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SUMMARY 

Understanding the population dynamics and co-evolution of host-parasite systems 

requires detailed knowledge of their phenology what, in turns, requires a deep 

knowledge on the effect of abiotic factors on the life cycle of organisms. Temperature is 

known to be a key environmental influence that participates in the regulation of 

diapause. Yet, not much is known about the effect of temperature on the free-living 

stages of true parasites and the way it may influence host-parasite interactions. Here we 

experimentally study the effect of ambient temperature on overwintering pupae of 

Carnus hemapterus (Diptera, Carnidae), an ectoparasitic fly of various bird species. We 

also test whether chilling is a prerequisite for completion of diapause in this species.  In 

the course of three winter seasons we experimentally exposed carnid pupae from nests 

of various host species to spring temperature with and without chilling and recorded the 

emergence pattern in experimental and control groups. Experimental groups showed an 

advanced emergence date, a lower emergence rate and, consequently, a protracted 

emergence period. Chilling had no obvious effect on the start of emergence but it did 

advance the mean emergence date, shortened the length of the emergence period when 

compared to the control treatment and increased the emergence rate when compared 

with the spring treatment. This study identifies an environmental cue, namely 

temperature during the free-living stage, affecting the emergence of a widespread 

parasite and evidences the plasticity of diapause in this parasite. Our findings are of 

potential significance in understanding host –parasite interactions. 
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INTRODUCTION 

Temperature is a key environmental influence that is known to affect parasites and host-

parasite relationships in several ways, from killing the parasite to hinder its transmission 

and to disrupt the synchronization between its life cycle and that of the host (Feder et al. 

1997; Poulin, 1998; Wharton, 1999; Randolph, 2004). Temperature can be particularly 

influential for some parasites and/or life stages. For instance, arthropod ectoparasites 

that remain attached to their host throughout their life are protected against external 

temperatures. By contrast, species which leave the host during the free-living phase of 

their life cycle are exposed to ambient temperatures most of the time (Wharton, 1999; 

Bush et al. 2001) and thus, run the risk of dying.  

Whereas some authors have addressed the effect of temperature during the 

parasitic phase on several parameters of ectoparasites (see, for instance, Merino and 

Potti, 1996; Dawson et al. 2005), much less information is available about the influence 

of temperature during the free-living life-cycle stages of parasites and whether this 

influences host-parasite interactions (but see Wall et al. 1992; Pitts and Wall, 2006; van 

Dijk and Morgan, 2008). Further research is needed on some basic aspects for which the 

free-living phase is critical, such as the effect of temperature on the rates of growth or 

the emergence of adult parasites (Dawson et al. 2005). A particularly important topic in 

this regard is the role of environmental factors in the regulation of synchronization of 

host-parasite life cycles. Despite the likely influence of abiotic factors on various (free 

and parasitic) phases of the life cycle of parasites, the mechanisms underlying host-

parasite synchronization are still poorly understood (Hodek, 2002, Thomas and 

Blanford, 2003, but see Langer and Hance, 2000; Hance et al. 2007; Calero-Torralbo 

and Valera, 2008).  
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Diapause is a form of dormancy determined both by genetic and environmental 

factors that allows individuals to survive when circumstances are adverse, and ensures 

synchronization of active stages with favourable conditions (Lees, 1950; Tauber et al. 

1986; Danks, 1987). It is an important part of the life-cycle in many invertebrate species 

and, as such, it is studied to model and predict population responses to the environment 

at an evolutionary scale (Kostal, 2006). Environmental factors are known to regulate 

various phases of diapause. For instance, temperature and photoperiod are the main 

abiotic factors regulating diapause termination (William, 1964; Anderson, 1970; Tauber 

and Tauber, 1975; Masaki et al., 1979; Kato and Sakate, 1981, Tauber et al. 1986) since 

they are reliable cues for the organisms to time emergence with the occurrence of 

favourable periods. Environmental temperature is an important predictor in species with 

seasonal diapauses of several months and may have a principal role in those habitats 

where photoperiodic signals are less distinct or available (e.g. some tropical habitats, 

soil, caves, Danks, 1987; Kostal, 2006). The effect of temperature on diapause length 

and resumption of direct development has been studied since long (Lees, 1950; Tauber 

et al. 1986; Leather et al. 1993; Hodek, 1996, 2002; Gray et al. 2001; Teixeira and 

Polavarapu, 2002, 2005). A period of low temperature (chilling) may be also essential 

for diapause termination (Tauber et al. 1986) even though the assumption that it is a 

general prerequisite for completion of diapause development in all insects is subjected 

to controversy (Hodek, 2002). Identification of specific conditions/stimuli participating 

in the termination of diapause is meaningful since such conditions may have a 

synchronizing effect preventing untimely diapause termination and premature 

resumption of development (Kostal, 2006; Pitts and Wall, 2006). 

Carnus hemapterus Nitzsch 1818 (hereafter C. hemapterus) is a 2-mm long 

blood-sucking fly that parasitizes nestlings of a variety of bird species whose breeding 
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phenology varies considerably (Grimaldi, 1997). The system formed by this 

ectoparasite and its avian host species provides an interesting scenario for research on 

the influence of temperature on diapause termination and its ecological and evolutionary 

consequences within the framework of host-parasite relationships because: i) C. 

hemapterus  parasitizes cavity nesting species (Grimaldi, 1997), where the luminosity is 

very limited. Thus, it is possible decoupling the effect of photoperiod and temperature 

in this system, ii) C. hemapterus  overwinters in the nest as a pupa and therefore has a 

long free-living phase exposed to ambient temperature, iii) diapause in C. hemapterus  

seems to be polymorphic since three different types (a short diapause, a winter diapause 

and a diapause that may prolong itself for years) have been described (Guiguen et al. 

1983; Valera et al. 2006; Amat-Valero et al. 2012), iv) host temperature and habitat 

type have been shown to influence C. hemapterus  diapause and emergence (Calero-

Torralbo and Valera, 2008; Calero-Torralbo et al. 2013), and v) some degree of 

synchronicity has been recorded between the appearance of the host and its parasite’s 

emergence (Liker et al. 2001; Valera et al. 2003; Calero-Torralbo et al. 2013). These 

facts suggest that some environmental signs regulate such synchronicity and that 

temperature may be one of such ambient cues.  

Whereas it has already been shown that temperature changes during spring (the 

period when hosts are available) influence diapause termination (Calero-Torralbo and 

Valera, 2008) we still ignore the thermal responsiveness of diapausing pupae in winter. 

Here we hypothesize that ambient temperature during the free living phase of C. 

hemapterus regulates its diapause and acts as a synchronizing stimulus with regard to 

emergence date. Specifically we address the following questions: i) are free-living, 

winter-diapausing carnid pupae sensitive to thermal environment? ii) if so, how does 

temperature variation during this phase influence the emergence phenology of the 
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parasite?, and iii) is chilling a prerequisite for completion of diapause development? To 

answer these questions we experimentally exposed diapausing pupae from different host 

species to contrast vernal temperatures with and without cold shocks and studied the 

emergence pattern of the infective phase.  

 

MATERIAL AND METHODS 

Study species  

C. hemapterus is a generalist bird ectoparasite and it is distributed around a wide region 

in the world (Bequaert, 1942; Guiguen et al. 1983; Grimaldi, 1997). Its life cycle takes 

place completely in the nest and comprises an adult parasitic stage, 3 larval phases 

encompassing around 21 days at 22ºC and 95% relative humidity and a pupal stage 

(Guiguen et al. 1983). Flies usually overwinter as pupae in their hosts’ nests. After a 

diapause usually lasting several months (Guiguen et al. 1983), imagines emerge the 

following spring both in occupied and unoccupied nests, with a certain synchronization 

with the presence of the host (Liker et al. 2001; Calero-Torralbo and Valera, 2008), thus 

allowing the perpetuation of C. hemapterus in the nest. Nonetheless, both a short 

diapause (Guiguen et al. 1983; Amat-Valero et al. 2012) and a long diapause that may 

prolong itself for years (Valera et al. 2006) have been described for this parasite. Adults 

are initially winged after their eclosion and can disperse searching for an occupied nest, 

but they typically lose their wings once they find a suitable host (Roulin, 1998).  

In southern Spain the Spotless starling Sturnus unicolor begins breeding in early 

March and some pairs have a second clutch at the end of May. Incubation lasts about 11 

days and fledglings leave the nest between 18-25 days after hatching (Cramp and 

Perrins, 1994). The Common kestrel Falco tinnunculus breeds in our study area from 

April to June. Incubation lasts about 25 days and nestlings stay in the nest 26-30 days. 
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The breeding period of the European roller Coracias garrulus lasts from early May until 

approximately mid-July. Eggs are incubated about 20 days and fledglings leave the nest 

approximately 20–22 days after hatching (Václav et al. 2011). These three species breed 

in cavities and frequently occur in sympatry in steppe and semiarid areas in Spain. 

Study area and material collection 

The main study area (~ 50 km
2
) lies in the Desert of Tabernas (Almería, SE Spain, 

37º05’ N, 2º21’ W). The climate in this area is semi-arid with high annual and seasonal 

rainfall variability (mean annual rainfall ca. 218 mm), and strong thermal oscillations 

with inter-annual differences. Summers are long and hot and winters are usually mild. A 

second study area lies in Jaén province (S Spain, range 37°49’ N, 3°39’ W to 38°2’ N, 

3°36’ W), approximately 200 km northwest from the one in Almería. The climate in this 

area is Mediterranean, with dry and hot summers and rainy and mild winters. 

Nests of various bird species were sampled in different localities in both study 

areas during November 2008, December 2009 and July 2010 (Table 1). The samples 

were kept in transparent plastic bags and were moved to the Estación Experimental de 

Zonas Áridas (EEZA, Almería 36º 50’N 02º 28’W) after collection.  

Experimental design 

It is accepted that carnid pupae have a winter diapause (Guiguen et al. 1983) even 

though it is ignored when it ends. Winter diapauses of insects inhabiting temperate 

regions usually end when the ambient temperatures attain their seasonal minimum 

(Hodek, 1983, 1996, 2002) that, in our study area, is reached in January. Our 

experimental design consisted of exposing carnid pupae to different abiotic conditions 

during November-December and, thus, we assume that pupae were in dormancy when 

they entered the experimental treatments. At this time of the year, experimental groups 

of pupae were subjected to increased temperature resembling spring conditions 
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(experiments in 2008, 2009 and 2010, hereafter spring treatment) and chilling and 

increased spring temperature (experiment in 2010, hereafter chilling treatment). Control 

groups were simultaneously maintained at ambient winter temperature (either in 

outdoor locations – 2008 and 2009 – or in indoor locations – 2010 -) (Table 1). The 

emergence pattern of control and experimental groups was then compared (see below).  

Samples for the experiments in 2008-2009 and 2009-2010 were split in two 

subsamples of the same mass after collection. Each subsample, placed in an open plastic 

bag and then kept in a gauze bag, was randomly assigned to experimental and control 

treatments.  

In 2008-2009 we studied the effect of temperature increase during wintertime on 

the starting of emergence of carnid flies. Experimental subsamples were collected in 

mid-November 2008, stored indoors in replicated natural conditions (i.e. ambient 

temperature moderated by partial enclosure and darkness) and, from mid-December 

onwards, they were subjected to spring conditions in darkness. Meanwhile, control 

subsamples were kept in natural holes in the study area. Date of first emergence was 

recorded in all subsamples until the end of April. 

During the next wintering season (2009-2010) we also explored the effect of 

premature temperature increase on carnid pupae, but this time we studied the whole 

emergence period. Experimental subsamples were collected in mid-December, and 

entered the experimental treatment (spring conditions in darkness) few days after 

collection (see Figure 1 and below). Control subsamples, also collected in mid-

December, were moved to an outdoor room in Almería, stored in a cartoon box and kept 

in the shade and darkness (Figure 1). 

In 2010-2011 we studied the effect of premature temperature increase and chilling 

on the emergence pattern of carnid flies. Samples were collected in July 2010 and 
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sieved through 8, 4, 1 and 0.4 mm sieves, and pupae in the last sieve together with fine 

sand were collected. Samples were stored indoors, in replicated natural conditions at the 

EEZA until 12 November 2010 when they were split in groups with equal mass. Not all 

samples had enough material, so that we could allocate eleven samples to each of the 

three treatments, eight samples to two treatments (chilling and spring) and three samples 

were kept undivided and assigned to the control treatment. Every subsample/sample 

was kept in open plastic bags and then maintained in closed gauze bags. On 15 

November 2010 each sample/subsample (when available) was assigned to the following 

treatments: i) control: kept indoors at the EEZA during the whole experiment; ii) spring 

temperature: stored indoors (with control subsamples) and on 30 November 2010 they 

entered the spring treatment; iii) chilling: exposed to low temperature (see below) 

during 15 days from mid-November 2010 and then to spring conditions in darkness 

from 30 November onwards (Figure 1).  

The experimental conditions used to resemble spring and chilling temperatures 

were established after data collection in the field. Temperature and humidity data-

loggers (Maxim/Dallas Integrated Products, Inc.) placed in cavity nests showed that 

during April-May (when C. hemapterus  emergence naturally starts in our study area for 

most of the studied species – Calero-Torralbo and Valera, 2008 -) temperature and 

humidity ranges 15-25ºC and 50-80% respectively (in prep.). During winter (from 

December till March) data-loggers´ data showed a range of temperature around 6-13ºC. 

Concerning humidity, it is highly variable at this period, and depending on the type of 

nest (in prep.), ranging from around 60% to saturation. On the basis of such information 

we therefore set the experimental spring conditions as 21-23ºC and 60-65% HR and 

chilling conditions as 10ºC and 85% HR.  
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Experimental subsamples for the 2008-2009 and 2009-2010 experiment were 

placed in a climatic test chamber model Ineltec-CCSP
©

, programmer PR-920 and 

software PROCAM WIN 2000, precision: ±1ºC and ±3% HR. Experimental subsamples 

for the 2010-2011 experiment were placed in a climatic test chamber model Solatron-

CCI
©

, Interface RS-232, precision: ±0.1ºC and ±1% HR. In 2008-2009 the experimental 

conditions were registered every minute by the sensors installed in the chamber. 

However, during 2009-2010 and 2010-2011 data-loggers recording temperature and 

humidity every 15 min were additionally placed in the climatic chamber. Data-loggers 

were also placed together with the control subsamples for all years to check the 

conditions they were subjected to.  

During the 2009-2010 experiment the chamber worked inadequately during 9-14 

April, so that temperature rose to 30ºC on 12-13 April and humidity dropped to 40-50%. 

Such period coincided with the ninth and tenth emergence weeks (see Results). Figures 

4 and 5 suggest that they did not affect the overall emergence pattern.  

All subsamples were monitored every 3-4 days (starting on 7
th

 January 2009 for 

the 2008 experiment, 2
nd

 January 2010 for the 2009 experiment and 7
th

 December 2010 

for the 2010 experiment) until at least 10 days after the last emerged fly was recorded. 

After each checking the location of subsamples in the chamber was randomized. Flies 

emerging from each subsample and date were separately preserved in 70% ethanol and 

subsequently counted and identified with the aid of a stereoscopic microscope.  

In summary, pupae in the experimental spring groups were subjected for at least 

33 days (from the start of the experiment until emergence of the first fly) to higher 

temperature than pupae in control groups. Differences in temperature between both 

groups depend on ambient conditions and on the date of start of the experiment (see 
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Table 2). Additionally, in 2010-2011 an experimental group was subjected to a cold 

shock for fifteen days before entering the spring conditions (Table 2).  

Statistics 

For 2008-2009 prevalence (percentage of samples where C. hemapterus  emergence was 

recorded with respect to the total number of samples) and first emergence date (1=1
st
 

January) were registered for control and experimental subsamples. For the 2009-2010 

and 2010-2011 experiments prevalence, abundance (the number of emerged flies per 

subsample), first and latest emergence date, length of the emergence period (days 

between the emergence of the first and the last fly), mean emergence date, emergence 

pattern (percentage of flies emerged in each subsample in one-week periods) and the 

cumulative percentage of emerged flies per week were calculated for all subsamples. 

Samples where less than five flies emerged were discarded in all cases except for 

prevalence calculation. 

Tests were chosen according to the number of experimental groups and the 

sample size. Thus, differences in prevalence were tested by means of the Exact 

Unconditional Tests (Reiczigel et al. 2008) for data from 2008-2009 and 2009-2010 and 

by Fisher Exact tests for data from 2010-2011. Paired comparison tests were used to 

examine differences in flies abundance (Wilcoxon tests for data from 2008-2009 and 

repeated measures ANOVAs for data from 2010-2011) and differences in emergence 

dates and duration (t-test for 2008-2009, Wilcoxon tests for 2008-2009 and repeated 

measures ANOVAs for 2010-2011) among experimental and control subsamples. To 

check the assumption of sphericity in repeated measures ANOVAs, we used Mauchly´s 

test and when the sphericity was not met, Greehouse-Geisser estimator was used to 

adjust the degree of freedom (von Ende, 2001). Post-hoc tests (Fisher LSD) were used 

to look for differences among treatments in 2010-2011. 
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In order to compare the emergence rate among experimental and control 

subsamples we represented the mean weekly cumulative emergence, calculated the 

slopes of each curve (within the range 10-90% emergence) by means of simple 

regressions and, finally, compared the slopes (t-test, ANOVA and multiple 

comparisons) following Zar (1984).  

All values reported are means ± SE and all P-values are two-tailed. Statistical 

tests were done with the programs Quantitative Parasitology 3.0 (Reiczigel and Rozsa, 

2005) and Statistica (version 10). 

 

RESULTS  

Effect of temperature on prevalence and abundance of C. hemapterus  

The experimental treatments did not influence either the prevalence or abundance of 

carnid flies (Table 3). The number of subsamples where less than five flies emerged 

(2009-2010: 1 and 3 subsamples in control and spring treatments respectively; 2010-

2011: 1 subsample in both chilling and spring treatment) did not vary among treatments 

either (2009-2010: Exact unconditional test, P=1.0; 2010-2011: Fisher test, P=1.0). 

Effect of temperature on the length of the emergence period.  

Emergence of carnid flies in 2009-2010 experimental subsamples lasted significantly 

longer (Wilcoxon test: P=0.04) (on average 36 days) than in the corresponding control 

subsamples (Table 4). Similarly, both experimental treatments in 2010-2011 produced a 

significantly longer emergence period (Repeated Measures ANOVA: adjusted P<0.001,  

Table 4) in comparison to the one observed in the control group (on average 75.9 days 

longer in the spring subsample and 46.9 days longer in the chilling subsample). Post-

hoc tests showed that the length of the emergence period also differed between the 

spring and chilling treatment (on average 29 days longer in spring subsamples, P=0.02). 
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The protracted emergence period in experimental subsamples is mainly due to a 

significantly earlier emergence of flies in comparison with control subsamples in all 

experiments (Table 4). The date of first emergence did not differ between chilling and 

spring subsamples (Post-hoc test: P=0.8). The date of first emergence was more 

variable (see CVs in Table 4) in experimental subsamples for 2008-2009, 2009-2010 

and only for the spring subsample in 2010-2011.  

Concerning the date of last emergence, there were no differences in 2009-2010 

(Wilcoxon test: P=0.12, Table 4), whereas in 2010-2011 flies from spring subsamples 

emerged significantly later than flies from chilling and control subsamples (Repeated 

Measures ANOVA: adjusted P=0.002, Post-hoc tests: P<0.05 in both cases). 

Experimental subsamples (spring in 2009-2010, spring and chilling in 2010-2011) also 

had a greater variability than control ones in the date of last emergence (Table 4).  

Effect of temperature on the emergence pattern 

Experimental manipulations influenced both the emergence pattern and emergence rate 

of carnid flies. Whereas emergence in control subsamples was quite steady and 

unimodal, it was more irregular (even with a saw-tooth shape) in spring and chilling 

subsamples (Figures 2 and 3 for 2009-2010 and 2010-2011 respectively).  

The mean emergence date of carnid flies in 2009-2010 was one month earlier in 

spring subsamples than in control ones (5 March and 9 April respectively, Wilcoxon 

test, Z=2.0, P=0.043, N=5). In 2010-2011 the mean emergence date also differed among 

treatments (Repeated Measures ANOVA, F2,18=90.0, adjusted P<0.001), being earliest 

in the chilling treatment, then in the spring one and latest in the control treatment (10 

March, 11 April and 13 May respectively, Post-hoc tests: P<0.01 in all cases). 



 

15 

 

Moreover, in 2009-2010 the cumulative percentage of emerged flies (within the 10-

90% range) in control subsamples encompassed 5 weeks whereas it took 11 weeks in 

spring subsamples. Thus, the slope of the regression line of the mean weekly cumulative 

emergence in control subsamples was significantly higher in comparison to the one of 

spring subsamples (β=17.6 and 7.9 for control and spring respectively, t=9.5, df=12, 

P<0.001; Figure 4).  This was also the case for the experiment in 2010-2011, when 

cumulative emergence in spring subsamples took 13 weeks, 9 for chilling subsamples 

and only 5 weeks for control subsamples. The slopes of each regression line differ 

significantly from the others (F2,21=7.78, P<0.01), being highest for the control 

subsamples and lowest for the spring ones (β=16.8, 9.5 and 6.9 for control, chilling and 

spring treatment respectively, Post-hoc tests: P<0.001 in all cases, Figure 5). 

 

DISCUSSION 

Our experiments did not influence either the prevalence or abundance of carnid flies. 

However they did evidence that the free-living, winter-diapausing pupal stage of C. 

hemapterus is sensitive to thermal changes and that temperature variation at this stage 

influences the emergence pattern of the parasite since: i) pupae under experimental 

conditions emerged earlier; ii) a protracted emergence at the end of the season was 

observed in subsamples subjected to the spring treatment; iii) the mean emergence date 

of experimental subsamples occurred earlier when compared to the one in control 

subsamples; iv) the emergence pattern was more irregular in both types of experimental 

subsamples; v) the emergence rate was also lower in the experimental subsamples in 

comparison to the control ones, and vi) as a result, the emergence period of carnid flies 

in experimental subsamples lasted significantly longer than in the corresponding control 

subsamples. 
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We also found that chilling had an effect over C. hemapterus emergence: this 

treatment produced an earlier mean emergence date, a shorter duration of the emergence 

period and a higher emergence rate when compared with the spring treatment. In 

contrast, the first emergence date was similar in chilling and spring treatments. These 

findings agree with previous studies in other insects (Anderson and Kaya, 1975; 

Nechols et al. 1980; Shimoda and Kiuchi, 1997), supporting that chilling accelerates 

diapause development and reduces the pupal period. More specifically, Milonas and 

Savopoulou-Saultani (2000) reported that cold periods followed by subsequent 

temperature increase favoured enhanced and synchronous reactivation. This is indeed 

our case, since: i) variability in the date of first emergence in chilling subsamples was 

similar to the one reported for control subsamples and was the half than the one found 

in spring subsamples, and ii) the length and variability in the emergence period in 

chilling subsamples was lower than in spring subsamples, suggesting a more 

homogenous emergence in the former treatment. 

Our understanding of the phases and mechanisms implicated in diapause 

termination is still very incomplete (Kostal, 2006). We do know that the control of 

development and the diapause intensity programming regulate a suitable diapause 

termination and that both mechanisms are influenced by changes in environmental 

conditions or token signals (see, for instance, Masaki, 2002; Kostal, 2006). Chilling is a 

common factor terminating many winter diapauses even though it is not a general 

prerequisite (Hodek, 2002; Kostal, 2006). Our results suggest that chilling is not 

necessary for diapause completion in C. hemapterus but it did accelerate diapause 

completion and served as synchronizing stimulus limiting premature termination of 

diapause (see Kostal, 2006). Then, favourable temperature triggered some internal 

regulator of the speed of development (Tauber et al. 1986; Broufas and Koveo, 2000; 
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Kemp and Bosch, 2005; Teixeira and Polavarapu, 2005) so that pupae subjected to 

temperature increase emerged more than one month earlier than control pupae and a 

high percentage of flies emerged in experimental subsamples before emergence started 

in the control ones (2009-2010: 57%;  2010-2011: 42.6 % - in chilling subsamples- and 

14.2 % - in spring subsamples – before the second fly emerged in control samples – a 

first fly emerged bizarrely early-, see Fig. 3).  

A key role of diapause is to overlap the active phases of the life cycle of insects 

with their seasonally available food supply. This is important for short-lived parasites 

that, like C. hemapterus, feed on ephemeral resources. Calero-Torralbo and Valera 

(2008) experimentally found that overwintering carnid pupae subjected to an increased 

temperature in spring (27.5ºC, resembling an early occupancy of the nest by a host) 

advanced the mean date of emergence and produced an earlier and faster rate of 

emergence in comparison with control pupae (without temperature increase). Thus, 

whereas an earlier start of C. hemapterus emergence has been consistently found 

regardless the time when temperature is manipulated (this study and Calero-Torralbo 

and Valera, 2008), the emergence rate increased or decreased depending on the time the 

temperature rise occurs: a premature temperature increase produced low emergence rate 

whereas a temperature increase during the time the hosts are available (spring) produced 

a fast emergence rate. This finding suggests that temperature increases promote rapid 

responses in C. hemapterus pupae and that these responses aim to overlap the most 

likely period of host availability.  

It is known that diapause termination and direct development resumption may be 

based on heat accumulation (Tauber et al. 1986; Kostal, 2006) but we still ignore the 

underlying mechanisms regulating differential responses to the same stimulus. Since 

individuals may enter diapause in different periods of the year there is place for a plastic 
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phenotypic diapause intensity that may vary in response to environmental signals 

(Masaki, 2002). Seemingly, C. hemapterus has a polymorphic diapause and there could 

exist different emergence phenotypes (e.g., early and late) with different diapause 

duration or post-diapause degree day requirements (Waldbauer, 1978; Waldbauer and 

Sternburg, 1986; Biron et al. 1998), pupae of different generations or with different life-

cycle strategies (Amat-Valero et al. 2012). 

Whatever the mechanism, the potential significance of the thermal sensitivity 

and plasticity of diapause in C. hemapterus is meaningful. This fly is able to parasitise a 

wide range of host species whose availability (i.e. period of hatching of various bird 

species) encompasses several months (from March to July). Therefore, selection for 

ability to respond to eventual alternative host appearance by means of phenotypic 

plasticity in diapause traits could be advantageous (Calero-Torralbo and Valera, 2008). 

Whereas some degree of synchronization between C. hemapterus emergence and the 

occurrence of their hosts has been reported (Liker et al. 2001; Valera et al. 2003), 

variation in synchronization at the nest and population level has also been found 

(Calero-Torralbo et al. 2013). A high sensitivity to temperature (both ambient and host-

related) during the final phases of diapause together with a remarkable plasticity in the 

termination of diapause could result in polymodal emergence (see figures 2 and 3) 

suggesting a bet-hedging strategy against environmental uncertainty, by which at least a 

proportion of the population could ensure host encounter (Menu et al. 2000; Hopper, 

1999). For a generalist species like C. hemapterus, thermal phenotypic plasticity in 

diapause traits could be a result of natural selection (Blanckenhorn, 1998). 
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Figure 1.- Experimental design of the study. For each experiment year, host species and 

sampling date are given. For each treatment sample size (in brackets), and details of the 

manipulation (dates, setting and environmental conditions) are given. 
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Figure 2.- Mean weekly percentage of emergence (±SE) of carnid flies in experimental 

and control subsamples in 2009-2010 (week 1 = 12-19 February, week 18 = 3-10 June) 

(n= 5 subsamples for each group). 
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Figure 3.- Mean weekly percentage of emergence (±SE) of carnid flies in experimental 

and control subsamples in 2010-2011 (week 1 = 3-9 January, week 30 = 25-31 July) (n= 

10 subsamples for each group). 
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Figure 4.- Lineal regressions of the mean (± SE) weekly cumulative emergence (in %) 

curves of experimental and control subsamples in 2009-2010 (week 1= 15-21 February, 

week 13= 3-9 May). Sample size is 5 nests for each subsample.  
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Figure 5.- Lineal regression of the  mean (±SE) weekly cumulative emergence (in %) 

curves of experimental and control subsamples in 2010-2011 (week 1= 28 February-6 

March, week 14= 30 May-5 June). Sample size is 17 nests for both chilling and spring 

subsamples and 13 nests for control subsamples. 

 



 

 

Treatment Host Location and 

sampling date 

Nº 

samples 

collected 

Number of subsamples yielding carnid 

flies in each experimental group (range 

of emerged flies) 

    Control Spring Tª Chilling and 

spring Tª 

Increased Tª (Spring) 

(22ºC, 60% HR) 

Coracias 

garrulus 

Almería, 12-14 

November 2008 

21 20 (-) 21 (-) _ 

Increased Tª (Spring) 

(21ºC, 65% HR) 

Sturnus 

unicolor 

Jaén, 18-23 

December 2009 

1 1 (19) 1 (15) _ 

Falco 

tinnunculus 

Jaén, 18-23 

December 2009 

9 2 (1-11) 3 (1-14) _ 

Falco 

tinnunculus  

Almería, 18-23 

December 2009 

6 3 (13-27) 4 (1-27) _ 

Chilling (10ºC, 85% HR) 

and increased Tª (23ºC, 

65% HR) 

Coracias 

garrulus 

Almería, 17 July 

2010 

22 13 (5-135) 18 (3-138) 18 (4-123) 

Table 1. Sampling effort: number of samples collected from different hosts and locations for each experimental treatment. The number of samples 

yielding carnid flies in each experimental group (control, spring and chilling + spring) and the range of emerged flies are also shown for each 

experiment (except for samples collected in 2008, see text). 



 

 

 

 2008-2009 2009-2010 2010-2011 

 Spring Control Spring Control Chilling Spring Control 

Temperature 22.1 ± 0.001ºC 

(18/12/08-

20/01/09) 

9.0 ± 0.03ºC 

(18/12/08-

20/01/09) 

20.8 ± 0.1ºC 

(23/12/09-

3/02/10) 

13.1 ± 0.4ºC 

(23/12/09-

3/02/10) 

10.2 ± 0.01ºC 

 (15/11/10-29/11/10) 

20.3 ± 0.01ºC 

 (15/11/10-29/11/10) 

23.1 ± 0.02ºC 

 (30/11/10-3/01/11) 

19.0 ± 0.01ºC  

 (30/11/10-3/01/11) 

Humidity 60.3 ± 0.004 

(18/12/08-

20/01/09) 

75.7 ± 0.3ºC 

(18/12/08-

20/01/09 

66.8 ± 0.3% 

(23/12/09-

3/02/10) 

82.0 ± 1.4% 

(23/12/09-

3/02/10) 

86.6 ± 0.03% 

 (15/11/10-29/11/10) 

57.2 ± 0.1% 

 (15/11/10-29-11-10) 

65.4 ± 0.2% 

 (30/11/10-3/01/11) 

59.5 ± 0.1% 

 (30/11/10-3/01/11) 

Table 2. Mean (± SE) temperature and humidity in experimental and control subsamples in all three procedures for the period when the 

experimental subsamples were under laboratory conditions until emergence of the first fly in any subsample (in brackets). 



 

 

 

 Prevalence Abundance  

 Control Spring  Chilling  Test Control  Spring Chilling Test 

2008-

2009 

95.2% 

(21) 

100% 

(21) 

- P=1.0 - - - - 

2009-

2010 

37.5% 

(16) 

50% 

(16) 

- P=0.7 16.6±2.9  

(5) 

15.4±3.1  

(5) 

- Z=1.1, P=0.27, 

n=5 

2010-

2011 

92.9% 

(14) 

94.7% 

(19) 

94.7% 

(19) 

P=1.0 42.5±11.1  

(10) 

45.6±12.0  

(10) 

41.6±10.8  

(10) 

F=0.79, 

P=0.47, d.f.=2, 

18 

Table 3. Prevalence and abundance of control and experimental subsamples in each experiment. Differences in prevalence were tested by means of 

Exact unconditional tests (for 2008-2009 and 2009-2010 data) and Fisher exact test (for 2010-2011). Abundance data were tested by means of 

Wilcoxon test (2009-2010) and repeated measures ANOVA (2010-2011 data). Means and SE are shown (sample size in brackets). 



 

 

 

 First emergence Last emergence Duration period 

 Control Spring Chilling test Control Spring Chilling test Control Spring Chilling test 

 2008-

2009 

122.0±2.8 

[10.0] (19) 

39.9±3.4 

[37.6] 

(19) 

- T=30.3 

df=18 

P<0.0001  

 - - -  - - - 

 2009-

2010 

100.0±2.0 

[4.4]  

(5) 

50.0±5.4 

[24.3] 

(5) 

- Z=2.0 

P=0.043  

137.0±5.1 

[8.4] 

(5) 

123.0±12.7 

[23.1]   

(5) 

- Z=1.5 

P=0.12  

37.0±3.7 

[22.5]  

(5) 

73.0±9.0 

[27.4]  

(5) 

 Z=2.0 

P=0.043 

2010-

2011 

95.1±7.0 

[23.0] (10) 

41.1±7.5 

[57.4] 

(10) 

38.5±2.6 

[21.5] 

(10) 

F=26.6 

df=2,18 

P<0.0001   

166.2±4.8 

[9.1]  

(10) 

188.1±7.7 

[13.0]   

(10) 

156.5±8.

4 

[17.0]  

(10) 

F=10.2 

df=2,18 

Adjusted 

P=0.002  

71.1±7.6 

[33.9]  

(10) 

 

147.0±13.

4 

[28.8]  

(10) 

 

118.0±8.8 

[23.6] 

(10) 

F=24.1,  

df=2,18 

Adjusted 

P<0.001 

Table 4. Date of first and last emergence (1=1st January) of carnid flies and length of the emergence period in each experiment. T-tests for 

dependent samples (2008-2009), Wilcoxon tests (2009-2010) and repeated measures ANOVAs (2010-2011) were used. Means and SE are shown; 

coefficients of variation are in square brackets and sample sizes in brackets. When sphericity is not met, Adjusted P values refer to the 

Greenhouse-Geissner corrected probability are shown for each repeated measures ANOVA test.   

 


