. It is well known that the presence of silicon retards the precipitation of 

cementite from austenite during bainite formation, because of its low-solid solubility in 

the cementite crystal structure [10-14]. Thus, the carbon that is rejected from the 

bainitic ferrite enriches the residual austenite, thereby stabilising it down to ambient 

temperature. The resulting microstructure consists of fine plates of bainitic ferrite 

separated by carbon-enriched regions of austenite.

Quite remarkably, bainitic plates formed at low temperature (200ºC) are long and thin 

with a width that is less than 50 nm. Each plate is separated by very thin films of 

retained austenite giving this novel nanostructured bainitic microstructure (Fig. 3a). The 

plate thickness mainly depends on the strength of the austenite and the free energy 

change accompanying transformation [15]. The observed refinement is a consequence 

mainly of the high carbon content and the low transformation temperature on enhancing 

the strength of the austenite.

Tempering for 1 h at 400ºC did not introduce appreciable changes in the initial 

microstructure. Extremely fine plates of ferrite and thin films of retained austenite were 

still observed (see TEM micrograph in Fig. 3.b). The austenite volume fraction also did 
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not change. X-ray analysis estimate yielded a volume fraction of 0.29  0.01.

At 450ºC for 30 min. (see TEM micrograph in Fig. 3.c), most of the retained austenite 

has decomposed into cementite and ferrite. X-ray analysis showed that the volume 

fraction of austenite decreases from 0.29 to 0.02. Complete decomposition of retained 

austenite occurs as temperature increases. Therefore, austenite is no longer present in 

the tempered microstructure; the microstructure tempered at 500ºC is not analysed in 

this study.

3.2 Solute Distribution during Bainite Formation

A 5 at. % carbon isoconcentration plot of an austenite-ferrite interface for the 

transformation temperature of 200ºC and two examples of carbon atom maps of the

interface after tempering are shown in Fig. 4. The corresponding elemental 

concentration profiles across the interface are represented in Fig. 5. The 5 at.% carbon 

isoconcentration surface shown in Fig. 4a and the elemental concentration profiles 

across the interface in the initial microstructure (Fig. 5) indicate that the distribution of 

carbon atoms in the analysis volume is not uniform and carbon-rich and carbon-

depleted regions are clearly distinguishable in the material that is fully transformed to 

bainite at 200ºC. The carbon-enriched region represents austenite as its carbon content 

is higher than the average value of 4.3 at. % and the low carbon (< 1 at. %) region 

indicates the ferrite phase. 

It is important to note these atom probe data reveal the presence of carbon-enriched 

austenite (5.39  0.18 at. %) and carbon-depleted ferrite (0.62  0.10 at. %), which is 
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consistent with earlier work [16]. Quantitative data for the initial microstructure (Fig. 5) 

also confirms the absence of any partitioning of substitutional elements such as silicon, 

manganese and chromium between the phases involved. The results are fully consistent 

with the diffusionless transformation of austenite to bainite [17].

In most cases, the atom probe results on carbon content of both bainitic ferrite and 

austenite are lower than those measured by X-ray. This is because the atom probe 

estimate is a simple counting of atoms within the selected volume of matrix of ferrite or 

austenite that does not contain any carbon enriched regions such as dislocations and 

boundaries and not an average of a larger volume that may be enriched in carbon as in 

the X-ray estimate.

It is also clear from the atom probe data for the initial microstructure that there is no 

significant segregation of either substitutional elements or carbon to the austenite-ferrite 

interface. The absence of any significant solute build-up at the interface indicates that 

the interface may not provide a very large sink for atoms since the interface involved 

must be semi-coherent, with a high degree of coherency, consistent with the shape 

change effect [16]. 

The crystallographic theory of martensite is based on the postulation that the habit plane 

is an invariant plane relative to the macroscopic shape deformation. The parent-product 

mismatch at the habit plane is considered to be periodically corrected by discontinuities 

so that the misfit in the interface plane does not accumulate over large distance [18]. 

These structural discontinuities are needed only to correct the mismatch at the semi-

coherent planar boundary. However, for lenticular plates exhibiting a curved boundary,

this interface is glissile since the additional misfit regions arising from the boundary 

curvature constitute the transformation dislocations of the martensite pole mechanism 
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[19]. Since the sub-units of bainitic ferrite have a lenticular plate morphology [20], their 

interfaces with austenite must also be glissile, in accord with a displacive transformation 

mechanism. By examining the interface mobility, Bhadeshia [21] provided strong 

evidence to suggest that the interface which accomplished bainitic transformation in 

steels is glissile. He demonstrated that the mobility of an interface whose motion does 

not lead to the formation of invariant-plane strain surface relief effects is extremely 

slow at temperatures where bainite forms.

3.3 Redistribution of alloying elements during tempering

As mentioned above, there is no partitioning of substitutional solutes during the bainite 

reaction. Given the opportunity, the solutes should tend to redistribute in a manner that 

leads to a reduction in the overall free energy. It is found that when a mixture of bainitic 

ferrite and retained austenite is tempered at low temperatures, the solutes partition 

before the austenite begins to decompose [22]. 

The carbon atom map in Fig. 4.b shows an austenite-ferrite interface after tempering at 

400ºC for 1 h. Corresponding elemental concentration profiles (Fig. 5) across the 

interface suggest that no partitioning of substitutional elements occur after this 

tempering condition. The carbon content in the austenite (5.16  0.88 at. %) and in the 

ferrite (0.57  0.35 at. %) are similar to that measured in the initial microstructure (Fig. 

5). Results confirm that tempering for 1 h at 400ºC did not introduce any change in the 

original microstructure, even at the atomic level.

The carbon atom map of an austenite-ferrite interface for the material tempered at 450ºC 

for 30 min. is shown in Figs. 4.c, where -carbide was also detected within the ferrite. 
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Corresponding elemental concentration profiles are represented in Fig. 5. As X-ray 

analysis suggested, at this stage, appreciable amounts of retained austenite decompose 

(i.e. cementite precipitation), which would explain the decreases in the carbon content 

in the austenite (3.75  0.95 at. %) detected by atom probe tomography (Fig. 5). TEM 

observations and atom probe tomography data showed that cementite precipitation 

occurred after tempering at 400 ºC for 1 h. 

Apart from carbon, chromium is the only solute that partitions across the austenite-

bainitic ferrite interface. It is clear from the chromium concentration profile that the 

chromium spikes at the austenite/bainitic ferrite interface. An elemental spike usually 

indicates that negligible partitioning local equilibrium (NPLE) is reached at the 

interface. There is no clear indication of silicon or manganese partitioning across the 

austenite-bainitic ferrite interface.

The equilibria between austenite and ferrite (Table II) were determined using the 

MTDATA thermodynamic computer program [23]. Comparison of the experimentally 

observed alloying element redistributions determined from atom probe tomography and 

the thermodynamic calculations indicates that retained austenite decomposes before 

local equilibrium is reached at the interface.

4. Conclusions

Atom probe tomography has been used to analyze the solute partitioning during bainite 

transformation in a novel, nanocrystalline bainitic steel. Atom probe results confirm the 

absence of any partitioning of substitutional elements between the phases. However, 

substitutional elements are expected to redistribute approaching an equilibrium phase 
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boundary as the mixture of bainitic ferrite and retained austenite is tempered. The 

compositional analysis of the austenite/ferrite interface at an atomic scale indicates that 

retained austenite decomposes during tempering before equilibrium is reached at the 

interface.
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TABLE I. Chemical Composition

C Si Mn Mo Cr V

Wt. % 0.98 1.46 1.89 0.26 1.26 0.09

at. % 4.34 2.76 1.82 0.14 1.28 0.09

Table I and II

http://www.editorialmanager.com/jmsc/download.aspx?id=199782&guid=05978cbb-ef86-4d23-a403-69a8c24a7176&scheme=1


TABLE II. Concentration of Austenite and Ferrite in Equilibrium from MTDATA, at.%. 

Temperature Phase C Cr Mn Si Mo V Fe

400ºC
Austenite

Ferrite

16.71

0.05

0.24

-

4.36

0.08

0.35

3.19

-

-

-

-

78.34

96.68

450ºC
Austenite

Ferrite

14.98

0.05

0.43

-

8.58

0.31

0.52

3.31

-

-

-

-

75.48

96.32



Figure Captions

Figure 1.- (a) Phase fraction evolution during isothermal transformation at 200ºC for 

several times, and (b), (c) and (d) Light optical micrographs of the microstructure 

formed at 200ºC for 24, 48 and 144 h, respectively.

Figure 2.- Evolution of the carbon content in retained austenite as bainite transformation 

progresses at 200ºC. Xo represents the overall carbon content of the steel. '
oT  and the 

paraequilibrium A’3 curves were calculated for the studied steel as in Ref. [8].

Figure 3.- Transmission electron micrographs of microstructure obtained (a) at 200ºC at 

the termination of the bainite reaction, and after tempering at (b) 400ºC for 1 h and (c) 

450ºC for 30 min.

Figure 4.- (a) 5 at. %C - isoconcentration surface of austenite/bainitic ferrite interface 

during bainite formation at 200ºC. Carbon atom maps of austenite/bainitic ferrite 

interface after tempering at (b) 400ºC for 1 h and (c) 450ºC for 30 min.  is ferrite,  is 

austenite, and  is -carbide.

Figure 5.- Evolution of elemental concentration profiles across austenite/bainitic ferrite 

interface after tempering.
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