Determinación de cobalto en plantas pratenses por espectrofotometría de A.A. y espectroscopía de la reflectancia de R.I.

M.ª I. DÍAZ-GUÉMÉS PÉREZ, B. GARCÍA CRIADO, A. GARCÍA CIUDAD Y L. LEÓN MORÁN

Centro de Edafología y Biología Aplicada (CSIC), apdo. 257. Salamanca

RESUMEN

Se realiza un estudio crítico de la determinación de Co en plantas pratenses por EAA siguiendo el método de GELMAN, ligeramente modificado por nosotros, y por ERRI, según proponen GARCÍA CRIADO y cols. En el primer caso se hace una extracción utilizando APDC y MIBK, se estudia la influencia del pH y tiempos de agitación y separación de fases. En el segundo caso, la calibración del sistema de reflectancia de RI se lleva a cabo con muestras de composición conocida, no precisándose reactivos de ninguna clase.

Se comprueba que para una extracción total de Co la acidez óptima requerida es a pH = 1 y los tiempos mínimos necesarios para la agitación y separación de fases de uno y quince minutos respectivamente. El método de GELMAN modificado resulta más preciso, exacto y rápido que el inicialmente propuesto por este autor.

La nueva técnica de ERRI permite estimar la concentración de Co en plantas pratenses con un error estándar de predicción entre ± 0,009 % y ± 0,020 %, pudiéndose analizar entre 20 y 30 muestras por hora. Estos resultados ponen de manifiesto que la ERRI puede ofrecer grandes posibilidades en el análisis rápido de elementos minerales.

INTRODUCCIÓN

Según UNDERWOOD (1968), desde hace casi medio siglo se reconoce la gran importancia que el elemento cobalto tiene para la nutrición de las
plantas y los animales. Fue en 1962 cuando este autor estableció la esencialidad del elemento en la nutrición de los animales rumiantes, y afirmó que la corrección de deficiencias en plantas y animales es relativamente fácil si se compara con su determinación analítica.

Mediante el análisis espectrográfico de suelos se han podido eliminar muchas zonas deficientes en Co, pero la determinación de este elemento en plantas presenta serias dificultades debido a que se encuentra en muy bajas concentraciones. En consecuencia, se necesitan métodos analíticos para determinarlo de forma rápida y precisa.

En la bibliografía actual, JAGO y cols. (1971), GELMAN (1972), SIMMONS (1973), HAGEMAN (1975), etc., se reconoce a la espectrofotometría de absorción atómica (EAA) como una de las mejores técnicas en este tipo de análisis. Sin embargo, hasta la fecha no se conocen procedimientos para la determinación de Co por espectroscopia de la reflectancia de rayos infrarrojos (ERRI). Por otro lado, GELMAN asegura que la determinación directa de Co en plantas por EAA no es viable al encontrarse en muy baja concentración. Ello se resuelve con facilidad, MULFORD (1966), LAKANEM (1966), JAGO y cols. (1971) y GELMAN (1972), acomplejando el Co y después extrayéndolo con un disolvente orgánico apropiado. Pero el proceso resulta relativamente engorroso, cosa que no ocurre cuando se aplica la EERRI, aunque las determinaciones sean, por ahora, poco precisas.

En este trabajo se hace un estudio crítico de la determinación de Co en plantas pratenses por EAA siguiendo el método de GELMAN (1972), ligeramente modificado, y por EERRI según proponen GARCIA CRIADO y cols. (1977, 1978).

En el primer caso se realiza una extracción utilizando ácido 1-pirrolidinitio-carboxílico (APDC) como agente quelatante e iso-butílmetilcetoná (MIBK) como agente extractante y se estudia la influencia del pH y tiempos de agitación y separación de fases. Una vez conocidos estos factores, se introducen ciertas modificaciones en el proceso de mineralización propuesto por GELMAN con objeto de ganar rapidez y simplicidad.

En el segundo caso, al utilizar la EERRI cabe destacar que el tiempo requerido para una determinación es de solo dos-tres minutos y no se precisa ningún tipo de reactivo.

PARTE EXPERIMENTAL

1. **ESPECTROFOTOMETRÍA DE AA**

Preparación de la muestra

Las muestras de plantas se desecan en una estufa de aire forzado a 80° C. Una vez desecadas se molieron en un micromolino tipo Culatti con luz de malla 1 mm, evitando, en lo posible, el calentamiento y recogiendo cuidadosamente el polvillo que pudiese quedar adherido a las diversas partes de éste. Las muestras molidas se homogeneizan por cuarteo y se almacenan en frascos para después proceder a su análisis.
Reactivos

- Disolución de 200 ppm de Co. Se disuelven 0,4038 g de Cl₂Co₆H₂O, previamente desecado en una estufa a 50⁰C durante toda la noche, en la mínima cantidad de agua destilada, se añaden 2 ml de HCl 0,1N y se lleva a 500 ml con agua destilada.
- Disolución de Co de 10 ppm. Se prepara a partir de la anterior.
- Ácido clorhídrico 0,1N.
- Disolución al 2 % de ácido 1-pirrolidinditio-carboxílico sal amónica (APDC), reactivo MERCK.
- Isobutilmetilcetona para análisis (MIBK), reactivo MERCK.
- Patrones: se preparan de 0,1, 0,4, 0,7, 1,0 y 2,0 ppm de Co, tomando las alícuotas correspondientes de la solución de 10 ppm y diluyendo con agua destilada hasta 50 ml.

Modificaciones introducidas en el método de GELMAN y procedimiento general

a) Modificaciones

1.ª La calcinación de las muestras se realiza en una sola etapa, a baja temperatura al principio y luego a 450⁰C durante ocho horas. GELMAN (1972) la lleva a cabo en dos etapas de nueve y cinco horas, tratando las cenizas con HNO₃ concentrado (previamente a la segunda etapa) y evaporando a sequedad con lámpara de rayos infrarrojos.

2.ª La disolución de las cenizas se realiza en dos etapas: primero se atacan con una mezcla de HNO₃/HCl/H₂O (proporción 1:1:8) en un baño de arena a 60⁰C, se llevan casi a sequedad, y después se vuelve a disolver con HCL 0,1N. GELMAN (1972) lo realiza en tres pasos: primero las disuelve con HCl 6N y evapora a sequedad, a continuación ataca con HCl 0,1N y evapora de nuevo, por último vuelve a disolver el residuo con HCl 0,1N.

b) Procedimiento general

La determinación de Co en plantas pratenses comprende dos fases:

1.ª Mineralización. Según GORSUCH (1959) y SIMMONS (1975), la digestión de las muestras puede realizarse por vía húmeda o seca, ya que ambos procesos conducen a idénticos resultados. Aquí se utiliza la última vía; para ello se pesa en cápsulas de porcelana 5 g de muestra seca y se introducen en un horno de mufla, elevando la temperatura lenta y gradualmente hasta alcanzar 450⁰C para permanecer así durante ocho horas. A las cenizas, una vez frías y pesadas, se añade cuidadosamente 2 ml de agua destilada, dejando resbalar por la pared de la cápsula para evitar salpicaduras, seguidamente 10 ml de solución HNO₃/HCl/H₂O destilada en la proporción 1:1:8 y se llevan a sequedad en un baño de arena (aproximadamente tres horas).

El residuo se disuelve con HCl 0,1N caliente y se filtra, lavando varias veces hasta alcanzar 25 ml.

2.ª Extracción. El filtrado obtenido en la fase anterior se pasa a un tubo alargado de 100 ml juntamente con 3 ml del mismo ácido para lavar y arrastrar todo el contenido. Se adicionan 2 ml de APDC para formar el complejo de Co y 3 ml de MIBK para la extracción. Se agita vigorosa-
mente durante un minuto en un agitador y se deja reposar quince minutos hasta conseguir la separación de las dos fases. Como la fase orgánica se encuentra sobre la acuosa, las medidas pueden hacerse directamente de los mismos tubos de agitación.

Patrones

Se preparan tomando 1 ml de cada uno de los patrones indicados en el aparato de reactivos, 50 ml de HCl 0,1N, 2 ml de APDC y 5 ml de MIBK, todo ello en un tubo de 100 ml, y se extrae como se describe para las muestras. Los patrones preparados de esta forma tienen un rango desde 0,04 a 0,40 ppm de Co. La curva de calibrado es totalmente lineal para 0,04, 0,10, 0,20 y 0,40 ppm, que comprenden la zona de trabajo utilizada.

Aparatos

- Estufa de desecación con aire forzado «VISMARA».
- Estufa de desecación «HERAEUS».
- Balanzas de precisión y granatario «OERTLING» y «SARTORIUS», respectivamente.
- Micromolino tipo «CULATTI» con luz de malla 1 mm.
- Horno de mufla «HERON».
- Agitador vuelta a vuelta.
- Espectrofotómetro de absorción atómica «VARIAN TECH-TRON», modelo 1,250.

Medida

Las medidas espectrofotométricas se realizan directamente con corriente de lámpara 10 mA, paso de banda 0,2 nm y longitud de onda 240,2 nm, utilizando una expansión de escala de x 5.

ESPECTROSCOPIA DE LA REFLECTANCIA DE RI

La preparación de las muestras en este caso es la misma que antes se indicó para el método de GELMAN (EAA) y no se precisa reactivo alguno. Únicamente cabe señalar que la calibración del aparato de medida se realiza con muestras de composición conocida, siguiendo las indicaciones de GARCÍA CRIADO y cols. (1977, 1978). Para ello se determinó previamente y manualmente, por duplicado, la concentración de Co por el método de GELMAN modificado en diversas muestras de plantas; 19 de Lolium perenne L., 17 de Lolium multiflorum L., 20 de Medicago sativa L. y 64 de un pastizal de zona semiárida. Luego se fueron pasando las citadas muestras por el aparato (Infra-Alyzer) y se relacionaron, individualmente para cada tipo de planta, los resultados obtenidos manualmente frente a las reflectancias de rayos infrarrojos emitidas por dichas muestras.
Aparatos

- Analizador automático Infra-Alyser «TECHNICON», modelo 2.5 A.
- Ordenador de mesa «HEWLETT PACKARD», modelo 9.815 A.

RESULTADOS Y DISCUSIÓN

En el estudio crítico de la determinación de Co por el método de GELMAN con las modificaciones ya aludidas y utilizando la EAA, se obtienen los resultados siguientes:

a) Influencia del pH en la extracción

GELMAN (1972), JAGO y cols. (1971), MULFORD (1966), HAGEMAN (1975), entre otros, consideran que la acidez es crítica en este tipo de extracciones. Por esta razón, en primer lugar se estudia la influencia del pH sobre la extracción de Co en muestras de Medicago sativa L., siendo los resultados obtenidos (media de tres repeticiones) los que se indican en la figura 1. En ella se observa que la máxima extracción del elemento se logra a pH = 1, correspondiendo a una concentración de ácido clorhídrico 0,1N; esta acidez coincide con la propuesta por GELMAN (1972).

![Diagrama de pH vs concentración de Co en alfalfa](image)

Fig. 1.—Influencia del pH sobre la extracción de cobalto en alfalfa.
b) **Tiempos de agitación y separación de fases**

En la tabla I se muestran los resultados de un ensayo realizado para conocer los tiempos mínimos de agitación y separación de fases requeridas en la determinación de Co. Para ello se utilizan dos muestras (una de *Medicago sativa* L. y otra de *Trifolium repens* L.) en las cuales la extracción se realiza empleando diferentes tiempos en la agitación y separación de fases. Los resultados expresados en la citada tabla ponen de manifiesto que con un minuto de agitación vigorosa y con quince de reposo son suficientes para alcanzar buenas extracciones de Co, lo que también coincide con lo señalado por GELMAN (1972).

TABLA I

<table>
<thead>
<tr>
<th>Tiempo (minutos)</th>
<th>Co (ppm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alfalfa</td>
<td>Trébol</td>
</tr>
<tr>
<td>1</td>
<td>0,079</td>
<td>0,097</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,081</td>
<td>0,100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,078</td>
<td>0,101</td>
<td></td>
</tr>
<tr>
<td>Valor medio</td>
<td>0,0793</td>
<td>0,0993</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,080</td>
<td>0,100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,081</td>
<td>0,103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,078</td>
<td>0,099</td>
<td></td>
</tr>
<tr>
<td>Valor medio</td>
<td>0,0797</td>
<td>0,1007</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,079</td>
<td>0,097</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,080</td>
<td>0,102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,080</td>
<td>0,101</td>
<td></td>
</tr>
<tr>
<td>Valor medio</td>
<td>0,0797</td>
<td>0,1000</td>
<td></td>
</tr>
</tbody>
</table>

c) **Precisión**

La tabla II muestra los resultados obtenidos en la determinación de Co en tres muestras de *Medicago sativa* L., *Trifolium repens* L., y *Festuca arundinacea* Schreb., aplicando diez veces consecutivas, sobre cada una de ellas, el método de GELMAN modificado. De los valores resultantes en los tres casos (media, desviación típica, error estándar y coeficiente de variación) se deduce que la precisión del método es tres veces superior a la indicada por dicho autor; éste obtuvo coeficientes de variación entre 5,3 y 8,9 %.

d) **Exactitud**

Para conocer la recuperación de Co por el método modificado se adicionan cantidades conocidas de Co sobre una muestra de *Medicago sativa* L. y se determina la concentración del elemento tres veces consecutivas en cada caso. Los resultados expresados en la tabla III indican que la
TABLA II

ESTUDIO DE LA PRECISION EN LA DETERMINACION DE Co POR EL METODO DE GELMAN MODIFICADO

<table>
<thead>
<tr>
<th>Muestra de alfalfa</th>
<th>ppm de Co</th>
<th>Muestra de trébol</th>
<th>ppm de Co</th>
<th>Muestra de fesuca</th>
<th>ppm de Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,078</td>
<td>1</td>
<td>0,101</td>
<td>1</td>
<td>0,042</td>
</tr>
<tr>
<td>2</td>
<td>0,079</td>
<td>2</td>
<td>0,102</td>
<td>2</td>
<td>0,040</td>
</tr>
<tr>
<td>3</td>
<td>0,081</td>
<td>3</td>
<td>0,099</td>
<td>3</td>
<td>0,041</td>
</tr>
<tr>
<td>4</td>
<td>0,080</td>
<td>4</td>
<td>0,100</td>
<td>4</td>
<td>0,041</td>
</tr>
<tr>
<td>5</td>
<td>0,080</td>
<td>5</td>
<td>0,101</td>
<td>5</td>
<td>0,040</td>
</tr>
<tr>
<td>6</td>
<td>0,082</td>
<td>6</td>
<td>0,101</td>
<td>6</td>
<td>0,040</td>
</tr>
<tr>
<td>7</td>
<td>0,079</td>
<td>7</td>
<td>0,100</td>
<td>7</td>
<td>0,039</td>
</tr>
<tr>
<td>8</td>
<td>0,080</td>
<td>8</td>
<td>0,098</td>
<td>8</td>
<td>0,038</td>
</tr>
<tr>
<td>9</td>
<td>0,079</td>
<td>9</td>
<td>0,099</td>
<td>9</td>
<td>0,040</td>
</tr>
<tr>
<td>10</td>
<td>0,080</td>
<td>10</td>
<td>0,097</td>
<td>10</td>
<td>0,039</td>
</tr>
</tbody>
</table>

Valor medio 0,0798
Desv. típica 0,0011
Error estándar 0,0003
Coef. de variación (%) 1,38

<table>
<thead>
<tr>
<th>ppm de Co añadido</th>
<th>ppm de Co encontrado</th>
<th>Recuperación (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>0,08</td>
<td>0,160</td>
</tr>
<tr>
<td>5</td>
<td>0,08</td>
<td>0,157</td>
</tr>
<tr>
<td>6</td>
<td>0,08</td>
<td>0,158</td>
</tr>
<tr>
<td>7</td>
<td>0,20</td>
<td>0,273</td>
</tr>
<tr>
<td>8</td>
<td>0,20</td>
<td>0,275</td>
</tr>
<tr>
<td>9</td>
<td>0,20</td>
<td>0,278</td>
</tr>
<tr>
<td>10</td>
<td>0,40</td>
<td>0,479</td>
</tr>
<tr>
<td>11</td>
<td>0,40</td>
<td>0,478</td>
</tr>
<tr>
<td>12</td>
<td>0,40</td>
<td>0,486</td>
</tr>
</tbody>
</table>

Recuperación media total 98,61

Recuperación es prácticamente total (98,61 %). En consecuencia, se trata de un método muy exacto; GELMAN (1972) obtuvo una recuperación media del 96,66 %, lo que indica que su método es menos exacto que aquél modificado.

[154] **PASTOS**
c) Sensibilidad

Operando en la zona de trabajo indicada (0,04-0,40 ppm de Co) el procedimiento de análisis resulta lo suficientemente sensible, puesto que se parte de 5 g de muestra de los cuales se extrae el Co en 3 ml de MIBK y las lecturas en el espectrofotómetro se realizan con una expansión de escala de × 5.

f) Rápidez

En todo método analítico, el tiempo requerido en las operaciones es un factor fundamental a tener en cuenta, máxime si se trata de análisis en rutina. El procedimiento modificado también aventaja al de GELMAN, ya que son menos las etapas que precisa y, por tanto, las operaciones se reducen notablemente. Se estima que el análisis de 20 muestras se puede reducir en cinco horas de manipulación siguiendo el método modificado, lo que supone un ahorro de tiempo considerable.

g) Estabilidad del complejo de Co

Una vez efectuada la extracción de Co en un número determinado de patrones y muestras se dejó transcurrir media hora y se midió su concentración; después, pasadas veinticuatro horas se volvió a medir para, de nuevo, volverlo a hacer a las cuarenta y ocho horas de realizar la extracción; en los tres casos señalados los resultados se comparan con los obtenidos, midiendo patrones recientemente preparados.

Se encuentra que, tanto los patrones como las muestras, pierden de dos a cuatro unidades de absorbancia por día, por lo que se recomienda realizar las lecturas lo antes posible después de la extracción. Esto nos pone de manifiesto que antes de veinticuatro horas el complejo de Co pierde estabilidad.

En lo que respecta a la determinación de Co, mediante la espectroscopia de la reflectancia de rayos infrarrojos, los resultados se expresan en las tablas IV, V y VI, a nivel de especie, y en la VI: a nivel de pastizal. En ellas también figuran los resultados del análisis manual (EAA), las diferencias entre ambas determinaciones, sus valores medios y extremos, las desviaciones típicas, el error estándar de estimación, el coeficiente de correlación múltiple, el índice de error sistemático y la selección de reflectancias que en cada caso fue utilizada para predecir las concentraciones de Co.

Los resultados obtenidos ponen de manifiesto que mediante la ERRI se puede estimar la concentración de Co en plantas con errores de estimación de 0,0063 % para Lolium perenne L., 0,0146 % para Lolium multiflorum L., 0,0092 % para Medicago sativa L. y 0,0239 % a nivel de pastizal. En este último caso las diferencias entre ambos métodos de análisis son más acusadas (tabla VII), como consecuencia de la gran heterogeneidad de las muestras. Sin embargo, las medidas espectroscópicas resultan muy semejantes a las que encuentran SHENK y cols. (1979), cuando aplican dicha técnica en la estimación de otros elementos minerales.

También se ha podido comprobar que cada tipo de forraje requiere una determinada combinación de reflectancias. Así, para L. perenne resulta
TABLA IV

<table>
<thead>
<tr>
<th>Muestras</th>
<th>Método de análisis</th>
<th>Diferencias (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERR1</td>
<td>EAA</td>
</tr>
<tr>
<td>1</td>
<td>0,0480</td>
<td>0,0450</td>
</tr>
<tr>
<td>2</td>
<td>0,0290</td>
<td>0,0380</td>
</tr>
<tr>
<td>3</td>
<td>0,0250</td>
<td>0,0300</td>
</tr>
<tr>
<td>4</td>
<td>0,0484</td>
<td>0,0330</td>
</tr>
<tr>
<td>5</td>
<td>0,0453</td>
<td>0,0380</td>
</tr>
<tr>
<td>6</td>
<td>0,0335</td>
<td>0,0300</td>
</tr>
<tr>
<td>7</td>
<td>0,0318</td>
<td>0,0300</td>
</tr>
<tr>
<td>8</td>
<td>0,0292</td>
<td>0,0300</td>
</tr>
<tr>
<td>9</td>
<td>0,0355</td>
<td>0,0380</td>
</tr>
<tr>
<td>10</td>
<td>0,0295</td>
<td>0,0300</td>
</tr>
<tr>
<td>11</td>
<td>0,0694</td>
<td>0,0680</td>
</tr>
<tr>
<td>12</td>
<td>0,0271</td>
<td>0,0230</td>
</tr>
<tr>
<td>13</td>
<td>0,0225</td>
<td>0,0150</td>
</tr>
<tr>
<td>14</td>
<td>0,0233</td>
<td>0,0150</td>
</tr>
<tr>
<td>15</td>
<td>0,0270</td>
<td>0,0230</td>
</tr>
<tr>
<td>16</td>
<td>0,0497</td>
<td>0,0530</td>
</tr>
<tr>
<td>17</td>
<td>0,0261</td>
<td>0,0340</td>
</tr>
<tr>
<td>18</td>
<td>0,0293</td>
<td>0,0380</td>
</tr>
<tr>
<td>19</td>
<td>0,0243</td>
<td>0,0230</td>
</tr>
</tbody>
</table>

Medias	0,0344	0,0344	± 0,0044
V. extremos	0,0233-0,0694	0,0150-0,0680	- 0,0090-0,0083
Varianza	0,00002	0,00018	
Desviación típica	0,0123	0,0134	

Error estándar: 0,0063
Coeficiente de correlación múltiple: R = 0,7768
Indice de error sistemático: 0,00004

TABLA V

<table>
<thead>
<tr>
<th>Muestras</th>
<th>Método de análisis</th>
<th>Diferencias (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERR1</td>
<td>EAA</td>
</tr>
<tr>
<td>1</td>
<td>0,1034</td>
<td>0,1090</td>
</tr>
<tr>
<td>2</td>
<td>0,0815</td>
<td>0,0680</td>
</tr>
<tr>
<td>3</td>
<td>0,0467</td>
<td>0,0300</td>
</tr>
<tr>
<td>4</td>
<td>0,0388</td>
<td>0,0380</td>
</tr>
<tr>
<td>5</td>
<td>0,0193</td>
<td>0,0230</td>
</tr>
<tr>
<td>6</td>
<td>0,0997</td>
<td>0,1130</td>
</tr>
<tr>
<td>7</td>
<td>0,0809</td>
<td>0,1050</td>
</tr>
<tr>
<td>8</td>
<td>0,0674</td>
<td>0,0640</td>
</tr>
<tr>
<td>9</td>
<td>0,0487</td>
<td>0,0300</td>
</tr>
<tr>
<td>10</td>
<td>0,0910</td>
<td>0,1050</td>
</tr>
<tr>
<td>11</td>
<td>0,0669</td>
<td>0,0600</td>
</tr>
<tr>
<td>12</td>
<td>0,0335</td>
<td>0,0600</td>
</tr>
<tr>
<td>13</td>
<td>0,0431</td>
<td>0,0380</td>
</tr>
</tbody>
</table>

PASTOS
Continuación, tabla V

<table>
<thead>
<tr>
<th>Muestras</th>
<th>Método de análisis</th>
<th></th>
<th>Diferencias (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERR1</td>
<td>EAA</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0,0355</td>
<td>0,0450</td>
<td>- 0,0095</td>
</tr>
<tr>
<td>15</td>
<td>0,0418</td>
<td>0,0530</td>
<td>- 0,0112</td>
</tr>
<tr>
<td>16</td>
<td>0,1080</td>
<td>0,0830</td>
<td>0,0250</td>
</tr>
<tr>
<td>17</td>
<td>0,0425</td>
<td>0,0450</td>
<td>- 0,0025</td>
</tr>
<tr>
<td>Medias</td>
<td>0,0629</td>
<td>0,0629</td>
<td>± 0,0114</td>
</tr>
<tr>
<td>V. extremos</td>
<td>0,0193-0,1080</td>
<td>0,0230-0,1130</td>
<td>- 0,0241-0,0250</td>
</tr>
<tr>
<td>Varianza</td>
<td>0,0007</td>
<td>0,0009</td>
<td></td>
</tr>
<tr>
<td>Desviación típica</td>
<td>0,0269</td>
<td>0,0300</td>
<td></td>
</tr>
</tbody>
</table>

Error estándar: 0,0146
Coeficiente de correlación múltiple: $R = 0,7612$
Indice de error sistemático: - 0,00003

$C_D = f (R_1, R_2, R_4)$

TABLA VI

DETERMINACION DE COBALTO (ppm SOBRE SS) EN MUESTRAS DE MEDICAGO SATIVA POR ERR1 Y EAA

<table>
<thead>
<tr>
<th>Muestras</th>
<th>Método de análisis</th>
<th></th>
<th>Diferencias (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERR1</td>
<td>EAA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,1030</td>
<td>0,0980</td>
<td>0,0050</td>
</tr>
<tr>
<td>2</td>
<td>0,0694</td>
<td>0,0600</td>
<td>0,0094</td>
</tr>
<tr>
<td>3</td>
<td>0,0797</td>
<td>0,0680</td>
<td>0,0117</td>
</tr>
<tr>
<td>4</td>
<td>0,0771</td>
<td>0,0830</td>
<td>- 0,0059</td>
</tr>
<tr>
<td>5</td>
<td>0,0839</td>
<td>0,0900</td>
<td>- 0,0060</td>
</tr>
<tr>
<td>6</td>
<td>0,0644</td>
<td>0,0560</td>
<td>0,0084</td>
</tr>
<tr>
<td>7</td>
<td>0,0715</td>
<td>0,0680</td>
<td>0,0035</td>
</tr>
<tr>
<td>8</td>
<td>0,0615</td>
<td>0,0600</td>
<td>0,0015</td>
</tr>
<tr>
<td>9</td>
<td>0,0842</td>
<td>0,0680</td>
<td>0,0162</td>
</tr>
<tr>
<td>10</td>
<td>0,0773</td>
<td>0,0750</td>
<td>0,0023</td>
</tr>
<tr>
<td>11</td>
<td>0,0779</td>
<td>0,0900</td>
<td>- 0,0122</td>
</tr>
<tr>
<td>12</td>
<td>0,0386</td>
<td>0,0380</td>
<td>0,0006</td>
</tr>
<tr>
<td>13</td>
<td>0,0287</td>
<td>0,0300</td>
<td>- 0,0013</td>
</tr>
<tr>
<td>14</td>
<td>0,0188</td>
<td>0,0300</td>
<td>- 0,0112</td>
</tr>
<tr>
<td>15</td>
<td>0,0537</td>
<td>0,0490</td>
<td>0,0047</td>
</tr>
<tr>
<td>16</td>
<td>0,1173</td>
<td>0,1350</td>
<td>- 0,0177</td>
</tr>
<tr>
<td>17</td>
<td>0,0960</td>
<td>0,0980</td>
<td>- 0,0020</td>
</tr>
<tr>
<td>18</td>
<td>0,0568</td>
<td>0,0600</td>
<td>- 0,0032</td>
</tr>
<tr>
<td>19</td>
<td>0,0404</td>
<td>0,0380</td>
<td>0,0024</td>
</tr>
<tr>
<td>20</td>
<td>0,0468</td>
<td>0,0530</td>
<td>- 0,0062</td>
</tr>
<tr>
<td>Medias</td>
<td>0,0673</td>
<td>0,0674</td>
<td>± 0,0066</td>
</tr>
<tr>
<td>V. extremos</td>
<td>0,0188-0,1173</td>
<td>0,0300-0,1350</td>
<td>- 0,0177-0,0162</td>
</tr>
<tr>
<td>Varianza</td>
<td>0,0006</td>
<td>0,0007</td>
<td></td>
</tr>
<tr>
<td>Desviación típica</td>
<td>0,0249</td>
<td>0,0263</td>
<td></td>
</tr>
</tbody>
</table>

Error estándar: 0,0092
Coeficiente de correlación múltiple: $R = 0,8782$
Indice de error sistemático: - 0,00003

$C_o = f (R_1, R_2, R_4)$

PASTOS 157
<table>
<thead>
<tr>
<th>Muestras</th>
<th>Método de análisis</th>
<th>Diferencias (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERRI</td>
<td>EAA</td>
</tr>
<tr>
<td>1</td>
<td>0,1401</td>
<td>0,1430</td>
</tr>
<tr>
<td>2</td>
<td>0,1314</td>
<td>0,1500</td>
</tr>
<tr>
<td>3</td>
<td>0,1395</td>
<td>0,1650</td>
</tr>
<tr>
<td>4</td>
<td>0,1262</td>
<td>0,1580</td>
</tr>
<tr>
<td>5</td>
<td>0,2376</td>
<td>0,2550</td>
</tr>
<tr>
<td>6</td>
<td>0,1293</td>
<td>0,1310</td>
</tr>
<tr>
<td>7</td>
<td>0,1396</td>
<td>0,1130</td>
</tr>
<tr>
<td>8</td>
<td>0,1352</td>
<td>0,1200</td>
</tr>
<tr>
<td>9</td>
<td>0,1041</td>
<td>0,1280</td>
</tr>
<tr>
<td>10</td>
<td>0,1236</td>
<td>0,1130</td>
</tr>
<tr>
<td>11</td>
<td>0,1499</td>
<td>0,1280</td>
</tr>
<tr>
<td>12</td>
<td>0,1996</td>
<td>0,1880</td>
</tr>
<tr>
<td>13</td>
<td>0,1324</td>
<td>0,1450</td>
</tr>
<tr>
<td>14</td>
<td>0,1201</td>
<td>0,1280</td>
</tr>
<tr>
<td>15</td>
<td>0,1226</td>
<td>0,0940</td>
</tr>
<tr>
<td>16</td>
<td>0,1439</td>
<td>0,1160</td>
</tr>
<tr>
<td>17</td>
<td>0,1864</td>
<td>0,1500</td>
</tr>
<tr>
<td>18</td>
<td>0,1283</td>
<td>0,1130</td>
</tr>
<tr>
<td>19</td>
<td>0,1919</td>
<td>0,1380</td>
</tr>
<tr>
<td>20</td>
<td>0,2343</td>
<td>0,2400</td>
</tr>
<tr>
<td>21</td>
<td>0,2727</td>
<td>0,2930</td>
</tr>
<tr>
<td>22</td>
<td>0,1907</td>
<td>0,1500</td>
</tr>
<tr>
<td>23</td>
<td>0,1191</td>
<td>0,1200</td>
</tr>
<tr>
<td>24</td>
<td>0,1140</td>
<td>0,0900</td>
</tr>
<tr>
<td>25</td>
<td>0,1239</td>
<td>0,1050</td>
</tr>
<tr>
<td>26</td>
<td>0,0750</td>
<td>0,1050</td>
</tr>
<tr>
<td>27</td>
<td>0,1119</td>
<td>0,0980</td>
</tr>
<tr>
<td>28</td>
<td>0,1334</td>
<td>0,1200</td>
</tr>
<tr>
<td>29</td>
<td>0,1241</td>
<td>0,1050</td>
</tr>
<tr>
<td>30</td>
<td>0,1806</td>
<td>0,1650</td>
</tr>
<tr>
<td>31</td>
<td>0,1643</td>
<td>0,1450</td>
</tr>
<tr>
<td>32</td>
<td>0,1227</td>
<td>0,1430</td>
</tr>
<tr>
<td>33</td>
<td>0,1805</td>
<td>0,0900</td>
</tr>
<tr>
<td>34</td>
<td>0,0954</td>
<td>0,0830</td>
</tr>
<tr>
<td>35</td>
<td>0,0696</td>
<td>0,0680</td>
</tr>
<tr>
<td>36</td>
<td>0,1197</td>
<td>0,1200</td>
</tr>
<tr>
<td>37</td>
<td>0,1888</td>
<td>0,2050</td>
</tr>
<tr>
<td>38</td>
<td>0,1409</td>
<td>0,1730</td>
</tr>
<tr>
<td>39</td>
<td>0,1093</td>
<td>0,0980</td>
</tr>
<tr>
<td>40</td>
<td>0,1856</td>
<td>0,1650</td>
</tr>
<tr>
<td>41</td>
<td>0,1745</td>
<td>0,1430</td>
</tr>
<tr>
<td>42</td>
<td>0,1639</td>
<td>0,1950</td>
</tr>
<tr>
<td>43</td>
<td>0,1732</td>
<td>0,2030</td>
</tr>
<tr>
<td>44</td>
<td>0,1370</td>
<td>0,1800</td>
</tr>
<tr>
<td>45</td>
<td>0,1301</td>
<td>0,1650</td>
</tr>
<tr>
<td>46</td>
<td>0,0742</td>
<td>0,0980</td>
</tr>
<tr>
<td>47</td>
<td>0,1537</td>
<td>0,1800</td>
</tr>
<tr>
<td>48</td>
<td>0,1157</td>
<td>0,1130</td>
</tr>
<tr>
<td>49</td>
<td>0,2070</td>
<td>0,1950</td>
</tr>
<tr>
<td>50</td>
<td>0,2423</td>
<td>0,2440</td>
</tr>
<tr>
<td>51</td>
<td>0,1574</td>
<td>0,1130</td>
</tr>
<tr>
<td>52</td>
<td>0,1237</td>
<td>0,1580</td>
</tr>
<tr>
<td>53</td>
<td>0,1150</td>
<td>0,1200</td>
</tr>
<tr>
<td>54</td>
<td>0,1149</td>
<td>0,1540</td>
</tr>
</tbody>
</table>
TABLA VII (continuación)

<table>
<thead>
<tr>
<th>Muestras</th>
<th>Método de análisis</th>
<th>Diferencias (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERRI</td>
<td>EAA</td>
</tr>
<tr>
<td>55</td>
<td>0,1579</td>
<td>0,1580</td>
</tr>
<tr>
<td>56</td>
<td>0,1559</td>
<td>0,1880</td>
</tr>
<tr>
<td>57</td>
<td>0,1033</td>
<td>0,0900</td>
</tr>
<tr>
<td>58</td>
<td>0,1717</td>
<td>0,1650</td>
</tr>
<tr>
<td>59</td>
<td>0,1001</td>
<td>0,0830</td>
</tr>
<tr>
<td>60</td>
<td>0,2120</td>
<td>0,2330</td>
</tr>
<tr>
<td>61</td>
<td>0,1999</td>
<td>0,2400</td>
</tr>
<tr>
<td>62</td>
<td>0,1225</td>
<td>0,1330</td>
</tr>
<tr>
<td>63</td>
<td>0,0989</td>
<td>0,0750</td>
</tr>
<tr>
<td>64</td>
<td>0,0950</td>
<td>0,0830</td>
</tr>
</tbody>
</table>

Medias...................... 0,1447 0,1450 ± 0,0195
V. extremos.............. 0,069±0,2727 0,0680±0,2930 0,0429±0,0444
Varianza.................. 0,0018 0,0024
Desviación típica........ 0,0426 0,0492

Erro estándar: 0,0239

Coeficiente de correlación múltiple: R = 0,7556 Co = f (R1, R2, R3, R4, R5)
Índice de error sistemático: 0,00061

Finalmente, cabe señalar que mediante la ERRI es posible estimar la concentración de elementos minerales en plantas con mayor o menor error, según el tipo de forraje y elemento mineral que se considere. No obstante, somos conscientes de que este nuevo y rápido medio de análisis precisa ser estudiado en profundidad, lo que permitirá conocer sus grandes posibilidades.

AGRADECIMIENTO

Los autores agradecen la inestimable ayuda técnica prestada por María A. Sánchez Rodríguez.

BIBLIOGRAFÍA

PASTOS 159
DETERMINATION OF COBALT IN PASTURE PLANTS THROUGH SPECTROPHOTOMETER OF AA AND SPECTROSCOPY OF IR REFLECTANCE

SUMMARY

A critical study of determination of Co in pasture plants through SAA, following the Gelman's method, slightly modified by us, and through SIRR as appointed by García Criado and cols. is carried out. In the first case an uptake has been done using APDC and MIBK, the pH influence and the agitation times and the phases separation are studied. In the second case the calibration of the IR reflectance system was carried out with samples of a known composition without needing any sort of reactive.

It is verified that the required best acidity for a total uptake of Co is a pH = 1, and the necessary minimum times for agitation and phases separation are 1 and 15 minutes respectively. The Gelman's method modified becomes more precise and quicker than as it was initially proposed by this author.

The SIRR new technique allows to estimate the Co concentration in pasture plants with a prediction standard error between ± 0.009 % and ± 0.020 % making it possible to analyze from about 20 to 30 samples per hour. These results show that the SIRR presents great possibilities for the rapid analysis of mineral elements.