for $\lambda = 1$. Certainly, at smaller λ values, adding Gaussian functions at longer distances could decrease somewhat the energy of the excited state leaving obviously unaffected the ground level. Searching for an additional excited state is by now out of our computer capabilities. On the other hand, we call the attention of the reader to the fact that the Efimov treatment involves several approximations, as, e.g., the factorization of the total wave function in the interaction region, and the consideration of only the first term ($\ell = 0$) in the partial wave series [9]. Therefore, an exact reproduction of the model conclusions from the remarkable Efimov work may hardly be expected.

Therefore, from the above points, one can conclude that this very interesting boson trimer system still remains an open problem.

Instituto de Matemáticas y Física Fundamental
Consejo Superior de Investigaciones Científicas
Serrano 123
28006 Madrid, Spain

Department of Chemistry
The University of Rome
Cité Universitaria
00185 Rome, Italy

Received 21 January 2000
DOI: 10.1103/PhysRevLett.86.4190
PACS numbers: 36.90.+f, 31.15.Ja

TABLE 1. Ground and first excited energies and dominant geometries for the He$_3$ trimer recently reported in the literature. Meaning of symbols: QLinear: quasilinear; Equi: equilateral triangle; NEqui: nonequilateral triangle; NLinear: nonlinear configuration.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu = 0$</td>
<td>-0.131</td>
<td>-0.126</td>
<td>-0.1252</td>
<td>-0.1259</td>
<td>-0.1264</td>
<td>-0.1252</td>
</tr>
<tr>
<td>Geometry</td>
<td>QLinear</td>
<td>QLinear</td>
<td>Equi</td>
<td>?</td>
<td>NEqui</td>
<td></td>
</tr>
<tr>
<td>$\nu = 1$ (mK)</td>
<td>...</td>
<td>...</td>
<td>-2.269</td>
<td>-2.28</td>
<td>-2.271</td>
<td>-2.269</td>
</tr>
<tr>
<td>Geometry</td>
<td>...</td>
<td>...</td>
<td>NLinear</td>
<td>?</td>
<td>Linear</td>
<td>NLinear</td>
</tr>
</tbody>
</table>