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Resonance line shapes and catastrophes in particle-surface scattering

J. Margalef-Roig and S. Miret-Arte´s
Instituto de Matema´ticas y Fı́sica Fundamental, Consejo Superior de Investigaciones Cientı´ficas, Serrano, 123, 28006 Madrid, Spain

~Received 22 June 2000; published 1 February 2001!

In this work we present a general study of resonance line shapes within the catastrophe theory framework
and valid for any type of scattering: particle-particle, particle-surface, or liquid and light-particle. The standard
profiles analyzed, and issued from the multichannel scattering theory, correspond to isolated Fano-type,
double, critical, and dipole resonances. They have been topologically classified according to the well-known
elementary catastrophes: fold, cusp, and its dual and swallowtail, respectively. The onset of each structural
change, ortopological transition, at some external, critical parameter value, like the surface temperature, is
discussed in terms of the probabilities of entering and leaving the resonance as well as of the direct scattering.
Finally, atom-surface scattering is studied in more detail showing that the critical temperature is very close to
the Debye surface temperature.
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I. INTRODUCTION

Resonance line shapes and signatures have attracted
of interest in many branches of physics. Rules govern
such intensity features have been sometimes reported b
many cases their applicability is very limited. One of t
main reasons is due to the lack of a good knowledge of
interaction potential governing the physical process
volved. However, the different line shapes of resonance
tures or, in mathematical terms, their different topolog
found in experiments and calculations can be easily un
stood by a close examination of the nature of the criti
point, that is, the resonance position. The theory available
such a study is the catastrophe or singularity theory~CT!
introduced by Thom1 and widely developed by Zeeman2 ~for
an introduction see, for example, Refs. 3 and 4!. CT is still
being widely applied in different branches of physics su
as, for example, thermodynamics for phase transitions, st
tural mechanics, aerodynamics, climate, quantum mecha
and caustics and diffraction patterns. In particular, in atom
molecular, and surface physics, the rainbow scattering,5 the
asymptotic evaluation of integrals ~uniform
approximations!,6 and the molecular geometry discussed
terms of the topology of the charge density7 are the three bes
known examples where CT has been successfully applie

In most of those works, CT has not been applied in
rigorous way using all the concepts and theorems neede
its correct implementation. In particular, we study a ma
ematical property called transversality which guarantees
a given general function and its elementary catastrophe
sociated, expressed as a simple polynomial or canon
form, represents locally~around a critical point! up to a dif-
feomorphism such a function. Very recently, we have p
posed and applied an algorithm based on the main theor
of CT to a standard phase transition problem.8,9 A big advan-
tage of our approach is that provides a systematic way
analyze and classify the critical points of any general, a
lytical function susceptible to represent any physical proce

A catastrophe, in this context, would correspond to a c
lescence of two or more critical points of the analytical fun
tion used to parametrize the different topologies observe
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many theoretical calculations and/or experimental resu
Obviously these topological manifestations are very comm
and have been observed many times but as far as we k
they have not been recognized as such. Application of CT
resonances is quite straightforward since we are dealing
analytical functions depending on only one variable, usua
the total energy~state variable, in CT terminology! and on
several parameters as, for example, the temperature an
pressure~forming the so-called control space!. In this control
space is wherecausticsare defined. They are obtained fro
thebifurcation setwhich is calculated, for a one-dimension
problem, by equating to zero the first and second derivati
of a given function and eliminating the state variable. T
corresponding parametric curves define the caustic.

After CT, the mathematical analysis begins with the c
culation of the critical pointsx0 of a given analytical func-
tion, F(x). These points also called isolated or nondegen
ate are calculated by the conditionsF8(x0)50 andF9(x0)
Þ0, whereF8(x) and F9(x) stand for the first and secon
derivatives of the functionF(x) with respect tox, respec-
tively. These critical points will be calledk degenerateor
nonisolated when the firstk derivatives are zero. The exis
tence of degenerate critical points will indicate theonsetof
structural changes in a resonance profile when some exte
parameter is varied. The change of the profile is predicte
be abrupt when a given parameter crosses the caustic. M
over, functions in the vicinity of these points are notstruc-
turally stable, that is, its qualitative properties~number and
types of critical points! are changed by a sufficiently sma
perturbation of one or several parameters. Thus, in gener
k-fold critical degenerate point will split up into at mostk
isolated critical points~possible fewer! by a perturbation
which can be expressed, after CT, by a given canonical fo

A study of experimental resonance line shapes in term
CT has been recently reported10 in the context of atom-
surface scattering for the system He-NaCl~001!. The corre-
sponding selective adsorption resonance line shapes dis
ing mixed extrema structures~a Fano-type function! have
been shown to be isomorph to the simplest elementary ca
trophe, the fold catastrophe, when the surface temperatu
varied around its Debye value. This type of functions is t
©2001 The American Physical Society02-1
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simplest one where a coalescence of two isolated crit
points can occur. Fano-type profiles in scattering proces
appear when there is an interference between the reson
and background contributions. The former comes from
short-range attractive component of the potential and
later from its long-range component. On half-collision pro
lems is the interference between the direct dissociation
the predissociation which provokes such profiles. Due to
fact that this interference behavior is very common in ma
physical processes, we are going to review it in a very g
eral way and extend this study to three more interfere
mechanisms: double resonances, dipole resonances,11 and the
so-called critical profiles recently observed in the scatter
of He atoms from the NaCl~001! surface12 andD2 molecules
from the Cu~001! surface;13 the originally predicted reso
nance mechanisms leading to such singular behaviors
called the critical kinematic~CK! ~Ref. 14! and focussed
inelastic resonance~FIR! ~Refs. 15 and 16! effects. We will
finally show that the critical temperature for the topologic
transition should be very close to the corresponding surf
Debye temperature. The theoretical starting point will be
multichannel resonance scattering.

II. GENERALITIES ABOUT CATASTROPHE THEORY
WITH ONE STATE VARIABLE:

THE CT ALGORITHM

In this section we are going to review very briefly th
concepts and theorems of CT used thorought this work.
simplicity, we will focus on one dimensional functions wit
several parameters. CT deals with the singularities of smo
real-valued functions. The character of the singularity is
vealed by perturbing locally the function around such
point. If, as a result of a perturbation, the qualitative prop
ties of the function remain unaffected, we will say that th
function is stable or structurally stable. A very importa
concept is the so-calledk jet of a given function at a given
point which is defined as its Taylor series truncated bey
terms of degreek. Now the next important step is to know
what information is lost when we truncate the Taylor ser
of a function around a given point, namely, the problem
determinacy. In other words, we are interested in determ
ing whether a function can be truncated and if so, up to w
degree the Taylor expansion can be truncated without
loss of substantial information. In this way, we determine
most general family of functions~unfolding! of minimum
dimension~the least number of Taylor series coefficien!
which contains the original function. The unfolding dime
sion is the number of parameters describing a general pe
bation and the minimum number to describe it is called
codimension. When all the unfolding parameters go to ze
the remainder of the universal unfolding is called thegermof
the canonical form.

When thek jets of two functions are equal we say th
both functions arek equivalent. A germg is k determinate if
for every germf such that bothk jets are equal we have tha
f andg are equivalent~or related by a change of coordinate
being usually expressed asf ;g!. The determinacy of a germ
g is the smallest natural numberk such thatg is k determi-
09430
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nate and this number is called the determinative numb
s(g). A sufficient algebraic condition for thek determinacy
of g can be written as

^x&k11,^x&2D~g!1^x&k12, ~1!

where D(g) is the ideal of Jacobi of the germg which is
defined for one variable by

D~g!5 K dg

dxL ~2!

and the notation̂¯& is used to denote the ideal of the rin
formed by the set of germs in one dimension,E(1). The
powers in Eq.~1! are interpreted operationally as

^x&n5$xn
• f / f PE~1!%, for every nPN. ~3!

The next step is to introduce the concept of transversa
as a means to study structural stability and genericity. T
transversality condition is not widely used in the literature
classify physical phenomena in terms of elementary catas
phes. When a property of a given function is invariant und
a perturbation, this property is called generic or structura
stable. One of the main theorems aboutk transversality for
unfoldings can be stated as follows: Let us consider a gerg
k determinate andf andh two unfoldings ofg with r param-
eters which arek-tranversal; thenf and h are isomorphic.
Moreover, if h is an unfolding ofg, the algebraic condition
for the transversality can be established as follows: we
that h is k transversal if

^x&5D~g!1^x&k111Vh , ~4!

whereVh is the real vector space generated by the vec
Dl1

g(x,0)2Dl1
g(0,0),...,Dlr

g(x,0)2Dlr
g(0,0) whereDl

stands for the partial derivative with respect to thel param-
eter.

After this brief introduction, the CT program or algorithm
applied8,9 can be now established as: LetF(x,l) be a real
function withxPR the state variable and control paramete
l1 ,...,l r (lPRr); that is,F:R11r→R. Then we proceed as
follows:

~i! We pick (x0 ,l0) such thatx0 is a degenerate critical
point of F(x,l) and we build the unfoldingh(x,l)5F(x
1x0 ,l1l0)2F(x0 ,l0) and obtain the germ asg(x)
5h(x,0). Doing this, we have translated this local study
the origin of coordinates.

~ii ! One calculates the determinacy and codimension og
from the k jet of g. Of course, ifg is k determinate theng
; j k(g), that is, the functiong is equal to j k(g) up to a
change of coordinates and hence they are equivalent
have qualitatively the same properties. Moreover, their co
mensions are equal; that is, cod(g)5cod@ j k(g)#.

~iii ! One studies after thek transversality ofh and, if this
function isk transversal, we can affirm thath and the canoni-
cal unfolding of g are isomorph. Thus we can replace t
original h unfolding by that canonical unfolding. If not, w
can claim that theF function is not susceptible to be studie
by CT.
2-2
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III. STANDARD RESONANCE LINE SHAPES
IN MULTICHANNEL SCATTERING

Our starting point is the multichannel resonance scatte
theory as formulated by Ref. 17. The total probabilityPt of
the transition from the incident channeli to a final channelf,
via an isolated resonance, is given by the square modulu
the collisionS matrix elements

Pt5uSf i u25USb, f i1 i
Bf i

x1 iU
2

, ~5!

with Sb, f i being the collision backgroundS matrix, which
includes all elastic and inelastic contributions except
those coming from the resonance. Its square modulus g
the probability of the direct, i.e., nonresonant, scatteri
Pb5uSb, f i u2. The matrix elementBf i is such that its square
modulusuBf i u25s2 links the probabilities of entering (Pin)
and leaving (Pout) the bound state according to

s254•Pout•Pin . ~6!

This matrix element determines the signature of the re
nance profile.14,15 In general,Pout and Pin are equal excep
when the time-invariance property does not hold. Both pr
abilities can be treated independently according to the in
pendence hypothesis widely accepted in scattering the
which states that any scattering event can be separated in
steps: formation of the resonance with probabilityPin and its
ulterior decay with probabilityPout. In Eq. ~5!, we have
introduced a dimensionless variablex, which can be ex-
pressed in terms of the resonance positionĒ and widthG as

x5~2/G!•~E2Ē!. ~7!

Thusx50 gives the resonance position andx561 the po-
sition shifted by6G/2, covering the resonance region.

Any matrix element from Eq.~5! can also be rewritten in
terms of an analytical functionF1(x) as

F1~x!5a1bx1
s212r~cosf2x sinf!

x211
. ~8!

Here, it has been assumed that the background contribu
to the resonance profile is a smooth function ofx, that is,
Pb5uSb, f i u25a1bx; and br5r cosf and bi5r sinf are
the real and imaginary parts of the productBf i•Sb, f i* , respec-
tively. In particular, the square modulus of this compl
number is related to the scattering probabilities by the
lowing expression:

uBf i•Sb, f i* u25r254•Pout•Pin•Pb . ~9!

As we will show later, the interference between the ba
ground and resonant contributions can give place to the
lescence of the two critical points~Fano-type profile! dis-
played by Eq.~8!.

Another mechanism of coalescence of critical points is
so-called double resonance which is also very common
scattering problems. In general, we could envisage the in
ference of more than two resonances. However, we will
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lustrate here how to proceed for the simplest case where
two resonances interfere. The profile is given by

Pt5uSf i u25USb, f i1 i
B1,f i

x11 i
1 i

B2,f i

x21 iU
2

, ~10!

with the x1 andx2 variables defined by

x15~2/G1!•~E2Ē1! ~11!

and

x25~2/G2!•~E2Ē2!. ~12!

To facilitate the study of this new case we need to introdu
two different variables,

2D5x22x1 ,

x5x11D5x22D, ~13!

and any matrix element of Eq.~10! can be rewritten as

F2~x!5a1bx1
s1

212r1@cosf12~x1D!sinf1#

~x1D!211

1
s2

212r2@cosf22~x2D!sinf2#

~x2D!211

1
~x22D211!2% cosw24D% sinw

~x22D211!214D2 , ~14!

where the symbols,s, r, and f are defined for each reso
nance with a subindex 1 or 2, respectively, and the n
symbols% andw are used for the modulus and phase of t
complex numberB1,f i•B2,f i* , respectively.

The isolated resonance case above described is also c
sometimes monopole resonance. In scattering theory,
possible to describe from a mathematical point of view w
it is called in generalmultipole resonances.11 The existence
of a dipole resonance was first reported in particle phys
This case has a lot of similarities to the double resona
but, as we will see, its topological manifestations are
strictly the same. We are going also to analyze this profi
This profile can be expressed as

Pt5uSf i u25USb, f i12ix
Bf i

~x1 i !2U2

, ~15!

which after a little algebra any matrix element becomes
following analytical function:

F3~x!5a1bx

14
xr sinf1~s212r cosf!x22x3r sinf

~x211!2 ,

~16!

where the parameters have the same meaning as before
In atom-surface scattering, there are special resona

profiles called critical profiles where the functionF1(x) is
replaced by
2-3
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F4~x!5a1bx1
s212r~cosf2x2 sinf!

x411
. ~17!

These profiles occur under special incident conditions of
incoming particle scattering~elastically or inelastically! from
a given surface. The CK and FIR mechanisms w
predicted14,15 and recently observed in the scattering of H
atoms and D2 molecules from insulators and met
surfaces,12,13 respectively.

Equations~8!, ~14!, ~16!, and~17! defining the analytical
functionsFi(x) with i 51,2,3,4 are the starting point for th
topological analysis of resonance profiles by means of C

IV. APPLICATION OF THE CT PROGRAM

A. Isolated resonances: Fano-type profiles

The background contribution@Pb5a1bx in Eq. ~8!#,
taken as a small perturbation near the resonance region
fects differently the line shapes around the isolated and n
isolated critical points. If the coefficients accompanyingx in
Eq. ~8! are equal to zero (b50 and sinf50), thenx50 is
not a degenerate critical point. At these conditions the re
nance profileF1(x) will exhibit a symmetric Lorentzian
function and show~i! a maximumwheneverPb,Pout•Pin
and ~ii ! a minimumwheneverPb.Pout•Pin . These profiles
are structurally stable from a topological point of view
Moreover, if sinf50 only, asymmetric maxima or minim
will be exhibited depending on the relation among the abo
mentioned scattering probabilities.

On the contrary, whenbÞ0 and sinfÞ0, asymmetric
Fano-type functions~minimum-maximum structures! are
present. We are interested under what conditions the
isolated critical points coalesce. A close examination of
three first derivatives reveals very important consequen
Thus we have that

~i! If F18(0)50 thenb52r sinf, that is, the coefficients
accompanyingx are equal@see Eq.~8!#. For convenience, we
write this condition asd152r sinf/b51.

~ii ! If F19(0)50 then cosf52(s2 /2r) or d2

52r cosf/s2 521 which implies thatPb.Pout•Pin . Both
conditions can be written in a single expression such 4r2

5b21s4.
~iii ! Finally, if F1-(0)Þ0 then sinfÞ0 andbÞ0.

These three requirements form a necessary condition for
most elementary catastrophe, that is, thefold catastrophe.
The bifurcation set can be obtained by equating to zero
first and second derivatives ofF1(x) and, from both equa-
tions, to eliminate the state variablex. In doing so, we have
that thebifurcation setis

BF1
[d25~b)/9!•~d118!•A12d1, ~18!

with d1<1. In general, the bifurcation set is not easy
extract from a general function since thex variable can be
involved in a quite complex way~for example, transcenden
tal functions!.
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From this preliminary study we can say that the functi
F1(x) is susceptible to be studied by CT. We proceed the
fore to apply the CT program. We start building the unfol
ing of F1(x) as

h~x,b,s,r,f!5F1~x1x0 ,b1b0 ,s1s0 ,r1r0 ,f1f0!

2F1~x0 ,b0 ,s0 ,r0 ,f0! ~19!

with the germ defined by

g~x!5h~x,0,0,0,0! ~20!

and where the critical point has been shifted to the origin
coordinates, thea parameter not being relevant in this C
analysis. Now we impose the conditions atx050,

g8~0!5g9~0!50, g-~0!Þ0, ~21!

which lead to the system of equations

05b022r0 sinf0 ,

05s0
212r0 cosf0 ,

0Þ12r0 sinf0 ~22!

with r0.0 andf0P]p/2,p@ø#p,3p/2@ . Then the three jet
of the germg is

j 3~g!52x3r0 sinf0 ~23!

and the ideal of Jacobi of the germ is

D~g!5^g8~x!&5^x2&. ~24!

The codimension of the germ is the dimension of the q
tient vector space, cod(g)5dim^x&/^x2&51 and a basis of
this vector space is$@x#%. After Eq. ~1!, the germg is three
determinate. Then

j 3~g!;g;z3 ~25!

and the canonical form

z31l1z ~26!

is a k-transversal unfolding ofz3 for k>3. This canonical
form corresponds to thefold elementary catastrophe.

Next, the important point is to show that theF1(x) func-
tion and the canonical form Eq.~26! for the fold catastrophe
are isomorph. When this is true, we can affirm that bo
functions are strictly equal and present the same topolog
properties as well as describe the same scattering proces
said in the Introduction, for this goal, a mathematical loc
property calledtransversality, Eq. ~4!, has to be proved,2

namely

^x&5^x2&1^x&3111Vh , ~27!

whereVh is the vector space of the transversality and re
in our case as
2-4
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Vh5K x,x2s0

22x0

~x0
211!2 ...,x@2~x0

211!212 sinf0

24x0~cosf02x0 sinf0!~x0
211!221...,

x@2~x0
211!212r0 cosf014x0r0~sinf01x0 cosf0!

3~x0
211!22#1¯#L

R

~28!

where after deriving with respect to the parametersb, s, r,
andf, the resulting functions depending onx are replaced by
the first terms of their Taylor series. Due to the fact thatVh
contains the generatorx the transversality condition applie
to h, Eq. ~4!, is fulfilled for k53. ThusF1(x) is three trans-
versal. Therefore, as this function has four parameters
the canonical form of the fold catastrophe only one, there
three parameters which are irrelevant. Finally we can cla
that F1(x) and the canonical unfolding

G1~z,l1 ,l2 ,l3 ,l4!5z31l1z ~29!

are isomorph; that is, there are three changes of coordin
and a perturbation of parameters involving the state varia
and the parameters of the theory. CT guarantees these
changes of coordinates, however, it can be in general v
difficult to find them.

The bifurcation set of Eq.~29! is

BG1
[l150 ~30!

and is related to the bifurcation set ofF1(x) by

BF1
5BG1

3R3. ~31!

F1 and G1 present the same topological properties andG1
can be used to describe exactly the same physical phen
enon. It is well-known from CT~Refs. 3 and 4! that the fold
catastrophe has the following topological properties: its
furcation set is a single point@l150 in Eq. ~29!# and when
the physical problem passes through this value an ab
change in the topology~topological transition! occurs.
Again, from CT, it follows that for negative values ofl1 ,
F1(x) has two critical points~a maximum and minimum!,
while for positive l1 values, no critical point is found in
F1(x). In the bifurcation, F1(x) will display a plateau
around the resonance position. These three different top
gies can be found in any standard book of CT.3,4 In sum-
mary, when the background contribution is not negligib
and Pb.Pin•Pout an abrupt change in the resonance pro
is expected by varying an external parameter as, for exam
the temperature of the surface in atom-surface scattering10

B. Double resonances

The unfolding ofF2(x) is

h~x,b,D!5F2~x1x0 ,b1b0 ,D1D0!2F2~x0 ,b0 ,D0!
~32!

and the germ defined again by
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g~x!5h~x,0,0!, ~33!

where for simplicity we have assumed that only theb andD
parameters play an important role in this CT analysis. N
we impose the conditions atx05D050,

g8~0!5g9~0!5g-~0!50, g~ iv !~0!Þ0, ~34!

which lead to the system of equations

052b012~r1 sinf11r2 sinf2!,

05s1
21s2

212~r1 cosf11r2 cosf21% cosw!,

052~r1 sinf11r2 sinf2!,

0Þ24~2% cosw21! ~35!

and thereforeb050. Then the four jet of the germg is

j 4~g!5
1

24
g~ iv !~0!x4 ~36!

and the ideal of Jacobi of the germ is

D~g!5^g8~x!&5^x3& ~37!

Finally the codimension of the germ is the dimension of t
quotient vector space, cod(g)5dim^x&/^x3&52 and a basis
of this vector space is$@x#,@x2#%. After Eq.~1!, the germg is
four determinate and

j 4~g!;g;6z4 ~38!

since g( iv)(0) can be positive or negative. The canonic
forms

6z41l1z1l2z2 ~39!

arek-transversal unfoldings of6z4 for k>4. These canoni-
cal forms correspond to thecusp~plus sign! elementary ca-
tastrophe and its dual~minus sign!. The transversality now
reads

^x&5^x3&1^x&4111Vh , ~40!

whereVh is the vector space of the transversality, this tim
deriving only with respect to the parametersb and D. This
condition is fulfilled for k54. The canonical unfoldings o
the cusp catastrophe and its dual,

G2~z,l1 ,l2!56z41l1z1l2z2, ~41!

are isomorph toF2(x); that is, there are four changes o
coordinates and a perturbation of parameters involving
state variable and the parameters of the theory.

The bifurcation set of Eq.~41! is

BG2
[27l1

218l2
350 ~42!

and is related to the bifurcation set forF2(x) by

BF2
5BG2

. ~43!

As before, both unfoldings present exactly the same to
logical properties andG2 can be used to describe the sam
2-5
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physical phenomenon. It is well-known from CT~Refs. 3
and 4! that the cusp catastrophe and its dual exhibit the
lowing topological properties:bimodality ~two minima for
the cusp or two maxima for the dual cusp! when the control
parameters lie within the cusp-shaped area,divergenceof the
linear response since two nearby paths in control space
lead to widely different topological features andhysteresis
which occurs when a physical process is not reversible. T
final aspect will be discussed in more detail in next secti

C. Dipole resonances

The procedure applied to the functionF3(x) is completely
similar to the preceding cases. Due to the fact that this fu
tion is slightly more complicated the calculation of the su
cesive derivatives is much more tedious. Again, we build
unfolding of F3(x) as before,

h~x,b,s,r,f!5F3~x1x0 ,b1b0 ,s1s0 ,r1r0 ,f1f0!

2F3~x0 ,b0 ,s0 ,r0 ,f0!, ~44!

with the germ defined by

g~x!5h~x,0,0,0,0!. ~45!

Now we impose again the following conditions:

g8~0!5g9~0!5g-~0!50, ~46!

giving rise to the system of equations

05b014r0 sinf0 ,

058~s0
212r0 cosf0!,

05272r0 sinf0 ~47!

with b050, sinf050. With these values, the fourth deriva
tive is identically zero and the fith derivative is nonzer
Then, the five jet of the germ is equivalent to

j 5~g!;g;z5, ~48!

g is five determinate, its codimension is 3 and its ideal
Jacobi is

D~g!5^g8~x!&5^x4&. ~49!

The canonical form

z51l1z1l2z21l3z3 ~50!

is a k-transversal unfolding ofz5 for k>5. This canonical
form corresponds to theswallowtail elementary catastrophe
For the transversality we have shown that Eq.~4! is fulfilled
for k55. In Vh derivation is with respect to the paramete
b, s, r, andf, replacing the resulting functions by the fir
terms of their Taylor series. ThenF3(x) and the canonica
unfolding,

G3~z,l1 ,l2 ,l3 ,l4!5z51l1z1l2z21l3z3, ~51!

are isomorph but only two of the four parameters are
evant. The bifurcation set of Eq.~51! is much more compli-
09430
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cated and can be found in any standard book of CT.3,4 The
bifurcation set forF3(x) is related to that ofG3 by

BF3
5BG3

3R2. ~52!

The topological properties are much more complicated
the interested reader is again referred to any standard b
about CT.

D. Critical resonances

The unfolding ofF4(x) is

h~x,b,s,r,f!5F4~x1x0 ,b1b0 ,s1s0 ,r1r0 ,f1f0!

2F4~x0 ,b0 ,s0 ,r0 ,s0! ~53!

and the germ

g~x!5h~x,0,0,0,0!. ~54!

Now we impose the same conditions atx050,

g8~0!5g9~0!5g-~0!50, g~ iv !~0!Þ0, ~55!

which lead tob050 and sinf050 as before. Then the fou
jet of the germg is

j 4~g!5
1

24
g~ iv !~0!x452~s0

212r0!x4 ~56!

and the same ideal of Jacobi of the germ is reached as in
double resonance case. The codimension of the germ is
is four determinate and

j 4~g!;g;6z4. ~57!

A basis is again$@x#,@x2#%. The canonical forms are agai
those of the cusp and its dual.F4(x) has been proved that i
is also four transversal and the canonical unfolding,

G4~z,l1 ,l2 ,l3 ,l4!56z41l1z1l2z2, ~58!

is isomorph toF4(x). The corresponding bifurcation set
the same than for the canonical unfoldingG2 ,

BG4
[BG2

, ~59!

and is related to the bifurcation set forF4(x) by

BF4
5BG4

3R3. ~60!

V. PHYSICAL DISCUSSION AND CONCLUSIONS

This kind of study has been initially tackled in atom
surface scattering where clear evidences of some of the
gular behaviors found here have been alrea
observed.10,12,13Our main goal in this work has been to e
tend, justify, and generalize that previous topological ana
sis to the most common resonance features reported in m
physical processes. We have shown mathematically
resonance line shapes are governed by CT, the differen
pologies being dictated only by the canonical forms. In p
ticular, the analytical functionsF1(x) and F2(x) represent-
ing Fano-type and double resonance profiles, respectiv
2-6
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are isomorph to the most elementary~lower codimension!
catastrophes; that is, the fold and cusp catastrophes. Th
pole resonance has been analyzed in some detail sin
points out a tendency about how to reach higher codim
sions. Moreover, the critical profiles provide a good illust
tion of the selective adsorption phenomenon, very w
known in the context of particle-surface scattering, a
where the corresponding CK and FIR effects supply a me
to make weak resonance features visible when metal surf
are probed. In fact, theF4(x) function has been successful
applied to fit the resonance line shape observed in the s
tering ofD2 molecules from the Cu~001! surface and showed
the topological transition around the critical temperature p
dicted in this work.13 Even more, from that fitting, the life
time of the corresponding resonance has been easily
tained. This is a very important issue since many times i
very difficult to extract~inelastic or elastic! resonance life-
times if no information about the topologies of line shapes
known. In this sense, the present study can be considere
a useful guide for experimentalists. The final conclusio
drawn in this work can also be extended to half collisi
problems, nuclear scattering, neutron-surface~or liquid! scat-
tering, electron-molecule scattering, gas-phase scatte
etc.

A second aspect of this general study has consiste
stressing the importance of the linear behavior displayed
the background contribution. In other words, this theoreti
development is based on two main assumptions: the b
ground contribution inside the resonance region can be c
sidered as a small perturbation and, at least, a linear ter
energy should be included to fulfill the property of transv
sality. Obviously, resonance processes very near to thres
conditions or with very active backgrounds are not good
amples to apply such a study.

Interestingly enough is the interpretation we can give
the bifurcation sets or caustics found. In optics, for examp
the envelope of rays reflected from a curved surface form
caustic; two or more rays coalesce on each point of the c
tic and the intensity along the envelope is very high. A co
pletely different meaning should be attributed to caustics
sued from resonance processes. By passing through
bifurcation set the topology of the profile is chang
abruptly; it delimits in the control space the borders wher
topological transitiontakes place. As has been establish
the different line shapes predicted by CT are related to
behavior of the background which can be modified in seve
ways. First, depending on theS-matrix element chosen to
describe a given resonance, the arrangement of the c
sional channels determines drastically such a behavior.
ond, any external parameter such as the temperature o
target, the initial orientation of the collisional partners, t
pressure in gas phase or liquid scattering, the intensity of
radiation field in a half collision problem, etc., can provo
substantial modifications on the background contribution
it would be possible to follow continuously the topologic
transitions predicted by CT for a given resonance. A
third, each line shape displayed is associated to a given
lation among the three fundamental probabilities discusse
the text,Pin , Pout, andPb . Moreover, in some cases, as f
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example in the critical profiles, the density of resonan
states becomes infinity.18 In the double resonance case, t
same interpretation could be considered.

Along these lines, it has been clearly established that
describes the behavior of a system by comparing it to cer
patterns, the canonical forms. However, in most cases tr
find the changes of coordinates leading to such canon
polynomials is indeed impossible but their existence is
sured by CT. In this sense, the procedure followed in t
work is not sufficient to give an interpretation of the micr
scopic phenomena which bring about the critical behav
For example, in atom/diatom-surface scattering, the varia
of the surface temperature has been recently shown to
duce topological transitions for a given selective adsorpt
resonance.10,13 In both cases, it was remarkable that the cr
cal temperatures observed were very close to their co
sponding surface Debye temperatures where multipho
processes begin to be important. We feel that this fact is
a coincidence at all but, unfortunately, we also think that
is not in a position to provide a complete theoretical just
cation of the underlying physical mechanism. The tempe
ture dependence ofPb , Pin , andPout is really very different
if elastic or inelastic~phonon-assisted! resonances are in
volved. Nevertheless, for elastic selective adsorption re
nances, some behaviors can be easily devised. For exam
Pb is expected to follow the overall Debye-Waller attenu
tion. The parameters, involving the ‘‘in’’ and ‘‘out’’ reso-
nant probabilities, should depend weakly on the tempera
since these probabilities are ratios between a partial w
~resonance decay by an open diffraction channel! and the
total width ~resonance decay by all open diffraction cha
nels! of the resonance. In contrast, the parameterr2 ex-
pressed in terms of the background probability should a
follow the thermal Debye-Waller~DW! attenuation and be
the major contribution to the surface temperature of the
merators from the functionsFi(x) with i 51,2,3,4. In a very
good approximation, thex variable is independent on th
surface temperature. On the other hand, it is well known t
the DW exponent depends linearly on the surface temp
ture, the proportional factor being a function mainly of th
scattering geometry and masses. On the other hand, this
ponent is usually interpreted as the average number
phonons exchanged in the collision. Thus, if we admit t
such an exponent is close to 1, a more or less limit for sin
phonon processes, the critical temperature will be in a v
good approximation close to the surface Debye tempera
whenever the proportional factor is also close to 1. This
exactly what has been observed recently in Ref. 10.

Concerning the hysteresis problem which arises in S
IV B where the cusp catastrophe appears, several comm
need to be mentioned. It is well known that hysteresis occ
whenever a physical process is not strictly reversible. Mo
over, hysteresis is also very much related to the convent
used in CT. The bifurcation set is associated to the so-ca
delay convention, valid when the values of the control p
rameters are changing with time very slowly. On the co
trary, in the other extreme, for the so-called Maxwell or co
flicting set, the Maxwell convention is applied. In this ne
set, the critical values of a function at two or more critic
2-7
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points are degenerate and the equations determining it
called the Clausius-Clapeyron equations. It is well kno
that when a physical system exhibits large fluctuations,
Maxwell convention holds and hysteresis fails to occ
Thus, in physical irreversible resonance processes, the p
ence of double or critical resonances is a indirect indicat
that hysteresis should exist. In atom-surface scattering,
example, when the surface is heated the response to the
fraction of He atoms is different from that observed when
surface is cooled down. The same is predicted in the se
tive adsorption phenomenon.

The last comment is concerning the isomorphy. In t
work, we have clearly established that the study of the tra
versality is fundamental in order to be sure that the funct
7
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describing the physical process is indeed isomorphic to
of the elementary catastrophes. As has been said, this a
is many times neglected in applying CT to different branch
of physics and chemistry. Moreover, thanks to that ma
ematical property, completely different phenomena
closely related among them due to the genericity underly
in nature, being remarkably described and justified in the
framework.
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